
COMPONENT SERVER
FRAMEWORK USER GUIDE

RELEASE 5.1

March 1998

ObjectStore Component Server Framework User Guide

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-CSF-510

Contents

Preface . vii

Chapter 1 Introduction . 1

Taking Advantage of the Cache-Forward Architecture . . . 2

The ObjectStore Component Server. 4

The Thin Client API. 6

The Component Server API . 7

The Client and Server API Classes . 8

OLE DB and ADO Clients . 9

Building the Component Shared Library and Client Shared
Library or Executable . 13

Configuring, Starting, and Stopping the
Server Executable. 15

Deploying Thin Clients and Component Servers 18

Chapter 2 Thin Client API Overview . 19

Setting Routers . 20

Connecting to a Service . 21

Retrieving Operations from the Server 22

Setting Operation Arguments . 23

Executing Operations . 24

Extracting Operation Results . 25

Disconnecting from the Server . 26

Managing the Thin Client Cache . 27
Release 5.1 iii

Contents
Chapter 3 Component Server API Overview. 29

Defining an Operation Subtype. 31

Specifying Server Operation Name, Transaction Type, and
Formal Parameters . 32

Initializing a Component . 35

Adding Operations to a Server Session 36

Implementing Server Operation Execution 38

Formatting Operation Results . 40

Implementing ostcDisconnect() . 42

Chapter 4 QuickStart Example . 43

Chapter 5 Intermediate Example . 51

Data Model . 53

The Client Code . 55

The Server Code . 56

Chapter 6 Using and Configuring the DataView Reader . . . 59

Accessing Data Views from the DataView Reader 61

Filtering and Ordering: SQL Support in DataView Reader . 62

DataView Reader Configuration Utility 64

Registry Keys. 73

Chapter 7 ostc . 77

OSTC Fundamental Data Types . 78

Transaction Types . 80

Setting Routers . 83

Connecting to and Disconnecting from a Service 84

Chapter 8 ostc_Session . 85

Getting a Session’s Operations. 86

Executing Operations . 87

Managing the Cache. 90

Managing Transactions . 91

Getting the Name of a Session’s Associated Service 92
iv ObjectStore Component Server Framework User Guide

Contents
Chapter 9 ostc_Operation . 93

Getting Operation Formal Parameters 94

Getting an Operation’s Name and Description 95

Getting an Operation’s Timestamp. 96

Getting Operation Actual Parameters. 97

Setting Operation Actual Parameters 100

Chapter 10 ostc_OperationSet . 103

Chapter 11 ostc_AttributeDescriptor . 105

Chapter 12 ostc_AttributeDescriptorList . 107

Cursor Validity . 108

Traversing Lists . 109

Getting List Cardinality . 110

Getting the Element with a Specified Name 111

Chapter 13 ostc_Object . 113

Getting an Object’s Attribute Descriptors. 114

Getting an Object’s Attribute Values 115

Setting an Object’s Attribute Values. 120

Getting an Object’s Session . 122

Getting and Setting Object IDs . 123

Chapter 14 ostc_ObjectList . 125

Cursor Validity . 126

Traversing Object Lists . 127

Getting Object List Cardinality . 128

Getting and Setting Object List OIDs 129

Truncating Incremental Lists. 130

Adding and Removing List Elements. 131

Chapter 15 ostc_OID . 133
Release 5.1 v

Contents
Chapter 16 Global Functions . 135

Implementing ostcConnect() . 136

Implementing ostcDisconnect() . 137

Implementing ostcInitialize(). 138

Chapter 17 ostc_ServerSession . 139

Adding Operations to a Session. 140

Exposing Data Views . 141

Modifying Start-up Parameters. 142

Chapter 18 ostc_ServerOperation . 145

Implementing execute() . 146

Implementing operationComplete() 147

Implementing format() . 148

Setting Operation Formal Parameters 150

Setting the Description of an Operation 151

Getting the Name of an Operation . 152

Creating and Deleting Server Operations 153

Chapter 19 ostc_OperationResult . 155

Setting and Getting the Return Value or Values. 156

Getting Operation Formal Parameters 157

Setting and Getting Result IDs . 158

Chapter 20 ostc_ApplicationServer . 159

Creating and Starting ObjectStore Component Servers . 160

Stopping Component Servers. 161

Adding Components to a Server. 162

Modifying Parameters . 163

Chapter 21 Exception Reference. 167

Index. 169
vi ObjectStore Component Server Framework User Guide

Preface

Purpose The ObjectStore Component Server Framework User Guide describes
how to use the Component Server API, the thin client API, and the
Component Server executable to build scalable, multitier
ObjectStore applications that make optimal use of ObjectStore’s
Cache-Forward architecture. This book supports ObjectStore
Release 5.1.

Audience This book assumes the reader is experienced with C++.

Scope Information in this book assumes that ObjectStore and the
Component Server Framework are installed and configured.

How This Book Is Organized

The book begins with a chapter that introduces the Framework
APIs and the Component Server executable. The chapter also
contains a section on using OLEDB and ADO instead of the thin
client API. The last three sections of the chapter provide detailed
information on building and deploying thin clients and
components, as well as on starting and configuring the
ObjectStore Component Server.

The next two chapters provide overviews of the Server and client
APIs. The two chapters after that provide a basic example and an
intermediate example, respectively. The next chapter discusses
using ObjectStore Inspector data views together with the
Framework.

The subsequent several chapters provide references on each class
in the Server and client APIs. The last chapter provides an
exception reference.
Release 5.1 vii

Preface
Notation Conventions

This document uses the following conventions:

ObjectStore C++ Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
on line in Web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Convention Meaning

Bold Bold typeface indicates user input or
code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You
can specify only one of the enclosed
items. Vertical bars represent OR
separators. For example, you can specify
a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system
named inside the circle supports or does
not support the feature being discussed.

UNIX UNIX
viii ObjectStore Component Server Framework User Guide

Preface
Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the online support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.
Release 5.1 ix

Preface
Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
x ObjectStore Component Server Framework User Guide

Chapter 1
Introduction

The ObjectStore Component Server Framework makes it easy to
build component-based applications that make optimal use of
ObjectStore’s Cache-Forward architecture. The Framework
provides an API and a Server executable that allow you to build,
deploy, and administer highly scalable components and thin
clients.

This chapter introduces you to the following topics:

Taking Advantage of the Cache-Forward Architecture 2

The ObjectStore Component Server 4

The Thin Client API 6

The Component Server API 7

The Client and Server API Classes 8

There is also detailed information on the following:

OLE DB and ADO Clients 9

Building the Component Shared Library and Client Shared
Library or Executable 13

Configuring, Starting, and Stopping the Server Executable 15

Deploying Thin Clients and Component Servers 18
Release 5.1 1

Taking Advantage of the Cache-Forward Architecture
Taking Advantage of the Cache-Forward
Architecture

ObjectStore is designed to maximize performance and ease of
development for distributed, component-based applications by
supporting

• Management of data as C++ or Java objects

• Delivery of data from database storage to application
components (ObjectStore client shared libraries)

• Automatic maintenance of local, transaction-consistent caches
associated with each component, which act as in-memory
databases

With many applications, using the component caches most
effectively means allowing each end user to use many caches, as
well as allowing many end users to use the same cache.

That way requests from different end users that require similar
data sets can be routed to the same cache. This minimizes
invalidation of other component caches, reducing network traffic
due to callbacks and refetched data.

Moreover requests from the same end user that require different
data sets can each be routed to different caches. Each request can
be handled by a cache that is likely to contain the necessary data
already. This means most data access can take place at in-memory
speeds, with no database Server overhead.

This requires a multitier architecture in which thin client
processes send requests to component servers, which service
requests by using components in the form of shared libraries.
These servers, in turn, are clients of ObjectStore database Servers,
which maintain cache validity, propagate updates to persistent
storage, and service any component requests for additional data.
2 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
Multitier Architecture for ObjectStore Applications

For web-based applications, thin clients run on the web server
host, either as a CGI executable or as a shared library executing in
the web server process space (for example as an NSAPI or ISAPI
shared library).

The ObjectStore Component Server Framework provides a
Component Server executable for which you can build thin clients
and components. You can build thin clients with the Framework’s
thin client API, or with OLE DB or ADO. You can build
components with the Framework’s Server API together with the
ObjectStore C++ API.

database

database

Component
Servers

Thin
Clients

ObjectStore
Servers
Release 5.1 3

The ObjectStore Component Server
The ObjectStore Component Server

The Component Server Framework includes the ObjectStore
Component Server, which handles interaction between thin
clients and ObjectStore components.

Each Component Server process supports a named service. A
service is a collection of components, that is, shared libraries that
act as plug-ins to the Server. Each component, in turn, supports
one or more operations.

The Component Server supports high throughput and scalability
by providing

• Flexible transaction management: Servers can execute requests
using a variety of transaction types. With most transaction
types, the Server batches requests from different users into the
same transaction, reducing commit overhead and increasing
throughput.

• Multiple-thread dispatching: Each Server handles requests
using multiple threads, so requests share resources more
efficiently and inexpensive requests do not have to wait for
more costly ones.

Load balancing: To scale your application as the number of
requests increases, you can configure Servers to use more threads.
As the number of requests increases further, you can replicate
Servers as many times as necessary for the required performance.
One Server acts as router and distrubutes requests to Servers on a
round-robin basis.

The Component Server is an ObjectStore client, that is, a client of
ObjectStore database Servers.

You can start and stop ObjectStore Component Servers from the
command line, or you can create a customized component server
that manages start-up and shutdown of ObjectStore Component
Servers.

Most applications use multiple Servers. Each Server is dedicated
to a subset of the operations supported by a service. In many
cases, the data set required by those operations can fit entirely, or
almost entirely, into the Server’s cache (which is an ObjectStore
client cache).
4 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
When you start or configure a Server, you specify the following
parameters, which are related to routing client requests to the
appropriate Server:

• Transaction type: Each Server runs a specific type of
transaction, isolated_update , shared_update , read , or
mvccRead . Each operation is implemented to use one of these
transaction types. Requests for execution of given operation are
routed to a Server running that operation’s type of transaction.

• Optional routing data: This is a pointer to any user-specified
data, such as a character string. A thin client can specify routing
data along with the request, and the request is routed to a
Server with matching routing data.

Because clients can specify routing data on a per-operation basis,
clients can route requests based on operation arguments. For
example, an application that operates on bank accounts can route
operations based on account number. That way, different Servers
can be dedicated to the data for different ranges of account
numbers. This allows you to scale the application by adding more
Servers as the number of accounts increases, and keep the
application operating almost entirely on hot caches.

You can manually warm up each cache when you initialize the
application, or you can let thin client requests populate the caches
incrementally. In the latter case, because of ObjectStore’s Cache-
Forward architecture, each cache is automatically populated with
the desired data set by virtue of the routing that takes place. In
both cases, ObjectStore automatically maintains the validity of all
Component Server caches.

Using multiple Servers can also increase the fault tolerance of
your application. By replicating Servers, including router Servers,
you can easily avoid single-point-of-failure vulnerability. In
addition, routers maintain route data persistently, which also
increases applications’ fault tolerance.
Release 5.1 5

The Thin Client API
The Thin Client API

The client API provides C++ functions for connecting to a service
and sending requests. Requests take the form of operations
named and defined by the Server.

Before sending a request, the client retrieves an operation object
from the Component Server, and sets its arguments using one of
the following types of value for each argument:

• Integer type

• Floating numerical type

• Character string

• Object ID

• Bit stream

After a client request is serviced, the client receives the results in
the form of a list of ostc_Object s, which are essentially lists of
attribute/value pairs. The API provides functions for retrieving
attribute values, which are each values of one of the preceding
fundamental types.

If the number of objects to be returned is large, the client can
specify that the results be returned incrementally. The
incremental nature of the results is transparent to the client, since
the usual API functions for retrieving list elements automatically
trigger a Server interaction whenever a new batch of results must
be sent.

The client maintains a cache of object lists returned by the Server.
When you issue a request, you can specify that the results should
be obtained from the cache, if possible, instead of from the Server.

The client API is entirely independent of ObjectStore. You can use
the API to build an independent executable, for example a CGI
executable, or to build a plug-in, for example an NSAPI or ISAPI
plug-in.

For more information on the Client API, see the Thin Client API
Overview on page 19.
6 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
The Component Server API

You use the Server API, together with the ObjectStore C++ API, to
build components (that is, plug-in shared libraries) that can be
loaded by an ObjectStore Component Server.

You build each component by defining a class for each operation
you want the component to support, and implementing certain
functions. Some of the API functions specify the protocol for
functions you must implement. You call other API functions from
these implementations.

Among the functions you must implement are execute() member
functions for each operation the component supports. An
execute() function retrieves the arguments sent by the client and
uses them for ObjectStore-dependent processing. It then specifies
the results as one or more persistent or transient C++ objects.

Another function you must implement for each operation is the
format() member function. When execute() completes, the Server
calls format() on each return value to convert it into one or more
ostc_Object s. All the resulting objects are returned to the client.

Beginning and ending transactions is handled automatically by
the Server, so you do not have to write transaction management
code.

The Server API also provides an alternative to supporting an
operation by defining a class and implementing its members. You
can support an operation by designating (with a Server API
function) an ObjectStore Inspector data view. When you do this,
the component automatically supports an operation that returns
an ostc_Object for each row of the data view. See Using and
Configuring the DataView Reader on page 59.

For more information on the Server API, see the Component
Server API Overview on page 29.
Release 5.1 7

The Client and Server API Classes
The Client and Server API Classes

Below is a table that shows the classes in the client API, the classes
in the Server API, and the classes in both APIs.

Thin Client Both Client and Server Component Server

ostc_Session ostc ostc_ServerSession

ostc_Operation ostc_Object ostc_ServerOperation

ostc_OperationSet ostc_ObjectList ostc_OperationResult

ostc_AttributeDescriptor ostc_ApplicationServer

ostc_AttributeDescriptorList

ostc_OID
8 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
OLE DB and ADO Clients

On Windows platforms, you can create a client of the ObjectStore
Component Server using the standard interfaces provided by
OLE DB and ADO. When you install the Component Server
Framework, the installation program automatically registers the
Component Server as a version 1.5 OLE DB provider.

Operations defined with the Server API can be executed in OLE
DB or ADO as commands, and lists of OSTC objects returned by
Server operations can be accessed as Rowsets or RecordSets.

What Is OLE DB?

OLE DB is Microsoft Corporation's component database
architecture, which is the fundamental component object model
(COM) building block for storing and retrieving records. This set
of interfaces for accessing and manipulating data provides data
integration regardless of data type. Microsoft's Open Database
Connectivity (ODBC) data access interface is included in the OLE
DB architecture, and continues to provide access to relational
data.

You can access OLE DB providers through ActiveX Data Objects
(ADO). ADO is a high-level object model that provides access to
any OLE DB source. The ADO interface is similar to the Data
Access Objects (DAO) interface and the Remote Data Objects
(RDO) interface.

For details about the OLE DB object model, refer to the Microsoft
OLE DB SDK. To obtain a complete description of the ADO object
model, consult the on-line documentation for Microsoft Visual
Basic, Active Server Pages, or Visual C++. For more information
about OLE DB and ADO, browse the Microsoft web site at
http://www.microsoft.com/data .

Using ADO to Create a Client of the Component Server

The examples included with the Framework installation show
how to access ObjectStore Thin Client OLE DB through ADO from
a Visual Basic or ASP/VBScript application.

In general, to open an OSTC OLE DB connection, provide a string
in this format:
Release 5.1 9

OLE DB and ADO Clients
provider=ObjectStore Thin Client OLE DB Provider;
data source= service-name;
[router= router_name:port_number]

where

• ObjectStore Thin Client OLE DB Provider is the name under
which the Component Server is registered as an OLE DB
provider. The Framework installation procedure performs this
registration automatically.

• service-name is the name of the ostc service you want to use (as
specified by -service_name or ostc_
ServerSession::setServiceName()).

• router specifies the full router associated with a Server running
the service.

For example, using ASP and ADO you can create and open an
OLE DB connection to the provider:

Set adoConnection = Server.CreateObject("ADODB.Connection")
Call adoConnection.Open(

"provider=ObjectStore Thin Client OLE DB Provider; \
data source= service-name"

)

Then you can open a RecordSet:

Set RS = Server.CreateObject("ADODB.RecordSet")
Call RS.Open(" operation-name", adoConnection)

where operation-name is the name of a Server operation exposed by
the service-name service, running on the default router (as
specified in the registry).

If the operation requires arguments, before creating a RecordSet
ADO object, you should create a Command object and then obtain
a RecordSet from the Command:

Set aCommand = Server.CreateObject("ADODB.Command")
Set aCommand.ActiveConnection = adoConnection
Command.CommandText = " operation-name"
aCommand.Parameters(" arg-name") = arg-value
Set RS = aCommand.Execute

What Parts of ADO Are Supported?

The provider supports the following schema tables:

• DBSCHEMA_TABLES (adSchemaTables)
10 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
• DBSCHEMA_COLUMNS (adSchemaColumns)

• DBSCHEMA_PROVIDER_TYPES (adSchemaProviderTypes)

• DBSCHEMA_PROCEDURES (adSchemaProcedures)

• DBSCHEMA_PROCEDURE_PARAMETERS
(adSchemaProcedureParameters)

• DBSCHEMA_PROCEDURE_COLUMNS
(adSchemaProcedureColumns)

Schema tables can be opened by the
ADODB.Connection.OpenSchema method, using the enumerator
specified in the parentheses.

The following table shows which data types are supported,
together with the corresponding OSTC types:

Use of ADO is subject to the following restrictions:

• Server operations can perform updates, but updates are not
supported with ADO methods such as the AddNew ,
UpdateBatch , CancelUpdate , Delete , and Update methods of
ADODB.Recordset . Attempts to use these methods result in
exceptions.

• Manual transaction handling is not supported (so
ADODB.Connection methods like BeginTrans , CommitTrans ,
RollbackTrans are not supported).

• Timeouts are not supported.

• Commands cannot be prepared.

ADO Enumerator Corresponding OSTC Enumerator

adBSTR ostc::string

adInteger ostc::int32

adBigInt ostc::int64

adSingle ostc::float

adDouble ostc::double
Release 5.1 11

OLE DB and ADO Clients
Accessing the ObjectStore Thin Client OLE DB Source Through ODBC

Since it is possible to build a bridge between any OLE DB provider
and ODBC, you can use ODBC to create clients of ObjectStore
Component Servers.

ISG Navigator/Bridge includes an ODBC driver for OLE DB data
sources. It consumes OLE DB providers and allows ODBC
applications to access any OLE DB data source. ISG
Navigator/Bridge is distributed by ISG International Software
Group (http://www.isgsoft.com) and by Microsoft
Corporation(http://www.microsoft.com/oledb/download/do
wnload.htm).

Download and install ISG Navigator/Bridge. Then you can
configure it to access Component Servers through any ODBC
client.

