
COLLECTIONS C++
API REFERENCE

RELEASE 5.1

March 1998

ObjectStore Collections C++ API Reference

ObjectStore Release 5.1, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-CRF-510

Contents

Preface . vii

Chapter 1 Introduction . 1

Chapter 2 Collection, Query, and Index Classes 3

os_Array . 5

os_array . 18

os_backptr . 31

os_Bag . 35

os_bag . 46

os_bound_query . 57

os_Collection . 58

os_collection . 87

os_collection_size . 129

os_coll_query . 130

os_coll_range . 138

os_coll_rep_descriptor . 143

os_Cursor . 145

os_cursor . 153

os_Dictionary . 161

os_dynamic_extent . 176

os_index_name . 178

os_index_path . 179

os_keyword_arg . 182

os_keyword_arg_list . 185

os_List . 186

os_list. 198

os_rDictionary. 210
Release 5.1 iii

Contents
os_rep. 224

os_Set . 225

os_set . 235

Chapter 3 Representation Types . 245

os_chained_list . 246

os_dyn_bag . 249

os_dyn_hash. 251

os_ixonly and os_ixonly_bc. 253

os_ordered_ptr_hash . 255

os_packed_list . 257

os_ptr_bag . 259

os_vdyn_bag . 261

os_vdyn_hash . 263

Chapter 4 Macros and User-Defined Functions 265

OS_MARK_DICTIONARY() . 267

OS_MARK_QUERY_FUNCTION(). 268

OS_MARK_RDICTIONARY() . 269

OS_TRANSIENT_DICTIONARY() . 270

OS_TRANSIENT_DICTIONARY_NOKEY() 271

OS_TRANSIENT_RDICTIONARY(). 272

os_index() . 273

os_index_key() . 274

os_index_key_hash_function() . 275

os_index_key_rank_function() . 276

os_indexable_body() . 277

os_indexable_member() . 278

os_query_function() . 280

os_query_function_body() . 281

os_query_function_body_returning_ref() 282

os_query_function_returning_ref() . 283

os_rel_1_1_body(). 284

os_rel_1_m_body() . 286

os_rel_m_1_body() . 288

os_rel_m_m_body() . 290

os_rel_1_1_body_options() . 292

os_rel_1_m_body_options() . 294
iv ObjectStore Collections C++ API Reference

Contents
os_rel_m_1_body_options() . 296

os_rel_m_m_body_options() . 298

os_relationship_1_1() . 300

os_relationship_1_m() . 302

OS_RELATIONSHIP_LINKAGE() . 304

os_relationship_m_1() . 305

os_relationship_m_m(). 307

Chapter 5 C Library Interface. 309

Overview . 310

Getting Started . 311

os_backptr Functions . 312

os_bound_query Functions . 313

os_collection Functions and Enumerators. 314

os_coll_query Functions . 325

os_coll_rep_descriptor Functions . 327

os_cursor Functions . 329

os_index_path Functions . 334

Appendix Predefined TIX Exceptions . 335

Parent Exceptions . 336

Predefined Exceptions. 338

Index . 343
Release 5.1 v

Contents
vi ObjectStore Collections C++ API Reference

Preface

Purpose The ObjectStore Collections C++ API Reference provides a reference
on C++ programming interfaces to ObjectStore for collections,
queries, and indexes. This book supports ObjectStore Release 5.1.

Audience This book assumes the reader is experienced with C++.

Scope Information in this book assumes that ObjectStore is installed and
configured.

How This Book Is Organized

The manual has five chapters and an appendix:

It begins with an introductory chapter. Each chapter after that
covers a type of interface, including classes, representation types,
macros, user-supplied functions, and the C library interface.

Within each chapter, material is organized alphabetically.

