
Glossary

abort An abnormal termination of a transaction. When a transaction
aborts, its changes to the database are erased, and the database is
effectively restored to its state as of the moment the transaction
began. See the function os_transaction::abort() in Using
Transactions, Chapter 3, Transactions, in ObjectStore Basic API
User Guide.

See also commit, commseg, deadlock, locking, template instantiation,
transaction. Also see os_transaction::abort() in the ObjectStore C++
API Reference.

address space A range of virtual memory addresses. For most 32-bit computers,
the address space is slightly less than 232 bytes. (The platform’s
virtual memory system might reserve or might not implement a
portion of the 232 range.) For 64-bit computers, the address space
is substantially larger.

application schema A schema associated with each ObjectStore application, consisting
of all the classes whose instances the application allocates in
persistent memory or uses as entry points, as well as all types
reachable from these types by navigation.

See also application schema database, compilation schema database,
database schema.

application schema
object file and
application schema
source file

This file records the location of the application schema database
along with the names of the application’s virtual function
dispatch tables, the names of discriminant functions, and the
definitions for any get_os_typespec() member functions.
Distinctions between the schema object and source files are
discussed in Chapter 3, Generating Schemas, of ObjectStore
Building Applications.
Release 5.1 1

application schema
database

An ObjectStore database into which an ObjectStore application’s
schema is captured when you compile and link the application.

See also compilation schema database, database schema.

associative access The selection of those data structures whose field values satisfy a
certain condition, such as lookup of an object by name or ID
number.

See also index, navigational access, query processing.

atomic Discrete, committed transactions.

bag An unordered collection, sometimes called a multiset. Unlike sets,
objects can occur in a bag more than once at a given time. Each bag
is an instance of the class os_Bag or os_bag , a class in the
ObjectStore Class Library and part of the ObjectStore collection
facility.

See also class extent, collection, collection cardinality, cursor, element,
endian types, iteration, list, multivalued, query processing, set. Also see
os_Bag and os_bag in the ObjectStore Collections API Reference.

binary relationship A relationship between two objects, such as that between a part
and one of its subparts. Inverses can be used to ensure the
integrity of data representing binary relationships.

See also integrity control, inverse.

Cache Manager An ObjectStore process that facilitates concurrent access to
ObjectStore data by handling callback messages from the Server
to client applications. Note that the Cache Manager never reads
the cache itself, but coordinates access by clients to cached data.

See also client cache.

cache replacement The process of evicting a page from the client cache to make room
for newly retrieved data. In most cases, ObjectStore makes room
by evicting some of the least recently used pages.

See also client cache, eviction, wired page.

class The definition of the data used to represent an object, and the
operations that can be performed upon that data.

class extent A collection containing pointers or ObjectStore references to all
the instances of a class.
2 ObjectStore C++ Interface Glossary

Glossary
See also collection, ObjectStore reference.

client cache A holding area in the memory of an ObjectStore client, used for
data mapped or waiting to be mapped into virtual memory.

See also Cache Manager.

clustering Controlling the arrangement of objects in database memory for
the purpose of enhancing locality of reference. Disk and network
transfers can be minimized by clustering those objects that are
referenced together in programs, .

See also object faulting, persistence, segment.

collection An object, such as a set, bag, or list, derived from os_collection ,
that serves to group together other objects. They are used to
model one-to-many and many-to-many relationships, and they
provide a domain for iteration and for the execution of queries.

See also bag, collection cardinality, class extent, cursor, element, endian
types, iteration, list, multivalued, query processing, set.

collection cardinality The number of elements of a collection, or the sum of the number
of occurrences of each element for collections that allow
duplicates. For collections like sets, for which each element can
occur only once, the cardinality of the collection is simply the
number of elements it has. But for collections like bags, in which
elements can occur more than once, the number of occurrences of
each element must be summed to obtain the cardinality.

See also bag, collection, element, list, multivalued, set. Also see os_
collection::cardinality() in the ObjectStore Collections API Reference.

commit The normal termination of a transaction. When a nonnested
transaction commits, its changes to persistent memory are made
permanent and visible. In addition, all its locks on pages read or
written are released.

See also abort, commseg, deadlock, locking, transaction. Also see os_
transaction::commit() in the ObjectStore C++ API Reference.

commseg Communications segment. This is where the Cache Manager
maintains information about permissions on pages and whether
or not the client is actually using the page. Each client has its own
commseg. For every page in the cache, there is a corresponding
item in the commseg.
Release 5.1 3

compilation schema
database

This database contains all of an application’s schema except the
classes used by libraries with which the application links.