Retrieving Error Information

When an ADO method that accesses the Component Server
causes an error, ADO returns a standard ADO error code or
generates the error code E_FAIL, #80040005. The provider uses the
error code to identify its internal error conditions. In either case,
you can retrieve extended information about the generated error.

For example, this code attempts to open a database in an active
server page:

On Error Resume Next
Set adoConnection = Server.CreateObject("ADODB.Connection")
Call adoConnection.Open(

"provider=ObjectStore Thin Client OLE DB Provider;\
datasource=testService","",""

)
if Err.Number <> 0 then

Response.Write("Error# " & Hex(Err.Number) & "
")
Response.Write("Generated by: " & Err.Source & "
")
Response.Write("Description: " & Err.Description & "
")
Exit Sub

End If

If you are accessing OLE DB directly (that is, without using the
ADO layer), you can retrieve information about the errors
generated by the provider. Refer to Microsoft's OLE DB
documentation for details.
12 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
Building the Component Shared Library and Client
Shared Library or Executable

The following tables show what static libraries and shared
libraries to use when building thin clients and components.

Thin client programs must include the header file ostc.h .

Component programs must include ostcsrvr.h .

Libraries on WIndows Platforms

On WIndows, the Framework header files have #pragma
comment() s that specify which .lib s to link with, so you do not
have to mention them explicitly on your link lines. The .lib s do
have to be in your libpath , however.

For thin clients that use OLE DB or ADO, the following must be
registered:

ostc.dll
oscs.dll
OSTCDB.dll
OSTCErr.dll
OSTCEnum.dll

If you use the DataView Reader, you must also include the
following libraries in your path. Debug libraries are shown in
parnetheses on the same line as the corresponding production
library:

ostcDataViewReader.dll (ostcDataViewReaderd.dll)
mkivitos30.dll (mkivitos30d.dll)
osivitos30.dll (mkivitos30d.dll)

Link with Put in path

Thin Client ostc.lib

oscs.lib

ostc.dll

oscs.dll

Server DLL ostc.lib

oscs.lib

ostcsrvr.lib

ostore.lib and any other
ObjectStore 5.1 libraries the
component requires

ostc.dll

oscs.dll

oscsostore.dll

ostcsrvr.dll
Release 5.1 13

Building the Component Shared Library and Client Shared Library or Executable
osischema30.dll (osischema30d.dll)
osidma30.dll (osidma30d.dll)
osi_osmm.dll
osi_osmm20.dll
osmmtype.dll
console.dll
LIBPL.DLL
LIBQP.DLL
QPENG.DLL
mfc42.dll (MFC42D.DLL)
MFC42D.DLL
mfcans32.dll
mfcuia32.dll
MSVBVM50.DLL
msvcrt40.dll
OC30.DLL
OLEAUT32.DLL
OLEPRO32.DLL
stdole2.tlb

Libraries on UNIX Platforms

Put the following libraries in your path as well as on your link
line:

Build the Server shared library using ObjectStore 5.1. Be sure to
include these measures:

• Generate a shared library schema by using the OS_SCHEMA_
DLL_ID() macro in the library’s schema source file.

• On Solaris and HP–UX, link with the ObjectStore library
libosthr , not libosths .

UNIX, except HP–UX HP–UX

Thin Client libostc.so

liboscs.so

libostc.sl

liboscs.sl

Server DLL libostc.so

liboscs.so

libostcsrvr.so

libos.a and any other ObjectStore
5.1 libraries the component
requires

libostc.sl

liboscs.sl

libostcsrvr.sl

libos.a and any other
ObjectStore 5.1 libraries the
component requires
14 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
Configuring, Starting, and Stopping the Server
Executable

There are two ways to start an ObjectStore Component Server:

• From the command line, with the executable ostccompsrvr . The
Server runs until the process is killed.

• From a program, with the function ostc_
ApplicationServer::start() . The Server runs until stopped with
ostc_ApplicationServer::~ostc_ApplicationServer() .

Using ostccompsrvr

The Component Server is ostccompsrvr.exe on Windows NT and
ostccompsrvr on UNIX platforms. The Server executable takes the
following command-line switches:

-plugin library_name Plug-in library name. This parameter is required
and must be the full library name. For Servers
that support multiple plug-ins, specify this
switch multiple times.

ostc_MissingLib is thrown if the library could not
be loaded.

ostc_RequiredParmMissing is thrown if this
switch is not supplied.

-service component_name Logical component name used to match clients
to Servers. This parameter is required.

ostc_RequiredParmMissing is thrown if this
switch is not supplied.

-port port_number Port number of the Server. This parameter is
required.

ostc_RequiredParmMissing is thrown if this
switch is not supplied.

-threads number_of_threads Maximum number of threads that can
concurrently handle requests in the Server. This
parameter defaults to 1 for isolated_update
Servers and 10 for all other Servers.
Release 5.1 15

Configuring, Starting, and Stopping the Server Executable
-txntype txn_type Transaction type of operations supported by this
Server. This parameter is required, and must be
one of the following: read , mvccRead , shared_
update , isolated_update , or none .

Note that you must start at least one Server for
each transaction type of operations supported by
the specified components.

ostc_RequiredParmMissing is thrown if this
switch is not supplied.

-routedata routing_string Routing string. If a client specifies a routing
string when issuing a request, the request is
routed to a Server with a matching string. The
comparison is made with memcmp() .

-routerhost host:port_number Network address for a system router. If this
parameter is not specified, the Server being
started acts as a router.

Routers distribute requests among those Servers
that have the appropriate service, transaction
type, and routing data.

You can supply this switch multiple times.

-routerfile file_name File used by router to maintain routes
persistently, in case of failures or restarts.

-inctimeout timeout_in_seconds Timeout for access to incremental object sets on
the Server. If the set is not accessed in the
amount of time specified, the Server discards it.
This parameter defaults to 1800 seconds.

-boundtimeout timeout_in_seconds Timeout for access to a running bound
transaction. If a bound transaction is started but
is not being used, it will abort when this timeout
is exceeded. This is used to keep the server from
hanging if the client fails in the middle of a
bound transaction. This parameter defaults to 10
seconds.

-sharedtimeout timeout_in_seconds Timeout for access to a shared transaction.
Shared transactions commit after a certain
number of requests complete or this timeout is
exceeded, whichever comes first. This parameter
defaults to five seconds.
16 ObjectStore Component Server Framework User Guide

Chapter 1: Introduction
ostc_InvalidParm is thrown if a parameter name appears without
an associated parameter value.

Example ostccompsrvr.exe \
-plugin my_plugin.dll \
-port 2090 \
-txntype read \
-service test \
-inctimeout 60

Server processes started from the command line run until you kill
them with an operating system command.

Creating a Custom Component Server

You can create a custom component server that manages
configuration, start-up, and shutdown of ObjectStore Component
Servers with members of the class ostc_ApplicationServer .

Debug Version

ostccmpsrvrd is the debug version of ostccompsrvr . Use this when
debugging components.

-sharedmaxops number_of_ops Maximum shared operations. This sets the
number of requests that can use a shared
transaction before a commit occurs. This
parameter is ignored for isolated_update Servers.
This parameter defaults to 10.

-logging Turns on Server logging. With logging on, the
server writes information to the file
ostcserver.log in the directory from which the
Server was executed. Logging is off by default.
Release 5.1 17

Deploying Thin Clients and Component Servers
Deploying Thin Clients and Component Servers

When you deploy thin clients and component Servers, you need
to ship the production version of all the libraries you used to build
them.

If you are using OLE DB, you must also ship the following:

• OSTCDB.dll

• OSTCErr.dll

• OSTCEnum.dll

These are self-registering COM components. If you use
Installshield, you need to unpack them using the SELFREG flag to
CompressGet , or otherwise arrange to have regsvr32 called for
them.

If you have a link-compatible version of osmmtype.dll that is a
later version than the one shipped with CSF, use that one instead.

For the DataView Reader, you also need to install the following
run-time files in the windows system directory if the versions
shipped with the Framework are more recent than those that have
been installed already:

• OC30.DLL

• OLEAUT32.DLL

• OLEPRO32.DLL

• mfcans32.dll

• mfcuia32.dll

• msvcrt40.dll

• stdole2.tlb

• MFC42.dll
18 ObjectStore Component Server Framework User Guide

Chapter 2
Thin Client API Overview

The thin client API allows programs to perform the following
main tasks:

Setting Routers 20

Connecting to a Service 21

Retrieving Operations from the Server 22

Setting Operation Arguments 23

Executing Operations 24

Extracting Operation Results 25

Disconnecting from the Server 26

Managing the Thin Client Cache 27

Thin client programs must include the header file <ostc.h> .
Release 5.1 19

Setting Routers
Setting Routers

In any deployed configuration of Component Servers, one or
more Servers act as routers and distribute requests among those
Servers that have the appropriate service, transaction type, and
routing data. You specify whether a Server is a router when you
launch the Server processes (see Configuring, Starting, and
Stopping the Server Executable on page 15).

Each client must specify one or more routers as well. You do this
with the API ostc::addRouter() . On Windows platforms, you can
use the executable ostcSetRouter.exe instead of this API.

Example

ostc::addRouter(argv[1]);

argv[1] is a character string specifying the host machine of the
router Component Server, as well as the port on which it is
listening for thin client requests.

The string has the syntax

host:port

When a client calls ostc_Session::doOperation() , a router tells the
client which Component Server to send requests to. The router
makes this determination based on

• The specified service name

• A round-robin schedule of Component Server processes that
match the specified service name.

Click here for the example in context.

ostcSetRouter.exe

Windows only: With this executable you can add and remove
routers:

ostcsetrouter -add host:port

ostcsetrouter -remove host:port

ostcsetrouter -clear

The -clear switch removes all routers.

Running this utility affects the Windows NT registry.
20 ObjectStore Component Server Framework User Guide

Chapter 2: Thin Client API Overview
Connecting to a Service

Before using a component’s operations, the thin client must first
connect to a Server running a service that supports the
component. You do this with the function ostc ::connect() .

Example

_session = ostc::connect("quickstart");

Click here for the example in context.

Service Name

"quickstart" is the name of a service that supports the component
or components you want to use during the current session. If there
is more than one Server that is running the specified service, a
router chooses a Server to connect to.

Return Value

_session , the return value, is a pointer to an instance of the class
ostc_Session , which represents the thin client’s current session
with the specified service. You use members of this class to
retrieve the operations supported by the Server’s service, as well
as to send operation execution requests.

Multithreaded Thin Clients

You should retrieve only one session per client thread. Session
objects are cached, making connect() (and disconnect())
inexpensive operations.
Release 5.1 21

Retrieving Operations from the Server
Retrieving Operations from the Server

Once you connect to a service, you retrieve the operation or
operations you want to perform, using ostc_
Session::getOperation() :

Example

ostc_Operation * transfer = _session->getOperation("transfer");

"transfer" is the name of the operation you want to perform.

transfer is the operation, an instance of ostc_Operation .

You use ostc_Operation::setArgument() to set the arguments of the
operation you want to perform. Once the arguments are set, you
pass the instance of ostc_Operation to ostc_Session::doOperation()
to execute the operation.

Click here for the example in context.
22 ObjectStore Component Server Framework User Guide

Chapter 2: Thin Client API Overview
Setting Operation Arguments

The operation you retrieve using ostc_Session::getOperation()
contains default value arguments; that is, every argument is set to
0. To set arguments to nondefault values, use ostc_
Operation::setArgument() :

Example

transfer->setArgument("from_acct_name", from_name);
transfer->setArgument("to_acct_name", to_name);
transfer->setArgument("amount", amount);

"from_acct_name" , "to_acct_name" , and "amount" are the names
of the arguments being set.

from_name , to_name , and amount are the values to which the
arguments are being set.

Click here for the example in context.

Argument Value Types

The value of an argument must be one of the following types:

• Integer type

• float

• double

• char*

• ostc_OID * (object identifier set by user)

• void* (for bit vectors)

These are the fundamental types used to pass data between thin
client and Component Server. There is an overloading of set_
argument() for each of these types.

Getting Arguments

You can also use members of ostc_Operation to retrieve an
operation’s formal and actual arguments.
Release 5.1 23

Executing Operations
Executing Operations

Once the arguments are set, you execute the operation with ostc_
Session::doOperation() :

Example

ostc_ObjectList * result = _session->doOperation(transfer);

transfer is the operation to be executed.

result is the a list of ostc_Object s that constitute the operation
result. Each ostc_Object is made up of attribute/value pairs. The
possible value types are the same as the possible argument types
of an operation.

0 indicates that the operation should not use the thin client cache
of operation results.

There are additional optional arguments that allow you to

• Specify routing data that determines which Server executes the
operation

• Specify that the results should be returned from the Server in
batches of a specified size

See ostc_Session::doOperation() on page 87 for more information.

Click here for the example in context.
24 ObjectStore Component Server Framework User Guide

Chapter 2: Thin Client API Overview
Extracting Operation Results

Since operation results take the form of lists of ostc_Object s, you
must extract the fundamental values making up the result by

• Retrieving ostc_Object s from the list, using ostc_
ObjectList::first() and ostc_ObjectList::next()

• Retrieving the objects’ attribute values, using members of ostc_
Object

Example

ostc_Object * account = 0;
account = result->first();
printf("%-20.15s%15f\n",

from_name, account->getFloatValue("val"));

account = result->next();
printf(

"%-20.15s%15f\n",
account->getStringValue("name"),
account->getFloatValue("val")

);

Click here for the example in context.

Get-Value Functions

ostc_Object defines functions for getting attributes with values of
each fundamental OSTC type:

• ostc_Object::getInt32Value() on page 115

• ostc_Object::getInt64Value() on page 115

• ostc_Object::getStringValue() on page 115

• ostc_Object::getFloatValue() on page 116

• ostc_Object::getDoubleValue() on page 116

• ostc_Object::getObjectValue() on page 116

• ostc_Object::getBinaryValue() on page 116

These functions return the attribute value. You can also use the
various overloadings of ostc_Object::getValue() , which assign the
value to a variable that you pass in.
Release 5.1 25

Disconnecting from the Server
Disconnecting from the Server

Call ostc::disconnect() to end a session.

Example

ostc::disconnect(_session);

Click here for the example in context.
26 ObjectStore Component Server Framework User Guide

Chapter 2: Thin Client API Overview
Managing the Thin Client Cache

The client maintains a cache of object lists returned by
doOperation() during the current session. doOperation() does not
interact with a Server and instead returns a cached list if

• The use_cache argument to doOperation() is 1.

• The same operation with the same arguments was executed
earlier in the current session.

• The returned list from that execution is still in the thin client’s
cache.

You can manage the contents of the cache with ostc_
Session::flushObjects() .
Release 5.1 27

Managing the Thin Client Cache
28 ObjectStore Component Server Framework User Guide

Chapter 3
Component Server API
Overview

To create a Component Server plug-in, you must implement the
following global functions:

In addition, you must derive a type from ostc_ServerOperation for
each operation you want the Server to handle. Each derived type
must implement the following member functions:

Function When Called by Server Called Within
an ObjectStore
Transaction?

Task

ostcInitialize() When the Server starts No Application-specific
initialization

ostcConnect() After ostcInitialize() ,
when the Server starts

No Adding Operations to a
Server Session on page 36

ostcDisconnect() When the Server shuts
down

No Application-specific
cleanup
Release 5.1 29

Managing the Thin Client Cache
Your implementations of these functions (except ostcConnect()
and ostcInitialize()) must be reentrant. That is, you are responsible
for synchronizing access to any transient state that could be
shared across Server threads. In addition, for operations that use
shared_update transactions, you must synchronize access to
persistent data if that is necessary to prevent interference among
threads.

ostcConnect() and ostcInitialize() are called only when the Server
is running a single thread, so they do not require synchronization.

Component Server programs must include the header file
<ostcsrvr.h> .

Function When Called by Server Called Within an
ObjectStore
Transaction?

Task

constructor Called by ostcConnect() No Specifying Server
Operation Name,
Transaction Type, and
Formal Parameters on
page 32

execute() Whenever a thin client
calls doOperation()

Yes Implementing Server
Operation Execution on
page 38

format() After execute()
completes, called once
for each return value

Yes, same
transaction as
execute() (except
with incremental
results)

Converting operation
results into ostc_Object s
30 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
Defining an Operation Subtype

For each operation you want a component to support, you must
define a subtype of ostc_ServerOperation that defines a
constructor, the members execute() and format() , and optionally
the member operationComplete() .

Example

class txfer_operation : public ostc_ServerOperation
{
public:

txfer_operation();
~txfer_operation() {}

void execute(ostc_Object * Arguments, ostc_OperationResult*);
void format(

const void*,
ostc_ObjectList*,
ostc_OperationResult*

);
};

You are free to define additional members of the subclass.

Click here for the example in context.
Release 5.1 31

Specifying Server Operation Name, Transaction Type, and Formal Parameters
Specifying Server Operation Name, Transaction
Type, and Formal Parameters

For each class you derive from ostc_ServerOperation , the
constructor must do the following:

• Pass the operation name to the base type constructor.

• Pass the operation transaction type to the base type
constructor.

• Specify the operation formal parameters and return type using
ostc_ServerOperation::addArgument() .

• Specify the operation return type using ostc_
ServerOperation::addReturnSetAttribute() .

Example

txfer_operation::txfer_operation() :
ostc_ServerOperation("transfer", ostc::isolated_update)

{
addArgument("from_acct_name", ostc::ostc_string);
addArgument("to_acct_name", ostc::ostc_string);
addArgument("amount", ostc::ostc_float);

addReturnSetAttribute("val", ostc::ostc_float);
addReturnSetAttribute("name", ostc::ostc_string);

}

Operation Name

"transfer" is the name of the operation. It must be passed to the
base type constructor.

Transaction Type

ostc::isolated_update is the type of transaction to use to execute
the operation. As with the operation name, it must be passed to
the base type constructor. Use this type of transaction for
operations that update persistent data. The possible transaction
types are

• read_only

• mvccRead

• isolated_update
32 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
• shared_update

• any

• none

With read_only , mvccRead , and shared_update , requests from
different thin clients are batched into the same ObjectStore
transaction. This increases throughput by reducing commit
overhead.

Important note Use shared_update only with extreme care. Using shared_update
inappropriately can cause incorrect results and database
corruption.

With any , the router chooses a Server running any type of
transaction. The operation must be read-only if there are read or
mvccRead Servers running. The operation must be safe for batch
transactions if there are shared_update Servers running.

An operations that uses the transaction type none must access no
persistent data.

Formal Parameters

Each call to addArgument() specifies an argument name and type.
These are the same names and types that the thin client must use
when setting the actual arguments.

addReturnSetAttribute() specifies the attribute name and value
type for an attribute of the returned objects. Call this function
onece for each attribute you want the returned objects to have.

Click here for the example in context.