Topic Location

Database services Chapter 1, Introduction, on
page 1

The C++ API for ObjectStore
collections, queries, and
indexes

Chapter 2, Collection, Query,
and Index Classes, on page 3

Representation types Chapter 3, Representation Types,
on page 245

System-supplied macros
User-defined functions

Chapter 4, Macros and User-
Defined Functions, on page 265

C library interface Chapter 5, C Library Interface, on
page 309
Release 5.1 vii

Preface
Exceptions Appendix, Predefined TIX
Exceptions, on page 335

Topic Location
viii ObjectStore Collections C++ API Reference

Preface
Notation Conventions

This document uses the following conventions:

ObjectStore C++ Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
on line in web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Convention Meaning

Bold Bold typeface indicates user input or code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can
specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system named
inside the circle supports or does not
support the feature being discussed.

UNIX UNIX
Release 5.1 ix

Preface
Internet Sources for More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Mosaic or Netscape. You can obtain information
by accessing the Object Design home page with the URL
http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.
x ObjectStore Collections C++ API Reference

Preface
Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message in description of objectstore::foo()
in the reference manual

You can also fax your comments to 781.674.5440.
Release 5.1 xi

Preface
xii ObjectStore Collections C++ API Reference

Chapter 1
Introduction

This document describes the C and C++ application
programming interface to the functionality provided by the
collections, queries, and indexes database services for the
ObjectStore object-oriented database management system.

For task-oriented information, see the ObjectStore C++ API User
Guide and the ObjectStore Advanced C++ API User Guide.

For reference information on other database services and
interfaces see the ObjectStore C++ API Reference.

Query Processing

The query processing database service provides support for
associative data retrieval, such as lookup by name or ID number.

Data Access

Many application types require two forms of data access:
navigational access and associative access. Navigation accesses
data by following pointers contained in data structure fields. In
C++, the data member access syntax supports navigational data
access. Associative access, on the other hand, is the lookup of
those data structures whose field values satisfy a certain condition
(for example, lookup of an object by name or ID number).
ObjectStore supports associative access, or query, through
member functions in the ObjectStore class library.
Release 5.1 1

Collections

Queries involve collections, which are objects such as sets, bags, or
lists that serve to group together other objects. ObjectStore
provides a library of collection classes. These classes provide the
data structures for representing such collections, encapsulated by
member functions that support various forms of collection
manipulation, such as element insertion and removal. Retrieval of
a given collection’s elements for examination or processing one at
a time is supported through the use of a cursor class.

Query Optimizer

Queries return a collection containing those elements of a given
collection that satisfy a specified condition. They can be executed
with an optimized search strategy, formulated by the ObjectStore
query optimizer. The query optimizer maintains indexes into
collections based on user-specified keys, that is, data members, or
data members of data members, and so on.

Indexes

By using these indexes, implemented as B-trees or hash tables, the
programmer can minimize the number of objects examined in
response to a query. Formulation of optimization strategies is
performed automatically by the system. Index maintenance can
also be automatic — the programmer need only specify the
desired index keys.
2 ObjectStore Collections C++ API Reference

Chapter 2
Collection, Query, and
Index Classes

Classes This chapter presents the following classes related to collections,
queries, and indexes:

os_Array 5

os_array 18

os_backptr 31

os_Bag 35

os_bag 46

os_bound_query 57

os_Collection 58

os_collection 87

os_collection_size 129

os_coll_query 130

os_coll_range 138

os_coll_rep_descriptor 143

os_Cursor 145

os_cursor 153

os_Dictionary 161

os_dynamic_extent 176

os_index_name 178

os_index_path 179

os_keyword_arg 182
Release 5.1 3

os_keyword_arg_list 185

os_List 186

os_list 198

os_rDictionary 210

os_rep 224

os_Set 225

os_set 235
4 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Array

template <class E>
class os_Array : public os_Collection<E>

An array, like a list (see the class os_List on page 186), is an
ordered collection. Arrays always provide access to collection
elements in constant time. That is, for all allowable
representations of an os_Array , the time complexity of operations
such as retrieval of the nth element is order 1 in the array’s
cardinality.

Arrays also have a set_cardinality() function that changes the
array cardinality, filling the additional array slots (if the
cardinality is increased) with a specified fill value. In addition, the
array create() functions have additional arguments that allow
specification of the initial array cardinality and fill value (the
initial value to put in each slot).