See also application schema database, database schema.

complex path An index path involving multiple member accesses.

See also index path. Also see os_index_path in the ObjectStore
Collections API Reference.

compactor The compactordefragments the deleted space in an ObjectStore
database. See Chapter 6, Compaction, in the ObjectStore Advanced
API User Guide for details.

concurrency control A mechanism to provide multiuser access to persistent data in a
logically consistent manner.

See also abort, commit, locking, transaction.

cursor An object used to iterate over the elements of a collection.

See also bag, collection, iteration, index path, set. Also see os_Cursor
and os_cursor in the ObjectStore Collections API Reference.

compilation schema or
compilation schema
database

A compilation schema contains information about the
application’s persistent types, but does not contain information
about any persistent types used by any libraries that the
application links with.

database Persistent storage is organized into databases.

See also commseg, database entry point, database root, database schema,
database segment, persistence. Also see os_database_root in the
ObjectStore C++ API Reference.

database entry point A persistent object that serves as a starting point for the retrieval
of other persistent objects by means of navigation or query. An
entry point is retrieved by means of either a persistent variable or
database root.

See also database root, navigational access, query processing.

database root An instance of the system-supplied class os_database_root , it
serves to associate a name with a database entry point. Once the
association is made, it is possible to retrieve a pointer to the entry
point by performing a lookup on the name.

See also database entry point, navigational access, query processing.
4 ObjectStore C++ Interface Glossary

Glossary
database schema A schema associated with an ObjectStore database. Each database
has exactly one database schema associated with it. The database
schema includes all C++ types of objects that have ever been
stored in that database.

database segment Each database is made up of segments, which are used to control
the clustering of persistent data. They are variable-sized regions
of memory that can be used as the unit of transfer from persistent
storage to program memory.

See also clustering, database, persistence, schema segment. Also see
os_segment in the ObjectStore C++ API Reference.

data member Class data members declare the objects in the class.

See class, member function.

deadlock A simple deadlock occurs when one transaction holds a lock on a
data item that another transaction is waiting to access, while at the
same time the second transaction holds an exclusive lock on a data
item that the first transaction is waiting to access. Neither process
can proceed until the other does.

See also abort, commseg, locking, transaction. Also see Appendix A,
Exception Facility, in the ObjectStore C++ API Reference.

delete operator Can be used to reclaim both persistent and transient storage.

See also persistence, persistent new.

discriminant function For each union type with persistent values, a user-provided
function that indicates the field of the union currently in use.

See also persistence, union.

element A value grouped together with other objects in a collection.

See also bag, collection, endian types, list, set.

element type The type of element a given collection contains. Element types are
always pointer types.

See also collection, element.

endian types Specifies whether the high-order byte is first or the low-order byte
is first. A big-endian type specifies the high-order byte first; little-
endian types specify the opposite. This information is important
in building heterogeneous applications. See Endian Types for
Release 5.1 5

ObjectStore Platforms in Chapter 5, Building Applications for Use
on Multiple Platforms, of ObjectStore Building Applications.

entry point See database entry point.

eviction The process of effectively removing a page from the client cache.
This process consists of unmapping the page from memory, as
well as possibly overwriting the page with newly retrieved data,
and possibly transferring the page’s data from the client cache to
the database.

See also cache replacement, client cache.

exception facility This facility provides a mechanism for managing error handling
in a C++ application. The facility also enables users to define new
exceptions, catch signaled exceptions and redirect flow of control
to a handler for the exception, write code that can signal
predefined or user-defined exceptions, and specify undo
processing to be performed whenever the signaling of an
exception redirects control out of or through a given stack frame.

See also objectstore_exceptionclass, tix_exception class.

file database An ObjectStore database stored as an operating system file, as
opposed to a rawfs database.

See also database, rawfs database.

heterogeneous An application that is on multiple platforms and then used to
store and update data interchangeably on any of these platforms.

IDE Visual C++ Integrated Development Environment.

illegal pointer A pointer stored in a database, the dereferencing of which can
result in access to arbitrary memory. ObjectStore can detect, if
desired, illegal cross-database pointers and illegal pointers to
transient memory.

See also schema evolution.

index A data structure used to provide fast, associative retrieval of
collection elements based on a given key, specified with an index
path. There are several kinds of indexes, including ordered
(implemented as a B-tree) and unordered (implemented as a hash
table).
6 ObjectStore C++ Interface Glossary

Glossary
See also collection, iteration, index path, query optimizer, query
processing.

indexable data
member

Each data member marked as indexable provides support for
automatic maintenance of indexes keyed by the path.