Type Enumerators

The types are specified with enumerators defined in the scope of
the class ostc . The following table shows what type each
enumerator signifies:

ostc_int32 32-bit integer

ostc_int64 64-bit integer

ostc_string char*

ostc_float float

ostc_double double
Release 5.1 33

Specifying Server Operation Name, Transaction Type, and Formal Parameters
ostc_oid ostc_OID* (object identifier set by user)

ostc_binary void* (for bit streams)
34 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
Initializing a Component

For each component, you must implement the global function
ostcInitialize() , which provides any initialization required before
operations can be executed. Typical tasks for ostcInitialize()
include opening databases and retrieving database roots.

The Component Server calls ostcInitialize() when the Server first
starts up.

Example

void ostcInitialize()
{

OS_ESTABLISH_FAULT_HANDLER

_db = os_database::open(dbname, 0, 0664);

OS_BEGIN_TXN(intialize,0,os_transaction::update)
{
// Look up the Account extent root
os_database_root * root = _db->find_root("Account_root");

...

OS_END_TXN(intialize)

OS_END_FAULT_HANDLER
}

Click here for the example in context.
Release 5.1 35

Adding Operations to a Server Session
Adding Operations to a Server Session

For each component you must implement the global function
ostcConnect() . Use the operation subtype constructors to
construct each operation the component supports. Use ostc_
ServerSession::addOperation() to register each operation. The
Component Server calls ostcConnect() after ostcInitialize() , when
the Server first starts up.

Note that for every Server running a given service, you must
register every operation the service supports, even if the operation
has a different transaction type from that of the Server. Note also
that for each type of transaction used by operations in a given
service, you must start at least one Server running the service and
using that transaction type.

Example

void ostcConnect(ostc_ServerSession * session)
{

session->addOperation(new txfer_operation());
session->addOperation(new AddAccount());
session->addOperation(new withdraw());
session->addOperation(new deposit());
session->addOperation(new balance());

}

txfer_operation() is a call to the operation subtype constructor for
the operation being specified. You pass a pointer to an instance of
the class. Include one call to addOperation() for each operation you
want the component to support.

Click here for the example in context.

Declaration of Global Functions

A source or header file for your component must include the
following declaration of the global functions you are responsible
for implementing (including ostcConnect()):

extern "C" {

#ifdef WIN32
__declspec(dllexport) void ostcInitialize();
__declspec(dllexport) void ostcConnect(ostc_ServerSession *);
__declspec(dllexport) void ostcDisconnect(void);
#else
36 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
void ostcInitialize();
void ostcConnect(ostc_ServerSession *);
void ostcDisconnect(void);
#endif
}

Note that you must use C linkage when declaring these functions..

This use of _declspec is required for Windows platforms.
Release 5.1 37

Implementing Server Operation Execution
Implementing Server Operation Execution

Implement the member execute() of each class you derive from
ostc_ServerOperation . The protocol for this function is defined by
ostc_ServerOperation::execute() . The Server calls execute()
whenever the thin client calls ostc_Session::doOperation() .

The function must extract the arguments by calling a get-value
member of ostc_Object on Arguments , for each attribute of
Arguments . It must then process the arguments and set the result
(in the form of C++ objects) by performing members of ostc_
OperationResult on result .

Example

void txfer_operation::execute(
ostc_Object * Arguments,
ostc_OperationResult* result

)
{

const char* from_acct_name =
Arguments->getStringValue("from_acct_name");

const char* to_acct_name =
Arguments->getStringValue("to_acct_name");

float amount =
Arguments->getFloatValue("amount");

Account * from_account = _app->getAccount(from_acct_name);
Account * to_account = _app->getAccount(to_acct_name);

_app->transfer(from_account, to_account, amount);

os_collection *new_balances =
&os_collection::create(

os_segment::get_transient_segment()
);

new_balances->insert(from_account);
new_balances->insert(to_account);

result->setReturnValue(new_balances);
}

This example passes an os_collection* to ostc_
OperationResult::setReturnValue() . The collection has two
elements, a pointer to the balance of the account from which the
transfer was made, and a pointer to the balance of the account to
which the transfer was made.
38 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
You can also pass a void* or an os_cursor* to setReturnValue() .

Click here for the example in context.
Release 5.1 39

Formatting Operation Results
Formatting Operation Results

You must implement the member format() of each class you derive
from ostc_ServerOperation . The protocol for this function is
defined by ostc_ServerOperation::format() .

In order to send the results of execute() to the thin client, the
Server converts each return value into one or more ostc_Object s.
It does this by calling format() on each return value.

If execute() passed a nonzero void* to ostc_
OperationResult::setReturnValue() , the void* is considered to be
the only return value. If execute() passed a nonzero os_cursor* to
setReturnValue() , each element that can be visited with the cursor
is a return value. If execute() passed a nonzero os_collection* to
setReturnValue() , each element of the collection is a return value.

Example

void txfer_operation::format(
const void * OSobj,
ostc_ObjectList * ostcList,
ostc_OperationResult*)

{
Account * acct = (Account*)OSobj;

ostc_Object * obj = ostcList->addObject();

obj->setValue("name", acct->getName());
obj->setValue("val", acct->getBalance());

}

OSobj is the return value being converted. Since it is passed in as
a void* , format() must cast it to the appropriate type.

ostcList is an empty list of ostc_Object s. format() adds one or more
objects to the list (with ostc_ObjectList::addObject()) and sets their
attribute values, so that the list ends up containing the object or
objects into which OSobj is to be converted.

In this example, a pointer to a float is converted into an ostc_
Object with a single attribute, val , whose value is the float . The
value is set with ostc_Object::setValue() .

Click here for the example in context.
40 ObjectStore Component Server Framework User Guide

Chapter 3: Component Server API Overview
Execution Postprocessing

For nonincremental operations, the Server calls ostc_
ServerOperation::operationComplete() when execute() and all
associated format() executions complete. For incremental
operations, the Server calls ostc_
ServerOperation::operationComplete() when execute() and the first
batch of associated format() executions complete.

By default, ostc_ServerOperation::operationComplete() deletes the
collection or cursor, if any, passed to setReturnValue() . You can
override the default implementation by implementing
operationComplete() in the derived type.
Release 5.1 41

Implementing ostcDisconnect()
Implementing ostcDisconnect()

You can use ostcDisconnect() to perform application-specific
processing whenever the Server is about to shut down.

You must implement this function, even if there is no such
processing to perform.

Example

// You must implement ostcDisconnect, even if as a no-op

void ostcDisconnect(void)
{
}

42 ObjectStore Component Server Framework User Guide

Chapter 4
QuickStart Example

In your Framework installation directory,
examples/ostc/quickstart contains the source for a simple
application that performs various operations on bank accounts.
This chapter describes the application, focusing on an operation
that transfers funds from one account to another.

examples/ostc/quickstart contains these two subdirectories:

• console_client contains the source for a thin client with a
command-line user interface.

• plugin contains the source for a component.

Client Header File

This thin client uses one header file, quickstartclient.h , which
declares the following classes:

• QuickStartClient : Declares a member function for each
operation the application uses, including the transfer
operation. Each member sends a request to a Component
Server for execution of an operation.

• QuickStartDisplay : Encapsulates an instance of
QuickStartClient , and declares a member function for each
operation, including the transfer operation. Each member
handles end-user I/O for the operation, and calls the
corresponding member of QuickStartClient .

One way to modularize thin clients is to define one class, like
QuickStartClient, for each component the client uses. This client
uses a single component that supports all the operations.
Release 5.1 43

Implementing ostcDisconnect()
All thin clients must include ostc.h :

#include <ostc.h>

Client Source Files

The thin client uses two .cpp files:

• clientmain.cpp

• quickstartclient.cpp

clientmain.cpp clientmain.cpp instantiates QuickStartClient and QuickStartDisplay
(on the stack), and starts the I/O event loop. The main program
also uses the Client API to set the router:

// Main program for the client
// Must specify router host:port pair as argument

#include <stdio.h>
#include "quickstartclient.h"

int main(int argc, char ** argv)
{

...
// Set the router
ostc::addRouter(argv[1]);
...

}

quickstartclient.cpp quickstartclient.cpp implements members of QuickStartClient and
QuickStartDisplay . The constructor and destructor connect and
disconnect from a Server:

#include <stdio.h>
#include "quickstartclient.h"

// Construction/Destruction
QuickStartClient::QuickStartClient()
{

// Connect to the server
_session = ostc::connect("quickstart");

}

QuickStartClient::~QuickStartClient()
{

// Disconnect from the server
ostc::disconnect(_session);

}

Here is QuickStartDisplay::transfer() , which is called from the
event loop (in QuickStartDisplay::run()). It accepts input for the
44 ObjectStore Component Server Framework User Guide

Chapter 4: QuickStart Example
name of the account to which to transfer the funds, the name of the
account from which to transfer the funds, and the transfer
amount.

It passes these to QuickStartClient::transfer() , which returns the
result in the form of a list of ostc_Object s. Then it uses the Client
API to extract the results.

void QuickStartDisplay::transfer()
{

// Input from_name, to_name, and amount
...

// Call QuickStartClient::transfer()
ostc_ObjectList * result =

_client->transfer(from_name, to_name, amount);

...

// Extract the results

ostc_Object * account = 0;

account = result->first();
printf(

"%-20.15s%15f\n",
account->getStringValue("name"),
account->getFloatValue("val")

);

account = result->next();
printf(

"%-20.15s%15f\n",
account->getStringValue("name"),
account->getFloatValue("val")

);

...
}

Here is QuickStartClient::transfer() . It receives from_name , to_
name , and amount from QuickStartDisplay::transfer() . The function
uses the client API to

• Retrieve the operation to be performed.

• Set the operation arguments.

• Execute the operation.

The function returns the result in the form of a list of ostc_Object s.
Release 5.1 45

Implementing ostcDisconnect()
ostc_ObjectList * QuickStartClient::transfer(
char * from_name,
char * to_name,
float amount

)
{

// Get the transfer operation
ostc_Operation * transfer = _session->getOperation("transfer");
if (!transfer)

return 0;

// Set up the arguments
transfer->setArgument("from_acct_name", from_name);
transfer->setArgument("to_acct_name", to_name);
transfer->setArgument("amount", amount);

// Execute the operation without using the cache
ostc_ObjectList * result = _session->doOperation(transfer,0);

if (!result) {
return 0;

}
else {

return result;
}

}

Component Header Files

The Server plug-in uses the following header files:

• account.h : Declares the classes of persistent objects used by the
plug-in.

• db_name.h : Specifies the pathname of the database containing
the accounts.

• quickstart.h : Declares the class QuickStart , which declares a
member function corresponding to each operation.

• ostcinterface.h : Declares global functions ostcInitialize() ,
ostcConnect() , and ostcDisconnect() .

• ostcoperations.h : Declares the subtype of ostc_ServerOperation
corresponding to each operation.

ostcinterface.h The plug-in header should include ostcsrvr.h :

#include <osctsrvr.h>

You must declare three global functions:

// Forward declarations
46 ObjectStore Component Server Framework User Guide

Chapter 4: QuickStart Example
class ostc_ServerSession;

extern "C" {

#ifdef WIN32
__declspec(dllexport) void ostcInitialize();
__declspec(dllexport) void ostcConnect(ostc_ServerSession *);
__declspec(dllexport) void ostcDisconnect(void);
#else
void ostcInitialize();
void ostcConnect(ostc_ServerSession *);
void ostcDisconnect(void);
#endif
}

This use of _declspec is required for Windows platforms.

ostcoperations.h The Server plug-in defines one subtype of ostc_ServerOperation
for each operation it supports. Here is the one corresponding to
the transfer operation:

class txfer_operation : public ostc_ServerOperation
{
public:

txfer_operation(QuickStart*);
~txfer_operation() {}

void execute(ostc_Object * Arguments, ostc_OperationResult*);
void format(

const void*,
ostc_ObjectList*,
ostc_OperationResult*

);

private:
QuickStart * _app;

};

Server Plug-in Source Files

The plug-in uses the following .cpp files:

• account.cpp : Implements persistent class members.

• ostcinterface.cpp : Implements global plug-in functions.

• quickstart.cpp : Implements QuickStart members.

• ostcoperations.cpp : Implements operation subtype members.
Release 5.1 47

Implementing ostcDisconnect()
ostcinterface.cpp ostcInitialize() instantiates QuickStart , which instantiates the
operation subtypes, opens or creates a database, and retrieves a
root:

// This function is called once at server start-up
void ostcInitialize()
{

// Generate an instance of the app
if (!QuickStart::theServer)

QuickStart::theServer = new QuickStart();

}

ostcConnect() registers the operation objects with the session:

// This function is also called once at start-up.
void ostcConnect(ostc_ServerSession * session)
{

// Add the QuickStart operations to the server
QuickStart::theServer->addOperations(session);

}

ostcDisconect() performs cleanup:

// This function is called once when the server is being shut down
void ostcDisconnect(void)
{

// If we have no more connections then delete the QuickStart
if (QuickStart::theServer)

delete QuickStart::theServer;
}

quickstart.cpp This is called by ostcInitialize() :

QuickStart::QuickStart()
{

// The member initialize() opens or creates db and gets root
initialize(example_db_name);

// Create all of the server operations
_addAccount = new AddAccount(this);
_withdraw = new withdraw(this);
_deposit = new deposit(this);
_balance = new balance(this);
_transfer = new txfer_operation(this);

}

This is called by ostcConnect() :

// Adds Server operations to the session
void QuickStart::addOperations(ostc_ServerSession * session)
{

48 ObjectStore Component Server Framework User Guide

Chapter 4: QuickStart Example
// Add all the operations to all servers for this service
session->addOperation(_addAccount);
session->addOperation(_withdraw);
session->addOperation(_deposit);
session->addOperation(_transfer);
session->addOperation(_balance);

}

ostcoperations.cpp The operation subtype constructor specifies the operation name,
transaction type, and formal parameters:

txfer_operation::txfer_operation(QuickStart * app) :
ostc_ServerOperation("transfer", ostc::isolated_update)

{
// initialize
_app = app;

addArgument("from_acct_name", ostc::ostc_string);
addArgument("to_acct_name", ostc::ostc_string);
addArgument("amount", ostc::ostc_float);
addReturnSetAttribute("val", ostc::ostc_float);
addReturnSetAttribute("name", ostc::ostc_string);

}

execute() performs the operation:

void txfer_operation::execute(
ostc_Object * Arguments,
ostc_OperationResult* result

)
{

const char* from_acct_name =
Arguments->getStringValue("from_acct_name");

const char* to_acct_name =
Arguments->getStringValue("to_acct_name");

float amount =
Arguments->getFloatValue("amount");

Account * from_account = _app->getAccount(from_acct_name);
Account * to_account = _app->getAccount(to_acct_name);

_app->transfer(from_account, to_account, amount);

os_collection *new_balances =
&os_collection::create(

os_segment::get_transient_segment()
);

new_balances->insert(from_account);
new_balances->insert(to_account);

result->setReturnValue(new_balances);
Release 5.1 49

Implementing ostcDisconnect()
}

format() formats the operation results as Ostc_Object s:

void txfer_operation::format(
const void * OSobj,
ostc_ObjectList * ostcList,
ostc_OperationResult*)

{
Account * acct = (Account*)OSobj;

ostc_Object * obj = ostcList->addObject();

obj->setValue("name", acct->getName());
obj->setValue("val", acct->getBalance());

}

50 ObjectStore Component Server Framework User Guide

Chapter 5
Intermediate Example

This chapter discusses a sample application that allows end users
to purchase tickets to a specified performance of a show such as a
play, concert, or movie. The source code for the example is in
/examples/ostc/ticketapp .

The thin client in this application allows the end user to perform
the following actions:

• ListShows : Display list of all shows.

• ListPerformances : List all performances of a specified show.

• ViewSeats : List all available seats for a specified performance.

• BuySeats : Purchase specified seats for a specified performance.

There are also administrative actions for adding and removing
shows, performances, and theaters.

Each of these actions corresponds to an ostc_ServerOperation
defined by the Server plug-in in this example. The thin client
assumes there are two Component Server processes running, one
for read-only operations (ListShows , ListPerformances , and
ViewSeats), and one for update operations (BuySeats and
administrative actions).

The two Servers run the same service, but different transaction
types, read and isolated_update , specified as command-line
arguments to the Server executable.

When the thin client starts, it establishes a session with the service.
When the user selects an action, the thin client uses the session to
do the following:
Release 5.1 51

Implementing ostcDisconnect()
• Retrieve the operation corresponding to the action

• Set the arguments

• Execute the operation

• Extract the results

• Output the results to the user

Then the client redisplays the menu of actions.
52 ObjectStore Component Server Framework User Guide

Chapter 5: Intermediate Example
Data Model

The ostc_ServerOperation s access persistent data stored in an
ObjectStore database. This data uses the following classes:

• Show: Each show has a name, description, and an associated
collection of performances.

• Performance: Each performance has an associated show,
theater, and date and time (represented by a char*). Each
performance also has an associated collection of bookings
objects.

• Booking: Each booking has an associated seat number, row
number, price, and confirmation number (which identifies the
purchaser). It also has an associated Boolean that indicates
whether the seat has been purchased.

• Theater : For simplicity, a given theater is assumed to have the
same number of seats in every row. So a theater’s seating is
described by two numbers: the number of rows in the theater,
and the number of seats per row. Each theater object stores
these two numbers, as well as the theater name.

Theatre

char

long

Showchar*

BookingPerformance

name

description

time

rows

seats

purchased

row

seat

confirm#

ID
Release 5.1 53

Data Model
The operation implementations rely on the following database
entry points:

• List of all shows: used by ListShows operation

• Dictionary of all shows, keyed by name: used by
ListPerformances operation

• Dictionary of all performances, keyed by ID: used by ViewSeats
and BuySeats operations
54 ObjectStore Component Server Framework User Guide

Chapter 5: Intermediate Example
The Client Code

The thin client uses the following files:

• clientmain.cpp

• ticketappclient.h

• ticketappclient.cpp

clientmain.cpp

The client main program does the following:

• Sets the router host and port

• Creates an instance of TicketAppClient , which establishes a
session with the ticketapp service

• Creates an instance of TicketAppDisplay and runs it, which
displays the main menu and starts the main processing loop

• Handles all exceptions thrown by the client API, by catching
oscs_Exception (and its descendents)

ticketappclient.h and ticketappclient.cpp

These files define two classes:

• TicketAppClient

• TicketAppDisplay

TicketAppClient defines a function for each operation (ListShows ,
ListPerformances , ViewSeats , BuySeats , and the administrative
operations). Each function retrieves the corresponding ostc_
ServerOperation , sets the arguments, executes the operation, and
extracts the results.