By default, arrays allow both duplicates and nulls. As with other
ordered collections, array elements can be inserted, removed,
replaced, or retrieved based on a specified numerical array index
or based on the position of a specified cursor.

If an element is inserted into an os_Array , elements after it are
pushed down in order. If an element is removed, elements after it
in the array are pushed up. If you want the index to an element to
remain constant, set the element at indexn to either 0 or another
pointer.

The class os_Array is parameterized, with a parameter for
constraining the type of values allowable as elements (for the
nonparameterized version of this class, see os_array on page 18).
This means that when specifying os_Array as a function’s formal
parameter, or as the type of a variable or data member, you must
specify the parameter (the array’s element type). This is
accomplished by appending to os_Array the name of the element
type enclosed in angle brackets, < >:

os_Array< element-type-name>

The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.
Release 5.1 5

os_Array
The element type of any collection type, such as an array, must be
a pointer type (for example, employee*).

Create arrays with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create arrays.

Required header files Programs using arrays must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs using arrays must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Below are two tables. The first table lists the member functions
that can be performed on instances of os_Array . The second table
lists the enumerators inherited by os_Array from os_collection .
Many functions are also inherited by os_Array from os_Collection .
The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The
full explanation of each function defined by os_Array appears in
this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 options,
 os_database*)

(const os_index_path&,
 os_int32 options,
 os_segment* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database*)

void

void

void

void

os_collection

cardinality () const os_unsigned_int32 os_collection

change_behavior (os_unsigned_int32 behavior_enums,
 os_int32 = verify_enum)

void os_collection
6 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
change_rep (os_unsigned_int32 expected_size
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain_enum

= dont_associate_policy)

void os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

create (static) (os_database *db,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum

 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 E fill_value = 0)

os_Array<E>& os_Array

(os_segment* seg,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 E fill_value = 0)

os_Array<E>&

(os_object_cluster *clust,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 E fill_value = 0)

os_Array<E>&

(void *proximity,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 E fill_value = 0)

os_Array<E>&

default_behavior
(static)

() os_unsigned_int32 os_Array

destroy (static) (os_Array<E>&) void os_Array

drop_index (const os_index_path&) void os_collection

Name Arguments Returns Defined By
Release 5.1 7

os_Array
empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file os_unsigned_int32 line)

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_option_enums) const

os_int32 os_collection

initialize (static) () void os_collection

insert (const E) void os_Collection

insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

multi_trans_add_
index

static void multi_trans_add_index(
os_reference c,
const os_index_path & p,
os_int32 index_options,
os_segment * index_seg,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

multi_trans_drop_
index

static void multi_trans_drop_index(
os_reference c,
const os_index_path & p,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

only () const E os_Collection

operator
os_Bag<E>&

() os_Collection

Name Arguments Returns Defined By
8 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
operator const
os_Bag<E>&

() const os_Collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
os_Set<E>&

() const os_Collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Array<E>&) const

(const os_Collection<E>&) const

(E) const

os_Array<E>&

os_array&

os_array

os_Array

operator |= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

Name Arguments Returns Defined By
Release 5.1 9

os_Array
operator | (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

operator & (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

operator - (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_Array<E> ()

(os_collection_size expected_size)

(const os_Array<E>&)

(const const os_Collection<E>&)

(os_unsigned_int32 card,
 E fill_value)

os_Array

pick () const

(const os_index_path&,
 const os_coll_range&) const

E

E

os_Collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line,
 os_boolean dups) const

(const os_bound_query&,
 os_boolean dups) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename,
 os_unsigned_int32 line) const

(const os_bound_query&) const

E

E

os_Collection

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

Name Arguments Returns Defined By
10 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Array enumerators The following table lists the enumerators that can be used for os_
Array member functions.