See also index, iteration.

index path Paths are used in specifying iteration order, as well as in
specifying index keys to enable query optimization. Each path
determines a certain kind of mapping by specifying, roughly, a
sequence of member names.

See also index, iteration, query optimizer.

instance An object of a given type is said to be an instance of that type.

instance migration The phase of schema evolution during which instances of
modified classes are altered to conform to new class definitions.

See also schema evolution.

integrity control Compile-time checking and facilities that guarantee the integrity
of data that models binary relationships and that detect illegal
pointers, such as pointers from persistent to transient memory.

See also binary relationship, inverse.

inverse When two data members are specified as inverses of one another,
they can be used to form bidirectional links. An update to one data
member will automatically trigger a corresponding update to the
other member, maintaining consistency between the members.
One or both members can be multivalued, or both can be single-
valued.

See also integrity control, multivalued.

iteration The process of retrieving the elements of a collection one at a time.

See also cursor, collection.

libraries Libraries allow multiple programs to share code without
recompiling the source. Libraries are specified at link time.

See also collection, recursive query, library schema or library schema
database.
Release 5.1 7

library schema or
library schema
database

A library schema contains definitions of persistently allocated
types that users of the library do not have access to. If your
application uses a library that stores or retrieves persistent data,
use the schema generator to create a library schema for that
library.

See also application schema, compilation schema database, libraries.

list An ordered collection in which elements can occur more than
once. Each list is an instance of the class os_List or os_list , a class
in the ObjectStore Class Library and part of the ObjectStore
collection facility. The class’s member functions support various
forms of manipulation of lists, such as element insertion and
removal.

See also bag, collection, collection cardinality, class extent, cursor,
element, iteration, multivalued, query processing, set. Also see os_List
or os_list in the ObjectStore Collections API Reference.

locking The mechanism for restricting a process’s access to data in order
to ensure data integrity and serialization while the data is in use
by another process.

See also abort, commit, deadlock, transaction.

log file Each Server keeps a transaction log, also called a log file. The most
important function of the transaction log is to prevent database
corruption in case of failure. The log contains modified pages of
data and records about modified pages of data.

mangling The transformation of C++ identifiers by the C++ compiler into
names acceptable to the linker in order to guarantee the
identifiers’ uniqueness.

mapaside A technique for ensuring the consistency of data pages in
multithreaded applications.

member function Class member functions declare the operations that can be
performed on data members.

See also class, data member.

MFC Microsoft Foundation Classes — Visual C++ provides this general
purpose class library.

migration See instance migration.
8 ObjectStore C++ Interface Glossary

Glossary
multivalued Some data members that are, strictly speaking, collection-valued
can be viewed as multivalued, where the elements of the
collection are viewed as the various values of the data member.
Collection-valued data members with inverses are usually treated
as multivalued for the purpose of enforcing the inverse constraint.

See also inverse, collection.

mutex lock The data structure that coordinates threads. This data structure is
also referred to as the global mutex because one mutex
coordinates the serialization of all threads.

navigational access The access of data by following pointers contained in data
structure fields. In C++, the data member access syntax supports
navigational data access.

See also associative access, query processing.

neutralization The process of modifying a schema so that it has identical data
formats on each platform that runs the application. Neutralization
overcomes the fact that different compilers lay out data in
different ways.

See also heterogeneous.

object cluster A fixed-size portion of a segment into which objects can be
clustered when they are allocated.

See also clustering, database segment. Also see os_object_cluster in
the ObjectStore C++ API Reference.

object faulting The process by which dereferencing a pointer to a persistent
object not yet available in virtual memory causes the object to be
paged in.

See also persistence.

ObjectStore client A client application that maps persistent database objects to
virtual addresses, allocates and deallocates storage for persistent
objects, maintains the cache of recently used pages and the lock
status of those pages, and handles page faults on addresses that
refer to persistent objects.

ObjectStore directory Contains one or more rawfs databases, created by applications. It
is not an operating system directory, but a directory in an
ObjectStore file system.
Release 5.1 9

See also database.

ObjectStore file
system

Each disk used for storing rawfs databases contains an
ObjectStore file system. Each file system is either a raw partition
or an operating system file.

See also database, ObjectStore Server.

ObjectStore library A library with which ObjectStore applications must link.
Applications that use collections or inverses must also link with
the collections library.

See also collection, inverse.

ObjectStore reference An instance of one of the system-supplied reference classes. An
ObjectStore reference can be used as a substitute for a pointer.
References are always valid across databases and transactions.