The class TicketAppDisplay handles end-user I/O. It defines a
function for each operation. Each item of the main menu invokes
one of these functions. Each function takes input from the end
user, passes it to the corresponding member of TicketAppClient ,
and outputs the results.
Release 5.1 55

The Server Code
The Server Code

The Server code consists of the following files:

• ostcoperations.h and ostcoperations.cpp

• ostcinterface.h and ostcinterface.cpp

• ticketapp.h and ticketapp.cpp

• Files for the classes Show , Performance , Booking , and Theater

ostcoperations.h and ostcoperations.cpp

ostcoperations.h and ostcoperations.cpp define subtypes of ostc_
ServerOperation :

• ListShows

• ListPerformances

• ViewSeats

• BuySeats

Each subtype defines a constructor, a destructor, execute() , and
format() . ListShows and ListPerformances also define operation_
complete() , to override the default cleanup behavior.

ostcinterface.h and ostcinterface.cpp

ostcinterface.h and ostcinterface.cpp define the Server API
functions ostcInitialize() , ostcConnect() , and ostcDisconnect() .

ostcInitialize() creates an instance of TicketApp , which creates an
instance of each subtype of ostc_ServerOperation , and performs
various initialization tasks, such as opening the database and
retrieving database roots.

ostcConnect() adds the operations to the current session by calling
TicketApp::addOperations() .

ostcDisconnect() deletes the instance of TicketApp created by
ostcInitialize() .

ticketapp.h and ticketapp.cpp

The class TicketApp defines

• Initialization functions
56 ObjectStore Component Server Framework User Guide

Chapter 5: Intermediate Example
• Functions for looking up shows, performances, and theaters by
name or ID

• Members for controlling allocation and clustering of shows,
performances, and theaters
Release 5.1 57

The Server Code
58 ObjectStore Component Server Framework User Guide

Chapter 6
Using and Configuring the
DataView Reader

Windows only On Windows platforms, the DataView Reader provides read-only
access to data views you define using ObjectStore Inspector. A
data view is a tabular representation of a persistent ObjectStore
collection, optionally filtered and ordered by an ObjectStore
query.

Each persistent instance is displayed in a specified format. The
instance format designates the set of data members to be
displayed. For each specified member, the data view has a
corresponding column. The instance format also specifies how
strings are presented and how one-to-many and many-to-many
relationships are presented. See the ObjectStore Inspector User
Guide for more information about data views.

The DataView Reader makes it easy to define a Server operation
that corresponds to a data view. Instead of defining a subtype of
ostc_ServerOperation and adding an instance to the Server session
in ostcConnect() , you simply expose the data view by calling ostc_
ServerSession::exposeDataView() from ostcConnect() . You
designate the data view by name, and specify the name of the
corresponding Server operation.

When a data view is exposed in this way, the Server acts just as if
you had defined a Server operation whose

• Arguments are those of the data view (see the ObjectStore
Inspector User Guide).
Release 5.1 59

The Server Code
• Return value is a pointer to an ostc_ObjectList with one
element for each row of the data view, and one column for each
member specified by the instance format.

If you want, you can specify the instance format independently of
the data view’s definition in Inspector. Do this with the DataView
Reader Configuration Utility. When you expose a data view, you
can also specify further filtering and ordering using SQL.

For you to use the DataView Reader, ObjectStore Inspector must
be installed. When you install the Component Server Framework,
the installation program verifies that the Inspector is installed,
examines the Inspector configuration to determine where the
Inspector metaknowledge resides, and configures the DataView
Reader with that location. This allows the DataView Reader to
access the data views and instance formats you define using
Inspector. See the ObjectStore Inspector User Guide.

If the location of the Inspector metaknowledge changes, you can
inform the DataView Reader of the new location using the
DataView Reader Configuration Utility.
60 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
Accessing Data Views from the DataView Reader

To use the DataView Reader to access a data view defined in
Inspector, build a component that explicitly exposes some or all
the data views defined in an ObjectStore database. You build the
component by implementing ostcConnect() , ostcInitialize() , and
ostcDisconnect() .

You do not have to define any subtypes of ostc_ServerOperation .
Instead, your implementation of ostcConnect() must expose one
or more data views with one or a combination of the following
functions.

To expose all the data views in a specified database, use the
following member of ostc_ServerSession :

void exposeAllDataViews(oscs_ConstString database_name);

You can call this function several times, specifying different
databases. Each data view is mapped to a Server operation whose
name is the same as the data view’s name.

To expose a data view with a specified name in a specified
database, use the following member of ostc_ServerSession :

void exposeDataView(
oscs_ConstString database_name,
oscs_ConstString data_view_name,
oscs_ConstString operation_name = 0

);

operation_name , if nonzero, specifies the name of the Server
operation to which the data view is mapped. If operation_name is
0, data_view_name is used as the operation name.

You can expose only one database with a given name at a time. If
you have exposed a data view from one database, and then
attempt to expose a data view with the same name from another
database, the attempt is silently ignored. Only the first data view
will be accessible.

data_view_name can also contain an SQL statement that
customizes the data view defined in database_name . The SQL
statement must follow SQL syntax rules. The next paragraph
describes the SQL syntax accepted by the DataView Reader.
Release 5.1 61

Filtering and Ordering: SQL Support in DataView Reader
Filtering and Ordering: SQL Support in DataView
Reader

The DataView Reader supports a subset of the SQL syntax that
lets developers dynamically modify data views defined in the
Inspector by customizing the instance format and the filter and
ordering definitions. The DataView Reader supports these
statements:

• SELECT

• FROM

• WHERE

• ORDER BY DESC/ASC

• AS

Suppose you are inspecting a data view called my_data_view ,
based on a collection of Customer instances:

• Customer is a class containing the name and address data
members, as well as a relation to the Vehicle class, implemented
by the cars data member.

• Vehicle is a class containing the make and model data members
and a reverse relation to the class Customer called owner .

The DataView Reader would accept SQL statements such as these:

SELECT * FROM my_data_view This statement maintains the default settings of my_data_
view .

SELECT name, address FROM
my_data_view

This statement modifies the instance format used in my_
data_view to include only the name and address of each
customer.

SELECT name, address FROM
my_data_view WHERE name
like `john*'

This statement modifies the instance format and filter
defined in my_data_view . The resulting table contains
only those customers whose names begin with john and
also displays the customers' names and addresses. The
DataView Reader translates the filter defined in the SQL
statement into an ObjectStore query. This allows you to
perform efficient ObjectStore queries through an SQL
statement.
62 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
SELECT name, address FROM
my_data_view ORDER BY name
DESC

This SQL statement modifies the instance format and
order defined in my_data_view . The resulting table shows
the customers' names and addresses displayed
alphabetically in descending name order.

SELECT name, cars#make
FROM my_data_view

The DataView Reader maps the SQL column names to
data member names. To navigate implicitly from one
class to another, you can specify a column name
containing the concatenation of the navigated data
members separated by the # character. This lets you build
a table based on the persistent collection used to define
my_data_view . This adopts the same filtering and
ordering settings, but it contains a column that shows the
customer's name and the makes of the cars the customer
owns. In general, you can concatenate any number of
relations. For example, cars#owner#cars#model would be
a valid column name. It would contain the models of the
cars, which are owned by the owner of the cars, which are
owned by each customer.

SELECT name, cars#make,
cars#model FROM my_data_
view WHERE cars#make='Ford'

This SQL statement uses the navigated data members to
build a new filter in my_data_view . As the filter is
translated into a native ObjectStore query expression, the
ObjectStore query executed by the above SQL statement
iscars[: !strcmp(make,"Ford") :]

This query is satisfied by any customer who owns at least
one Ford car. This result is different from what you could
expect reading the SQL expression.
Release 5.1 63

DataView Reader Configuration Utility
DataView Reader Configuration Utility

The DataView Reader configuration utility is an application that
you can use to change the DataView Reader default settings. The
CSF installation program establishes these defaults based on the
locations of DataView Reader and the Inspector. You can
synchronize all the DataView Reader settings with the
corresponding Inspector settings, or you can reconfigure
individual DataView Reader settings.

The individual settings include

• The location of the utility’s application schema database

• The location of the Inspector metaknowledge

• The format for displaying one-to-many and many-to-many
relationships

• The format for displaying characters, strings, and BLOBs

Preparing to Run the Configuration Utility

The database schema is stored in the DataView Reader library,
and all other settings are stored in the Windows NT registry.
Before configuring the DataView Reader, unlock the DataView
Reader libraries by closing all application servers that use the
DataView Reader. If the DataView Reader libraries are locked
when you run the DataView Reader configuration utility, it
cannot modify the application schema path. Furthermore, any
changes applied to the DataView Reader settings are not visible to
the already running DataView Reader instances.

Starting the Utility

The DataView Reader configuration utility is in the CSF program
group. It has three tabs:

• Application Schema

• General Settings

• String Formats

Synchronizing with Inspector

The DataView Reader and the Inspector share metaknowledge,
data views, instance formats, and the ObjectStore application
64 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
schema. To synchronize these DataView Reader settings, the
DataView Reader string display format, and all other DataView
Reader settings with the corresponding Inspector settings, click
Synchronize with Inspector from any tab.

Setting the Application Schema Path

The application schema for the DataView Reader is an ObjectStore
database in the file vomsch30.adb . In order for the application to
access the application schema, the schema must be under the
control of an ObjectStore Server. If you manually move the
application schema, you must reconfigure the DataView Reader
with the schema's new location.

For example, suppose an application running on a Windows NT
workstation that has no ObjectStore Server queries a Solaris
ObjectStore Server. To successfully query the Solaris Server
database, you must copy the application schema to the Solaris
machine and reconfigure the DataView Reader on the Windows
NT machine with the remote location of the Solaris workstation.

If you installed CSF using the default installation location,
vomsch30.adb was placed in C:\ODI\CSF1.0\lib . Use the
Application Schema tab to check or modify the DataView Reader
application schema path, and to configure DataView Reader to
use a particular ObjectStore Server located on your network.

The Application Schema tab displays the DataView Reader
application schema configuration:

• The configuration status, signified by a green, yellow, or red
traffic signal icon

• The location of the application schema database

• Whether the application schema database is accessible to an
ObjectStore Server
Release 5.1 65

DataView Reader Configuration Utility
The color of the traffic signal summarizes the application schema
configuration:

• Green: DataView Reader is properly configured to use an
application schema database on a workstation where an
ObjectStore Server is running.

• Yellow: Although DataView Reader is configured to use an
application schema database on a workstation where an
ObjectStore Server is running, the application schema database
has not been copied to the specified directory.
66 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
• Red: The DataView Reader is configured to use an application
schema database on a host where no ObjectStore Server is
running.

A CSF application server that uses the DataView Reader and that
runs when the traffic signal is yellow or red encounters an error
when it attempts to open a database.

To establish a new location:

1 Click Change App Schema Path .

2 Enter another directory location. You can specify a directory on
the local machine, an ObjectStore rawfs, or a network file server
directory.

3 Copy vomsch30.adb to the directory location you specified.

The Application Schema tab also indicates whether an ObjectStore
Server is running on the host designated by the application
schema path:

• An ObjectStore Server is running on the host.

• No ObjectStore Server is running on the host. The traffic signal
is red.

• An ObjectStore Server is running on the host. Because the
DataView Reader is properly configured and ready to be run,
the traffic signal is green.

• The DataView Reader application schema database is not
accessible, because an ObjectStore Server is not running on the
host designated by the application schema path, or because the
Release 5.1 67

DataView Reader Configuration Utility
database file vomsch30.adb is not present in that directory. The
traffic signal is yellow if the Server is running, or red if no
Server is running.

To use the application schema database path that Inspector uses,
click Synchronize with Inspector . Note that this synchronizes all
the DataView Reader configuration settings in all tabs with the
equivalent Inspector settings.

Modifying the Metaknowledge Location and Specifying Relationship
Format

The DataView Reader uses the Inspector metaknowledge (see the
ObjectStore Inspector User Guide) to obtain data view definitions,
including the query and ordering information set by the query's
author, and other information about the database schema and the
defined instance formats.

Inspector metaknowledge can reside in the file system, in the
68 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
same inspected database, or in another ObjectStore database that
contains only Inspector metaknowledge. The metaknowledge
location is specified in the Inspector configuration.

Use the General Settings tab to specify the location of the
DataView Reader metaknowledge, and to choose the default type
of join the DataView Reader uses when displaying relations in a
single table.
Release 5.1 69

DataView Reader Configuration Utility
By default, the CSF installation designates the file system as the
metaknowledge location. To manually modify this setting, specify
the location from which the DataView Reader should load the
metaknowledge.

By default, the DataView Reader displays one-to-many and
many-to-many relations using SQL-like joins. You can choose the
join format you prefer.

Modifying the Character, String, and BLOB Formats

Use the String Formats tab to specify the default string display
format for the current database. For additional information about
70 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
string formats and string interpretation, refer to Viewing Blobs in
the ObjectStore Inspector User Guide.

Interpret Strings as : By default, DataView Reader interprets
strings as plain ASCII text. You can interpret strings using any
format that the Inspector supports. This is especially helpful if
the database contains strings that are encoded using SJIS, EUC, or
Unicode.

Japanese expressions: If the application retrieves objects encoded
in Japanese characters, you can ensure that DataView Reader
uses a Japanese-enabled parser that supports DBCS and Unicode.
This parser is included in the DataView Reader kernel.
Release 5.1 71

DataView Reader Configuration Utility
Show String : By default, the DataView Reader displays strings up
to the first null character it encounters. Instead, DataView Reader
can skip displaying invalid characters or display an alternate
character for each invalid one.

BLOBs: By default, the DataView Reader displays ASCII strings
that are longer than 768 characters as binary large objects
(BLOBs). You can increase or decrease this limit.

Show Single Characters : The DataView Reader displays single
characters as a character and an ASCII value. For example, the
DataView Reader would display the character A as A' (65).
Instead, you can display only the character value, such as A.
72 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
Registry Keys

The DataView Reader registry keys are logically split into the
following categories: metaknowledge location, string encoding,
string handling, and navigation handling.

Metaknowledge Location

The DataView Reader task is to expose data views defined in
Inspector. The knowledge about these data views is called
metaknowledge, and can be stored by Inspector in different
locations, according to its settings.

The key "Where to save" (REG_DWORD) can contain the following
values:

• Metaknowledge is saved in the file system; in this case, the key
"database GPH" (REG_SZ) contains the full path of the directory
where the metaknowledge is stored (it must terminate with a /
character). Inspector by default sets "Where to save" to 1 and
"database GPH" to " inspector-rootdir\db_gph\" .

• Metaknowledge is saved in the database to which the
metaknowledge is referred. This is the recommended choice if
you want to deploy an application that uses the DataView
Reader to expose the contents of your database.

• Metaknowledge is saved in an ObjectStore database dedicated
to storing it; in this case the "ObjectStore database" (REG_SZ)
key contains the full file name path of the ObjectStore database.

String Encoding

Character strings can be encoded in a wide variety of formats
inside a database. Inspector and the DataView Reader let you
specify the default encoding type of the character strings stored in
your databases (this default can be overridden on a per-class basis
in each database, using Inspector). The DataView Reader always
returns strings in ASCII or SJIS encoding type.

The default character string encoding is stored in the
"AttributeFormatDisplayingDefault" (REG_DWORD) key. The
possible values are
Release 5.1 73

Registry Keys
• 1: Character strings are simple ASCII, and they do not use any
particular encoding (default).

• 2: Character strings are encoded in SJIS (Windows-Japanese)
format.

• 4: Character strings are encoded in EUC (UNIX-Japanese)
format.

• 8: Encoding type of character strings must be recognized
automatically by Inspector or DataView Reader.

• 16: Character strings are encoded in Unicode format.

• 32: Character strings are encoded in UTF8 (Java-Unicode)
format.

The "UseJapaneseRegex" (REG_DWORD) registry key contains
information on whether the DataView Reader must invoke the
Japanese-compliant version of the regular expression parser used
in the queries:

• 0: (Default) Use the standard regular expression parser.

• 1: Use the Japanese-compliant regular expression parser.

String Handling

Strings can be stored in buffers of characters in many different
ways. Inspector and the DataView Reader let you specify the
default way in which strings stored inside your databases should
be retrieved (this default can be overridden on a per-class basis in
each database, using Inspector).

The default setting is stored in the
"AttributeFormatInterpretationDefault" (REG_DWORD) key. The
possible values are

• 32: Show the string until the first NULL character in the buffer
is met (default).

• 64: Show all the characters in the allocated buffer, skipping the
invalid ones.

• 128: Show all the characters in the allocated buffer, and use a
special character to replace the invalid ones. This special
character is stored in the "AttributeFormatSubstitutionDefault"
(REG_SZ) registry key.
74 ObjectStore Component Server Framework User Guide

Chapter 6: Using and Configuring the DataView Reader
In all the preceding cases, if the resulting string is longer than the
Blob Size, the string is not displayed, and the "XXX bytes at
address 0x123456 " message is returned. The Blob Size is stored in
the "MaxNonBinaryBlobSize" (REG_DWORD) registry key (the
default is 768).

• 256: Like 32, but truncate the string at the Blob Size if needed.

The "SingleCharacterFormat" (REG_DWORD) key contains
information about how to report single-character data members:

• 0: (Default) Single character is returned in the format ‘A’ (65) .

• 1: Only the single character is returned: A

Navigation Handling

When a data view uses a data member that represents a one-to-
many or many-to-many relationship, Inspector and the DataView
Reader can choose between two possible algorithms. Information
about which algorithm should be used is stored in the "OLEDB
SQL-like join" (REG_DWORD) registry key:

• 1: (Default) Use an SQL-like approach. The DataView Reader
expands one-to-many relations to show all the possible values
that meet the conditions of the query (as an SQL join would).
Consider a data view that lists the names of customers together
with the makes and the models of the cars they own. With this
approach, the output takes this form:

• 2: Use a tree-like approach. With this approach, the data view
above takes this form:

Name Make Model

John, Smith Cadillac Deville

John, Smith Ford Escort

Jones, Mary Ford Ranger

Jones, Mary Mazda 626

Jones, Mary Mazda 626

Name Make Model

John, Smith Cadillac Deville

Ford Escort

Jones, Mary Ford Ranger
Release 5.1 75

Registry Keys
Usually a tree-like view is more readable, but an SQL-oriented
tool such as a report generator cannot easily use it. In the SQL-like
view, if you navigate multiple one-to-many relations in a row, the
number of generated rows is much greater than in the tree-like
view.

Mazda 626

Mazda 626

Name Make Model
76 ObjectStore Component Server Framework User Guide

Chapter 7
ostc

This class is used by both the client and the Server. It defines the
functions the client uses to set the router and to connect to and
disconnect from a Component Server. It also defines an
enumeration relating to the fundamental types of data Servers
and thin clients can exchange, as well as an enumeration relating
to transaction types.
Release 5.1 77

OSTC Fundamental Data Types
OSTC Fundamental Data Types

The types of values that clients can specify as arguments to
operations (see ostc_Operation::setArgument() on page 100) are
limited to the following:

• Integer types

• float

• double

• char*

• ostc_OID * (object identifier set by user)

• void* (for bit streams)

Attribute values for ostc_Object s are also limited to these types.