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

retrieve_first () const

(const E&) const

E

os_int32

os_Collection

retrieve_last () const

(const E&) const

E

os_int32

os_Collection

set_cardinality (os_unsigned_int32 new_card,
 E fill_value)

void os_Array

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection
Release 5.1 11

os_Array
os_Array::create()

static os_Array<E> &create(
os_database *db,
os_unsigned_int32 behavior_enums = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain_enum = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
E fill_value = 0

);

Creates a new array in the database pointed to by db . If the
transient database is specified, the array is allocated in transient
memory.

Properties A new array has the following default properties:

An array can also have these behaviors:

unordered os_collection

verify os_collection

Name Inherited From

Property Enumerator That Controls Behavior

Its entries are ordered. os_collection::maintain_order
(required)

Duplicate elements are allowed. os_collection::allow_duplicates
(on by default)

Null pointers can be inserted. os_collection::allow_nulls
(required)

It has array semantics. os_collection::be_an_array
(required)

Behavior Enumerators

With pick() returns null from an empty
array. When this behavior is not
specified, err_coll_empty is raised.

os_collection::pick_from_empty_
returns_null
12 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
By default a new array also has the following properties:

• Performing pick() on an empty array raises err_coll_empty.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

Using the behavior_enums argument, you can customize the
properties of new arrays with regard to these two properties.

See Customizing Collection Behavior in ObjectStore Advanced C++
API User Guide for further information.

Representation policy The default representation policy for arrays is as follows:

• An array created as an embedded object has the representation
of os_tiny_array (0 to 4 elements). An embedded array becomes
out of line and mutates to an os_chained_list when the fifth
element is inserted.

• An array created with ::create with cardinality <= 20 is
represented as an os_chained_list .

• Once the array grows past 20, its representation is os_packed_
list. (see the description in Chapter 4, Advanced Collections, of
ObjectStore Advanced C++ API User Guide).

If you want a new array presized for a different cardinality,
supply the expected_size argument explicitly.

Note that expected_size determines the initial representation. So,
for example, if expected_size is 21, os_packed_list is used for the
array’s entire lifetime (unless you use change_rep()).

If you want to customize the representation of a new array, pass
an os_rep as the rep_policy argument and pass the enumerator

Signals when an attempt is made to
insert a duplicate element into array for
allow_duplicates is not in effect.

os_collection::signal_duplicates

Maintains the position of a cursor while
elements are being inserted or removed
from an array.

os_collection::maintains_cursors

Behavior Enumerators
Release 5.1 13

os_Array
os_collection::dont_associate_policy as the retain argument, or
else pass an os_rep_policy as the policy argument and pass the
enumerator os_collection::associate_policy as the retain
argument. See the class os_rep on page 224. See also Customizing
Collection Behavior in ObjectStore Advanced C++ API User Guide.

cardinality and
fill_value

cardinality and fill_value specify the number of slots in the new
array, and the value to occupy all slots initially. The value
specified by the cardinality argument must be less than or equal to
the expected_size

can also affect the underlying collection representation; the larger
of the two values (the values for cardinality and expected_size)
takes precedence.

static os_Array<E> &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
E fill_value = 0

);

Creates a new array in the segment pointed to by seg . If the
transient segment is specified, the array is allocated in transient
memory. The rest of the arguments are just as described above.

static os_Array<E> &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_int32 cardinality = 0,
E fill_value = 0

);

Creates a new array in the object cluster pointed to by clust . The
rest of the arguments are just as described above.

static os_Array<E> &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_int32 cardinality = 0,
E fill_value = 0
14 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
);

Creates a new array in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new
array is allocated in that cluster. If the specified object is transient,
the array is allocated in transient memory. The rest of the
arguments are just as described above.

os_Array::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior,
which is maintain_order , allow_duplicates , allow_nulls, and be_an_
array.

os_Array::destroy()

static void destroy(os_Array<E>&);

Deletes the specified array and deallocates associated storage.
This is the same as calling delete on a pointer to an os_Array .