See also referent type. Also see os_Reference or os_reference in the
ObjectStore C++ API Reference.

ObjectStore Server A daemon process that performs all access to an ObjectStore file
system, including the storage and retrieval of persistent data. The
system administrator typically starts a Server when ObjectStore is
installed. If a site has more than one ObjectStore file system,
additional Servers can be started to handle the additional file
systems.

objectstore_
exceptionclass

Derived from the class tix_exception . Every built-in exception that
ObjectStore can signal at run time is an instance of objectstore_
exception , and represents a particular type of error condition or
exceptional circumstance.

See also exception facility, tix_exception class. Also see Appendix A,
Exception Facility, in the ObjectStore C++ API Reference.

path See index path.

path string The character string supplied when you create an index path that
specifies a sequence of member accesses.

See also index path, type string.

persistence The ability to store data in such a way that its existence extends
beyond the lifetime of the process that created it. ObjectStore
supports persistence by providing C++ programs with direct,
transparent access to ObjectStore databases.
10 ObjectStore C++ Interface Glossary

Glossary
See also clustering, database entry point, navigational access, object
faulting, persistent new, query processing.

persistent data Data that survives beyond the lifetime of the process that created
it, that is, data stored in a database, as opposed to transient data.

See also persistence.

persistent delete Persistent storage can be reclaimed using the delete operator, just
as persistent delete operates when used for transient objects.

See also persistence, persistent new.

persistent memory Database memory, as opposed to transient or program memory.

persistent new There are several system-supplied overloadings of the C++ global
function operator new() for creation of persistently allocated
objects. These functions take one of two arguments that specify
clustering information.

See also persistence.

persistent storage
region

A client’s persistent address space. This is a range of addresses
that ObjectStore uses to store only persistent data.

See also address space.

process-local data
member

Changes to a process-local data member remain in effect only for
the duration of the process that made them, and are not visible to
other processes.

query optimizer Formulates efficient retrieval strategies, minimizing the number
of objects examined in response to a query. The user enables
optimization of queries over a given collection by adding indexes
to the collection.

See also collection, index, index path, query processing.

query processing Associative lookups of an object in the database, for example, by
name or ID number.

See also collection, index, navigational access, index path, query
optimizer.

query string Used as an argument to a query function to express the selection
criterion of a query.

See also query processing.
Release 5.1 11

rank function A user-defined function that determines an ordering for the
instances of the class. The user must define a rank function
whenever optimization is requested for range queries involving
lookup of instances of a class.

See also collection, endian types, iteration, query processing, query
optimizer.

rawfs An ObjectStore raw file system containing ObjectStore directories
and databases. A rawfs is made up of one or more files or raw
partitions. It is independent of the file system managed by the
operating system. Each ObjectStore Server can manage one rawfs.

See also ObjectStore directory.

rawfs database A database that you store in an ObjectStore rawfs.

reachable types The set of types related, through inheritance or embedding, to
types that are marked persistent.

remote schema
database

A database whose schema is stored in another database.

See also database schema.

recursive query Performed by augmenting a collection during an iteration over
that collection.

See also collection, iteration.

reference See ObjectStore reference.

referent type The referent type of an ObjectStore reference is the type of object
the reference refers to.

See also ObjectStore reference.

root See database root.

schema A set of class definitions. A database’s schema includes the
definition of each class of object stored in the database. An
application’s schema includes the definition of each class the
application retrieves from or allocates in persistent memory.

See also application schema database, schema installation, schema
validation.

schema database An ObjectStore database that contains a schema.
12 ObjectStore C++ Interface Glossary

Glossary
schema evolution The changes that a database’s schema undergoes during the
course of the database’s existence, especially schema changes that
potentially require changing the representation of objects already
stored in the database.

See also schema, instance migration. Also see os_schema_evolution
in the ObjectStore C++ API Reference.

schema generator ObjectStore Schema Generator (ossg) utility used to create
application, compilation, and library schemas.

See also Overview of Schema Generation in ObjectStore Building
Applications.

schema installation The process of supplementing a database’s schema with classes
from an application’s schema. Installation can be performed
either all at once (batch installation) or incrementally, at the user’s
discretion.

schema segment The segment of each ObjectStore database that contains the
database’s schema information. Users cannot allocate application
objects in this segment.

See also schema, schema installation, schema validation.

schema source file The schema source file specifies the C++ classes that your code
reads from or writes to persistent memory. You create the schema
source file according to a specified format. See Chapter 3,
Generating Schemas, in ObjectStore Building Applications for
specific details.

schema validation The process of comparing a database schema and application
schema to ensure that they are compatible.