The following typedefs are used to designate the fundamental
types:

oscs_Int64

oscs_Int32

oscs_String

oscs_Bool

oscs_Float

oscs_Double

Operation formal parameters are specified (see ostc_
ServerOperation::addArgument() on page 150 and ostc_
ServerOperation::addReturnSetAttribute() on page 150) with
enumerators that correspond to the fundamental types. The
following enumeration is defined in the scope of the class ostc :

enum types {
ostc_int32 = 1,
ostc_int64,
ostc_float,
ostc_double,
ostc_string,
ostc_oid,
ostc_binary

};
78 ObjectStore Component Server Framework User Guide

Chapter 7: ostc
The following table shows the correspondences:

ostc_int32 32-bit integer

ostc_int64 64-bit integer

ostc_string char*

ostc_float float

ostc_double double

ostc_oid ostc_OID*

ostc_binary void*
Release 5.1 79

Transaction Types
Transaction Types

The class ostc (named for the ObjectStore thin client) defines an
enumeration that specifies transaction types:

enum transaction_type {
read, mvccRead, shared_update, isolated_update, none, any

};

Each instance of ostc_ServerOperation has a transaction type,
which specifies the type of transaction in which it must be
executed. You specify the transaction type when you create the
instance.

Each Server also has a transaction type, which specifies the type of
transaction the Server uses to execute operations. You specify a
Server’s transaction type when you configure the Server. You can
also modify a Server’s transaction type with ostc_
ServerSession::setTxnType() .

With all transaction types except isolated_update , the Server
batches requests from different users into the same transaction,
reducing commit overhead and increasing throughput.

read transactions can be used for operations that perform no
updates to persistent data.

mvccRead transactions can be used for operations that perform no
updates to persistent data and do not need a completely up-to-
date version of the data — see Using the ObjectStore C++ Interface.

isolated_update transactions are for operations that perform
updates to persistent data. Each transaction handles just one
operation execution, whose results are committed once the
operation completes.

shared_update transactions should be used only with extreme care.
They are for update operations that can safely be batched into the
same transaction with operations executing on other Server
threads. For this to be safe, the operations must not potentially
interfere with each other when accessing persistent data. Unsafe
batching can produce incorrect results or database corruption.

any transactions should be used for operations that you want
executed on the first available Server, regardless of transaction
80 ObjectStore Component Server Framework User Guide

Chapter 7: ostc
type. This cannot be used to specify the transaction type of a
Server.

none is for operations that either access no persistent data.

Determining Whether Update Operations Can Interfere with Each Other

Operations potentially interfere with each other if some way of
interleaving their primitive database reads and writes produces
incorrect results.

Consider, for example, an operation to purchase a ticket for a
specified seat at a particular performance. Suppose the operation
performs one database read, to see if the seat is available, and one
database write, to mark the seat as sold (if it was available). Now
consider two executions of this operation running on different
threads, in the same transaction. Their database reads and writes
might be performed in the following order:

In this case, both executions will find the seat to be available, and
two people will end up with tickets for the same seat. This is an
incorrect result, so the operations can interfere with one another
and cannot be batched safely.

Note that what counts as an incorrect result is application
dependent. Note also that, even if some possible ways of ordering
the primitive reads and writes produce correct results, as long as
there is at least one ordering that produces an incorrect result, the
operations cannot be batched safely.

It is often very difficult to determine if update operations can be
batched safely. When in doubt, use isolated_update for update
operations.

thread1 thread2

read

read

write

write
Release 5.1 81

Transaction Types
With read and mvccRead transactions, the operations perform
only database reads, which can always be safely batched.

Batch Transaction Commits

The results of a shared_update operation are not committed to the
client until the completion of all the operation executions in the
same batch. From the client’s point of view, this means that ostc_
Session::doOperation() does not return until all the batch’s
operations complete. This also means that one thread performing
a relatively lengthy operation can delay other threads. However,
in many cases overall throughput is increased.

Results of read and mvccRead operations are returned to the client
without waiting for all operations in the batch to commit, since an
abort of one (read-only) operation does not affect the results of
other operations in the batch.

shared_update Aborts

If one operation execution in a shared_update transaction aborts,
all executions in the batch must be aborted.This means that using
shared_update can increase the likelihood of your operation’s
being aborted.
82 ObjectStore Component Server Framework User Guide

Chapter 7: ostc
Setting Routers

In any deployed configuration of Component Servers, one or
more Servers act as router and distributes requests to Servers on a
round-robin basis. You specify whether a Server is a router when
you launch the Server processes (see Configuring, Starting, and
Stopping the Server Executable on page 15).

Each client must specify a router as well. You do this with the API
ostc::addRouter() . On Windows platforms, you can use the
executable ostcSetRouter.exe instead of this API.

ostc::addRouter()

static ostc_Session* addRouter(char *host_and_port);

host_and_port is a character string specifying the host machine of
a router Component Server, as well as the port on which it is
listening for thin client requests.

host:port

When the client calls ostc::connect() , a router tells the client which
Component Server to send requests to. The router makes this
determination based on

• The specified service name

• A round-robin schedule of Component Server processes that
match the specified service name

Click here for the example.
Release 5.1 83

Connecting to and Disconnecting from a Service
Connecting to and Disconnecting from a Service

ostc::connect()

static ostc_Session* connect(
oscs_ConstString service_name,

);

Establishes a session for using a specified service.

service_name is the name of the service.

When the client calls connect() , a router finds a Component Server
that supports the specified service.

The function returns a pointer to a new ostc_Session .

You should retrieve only one session per client thread. Session
objects are cached, making connect() (and disconnect())
inexpensive operations.

ostc_RequiredParmMissing is thrown if a router has not been set
with ostc::addRouter() or ostcSetRouter.exe .

Click here for an example.

ostc::disconnect()

static void disconnect(ostc_Session*);

Ends the specified session, and disconnects from the session’s
associated Component Server.
84 ObjectStore Component Server Framework User Guide

Chapter 8
ostc_Session

This class is used by the thin client for the following tasks:

Getting a Session’s Operations 86

Executing Operations 87

Managing the Cache 90

Managing Transactions 91

Getting the Name of a Session’s Associated Service 92
Release 5.1 85

Getting a Session’s Operations
Getting a Session’s Operations

ostc_Session::getOperations()

virtual ostc_OperationSet* getOperations() ;

Returns a pointer to an ostc_OperationSet containing the
operations supported by this service.

ostc_Session::getOperation()

virtual ostc_Operation* getOperation(
const char* operation_name

) ;

Returns a pointer to the operation that is named operation_name
and supported by this service. Returns 0 if there is no such
operation.

Click here for an example.
86 ObjectStore Component Server Framework User Guide

Chapter 8: ostc_Session
Executing Operations

ostc_Session::doOperation()

virtual ostc_ObjectList* doOperation(
ostc_Operation *op,
oscs_Bool use_cache,
oscs_Bool incremental = 0,
oscs_Uint32 max_objs_returned = 0,
void * userRouteData = 0,
oscs_Uint32 userRouteDataLen = 0

) ;

Executes the operation op on a Component Server.

When you call this function for a given operation, the client does
one of the following:

• Contacts a router to locate a Server that matches the operation.

• Finds a matching Server based on information cached during
the current process on the client side.

If no client transaction (started with ostc_Session::beginTxn()) is
in progress, a Server matches an operation if all the following
hold:

• The Server is running the service associated with this session.

• The Server’s transaction type matches the operation’s
transaction type. Any Server transaction type except none
matches the operation transaction type ostc::any .

• If the argument userRouteData is nonzero, the Server’s route
data matches userRouteData . Matches are identified with
memcmp() .

In this case, the Server starts (or, for a batch transaction, has
already started) the transaction in which the operation is
executed. The Server commits or aborts the transaction before
doOperation() returns.

If a client transaction is in progress, a Server matches an operation
if all the following hold:

• The Server is running the service associated with this session.

• The Server’s transaction type is ostc::isolated_update .
Release 5.1 87

Executing Operations
• If the argument userRouteData is nonzero, the Server’s route
data matches userRouteData . Matches are identified with
memcmp() .

In this case, the Server started this operation’s transaction when
the client called ostc_Session::beginTxn() .

The client maintains a cache of object lists returned by
doOperation() during the current session. doOperation() does not
interact with the Server and instead returns a cached list if

• use_cache is 1.

• The same operation with the same arguments was executed
earlier in the current session.

• The returned list from that execution is still in the thin client’s
cache.

Note that use_cache does not affect whether an operation’s result
is added to the cache. An operation’s result is added regardless of
the value of use_cache .

Note that the cache does not reflect changes to persistent data
made by other processes; cache validity is not automatically
maintained.

If incremental is nonzero, doOperation() returns a pointer to an
incremental ostc_ObjectList, and max_objects_returned specifies
the batch size of the returned set.

If the number of objects to be returned is large, the client can
specify that the results be returned incrementally. The
incremental nature of the results is transparent to the client, since
the usual API functions for retrieving list elements automatically
trigger a Server interaction whenever a new batch of results must
be sent.

For isolated_update operations, each batch is sent in its own
transaction. The Server creates a collection of references to the
operation results, which can be used across transactions.

See also ostc_ObjectList::done() on page 130.

If incremental is 0, max_objects_returned specifies the maximum
size of the returned set.
88 ObjectStore Component Server Framework User Guide

Chapter 8: ostc_Session
The returned ostc_ObjectList contains op ’s return values. 0 is
returned if there are no return values.

For batched transactions, doOperation() does not return until the
execution of each operation in the batch completes.

ostc_ServerException is thrown if the Server aborts the
transaction in which the operation executes.

Click here for an example.
Release 5.1 89

Managing the Cache
Managing the Cache

ostc_Session::flushObjects()

virtual void flushObjects() ;

Clears the thin client cache; that is, removes all object lists from the
cache.

virtual void flushObjects(ostc_ObjectList&*) ;

Removes the specified list from the thin client cache. Sets the
argument to 0.
90 ObjectStore Component Server Framework User Guide

Chapter 8: ostc_Session
Managing Transactions

ostc_Session::beginTxn()

virtual void beginTxn() ;

You do not usually have to use this function, since transactions are
started automatically by the Server. Use beginTxn() only to group two
or more calls to doOperation() into the same transaction.

Starts a transaction for the execution of operations with ostc_
Session::doOperation() . When you call this function, the router
starts an isolated_update transaction on a Server such that both of
the following hold:

• The Server is running the service associated with this session.

• The Server’s transaction type is isolated_update .

If you do not use this function, operations are automatically
executed in the appropriate type of transaction when you call
ostc_Session::doOperation() .

ostc_InvalidTxnType is thrown if no isolated_update Server is
running.

ostc_NoNestedTxn is thrown if a transaction started with
beginTxn() is already in progress on the client.

ostc_Session::commitTxn()

virtual void commitTxn() ;

Commits the current transaction. See also ostc_
Session::beginTxn() on page 91.

ostc_NoTxnInProgress is thrown if there is no current transaction.

ostc_Session::abortTxn()

virtual void abortTxn() ;

Aborts the current transaction. See also ostc_Session::beginTxn()
on page 91.

ostc_NoTxnInProgress is thrown if there is no current transaction.
Release 5.1 91

Getting the Name of a Session’s Associated Service
Getting the Name of a Session’s Associated Service

ostc_Session::getServiceName()

virtual oscs_ConstString getServiceName() ;

Returns the name of the service with which this is a session. Do
not modify or delete the returned string.
92 ObjectStore Component Server Framework User Guide

Chapter 9
ostc_Operation

Instances of this class represent operations that the thin client can
send to a Component Server for execution. This class is used by
the thin client for the following tasks:

Getting Operation Formal Parameters 94

Getting an Operation’s Name and Description 95

Getting an Operation’s Timestamp 96

Getting Operation Actual Parameters 97

Setting Operation Actual Parameters 100
Release 5.1 93

Getting Operation Formal Parameters
Getting Operation Formal Parameters

ostc_Operation::getArguments()

virtual ostc_AttributeDescriptorList* getArguments() ;

Returns a pointer to a list of ostc_AttributeDescriptor s
representing this operation’s formal parameters.

virtual ostc_AttributeDescriptorList* getReturnListAttributes() ;

Returns a pointer to a list of ostc_AttributeDescriptor s
representing the attributes of the objects returned by this
operation.
94 ObjectStore Component Server Framework User Guide

Chapter 9: ostc_Operation
Getting an Operation’s Name and Description

ostc_Operation::getName()

virtual oscs_String getName() ;

Returns the name of this operation. See ostc_
ServerOperation::ostc_ServerOperation() on page 153. The return
value is const , so the user should not modify or delete it.

ostc_Operation::getDescription()

virtual oscs_String getDescription() ;

Returns the description of this operation. See ostc_
ServerOperation::setDescription() on page 151. The return value is
const , so the user should not modify or delete it.
Release 5.1 95

Getting an Operation’s Timestamp
Getting an Operation’s Timestamp

ostc_Operation::getTimestamp()

virtual oscs_Int32 getTimestamp() ;

Returns a timestamp indicating the last time that executing this
operation produced a result that was not taken from the cache.
The format of the return value is the same as that of the C function
time() .
96 ObjectStore Component Server Framework User Guide

Chapter 9: ostc_Operation
Getting Operation Actual Parameters

ostc_Operation::getInt32Argument()

virtual oscs_Int32 getInt32Argument(
oscs_ConstString argname

) ;

Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Int32 .

ostc_Operation::getInt64Argument()

virtual oscs_Int64 getInt64Argument(
oscs_ConstString argname

) ;

Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Int64 .

ostc_Operation::getStringArgument()

virtual oscs_ConstString getStringArgument(
oscs_String argname

) ;

Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.
Release 5.1 97

Getting Operation Actual Parameters
ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_String .

ostc_Operation::getFloatArgument()

virtual oscs_Float getFloatArgument(
oscs_ConstString argname

) ;

Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Float .

ostc_Operation::getDoubleArgument()

virtual oscs_Double getDoubleArgument(
oscs_ConstString argname

) ;

Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Double .

ostc_Operation::getObjectArgument()

virtual ostc_OID * getObjectArgument(
oscs_ConstString argname

) ;
98 ObjectStore Component Server Framework User Guide

Chapter 9: ostc_Operation
Returns the actual parameter with the specified name.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_OID .

ostc_Operation::getBinaryArgument()

virtual void * getBinaryArgument(
oscs_ConstString argname,
oscs_Uint32& length

) ;

Returns the actual parameter with the specified name.

length is the length of the bit stream making up the parameter
value.

If the actual parameter has not been set (by ostc_
Operation::setArgument()), returns 0.

ostc_NoArguments is thrown if this operation has no arguments.

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_binary .
Release 5.1 99

Setting Operation Actual Parameters
Setting Operation Actual Parameters

ostc_Operation::setArgument()

virtual void setArgument(
oscs_ConstString name,
oscs_Int32 value

) ;

Sets the value of the actual parameter named name to value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Int32 .

virtual void setArgument(
oscs_ConstString name,
oscs_Int64 value

) ;

Sets the value of the actual parameter named name to value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Int64 .

virtual void setArgument(
oscs_ConstString name,
oscs_ConstString value

);

Sets the value of the actual parameter named name to value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_string .

virtual void setArgument(
oscs_ConstString name,
oscs_Float value

) ;

Sets the value of the actual parameter named name to value .
100 ObjectStore Component Server Framework User Guide

Chapter 9: ostc_Operation
ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Float .

virtual void setArgument(
oscs_ConstString name,
oscs_Double value

) ;

Sets the value of the actual parameter named name to value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type oscs_Double .

virtual void setArgument(
oscs_ConstString name,
ostc_OID* value

) ;

Sets the value of the actual parameter named name to value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_OID* .

virtual void setArgument(
oscs_ConstString name,
void* value,
oscs_Uint32 length

) ;

Sets the value of the actual parameter named name to the bit
stream value .

length is the length of the value .

ostc_UnknownAttribute is thrown if there is no argument with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_binary .
Release 5.1 101

Setting Operation Actual Parameters
102 ObjectStore Component Server Framework User Guide

Chapter 10
ostc_OperationSet

Instances of this class are unordered collections of ostc_
Operation s.

Cursor Validity

A set’s associated cursor is valid if it is positioned at an element of
the set, and is invalid if it is not positioned at any element of the
set. Each set’s cursor is initially invalid. Calling either ostc_
OperationSet::first() or ostc_OperationSet::next() on the set renders
the cursor valid.

ostc_OperationSet::first()

virtual ostc_Operation* first() ;

Positions the set’s cursor at the set’s first element, and returns that
element. If the set is empty, returns 0. The ordering used is
arbitrary, but stable across traversals of the set.

ostc_OperationSet::next()

virtual ostc_Operation* next() ;

If this set’s cursor is valid and is not positioned at the set’s last
element, next()

• Advances the cursor

• Returns the element at which the cursor is positioned after
being advanced

If the cursor is positioned at the set’s last element, next()

• Renders the cursor invalid
Release 5.1 103

Setting Operation Actual Parameters
• Returns 0

If the cursor is invalid and the set is nonempty, next()

• Positions the cursor at the set’s first element

• Returns the first element

If the set is empty, next() returns 0.

The ordering used is arbitrary, but stable across traversals of the
set.

ostc_OperationSet::more()

virtual oscs_Bool more() ;

Returns oscs_True if this ’s cursor is valid, that is, positioned at an
element of the set. Returns oscs_False otherwise.

ostc_OperationSet::cardinality()

virtual oscs_Uint32 cardinality() ;

Returns the number of elements in the specified set.

ostc_OperationSet::getOperation()

virtual ostc_Operation* getOperation(oscs_ConstString name) ;

Returns the element of this that points to the operation with the
specified name. Returns 0 if there is no such element.
104 ObjectStore Component Server Framework User Guide

Chapter 11
ostc_AttributeDescriptor

Instances of this class are used to specify ostc_Object attribute
types and operation formal parameters.

ostc_AttributeDescriptor::getName()

virtual oscs_String getName() ;

Returns the name of the specified attribute descriptor.

ostc_AttributeDescriptor::getType()

virtual ostc::types getType() ;

Returns an enumerator indicating the type of the specified
attribute descriptor.

ostc_AttributeDescriptor::getMaxLength()

virtual oscs_Uint32 getMaxLength() ;

Returns the value passed as maxlength in the last call to ostc_
ServerOperation::addReturnSetAttribute() or ostc_
ServerOperation::addArgument() that passed the name of this as
the name argument. Returns 0 if there was no such call.
Release 5.1 105

Setting Operation Actual Parameters
106 ObjectStore Component Server Framework User Guide

Chapter 12
ostc_
AttributeDescriptorList

Instances of this class are ordered collections of ostc_
AttributeDescriptor s. This class defines functions for the following
tasks:

Traversing Lists 109

Getting List Cardinality 110

Getting the Element with a Specified Name 111
Release 5.1 107

Cursor Validity
Cursor Validity

A list’s associated cursor is valid if it is positioned at an element of
the list, and is invalid if it is not positioned at any element of the
list. Each list’s cursor is initially invalid. Calling either ostc_
AttributeDescriptorList::first() or ostc_
AttributeDescriptorList::next() on the list renders the cursor valid.
108 ObjectStore Component Server Framework User Guide

Chapter 12: ostc_AttributeDescriptorList
Traversing Lists

ostc_AttributeDescriptorList::first()

virtual ostc_AttributeDescriptor* first() ;

Positions the list’s cursor at the list’s first element, and returns that
element. If the list is empty, returns 0.

ostc_AttributeDescriptorList::next()

virtual ostc_AttributeDescriptor* next() ;

If this list’s cursor is valid and is not positioned at the list’s last
element, next()

• Advances the cursor

• Returns the element at which the cursor is positioned after
being advanced

If the cursor is positioned at the list’s last element, next()

• Renders the cursor invalid

• Returns 0

If the cursor is invalid and the list is nonempty, next()

• Positions the cursor at the list’s first element

• Returns the first element.