Assignment Operator Semantics

Note: The assignment operator semantics are described for the
following functions in terms of insert operations into the target
collection. Describing the semantics in terms of insert operations
serves to illustrate how duplicate, null, and order semantics are
enforced. The actual implementation of the assignment might be
quite different, while still maintaining the associated semantics.

os_Array::operator =()

os_Array<E> &operator =(const os_Array<E> &s);

Copies the contents of the array s into the target array and returns
the target array. The copy is performed by effectively clearing the
target, iterating over the source array, and inserting each element
into the target collection. The iteration is ordered. The target
collection semantics are enforced as usual during the insertion
process.

os_Array<E> &operator =(const os_array<E> &s);

Copies the contents of the array s into the target array and returns
the target array. The copy is performed by effectively clearing the
target, iterating over the source array, and inserting each element
Release 5.1 15

os_Array
into the target array. The iteration is ordered if the source array is
ordered. The target array semantics are enforced as usual during
the insertion process.

os_Array<E> &operator =(const E e);

Clears the target array, inserts the element e into the target array,
and returns the target array.

os_Array::operator |=()

os_Array<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target array and
returns the target array.

os_Array<E> &operator |=(const E e);

Inserts the element e into the target array, and returns the target
array. In effect, this appends the elements of a collection to an os_
Array.

os_Array::operator &=()

os_Array<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. If the collection is ordered and contains
duplicates, it does so by retaining the appropriate number of
leading elements. It returns the target collection.

os_Array<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_Array::operator –=()

os_Array<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. If the
collection is ordered it is the first s.count(e) elements that are
removed. It returns the target collection.

os_Array<E> &operator –=(const E e);
16 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Removes the element e from the target collection. If the collection
is ordered, it is the first occurrence of the element that is removed
from the target collection. It returns the target collection.

os_Array::os_Array()

os_Array();

Returns an empty array.

os_Array(os_collection_size);

The user should pass an os_int32 as the os_collection_size
argument. Returns an empty array whose initial implementation
is based on the expectation that the specified os_int32 indicates
the approximate usual cardinality of the array, once it has been
loaded with elements.

os_Array(const os_Array<E>&);

Returns an array that results from assigning the specified array to
an empty array.

os_Array(const os_Collection<E>&);

Returns an array that results from assigning the specified
collection to an empty array.

os_Array(os_unsigned_int32 card, E fill_value);

Returns an array with cardinality card , all of whose elements are
fill_value .

os_Array::set_cardinality()

void set_cardinality(os_unsigned_int32 new_card, E fill_value);

Augments the array to have the specified cardinality, using the
specified fill_value to occupy the array’s new slots.
Release 5.1 17

os_array
os_array

class os_array : public os_collection

An array, like a list (see the class os_list on page 198), is an ordered
collection. Unlike other ordered collections, however, arrays have
a set_cardinality() function that changes the array cardinality,
filling the additional array slots (if the cardinality is increased)
with a specified fill value. In addition, the array create() functions
have additional arguments that allow specification of the initial
array cardinality and fill value (the initial value to put in each
slot). By default, arrays allow both duplicates and nulls. As with
other ordered collections, array elements can be inserted,
removed, replaced, or retrieved based on a specified numerical
array index or based on the position of a specified cursor.

The class os_array is nonparameterized. For the parameterized
version of this class, see os_Array on page 5.

Array elements are pointers, so the element type of any array
must be a pointer type (for example, char*).

Create arrays with the member create() or, for stack-based or
embedded arrays, with a constructor. Do not use new to create
arrays.

Required header files Any program using arrays must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs using arrays must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Below are two tables. The first table lists the member functions
that can be performed on instances of os_array . The second table
lists the enumerators inherited by os_array from os_collection .
Many functions are also inherited by os_array from os_collection .
The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The
full explanation of each function defined by os_array appears in
this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.
18 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = options,
 os_database* = 0)

(const os_index_path&,
 os_int32 = options,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

void

void

void

void

os_collection

cardinality () const os_unsigned_int32 os_collection

change_behavior (os_unsigned_int32 behavior enums,
 os_int32 = verify_enum)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const void*) const os_int32 os_collection

count (const void*) const os_int32 os_collection

create (static) (os_database *db,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,

void* fill_value = 0)

os_array& os_array

(os_segment *seg,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 void* fill_value = 0)

os_array&
Release 5.1 19

os_array
(os_object_cluster *clust,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 void* fill_value = 0)

os_array&

(void *proximity,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain_enum
 = dont_associate_policy,
 os_unsigned_int32 cardinality = 0,
 void* fill_value = 0)

os_array&

default_behavior
(static)