See also schema.

segment See database segment.

serialization The sequence of transactions occurring in a particular operation.

Server host The host machine of an ObjectStore Server process.

set An unordered collection that has, at most, one occurrence of each
element at a given time. Each set is an instance of the class os_Set
or os_set , a class in the ObjectStore Class Library and part of the
ObjectStore collection facility.
Release 5.1 13

See also bag, class extent, collection, collection cardinality, cursor,
element, endian types, iteration, list, multivalued, query processing.

subobject An object contained in a given object, either as a data member
value or as an object corresponding to a base class of the given
object’s direct class.

template instantiation The process of type substitution of a parameterized type.

template
specialization

The implementation of special (customized) functions for a
particular template instantiation.

tix_exception class Every user-defined or built-in exception is an instance of
objectstore_exception , and represents a particular type of error
condition or exceptional circumstance.

See also exception facility, objectstore_exceptionclass.

transaction Transactions group-process database manipulation into atomic
units.

See also abort, commit, commseg. Also see os_transaction in the
ObjectStore C++ API Reference.

transient data Data whose lifetime does not extend beyond the duration of the
process that created it.

See also persistence, persistent data.

transient database A system-supplied, pseudodatabase that can be supplied as an
argument to new to create transient data.

See also database, persistence, persistent new, transient segment. Also
see os_database::get_transient_database() in the ObjectStore C++
API Reference.

transient virtual
memory

Program memory, as opposed to database memory.

See also persistence.

transient pointer A transient object whose value is a pointer. A transient pointer to
persistent storage is not valid across transaction boundaries,
unless the member function retain_persistent_addresses() is used.

See also transaction, transient data.

transient segment A system-supplied segment that can be supplied as an argument
to persistent new to create transient data.
14 ObjectStore C++ Interface Glossary

Glossary
See also persistence, persistent new, segment, transient data, transient
database.

type string A character string specified when an index pathis created. The
type string indicates the element type of collections for which the
path can specify an index key or iteration order.

See also index path, path string.

union A special instance of a class intended to save space.

value type The value type of a data member is the declared type of the
member’s values.

virtual base class A mechanism that allows a base class to appear multiple times in
a derivation hierarchy.

VFT or vtbl When a class is declared to have virtual functions or virtual base
classes, the class acquires an invisible data member that points to
a table of function pointers that are used by the application to call
virtual functions. On some platforms these are known as VFTs
and on others vtbls.

virtual memory Virtual memory contains the application’s data. Each application
has its own virtual memory.

wired page If a page is wired into the client cache, it is not considered as a
candidate for cache replacement.

See also client cache, cache replacement, eviction.
Release 5.1 15

16 ObjectStore C++ Interface Glossary

	Glossary
	abort
	address space
	application schema
	application schema object file and application sch...
	application schema database
	associative access
	atomic
	bag
	binary relationship
	Cache Manager
	cache replacement
	class
	class extent
	client cache
	clustering
	collection
	collection cardinality
	commit
	commseg
	compilation schema database
	complex path
	compactor
	concurrency control
	cursor
	compilation schema or compilation schema database
	database
	database entry point
	database root
	database schema
	database segment
	data member
	deadlock
	delete operator
	discriminant function
	element
	element type
	endian types
	entry point
	eviction
	exception facility
	file database
	heterogeneous
	IDE
	illegal pointer
	index
	indexable data member
	index path
	instance
	instance migration
	integrity control
	inverse
	iteration
	libraries
	library schema or library schema database
	list
	locking
	log file
	mangling
	mapaside
	member function
	MFC
	migration
	multivalued
	mutex lock
	navigational access
	neutralization
	object cluster
	object faulting
	ObjectStore client
	ObjectStore directory
	ObjectStore file system
	ObjectStore library
	ObjectStore reference
	ObjectStore Server
	objectstore_ exceptionclass
	path
	path string
	persistence
	persistent data
	persistent delete
	persistent memory
	persistent new
	persistent storage region
	process-local data member
	query optimizer
	query processing
	query string
	rank function
	rawfs
	rawfs database
	reachable types
	remote schema database
	recursive query
	reference
	referent type
	root
	schema
	schema database
	schema evolution
	schema generator
	schema installation
	schema segment
	schema source file
	schema validation
	segment
	serialization
	Server host
	set
	subobject
	template instantiation
	template specialization
	tix_exception class
	transaction
	transient data
	transient database
	transient virtual memory
	transient pointer
	transient segment
	type string
	union
	value type
	virtual base class
	VFT or vtbl
	virtual memory
	wired page