If the list is empty, next() returns 0.

ostc_AttributeDescriptorList::more()

virtual oscs_Bool more() ;

Returns oscs_True if this ’s cursor is valid, that is, positioned at an
element of the set. Returns oscs_False otherwise.
Release 5.1 109

Getting List Cardinality
Getting List Cardinality

ostc_AttributeDescriptorList::cardinality()

virtual oscs_Uint32 cardinality() ;

Returns the number of elements in the specified set.
110 ObjectStore Component Server Framework User Guide

Chapter 12: ostc_AttributeDescriptorList
Getting the Element with a Specified Name

ostc_AttributeDescriptorList::getAttributeDescriptor()

virtual ostc_AttributeDescriptor* getAttributeDescriptor(
oscs_ConstString attrname

) ;

Returns the element of the list that points to the attribute
descriptor with the specified name. Returns 0 if there is no such
element.
Release 5.1 111

Getting the Element with a Specified Name
112 ObjectStore Component Server Framework User Guide

Chapter 13
ostc_Object

Instances of this class are essentially attribute-name/value pairs.
The class, used by both client and Server, defines members for the
following tasks:

Getting an Object’s Attribute Descriptors 114

Getting an Object’s Attribute Values 115

Setting an Object’s Attribute Values 120

Getting an Object’s Session 122

Getting and Setting Object IDs 123
Release 5.1 113

Getting an Object’s Attribute Descriptors
Getting an Object’s Attribute Descriptors

ostc_Object::getAttributeDescriptors()

virtual ostc_AttributeDescriptorList* getAttributeDescriptors() ;

Returns an ostc_AttributeDescriptorList of the specified object’s
ostc_AttributeDescriptor s.
114 ObjectStore Component Server Framework User Guide

Chapter 13: ostc_Object
Getting an Object’s Attribute Values

ostc_Object::getInt32Value()

virtual oscs_Int32 getInt32Value(
oscs_ConstString attrname

) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_int32 .

ostc_Object::getInt64Value()

virtual oscs_Int64 getInt64Value(oscs_ConstString attrname) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_int64 .

ostc_Object::getStringValue()

virtual oscs_ConstString getStringValue(
oscs_ConstString attrname

) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_string .
Release 5.1 115

Getting an Object’s Attribute Values
ostc_Object::getFloatValue()

virtual oscs_Float getFloatValue(
oscs_ConstString attrname

) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_float .

ostc_Object::getDoubleValue()

virtual oscs_Double getDoubleValue(
oscs_ConstString attrname

) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_double .

ostc_Object::getObjectValue()

virtual ostc_OID * getObjectValue(
oscs_ConstString attrname

) ;

Returns the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_OID* .

ostc_Object::getBinaryValue()

virtual void * getBinaryValue(
116 ObjectStore Component Server Framework User Guide

Chapter 13: ostc_Object
oscs_ConstString attrname,
oscs_Uint32& length

) ;

Returns the value of the attribute with the specified name.

length is the length of the bit stream making up the value.

If the value has not been set (by ostc_Object::setValue()), returns 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_binary .

ostc_Object::getValue()

virtual void getValue(
oscs_ConstString name,
oscs_Int32 & value

);

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_int32 .

virtual void getValue(
oscs_ConstString name,
oscs_Int64 & value

);

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type oscs_Int64 .

virtual void getValue(
oscs_ConstString name,
Release 5.1 117

Getting an Object’s Attribute Values
oscs_String & value
);

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type oscs_String .

virtual void getValue(
oscs_ConstString name,
oscs_Float & value

) ;

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type oscs_Float .

virtual void getValue(
oscs_ConstString name,
oscs_Double & value

);

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type oscs_Double .

virtual void getValue(
oscs_ConstString name,
ostc_OID*& value

);

Sets value to the value of the attribute with the specified name.
118 ObjectStore Component Server Framework User Guide

Chapter 13: ostc_Object
If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_OID .

virtual void getValue(
oscs_ConstString name,
void*& value,
oscs_Uint32 & length

);

Sets value to the value of the attribute with the specified name.

If the value has not been set (by ostc_Object::setValue()), value is
set to 0.

length is the length of the bit stream making up the value.

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the attribute with the
specified name does not have the type ostc_binary .
Release 5.1 119

Setting an Object’s Attribute Values
Setting an Object’s Attribute Values

ostc_Object::setValue()

virtual void setValue(
oscs_ConstString name,
oscs_Int32 value

) ;

Sets the value of the attribute named name to value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_int32 .

virtual void setValue(
oscs_ConstString name,
oscs_Int64 value

) ;

Sets the value of the attribute named name to value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_int64 .

virtual void setValue(
oscs_ConstString name,
oscs_ConstString value

);

Sets the value of the attribute named name to value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_string .

virtual void setValue(
oscs_ConstString name,
oscs_Float value

) ;

Sets the value of the attribute named name to value .
120 ObjectStore Component Server Framework User Guide

Chapter 13: ostc_Object
ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_float .

virtual void setValue(
oscs_ConstString name,
oscs_Double value

) ;

Sets the value of the attribute named name to value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_double .

virtual void setValue(
oscs_ConstString name,
ostc_OID* value

) ;

Sets the value of the attribute named name to value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_OID* .

virtual void setValue(
oscs_ConstString name,
void* value,
oscs_Uint32 length

) ;

Sets the value of the attribute named name to the bit stream value .

length is the length of value .

ostc_UnknownAttribute is thrown if there is no attribute with the
specified name.

ostc_DatatypeMismatch is thrown if the formal parameter with the
specified name does not have the type ostc_binary .
Release 5.1 121

Getting an Object’s Session
Getting an Object’s Session

ostc_Object::getSession()

virtual ostc_Session* getSession() ;

Returns a pointer to the current ostc_Session , the session that
executed the operation that resulted in this object.
122 ObjectStore Component Server Framework User Guide

Chapter 13: ostc_Object
Getting and Setting Object IDs

ostc_Object::getOID()

virtual ostc_OID* getOID() ;

Returns a pointer to this ’s ostc_OID . Returns 0 if the OID has not
been set.

ostc_Object::setOID()

virtual void setOID(ostc_OID *) ;

Sets this ’s OID to the specified ostc_OID .
Release 5.1 123

Getting and Setting Object IDs
124 ObjectStore Component Server Framework User Guide

Chapter 14
ostc_ObjectList

Instances of this class are ordered collections of ostc_Object s. This
class defines functions for the following tasks:

Traversing Object Lists 127

Getting Object List Cardinality 128

Getting and Setting Object List OIDs 129

Truncating Incremental Lists 130

Adding and Removing List Elements 131
Release 5.1 125

Cursor Validity
Cursor Validity

A list’s associated cursor is valid if it is positioned at an element of
the list, and is invalid if it is not positioned at any element of the
list. Each list’s cursor is initially invalid. Calling either ostc_
ObjectList::first() or ostc_ObjectList::next() on the list renders the
cursor valid.
126 ObjectStore Component Server Framework User Guide

Chapter 14: ostc_ObjectList
Traversing Object Lists

ostc_ObjectList::first()

virtual ostc_Object* first() ;

Positions the list’s cursor at the list’s first element, and returns that
element. If the list is empty, returns 0.

ostc_ObjectList::next()

virtual ostc_Object* next() ;

If this list’s cursor is valid and is not positioned at the list’s last
element, next()

• Advances the cursor

• Returns the element at which the cursor is positioned after
being advanced

If the cursor is positioned at the list’s last element, next()

• Renders the cursor invalid

• Returns 0

If the cursor is invalid and the list is nonempty, next()

• Positions the cursor at the list’s first element

• Returns the first element

If the list is empty, next() returns 0.

ostc_ObjectList::more()

virtual oscs_Bool more() ;

Returns oscs_True if this ’s cursor is valid, that is, positioned at an
element of the set. Returns oscs_False otherwise.

ostc_ObjectList::current()

virtual ostc_Object* current() ;

Returns the element at which the cursor is positioned, or 0 if the
cursor is null. Does not reposition the cursor.
Release 5.1 127

Getting Object List Cardinality
Getting Object List Cardinality

ostc_ObjectList::estimatedCardinality()

virtual oscs_Uint32 estimatedCardinality() ;

Returns the number of elements in the specified list, if this is
nonincremental. If this is incremental, returns a lower bound on
the cardinality (in particular, the function returns the number of
C++ objects that constitute the unformatted operation result from
which this list is derived).
128 ObjectStore Component Server Framework User Guide

Chapter 14: ostc_ObjectList
Getting and Setting Object List OIDs

ostc_ObjectList::getOID()

virtual ostc_OID* getOID() ;

Returns a pointer to the OID of this . Returns 0 if the OID has not
been set.

ostc_ObjectList::setOID()

virtual void setOID(ostc_OID *) ;

Sets the OID of this .
Release 5.1 129

Truncating Incremental Lists
Truncating Incremental Lists

ostc_ObjectList::done()

virtual void done() ;

Call this function if you have traversed part of an incremental list,
and you do not need access to the rest of the list. After the call to
done() , the list contains just those elements that have already been
returned by the Server.
130 ObjectStore Component Server Framework User Guide

Chapter 14: ostc_ObjectList
Adding and Removing List Elements

ostc_ObjectList::addObject()

virtual ostc_Object * addObject() ;

Creates an ostc_Object and adds it to the end of the list. Returns a
pointer to the new object.

ostc_ObjectList::deleteObject()

virtual void deleteObject(ostc_Object*&) ;

If called by the Server, removes the specified object from the list,
and sets the argument to 0. Repositions the cursor at the element
immediately before the removed element. If there is no previous
element, the cursor is rendered invalid. This function has no effect
if called by the thin client.
Release 5.1 131

Adding and Removing List Elements
132 ObjectStore Component Server Framework User Guide

Chapter 15
ostc_OID

This class is an abstract base class. If you want to use OIDs, you
must derive a class from ostc_OID and implement the functions
listed below.

ostc_OID::stringify()

virtual oscs_ConstString stringify() const;

Returns a string that serves as a unique identifier.

ostc_OID::match

virtual oscs_Bool match(ostc_OID*) const;

Returns 1 if the OIDs designate the same object; returns 0
otherwise.

Example

class MyOID : public ostc_OID {
public

MyOID(int id){_id = id;}
int getID() {return id;}
char * stringify() {

sprintf(string_version, "%ld", id); return string_version;
}

private:
int id;
char string_version[10];

};

On the Server (format() function):

MyOID oid{10);
ostc_Object * obj = objlist->addObject();
Release 5.1 133

Adding and Removing List Elements
obj->setValue("object", &oid);

On the client:

ostc_OID * oid = obj->getObjectValue("object");
MyOID oid(atoi(oid->stringify()));
134 ObjectStore Component Server Framework User Guide

Chapter 16
Global Functions

To create a Component Server plug-in, you must implement the
following global functions:

• ostcConnect()

• ostcDisconnect()

• ostcInitialize()

ostc_MissingFunc is thrown if you fail to implement one of these
functions.

A source or header file for your Server plug-in must include the
following declaration of the global functions:

extern "C" {

#ifdef WIN32
__declspec(dllexport) void ostcInitialize(void);
__declspec(dllexport) void ostcConnect(ostc_ServerSession *);
__declspec(dllexport) void ostcDisconnect(void);
#else
void ostcInitialize(void);
void ostcConnect(ostc_ServerSession *);
void ostcDisconnect(void);
#endif
}

This use of _declspec is required for Windows platforms.
Release 5.1 135

Implementing ostcConnect()
Implementing ostcConnect()

ostcConnect()

void ostcConnect(ostc_ServerSession *);

Implement this function as part of your Server plug-in. The
Component Server calls ostcConnect() when the Server first starts
up.

The function must call ostc_ServerSession::addOperation() on the
specified server session in order to add each operation the session
is to execute. The function can also call other members of ostc_
ServerSession to modify Server start-up parameters or to expose
ObjectStore Inspector data views.

You can also implement this function to set routing data with
ostc_ServerSession::setUserRouteData() .

The Server does not call this function within an ObjectStore
transaction. You are responsible for using transactions to access
persistent data within this function.

Click here for an example.
136 ObjectStore Component Server Framework User Guide

Chapter 16: Global Functions
Implementing ostcDisconnect()

ostcDisconnect()

void ostcDisconnect();

You can use ostcDisconnect() to perform application-specific
processing whenever the Server shuts down. You must
implement this function, even if there is no such processing to
perform.

The Server does not call this function within an ObjectStore
transaction. You are responsible for using transactions to access
persistent data within this function.
Release 5.1 137

Implementing ostcInitialize()
Implementing ostcInitialize()

ostcInitialize()

void ostcInitialize();

For each Server plug-in, you must implement the global function
ostcInitialize() , which provides any initialization required before
operations can be executed. Typical tasks for ostcInitialize()
include opening databases and retrieving database roots.

The Component Server calls ostcInitialize() after ostcConnect() ,
when the Server first starts up.

The Server does not call this function within an ObjectStore
transaction. You are responsible for using transactions to access
persistent data within this function.

Click here for an example.
138 ObjectStore Component Server Framework User Guide

Chapter 17
ostc_ServerSession

The Server API provides members of this class for performing the
following tasks:

Adding Operations to a Session 140

Exposing Data Views 141

Modifying Start-up Parameters 142
Release 5.1 139

Adding Operations to a Session
Adding Operations to a Session

ostc_ServerSession::addOperation()

void addOperation(ostc_ServerOperation *);

Call this function within your implementation of ostcConnect() .
Adds the specified operation to the supported operations for the
current session.

Click here for an example.
140 ObjectStore Component Server Framework User Guide

Chapter 17: ostc_ServerSession
Exposing Data Views

See Using and Configuring the DataView Reader on page 59.

ostc_ServerSession::exposeAllDataViews()

void exposeAllDataViews(oscs_ConstString dbname);

Windows only Exposes all the data views in the database named dbname .

You can call this function several times specifying different
databases. Each data view is mapped to a Server operation whose
name is the same as the data view’s name.

You can expose only one database with a given name at a time. If
you have exposed a data view from one database, and then
attempt to expose a data view with the same name from another
database, the attempt is silently ignored. Only the first data view
will be accessible.

ostc_ServerSession::exposeDataView()

void exposeDataView(
oscs_ConstString dbname,
oscs_ConstString viewname,
oscs_ConstString operation_name = 0

);

Windows only Exposes the data view named viewname in the database named
dbname .

operation_name , if nonzero, specifies the name of the Server
operation to which the data view is mapped. If operation_name is
0, data_view_name is used as the operation name.

viewname can also contain an SQL statement that customizes the
data view defined in database_name . The SQL statement must
follow SQL syntax rules. See Filtering and Ordering: SQL Support
in DataView Reader on page 62.

You can expose only one database with a given name at a time. If
you have exposed a data view from one database, and then
attempt to expose a data view with the same name from another
database, the attempt is silently ignored. Only the first data view
will be accessible.
Release 5.1 141

Modifying Start-up Parameters
Modifying Start-up Parameters

These functions modify the start-up parameters specified at start-
up for the Server for which this is a session.

ostc_ServerSession::setServiceName()

void setServiceName(oscs_String servicename);

Sets the name of the Server, the name by which clients can connect
to it using ostc::connect() .

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setPort()

void setPort(oscs_Int32 port);

Sets the port the Server uses to listen for client requests.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setTxnType()

void setTxnType(ostc::transaction_type txntype);

Sets the transaction type of the current session.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setUserRouteData()

void setUserRouteData(void *, oscs_Uint32 length);

Sets the Server’s routing data. The void* can point to any user-
specified data, such as a character string. A thin client can specify
routing data along with a request for execution of an operation,
and the request is routed to a Server with matching routing data.
Matches are identified with memcmp() .

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setNumThreads()

void setNumThreads(oscs_Uint32 numthreads);
142 ObjectStore Component Server Framework User Guide

Chapter 17: ostc_ServerSession
Sets the number of threads used by the Server to process client
requests.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::addRouterHostName()

void addRouterHostName(oscs_String routerhostname);

Specifies the network address for the system router.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setRouterFile()

void setRouterFile(oscs_String routerfilename);

Sets the file used by the router to maintain routes persistently, in
case of failures or restarts.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setIncrementalTimeout()

void setIncrementalTimeout(oscs_Uint32 timeout);

Sets the timeout for access to incremental object sets on the Server.
If the set is not accessed in the amount of time specified, the Server
discards it.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setBoundTimeout()

void setBoundTimeout(oscs_Uint32 timeout);

Sets the timeout for bound transactions (that is, transactions
started by the thin client with ostc_Session::beginTxn()). If a
bound transaction is started but is not being used, it aborts when
this timeout is exceeded. This prevents the Server from hanging if
the client fails in the middle of a bound transaction.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .
Release 5.1 143

Modifying Start-up Parameters
ostc_ServerSession::setSharedTimeout()

void setSharedTimeout(oscs_Uint32 timeout);

Sets the timeout for shared (that is shared_update , read , or
mvccRead) transactions. Shared transactions commit after a
certain number of requests complete or this timeout is exceeded,
whichever comes first.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setSharedMaxOps()

void setSharedMaxOps(oscs_Uint32 maxops);

Sets the number of requests that can use a shared transaction
before a commit occurs. This parameter is ignored for isolated_
update Servers.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setRouterPingInterval()

void setRouterPingInterval(oscs_Uint32 interval);

A router pings all its routes at this interval. This parameter is
ignored for Servers that are not routers.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ServerSession::setServerLogging()

void setServerLogging(oscs_Bool logging);

Turns Server logging on or off. With logging on, the Server writes
information to the file server.log in the directory from which the
Server was executed.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .
144 ObjectStore Component Server Framework User Guide

Chapter 18
ostc_ServerOperation

This class defines the protocol for members you must implement
in derived classes:

• execute()

• format()

It also provides functions for the following tasks:

Setting Operation Formal Parameters 150

Setting the Description of an Operation 151

Getting the Name of an Operation 152

Creating and Deleting Server Operations 153
Release 5.1 145

Implementing execute()
Implementing execute()

ostc_ServerOperation::execute()

virtual void execute(
ostc_Object * arguments,
ostc_OperationResult* result

) = 0;

For each operation you want a Server to handle, you must define
a subtype of ostc_ServerOperation , and implement the member
execute() (among other functions). The component Server calls
this function in response to thin client calls to ostc_
Session::doOperation() for the operation.

ostc_ServerOperation::execute() is a pure virtual that specifies the
protocol for the function you must implement.

The function must extract the arguments by calling a get-value
member of ostc_Object on arguments , for each attribute of
arguments .

It must then process the arguments and set the result (in the form
of C++ objects) by performing members of ostc_OperationResult
on result .

The Server calls this function within an ObjectStore transaction.
You do not have to start a transaction explicitly in order to access
persistent data within this function.

Your implementation of execute() must be reentrant. That is, you
are responsible for synchronizing access to any transient state that
could be shared across Server threads. In addition, for operations
that use shared_update transactions, you must synchronize access
to persistent data if that is necessary to prevent interference
among threads.

Click here for an example.
146 ObjectStore Component Server Framework User Guide

Chapter 18: ostc_ServerOperation
Implementing operationComplete()

ostc_ServerOperation::operationComplete()

virtual void operationComplete(ostc_OperationResult*) const;

Performs any required cleanup after execute() and associated
executions of format() complete.

For a given class that you derive from ostc_ServerOperation , you
can either implement this function in the subtype, or use the
default version as inherited from ostc_ServerOperation .

The Component Server calls this function after the operation
results have been formatted and sent to the thin client. If the result
is incremental, the Server calls the function after the first batch of
results has been sent.

The default version calls delete on the os_cursor* and os_
collection* (if nonzero) that execute() passes to ostc_
OperationResult::setReturnValue() :

void ostc_ServerOperation::operationComplete(
ostc_OperationResult * result

) const
{

os_collection * coll;
os_cursor * cursor;

result->getReturnValue(coll, cursor);

if (coll)
delete coll;

if (cursor)
delete cursor;

}

The Server calls this function within an ObjectStore transaction.
You do not have to start a transaction explicitly in order to access
persistent data within this function.

Your implementation of operationComplete() must be reentrant.
That is, you are responsible for synchronizing access to any
transient state that could be shared across Server threads. In
addition, for operations that use shared_update transactions, you
must synchronize access to persistent data if that is necessary to
prevent interference among threads.
Release 5.1 147

Implementing format()
Implementing format()

ostc_ServerOperation::format()

virtual void format(
const void* value,
ostc_ObjectList* values,
ostc_OperationResult* result

) =0;

Converts C++ objects that result from execute() into ostc_Object s.

For a given class that you derive from ostc_ServerOperation , you
must implement this function in the subtype. ostc_
ServerOperation::execute() is a pure virtual that specifies the
protocol for the function you must implement.

value is the object being converted.

values is an initially empty list of ostc_Object s.

result is the operation result whose return values are being
formatted.

The function should call ostc_ObjectList::addObject() to add to
values the object or objects that result from converting value .

After execute() completes, the Component Server calls this
function for each return value.

If execute() passes a nonzero void* to ostc_
OperationResult()::setReturnValue() , the void* is considered to be
the only return value, so the Server calls format() once, passing the
void* as the value argument.

If execute() passes a nonzero os_cursor* to ostc_
OperationResult()::setReturnValue() (and does not pass a nonzero
void* to ostc_OperationResult()::setReturnValue()), the Server calls
format() on each element that can be visited with the cursor.

If execute() passes a nonzero os_collection* to ostc_
OperationResult()::setReturnValue() (and does not pass a nonzero
void* or os_cursor* to ostc_OperationResult()::setReturnValue()),
the Server calls format() on each element of the collection.

The Server calls this function within the same ObjectStore
transaction in which execute() is performed (unless the operation
148 ObjectStore Component Server Framework User Guide

Chapter 18: ostc_ServerOperation
result is incremental). You do not have to start a transaction
explicitly in order to access persistent data within this function.

Your implementation of format() must be reentrant. That is, you
are responsible for synchronizing access to any transient state that
could be shared across Server threads. In addition, for operations
that use shared_update transactions, you must synchronize access
to persistent data if that is necessary to prevent interference
among threads.

Click here for an example.
Release 5.1 149

Setting Operation Formal Parameters
Setting Operation Formal Parameters

ostc_ServerOperation::addArgument()

void addArgument(
oscs_ConstString name,
ostc::types type,
oscs_Uint32 maxlength = 0

);

Adds an argument named name to the end of the list of arguments
of this operation. The argument’s type is specified by type .

If type is ostc_string , maxlength specifies the argument’s
maximum length. Actual argument values are truncated when
necessary to adhere to this maximum. If type is not ostc_string ,
maxlength is ignored.

See also ostc_OperationResult::getArguments() on page 157.

ostc_ServerOperation::addReturnSetAttribute()

void addReturnSetAttribute(
oscs_ConstString name,
ostc::types type,
oscs_Uint32 maxlength = 0

);

Adds an attribute named name to the end of the list of attributes
of objects returned by this operation. The attribute’s value type is
specified by type .

If type is ostc_string , maxlength specifies the attribute’s maximum
length. Actual attribute values are truncated when necessary to
adhere to this maximum. If type is not ostc_string , maxlength is
ignored.

See also ostc_OperationResult::GetReturnedObjectAttributes() on
page 157.
150 ObjectStore Component Server Framework User Guide

Chapter 18: ostc_ServerOperation
Setting the Description of an Operation

ostc_ServerOperation::setDescription()

void setDescription(oscs_ConstString description);

Associates the specified string with this operation. The string can
be retrieved by the client with ostc_Operation::getDescription() .
Release 5.1 151

Getting the Name of an Operation
Getting the Name of an Operation

ostc_ServerOperation::getName()

oscs_String getName();

Returns the name of this operation. See ostc_
ServerOperation::ostc_ServerOperation() on page 153.
152 ObjectStore Component Server Framework User Guide

Chapter 18: ostc_ServerOperation
Creating and Deleting Server Operations

ostc_ServerOperation::ostc_ServerOperation()

ostc_ServerOperation(
oscs_ConstString name,
ostc::transaction_type type)

);

Creates an ostc_ServerOperation with the specified name. When
you define a subtype of ostc_ServerOperation , you must pass the
operation name and transaction type to this constructor.This
name is used to identify the operation when you invoke execute() .

ostc_ServerOperation::~ostc_ServerOperation()

virtual ~ostc_ServerOperation();

Frees memory associated with this operation object.
Release 5.1 153

Creating and Deleting Server Operations
154 ObjectStore Component Server Framework User Guide

Chapter 19
ostc_OperationResult

Instances of this class represent operation results in the form of
C++ objects. The Server calls ostc_ServerOperation::format() on
each C++ object to convert the results to ostc_Object s. The class
provides functions for

Setting and Getting the Return Value or Values 156

Getting Operation Formal Parameters 157

Setting and Getting Result IDs 158
Release 5.1 155

Setting and Getting the Return Value or Values
Setting and Getting the Return Value or Values

ostc_OperationResult::setReturnValue()

void setReturnValue(os_collection*, os_cursor* = 0);

Call this function from ostc_ServerOperation::execute() to specify
multiple return values.

If execute() passes a nonzero os_cursor* to ostc_
OperationResult()::setReturnValue() (and does not pass a nonzero
void* to setReturnValue()), the Server calls format() on each element
that can be visited with the cursor.

If execute() passes a nonzero os_collection* to ostc_
OperationResult()::setReturnValue() (and does not pass a nonzero
void* or os_cursor* to setReturnValue()), the Server calls format()
on each element of the collection.

void setReturnValue(void*);

Call this function from ostc_ServerOperation::execute() to specify
a single return value.

If execute() passes a nonzero void* to setReturnValue() , the void* is
considered to be the only return value, so the Server calls format()
once, passing the void* as the value argument.

If you pass 0 to this function, ostc_ServerOperation::format() is not
called, and (on the client side) ostc_Session::doOperation()
returns 0.

ostc_OperationResult::GetReturnValue()

void GetReturnValue(os_collection*&, os_cursor*&);

Sets the arguments to the values passed to setReturnValue() . Sets
the arguments to 0 if setReturnValue(os_collection*, os_cursor*)
has not been called on this result. This function can be called from
ostc_ServerOperation::operationComplete() .

void GetReturnValue(void*&);

Sets the argument to the value passed to setReturnValue() . Sets the
argument to 0 if setReturnValue(void*) has not been called on this
result. This function can be called from ostc_
ServerOperation::operationComplete() .
156 ObjectStore Component Server Framework User Guide

Chapter 19: ostc_OperationResult
Getting Operation Formal Parameters

ostc_OperationResult::getArguments()

const ostc_AttributeDescriptorList* getArguments();

Returns a pointer to a list of ostc_AttributeDescriptor s
representing the formal parameters of the operation for which this
is the result.

ostc_OperationResult::GetReturnedObjectAttributes()

const ostc_AttributeDescriptorList* GetReturnedObjectAttributes();

Returns a pointer to a list of attribute descriptors representing the
attributes of each object returned by the operation for which this
is the result.
Release 5.1 157

Setting and Getting Result IDs
Setting and Getting Result IDs

ostc_OperationResult::setOID()

void setOID(ostc_OID *);

Returns a pointer to the OID of this . Returns 0 if the OID has not
been set.

ostc_OperationResult::getOID()

ostc_OID* getOID();

Sets the OID of this .
158 ObjectStore Component Server Framework User Guide

Chapter 20
ostc_ApplicationServer

You can use members of this class to create a custom component
server that manages start-up and shutdown of ObjectStore
Component Servers. This class provides members for the
following tasks:

Creating and Starting ObjectStore Component Servers 160

Stopping Component Servers 161

Adding Components to a Server 162

Do not call these functions from your implementation of Server
API functions.

A minimal custom server can be coded as follows:

#include <ostc/ostcappsrvr.h>
main(int argc, char** argv)
{

ostc_ApplicationServer * server =
new ostc_ApplicationServer(argc, argv);

server->start();

sleep();
}

Release 5.1 159

Creating and Starting ObjectStore Component Servers
Creating and Starting ObjectStore Component
Servers

ostc_ApplicationServer::ostc_ApplicationServer()

ostc_ApplicationServer(int argc, char ** argv);

Constructs an ObjectStore Component Server with the parameters
specified on the command line.

 ostc_ApplicationServer(
oscs_String * plugin_names,
oscs_Uint32 num_plugins,
oscs_String service_name,
oscs_Int32 port,
ostc::transaction_type txntype

);

Constructs an ObjectStore Component Server with the required
parameters specified as constructor arguments.

ostc_ApplicationServer::start()

void start();

Starts the Server.
160 ObjectStore Component Server Framework User Guide

Chapter 20: ostc_ApplicationServer
Stopping Component Servers

ostc_ApplicationServer::~ostc_ApplicationServer()

~ostc_ApplicationServer();

Shuts down this ObjectStore Component Server.
Release 5.1 161

Adding Components to a Server
Adding Components to a Server

ostc_ApplicationServer::ostc_ApplicationServer()

ostc_ApplicationServer(
oscs * framework,
oscs_String * plugin_names,
oscs_Uint32 num_plugins,
oscs_String service_name,
ostc::transaction_type txntype

);

Adds the components named in plugin_names to the Server
associated with framework . ostc_
ApplicationServer::getFramework() returns a Server’s associated
framework.

ostc_ApplicationServer::getFramework()

oscs * getFramework();

Returns the instance of oscs associated with this . Use this function
in conjunction with ostc_ApplicationServer::ostc_
ApplicationServer() to add a component to a Server.
162 ObjectStore Component Server Framework User Guide

Chapter 20: ostc_ApplicationServer
Modifying Parameters

ostc_ApplicationServer::setUserRouteData()

void setUserRouteData(void *, oscs_Uint32 length);

Sets the Server’s routing data. The void* can point to any user-
specified data, such as a character string. A thin client can specify
routing data along with a request for execution of an operation,
and the request is routed to a Server with matching routing data.
Matches are identified with memcmp() .

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setNumHandlingThreads()

void setNumHandlingThreads(oscs_Uint32 numthreads);

Sets the number of threads used by the Server to process client
requests.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::addRouter()

void addRouterHostName(oscs_String routerhostname);

Specifies the network address for the system router.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setRouterFile()

void setRouterFile(oscs_String routerfilename);

Sets the file used by the router to maintain routes persistently, in
case of failures or restarts.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setIncrementalTimeout()

void setIncrementalTimeout(oscs_Uint32 timeout);
Release 5.1 163

Modifying Parameters
Sets the timeout for access to incremental object sets on the Server.
If the set is not accessed in the amount of time specified, the Server
discards it.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setBoundTxnTimeout()

void setBoundTxnTimeout(oscs_Uint32 timeout);

Sets the timeout for bound transactions (that is, transactions
started by the thin client with ostc_Session::beginTxn()). If a
bound transaction is started but is not being used, it aborts when
this timeout is exceeded. This prevents the Server from hanging if
the client fails in the middle of a bound transaction.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setSharedTxnTimeout()

void setSharedTxnTimeout(oscs_Uint32 timeout);

Sets the timeout for shared (that is shared_update , read , or
mvccRead) transactions. Shared transactions commit after a
certain number of requests complete or this timeout is exceeded,
whichever comes first.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setSharedMaxOps()

void setSharedMaxOps(oscs_Uint32 maxops);

Sets the number of requests that can use a shared transaction
before a commit occurs. This parameter is ignored for isolated_
update Servers.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setRouterPingInterval()

void setRouterPingInterval(oscs_Uint32 interval);

A router pings all its routes at this interval. This parameter is
ignored for Servers that are not routers.
164 ObjectStore Component Server Framework User Guide

Chapter 20: ostc_ApplicationServer
otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .

ostc_ApplicationServer::setLogging()

void setLogging(oscs_Bool logging);

Turns Server logging on or off. With logging on, the Server writes
information to the file server.log in the directory from which the
Server was executed.

otcs_ArgsLocked is thrown if this function is called outside the
dynamic scope of ostcConnect() .
Release 5.1 165

Modifying Parameters
166 ObjectStore Component Server Framework User Guide

Chapter 21
Exception Reference

The client and Server APIs signal error conditions by throwing
C++ exceptions. oscs_Exception is an ancestor of all exceptions
that the APIs can throw (note that the prefix is oscs , not ostc).

Below is a list of all exceptions, together with the APIs that can
throw each one:

Exception Thrown By

ostc_DatatypeMismatch ostc_Operation::getInt32Argument()

ostc_Operation::getInt64Argument()

ostc_Operation::getStringArgument()

ostc_Operation::getFloatArgument()

ostc_Operation::getDoubleArgument()

ostc_Operation::getObjectArgument()

ostc_Operation::getBinaryArgument()

ostc_Operation::setArgument()

ostc_InvalidParm ostccompsrvr

ostc_InvalidTxnType ostc_Session::beginTxn()

ostc_MissingLib ostccompsrvr
Release 5.1 167

Modifying Parameters
ostc_NoArguments ostc_Operation::getInt32Argument()

ostc_Operation::getInt64Argument()

ostc_Operation::getStringArgument()

ostc_Operation::getFloatArgument()

ostc_Operation::getDoubleArgument()

ostc_Operation::getObjectArgument()

ostc_Operation::getBinaryArgument()

ostc_NoNestedTxn ostc_Session::beginTxn()

ostc_NoTxnInProgress ostc::connect()

ostc_Session::commitTxn()

ostc_Session::abortTxn()

ostc_RequiredParmMissing ostccompsrvr

ostc_ServerException ostc_Session::doOperation()
168 ObjectStore Component Server Framework User Guide

Release 5.1
Index
A
abortTxn()

ostc_Session , defined by 91
addArgument()

ostc_ServerOperation , defined by 150
adding object list elements 131
adding operations to a Server session 140
addObject()

ostc_ObjectList , defined by 131
addOperation()

ostc_ServerSession , defined by 140
addReturnSetAttribute()

ostc_ServerOperation , defined by 150
ADO

registering DLLs 13
API

classes 8
client

overview 19
component server 7
Server

overview 29
thin client 6

attribute descriptors 105
lists of 107

getting cardinality 110
getting the attribute with a specified

name 111
traversing 109

attribute values
setting for an object 120

B
batch transactions 80
batch_update

ostc , defined by 80
beginTxn()

ostc_Session , defined by 91
bound transactions

timeouts 16

C
cache affinity 2
cache, session 88
Cache-Forward architecture 2
cardinality()

ostc_AttributeDescriptorList , defined
by 110

ostc_OperationSet , defined by 104
CGI 3
client API 6

overview 19
client operations 93

getting actual parameters 97
getting descriptions of 95
getting formal parameters 94
getting names of 95
169

D

getting timestamps 96
sets of 103
setting formal parameters 100

client sessions 85
executing operations 87
getting names of 92
getting operations 86
managing the cache 90
managing transactions 91

commitTxn()
ostc_Session , defined by 91

component 4
component cache 2
component servers

API 7
API overview 29
customizing 159
how to use 4
role 2

component-based architecture 2
configuring the Server 15
connect()

ostc , defined by 84
connecting to the Server 84
creating Server operations 153
current()

ostc_ObjectList , defined by 127
cursor

validity 103
customizing Servers 17, 159

D
data types, OSTC 78
data view 59
data views

exposing 141
DataView Reader 59
__declspec 135
deleteObject()

ostc_ObjectList , defined by 131
deleting Server operations 153

deployment 18
disconnect()

ostc , defined by 84
disconnecting from the Server 84
dispatching 4
DLLs

registering 13
done()

ostc_ObjectList , defined by 130
doOperation()

ostc_Session , defined by 87

E
estimatedCardinality()

ostc_ObjectList , defined by 128
exceptions 167
execute()

ostc_ServerOperation , defined by 146
executing operations

client 87
exposeAllDataViews()

ostc_ServerSession , defined by 141
exposeDataView()

ostc_ServerSession , defined by 141
exposing data views 141

F
first()

ostc_AttributeDescriptorList , defined
by 109

ostc_ObjectList , defined by 127
ostc_OperationSet , defined by 103

flushObjects()
ostc_Session , defined by 90

formal parameters
setting for client operations 100
setting for Server operation 157

format()
ostc_ServerOperation , defined by 148
170 ObjectStore Component Server Framework User Guide

Index
G
getArguments()

ostc_Operation , defined by 94
ostc_OperationResult , defined by 157

getAttributeDescriptor()
ostc_AttributeDescriptorList , defined

by 111
getAttributeDescriptors()

ostc_Object , defined by 114
getBinaryArgument()

ostc_Operation , defined by 99
getBinaryValue()

ostc_Object , defined by 116, 117
getDescription()

ostc_Operation , defined by 95
getDoubleArgument()

ostc_Operation , defined by 98
getDoubleValue()

ostc_Object , defined by 116
getFloatArgument()

ostc_Operation , defined by 98
getFloatValue()

ostc_Object , defined by 116
getFramework()

ostc_ApplicationServer , defined by 162
getInt32Argument()

ostc_Operation , defined by 97
getInt32Value()

ostc_Object , defined by 115
getInt64Argument()

ostc_Operation , defined by 97
getInt64Value()

ostc_Object , defined by 115
getMaxLength()

ostc_AttributeDescriptor , defined by 105
getName()

ostc_AttributeDescriptor , defined by 105
ostc_Operation , defined by 95
ostc_ServerOperation , defined by 152

getObjectArgument()
ostc_Operation , defined by 98

getObjectValue()
ostc_Object , defined by 116

getOID()
ostc_Object , defined by 123
ostc_ObjectList , defined by 129
ostc_OperationResult , defined by 158

getOperation()
ostc_OperationSet , defined by 104
ostc_Session , defined by 86

getOperations()
ostc_Session , defined by 86

getReturnedObjectAttributes()
ostc_OperationResult , defined by 157

getReturnValue()
ostc_OperationResult , defined by 156

getServiceName()
ostc_Session , defined by 92

getSession()
ostc_Object , defined by 122

getStringArgument()
ostc_Operation , defined by 97

getStringValue()
ostc_Object , defined by 115

getTimestamp()
ostc_Operation , defined by 96

getting a session’s operations 86
getting an object’s attribute descriptors 114
getting an object’s attribute values 115
getting an object’s OID 123
getting an object’s session 122
getting attribute descriptor list

cardinality 110
getting client operation actual

parameters 97
getting client operation formal

parameters 94
getting client operation timestamps 96
getting client operation-names 95
getting client-operation descriptions 95
getting object list cardinality 128
getting object list OIDs 129
Release 5.1 171

H

getting Server operation formal
parameters 157

getting Server operation names 152
getting Server operation return values 156
getting session names 92
getting the attribute-descriptor-list element

with a specified name 111
getType()

ostc_AttributeDescriptor , defined by 105
global functions 135

H
header file

client 19
Server 30

I
implementing execute() 146
implementing format() 148
implementing operationComplete() 147
implementing ostcConnect() 136
implementing ostcDisconnect() 137
implementing ostcInitialize() 138
incremental lists

timeouts 16
in-memory database 2
invalid cursor 103
ISAPI 3
isolated_update

ostc , defined by 80

L
linking

Windows 13
lists

of attribute descriptors 107
of OSTC objects 125

load balancing 4
logging 17

M
managing the session cache 90
managing transactions 91
modifying Server start-up parameters 142
more()

ostc_AttributeDescriptorList , defined
by 109

ostc_ObjectList , defined by 127
ostc_OperationSet , defined by 104

multiple-thread dispatching 4
multitier architecture 2
multiversion concurrency control 80
MVCC 80
mvccRead

ostc , defined by 80

N
next()

ostc_AttributeDescriptorList , defined
by 109

ostc_ObjectList , defined by 127
ostc_OperationSet , defined by 103

NSAPI 3
n-tier architecture 2

O
object, OSTC 113

getting attribute descriptors of 114
getting attribute values of 115
getting the OID of 123
getting the session of 122
setting attribute values of 120
setting the OID of 123

objects, OSTC
lists of 125

adding elements 131
getting cardinality 128
getting the OID 129
removing elements 131
setting the OID 129
172 ObjectStore Component Server Framework User Guide

Index
traversing 127
truncating incremental 130

ObjectStore client 4
ObjectStore component server

See component servers
OLE DB

registering DLLs 13
operation sets 103
operationComplete()

ostc_ServerOperation , defined by 147
operations

client 93
executing on client 87
Server 145

OSTC data types 78
OSTC object 113

getting attribute descriptors of 114
getting attribute values of 115
getting the OID of 123
getting the session of 122
setting attribute values of 120
setting the OID of 123

OSTC objects
lists of 125

adding elements 131
getting cardinality 128
getting the OID 129
removing elements 131
setting the OID 129
traversing 127
truncating incremental 130

ostc , the class 77
batch_update 80
connect() 84
disconnect() 84
isolated_update 80
mvccRead 80
ostc_binary 79
ostc_double 79
ostc_float 79
ostc_int32 79
ostc_int64 79

ostc_oid 79
ostc_string 79
read 80
setRouter() 83
transaction_type 80
types 78

~ostc_ApplicationServer()
ostc_ApplicationServer , defined by 161

ostc_ApplicationServer()
ostc_ApplicationServer , defined by 160,

162
ostc_ApplicationServer , the class 159

~ostc_ApplicationServer() 161
getFramework() 162
ostc_ApplicationServer() 160, 162
start() 160

ostc_AttributeDescriptor , the class 105
getMaxLength() 105
getName() 105
getType() 105

ostc_AttributeDescriptorList , the class 107
cardinality() 110
first() 109
getAttributeDescriptor() 111
more() 109
next() 109

ostc_binary
ostc , defined by 79

ostc_DatatypeMismatch 167
ostc_double

ostc , defined by 79
ostc_float

ostc , defined by 79
ostc_int32

ostc , defined by 79
ostc_int64

ostc , defined by 79
ostc_InvalidParm 167
ostc_InvalidTxnType 167
ostc_MissingLib 167
ostc_NoArguments 168
Release 5.1 173

O

ostc_NoNestedTxn 168
ostc_NoTxnInProgress 168
ostc_Object , the class 113

getAttributeDescriptors() 114
getBinaryValue() 116, 117
getDoubleValue() 116
getFloatValue() 116
getInt32Value() 115
getInt64Value() 115
getObjectValue() 116
getOID() 123
getSession() 122
getStringValue() 115
setOID() 123
setValue() 120

ostc_ObjectList , the class 125
addObject() 131
current() 127
deleteObject() 131
done() 130
estimatedCardinality() 128
first() 127
getOID() 129
more() 127
next() 127
setOID() 129

ostc_oid
ostc , defined by 79

ostc_Operation , the class 93
getArguments() 94
getBinaryArgument() 99
getDescription() 95
getDoubleArgument() 98
getFloatArgument() 98
getInt32Argument() 97
getInt64Argument() 97
getName() 95
getObjectArgument() 98
getStringArgument() 97
getTimestamp() 96
setArgument() 100

ostc_OperationResult , the class 155
getArguments() 157
getOID() 158
getReturnedObjectAttributes() 157
getReturnValue() 156
setOID() 158
setReturnValue() 156

ostc_OperationSet , the class 103
cardinality() 104
first() 103
getOperation() 104
more() 104
next() 103

ostc_RequiredParmMissing 168
ostc_ServerException 168
~ostc_ServerOperation()

ostc_ServerOperation , defined by 153
ostc_ServerOperation()

ostc_ServerOperation , defined by 153
ostc_ServerOperation , the class 145

~ostc_ServerOperation() 153
addArgument() 150
addReturnSetAttribute() 150
execute() 146
format() 148
getName() 152
operationComplete() 147
ostc_ServerOperation() 153
setDescription() 151

ostc_ServerSession , the class 139
addOperation() 140
exposeAllDataViews() 141
exposeDataView() 141
setNumThreads() 142, 143, 144
setPort() 142
setServiceName() 142
setTxnType() 142
setUserRouteData() 142

ostc_Session , the class 85
abortTxn() 91
beginTxn() 91
174 ObjectStore Component Server Framework User Guide

Index
commitTxn() 91
doOperation() 87
flushObjects() 90
getOperation() 86
getOperations() 86
getServiceName() 92

ostc_string
ostc , defined by 79

ostcAddRouter.exe 20
ostccompsrvr 15
ostccompsrvr.exe 15
ostcConnect() 136
ostcDisconnect() 137
ostcInitialize() 138

P
port

router 16
Server 15

R
read

ostc , defined by 80
removing object list elements 131
replication 4
return values

setting for Server operation 156
route data, user-specified

Server 142
-routedata 16
router

host 16, 143, 163
port 16, 143, 163

router file 16
router, setting 83
routing 4

S
scalability 4
Server

connecting to 84
disconnecting from 84
starting 15
stopping 15

Server API
overview 29

Server operations 145
creating 153
deleting 153
getting formal parameters 157
getting names of 152
getting return values 156
implementing execute() 146
implementing format() 148
implementing operationComplete() 147
results 155
setting descriptions 151
setting formal parameters 150
setting return values 156

server replication 4
Server sessions 139

adding operations 140
exposing data views 141
modifying start-up parameters 142
specifying route data 142

server.log 17
Servers

customizing 159
service 4
service name 15
sessions

cache 88
client 85
Server 139

setArgument()
ostc_Operation , defined by 100

setDescription()
ostc_ServerOperation , defined by 151
Release 5.1 175

T

setNumThreads()
ostc_ServerSession , defined by 142, 143,

144
setOID()

ostc_Object , defined by 123
ostc_ObjectList , defined by 129
ostc_OperationResult , defined by 158

setPort()
ostc_ServerSession , defined by 142

setReturnValue()
ostc_OperationResult , defined by 156

setRouter()
ostc , defined by 83

sets, of operations 103
setServiceName()

ostc_ServerSession , defined by 142
setting an object’s attribute values 120
setting an object’s OID 123
setting client operation formal

parameters 100
setting object list OIDs 129
setting routers 83
setting Server operation descriptions 151
setting Server operation formal

parameters 150
setting Server operation return values 156
setTxnType()

ostc_ServerSession , defined by 142
setUserRouteData()

ostc_ServerSession , defined by 142
setValue()

ostc_Object , defined by 120
shared component libraries

building 13
shared transactions

description 80
timeouts 16

specifying a Server session’s route data 142
SQL 62
start()

ostc_ApplicationServer , defined by 160

starting the Server 15
stopping the Server 15

T
thin client 2

API 6
thin client API

overview 19
threads 4, 15
three-tier architecture 2
throughput 4
timeout

bound transaction 16
incremental lists 16
shared transaction 16

transaction management 4
transaction type parameter 16
transaction types

description 80
transaction_type

ostc , defined by 80
transactions

batched 80
client 91
shared 80

traversing attribute descriptor lists 109
traversing object lists 127
truncating incremental object lists 130
types

ostc , defined by 78

V
valid cursor 103

W
web server 3
Windows

which .libs to link with 13
176 ObjectStore Component Server Framework User Guide

	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21

	Preface
	Introduction
	Taking Advantage of the Cache-Forward Architecture...
	Multitier Architecture for ObjectStore Application...

	The ObjectStore Component Server
	The Thin Client API
	The Component Server API
	The Client and Server API Classes
	OLE DB and ADO Clients
	What Is OLE DB?
	Using ADO to Create a Client of the Component Serv...
	What Parts of ADO Are Supported?
	Accessing the ObjectStore Thin Client OLE DB Sourc...
	Retrieving Error Information

	Building the Component Shared Library and Client S...
	Libraries on WIndows Platforms
	Libraries on UNIX Platforms

	Configuring, Starting, and Stopping the Server Exe...
	Using ostccompsrvr
	Creating a Custom Component Server
	Debug Version

	Deploying Thin Clients and Component Servers

	Thin Client API Overview
	Setting Routers
	Example
	ostcSetRouter.exe

	Connecting to a Service
	Example
	Service Name
	Return Value
	Multithreaded Thin Clients

	Retrieving Operations from the Server
	Example

	Setting Operation Arguments
	Example
	Argument Value Types
	Getting Arguments

	Executing Operations
	Example

	Extracting Operation Results
	Example
	Get-Value Functions

	Disconnecting from the Server
	Example

	Managing the Thin Client Cache

	Component Server API Overview
	Defining an Operation Subtype
	Example

	Specifying Server Operation Name, Transaction Type...
	Example
	Operation Name
	Transaction Type
	Formal Parameters
	Type Enumerators

	Initializing a Component
	Example

	Adding Operations to a Server Session
	Example
	Declaration of Global Functions

	Implementing Server Operation Execution
	Example

	Formatting Operation Results
	Example
	Execution Postprocessing

	Implementing ostcDisconnect()
	Example

	QuickStart Example
	Client Header File
	Client Source Files
	Component Header Files
	Server Plug-in Source Files

	Intermediate Example
	Data Model
	The Client Code
	clientmain.cpp
	ticketappclient.h and ticketappclient.cpp

	The Server Code
	ostcoperations.h and ostcoperations.cpp
	ostcinterface.h and ostcinterface.cpp
	ticketapp.h and ticketapp.cpp

	Using and Configuring the DataView Reader
	Accessing Data Views from the DataView Reader
	Filtering and Ordering: SQL Support in DataView Re...
	DataView Reader Configuration Utility
	Preparing to Run the Configuration Utility
	Starting the Utility
	Synchronizing with Inspector
	Setting the Application Schema Path
	Modifying the Metaknowledge Location and Specifyin...
	Modifying the Character, String, and BLOB Formats

	Registry Keys
	Metaknowledge Location
	String Encoding
	String Handling
	Navigation Handling

	ostc
	OSTC Fundamental Data Types
	Transaction Types
	Determining Whether Update Operations Can Interfer...
	Batch Transaction Commits
	shared_update Aborts

	Setting Routers
	ostc::addRouter()

	Connecting to and Disconnecting from a Service
	ostc::connect()
	ostc::disconnect()

	ostc_Session
	Getting a Session’s Operations
	ostc_Session::getOperations()
	ostc_Session::getOperation()

	Executing Operations
	ostc_Session::doOperation()

	Managing the Cache
	ostc_Session::flushObjects()

	Managing Transactions
	ostc_Session::beginTxn()
	ostc_Session::commitTxn()
	ostc_Session::abortTxn()

	Getting the Name of a Session’s Associated Service...
	ostc_Session::getServiceName()

	ostc_Operation
	Getting Operation Formal Parameters
	ostc_Operation::getArguments()

	Getting an Operation’s Name and Description
	ostc_Operation::getName()
	ostc_Operation::getDescription()

	Getting an Operation’s Timestamp
	ostc_Operation::getTimestamp()

	Getting Operation Actual Parameters
	ostc_Operation::getInt32Argument()
	ostc_Operation::getInt64Argument()
	ostc_Operation::getStringArgument()
	ostc_Operation::getFloatArgument()
	ostc_Operation::getDoubleArgument()
	ostc_Operation::getObjectArgument()
	ostc_Operation::getBinaryArgument()

	Setting Operation Actual Parameters
	ostc_Operation::setArgument()

	ostc_OperationSet
	Cursor Validity
	ostc_OperationSet::first()
	ostc_OperationSet::next()
	ostc_OperationSet::more()
	ostc_OperationSet::cardinality()
	ostc_OperationSet::getOperation()

	ostc_AttributeDescriptor
	ostc_AttributeDescriptor::getName()
	ostc_AttributeDescriptor::getType()
	ostc_AttributeDescriptor::getMaxLength()

	ostc_ AttributeDescriptorList
	Cursor Validity
	Traversing Lists
	ostc_AttributeDescriptorList::first()
	ostc_AttributeDescriptorList::next()
	ostc_AttributeDescriptorList::more()

	Getting List Cardinality
	ostc_AttributeDescriptorList::cardinality()

	Getting the Element with a Specified Name
	ostc_AttributeDescriptorList::getAttributeDescript...

	ostc_Object
	Getting an Object’s Attribute Descriptors
	ostc_Object::getAttributeDescriptors()

	Getting an Object’s Attribute Values
	ostc_Object::getInt32Value()
	ostc_Object::getInt64Value()
	ostc_Object::getStringValue()
	ostc_Object::getFloatValue()
	ostc_Object::getDoubleValue()
	ostc_Object::getObjectValue()
	ostc_Object::getBinaryValue()
	ostc_Object::getValue()

	Setting an Object’s Attribute Values
	ostc_Object::setValue()

	Getting an Object’s Session
	ostc_Object::getSession()

	Getting and Setting Object IDs
	ostc_Object::getOID()
	ostc_Object::setOID()

	ostc_ObjectList
	Cursor Validity
	Traversing Object Lists
	ostc_ObjectList::first()
	ostc_ObjectList::next()
	ostc_ObjectList::more()
	ostc_ObjectList::current()

	Getting Object List Cardinality
	ostc_ObjectList::estimatedCardinality()

	Getting and Setting Object List OIDs
	ostc_ObjectList::getOID()
	ostc_ObjectList::setOID()

	Truncating Incremental Lists
	ostc_ObjectList::done()

	Adding and Removing List Elements
	ostc_ObjectList::addObject()
	ostc_ObjectList::deleteObject()

	ostc_OID
	ostc_OID::stringify()
	ostc_OID::match
	Example

	Global Functions
	Implementing ostcConnect()
	ostcConnect()

	Implementing ostcDisconnect()
	ostcDisconnect()

	Implementing ostcInitialize()
	ostcInitialize()

	ostc_ServerSession
	Adding Operations to a Session
	ostc_ServerSession::addOperation()

	Exposing Data Views
	ostc_ServerSession::exposeAllDataViews()
	ostc_ServerSession::exposeDataView()

	Modifying Start-up Parameters
	ostc_ServerSession::setServiceName()
	ostc_ServerSession::setPort()
	ostc_ServerSession::setTxnType()
	ostc_ServerSession::setUserRouteData()
	ostc_ServerSession::setNumThreads()
	ostc_ServerSession::addRouterHostName()
	ostc_ServerSession::setRouterFile()
	ostc_ServerSession::setIncrementalTimeout()
	ostc_ServerSession::setBoundTimeout()
	ostc_ServerSession::setSharedTimeout()
	ostc_ServerSession::setSharedMaxOps()
	ostc_ServerSession::setRouterPingInterval()
	ostc_ServerSession::setServerLogging()

	ostc_ServerOperation
	Implementing execute()
	ostc_ServerOperation::execute()

	Implementing operationComplete()
	ostc_ServerOperation::operationComplete()

	Implementing format()
	ostc_ServerOperation::format()

	Setting Operation Formal Parameters
	ostc_ServerOperation::addArgument()
	ostc_ServerOperation::addReturnSetAttribute()

	Setting the Description of an Operation
	ostc_ServerOperation::setDescription()

	Getting the Name of an Operation
	ostc_ServerOperation::getName()

	Creating and Deleting Server Operations
	ostc_ServerOperation::ostc_ServerOperation()
	ostc_ServerOperation::~ostc_ServerOperation()

	ostc_OperationResult
	Setting and Getting the Return Value or Values
	ostc_OperationResult::setReturnValue()
	ostc_OperationResult::GetReturnValue()

	Getting Operation Formal Parameters
	ostc_OperationResult::getArguments()
	ostc_OperationResult::GetReturnedObjectAttributes(...

	Setting and Getting Result IDs
	ostc_OperationResult::setOID()
	ostc_OperationResult::getOID()

	ostc_ApplicationServer
	Creating and Starting ObjectStore Component Server...
	ostc_ApplicationServer::ostc_ApplicationServer()
	ostc_ApplicationServer::start()

	Stopping Component Servers
	ostc_ApplicationServer::~ostc_ApplicationServer()

	Adding Components to a Server
	ostc_ApplicationServer::ostc_ApplicationServer()
	ostc_ApplicationServer::getFramework()

	Modifying Parameters
	ostc_ApplicationServer::setUserRouteData()
	ostc_ApplicationServer::setNumHandlingThreads()
	ostc_ApplicationServer::addRouter()
	ostc_ApplicationServer::setRouterFile()
	ostc_ApplicationServer::setIncrementalTimeout()
	ostc_ApplicationServer::setBoundTxnTimeout()
	ostc_ApplicationServer::setSharedTxnTimeout()
	ostc_ApplicationServer::setSharedMaxOps()
	ostc_ApplicationServer::setRouterPingInterval()
	ostc_ApplicationServer::setLogging()

	Exception Reference
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