() os_unsigned_int32 os_array

destroy (static) (os_array&) void os_array

drop_index (const os_index_path&) void os_collection

empty () const os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,

char *file os_unsigned_int32 line)

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_option_enums) const

os_int32 os_collection

insert (const void*) void os_collection

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

Name Arguments Returns Defined By
20 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
insert_first (const void*) void os_collection

insert_last (const void*) void os_collection

multi_trans_add_
index

static void multi_trans_add_index(
os_reference c,
const os_index_path & p,
os_int32 index_options,
os_segment * index_seg,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

multi_trans_
drop_index

static void multi_trans_drop_index(
os_reference c,
const os_index_path & p,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

only () const void* os_collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator os_set& () os_collection

operator const
os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

Name Arguments Returns Defined By
Release 5.1 21

os_array
operator = (const os_array&) const

(const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

os_array

operator |= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator | (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator &= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator & (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator –= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator - (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

os_array ()

(os_int32 expected_size)

(const os_array&)

(const os_collection&)

(os_unsigned_int32 card,
 void *fill_value)

os_array

pick () const void* os_collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,

 os_unsigned_int32 line,
 os_boolean dups) const

(const os_bound_query&,
 os_boolean dups) const

os_collection&

os_collection&

os_collection

Name Arguments Returns Defined By
22 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_array enumerators The following table lists the enumerators inherited by os_array
from os_collection .

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename,
 os_unsigned_int32 line) const

(const os_bound_query&) const

void*

void*

os_collection

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

os_collection

remove_first (const void*&)

()

os_int32

void*

os_collection

remove_last (const void*&)

()

os_int32

void*

os_collection

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

os_collection

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

os_collection

retrieve_first () const

(const void*&) const

void*

os_int32

os_collection

retrieve_last () const

(const void*&) const

void*

os_int32

os_collection

set_cardinality (os_unsigned_int32 new_card,
 void *fill_value)

void os_array

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection
Release 5.1 23

os_array
os_array::create()

static os_array &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
void *fill_value = 0

);

Creates a new array in the database pointed to by db . If the
transient database is specified, the array is allocated in transient
memory.

Properties Every array has the following properties:

• Its entries are ordered.

• Duplicate elements are allowed.

• Null pointers can be inserted.

By default a new array also has the following properties:

• Performing pick() on an empty result of querying the array
raises err_coll_empty.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

See also Customizing Collection Behavior in ObjectStore Advanced
C++ API User Guide.

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
24 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
By default, arrays are presized with a representation suitable for
cardinality 20 or less. If you want a new collection presized for a
different cardinality, supply the expected_size argument
explicitly.

If you want to customize the representation of a new collection,
see Customizing Collection Representation in ObjectStore
Advanced C++ API User Guide.

Representation policy The default representation policy for arrays is as follows:

• As the array grows from 0 to 15, the representation is os_
chained_list (see a description in Chapter 4, Advanced
Collections, of ObjectStore Advanced C++ API User Guide).

• Once the array grows past 15, os_packed_list is used.

Note that expected_size determines the initial representation. So,
for example, if expected_size is 21, os_packed_list is used for the
array’s entire lifetime (unless you use change_rep()).

cardinality and
fill_value

cardinality and fill_value specify the number of slots in the new
array, and the value to occupy all slots initially.

static os_array &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
void *fill_value = 0

);

Creates a new array in the segment pointed to by seg . If the
transient segment is specified, the array is allocated in transient
memory. The rest of the arguments are just as described above.

static os_array &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
void *fill_value = 0

);

Creates a new array in the object cluster pointed to by clust . The
rest of the arguments are just as described above.
Release 5.1 25

os_array
static os_array &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy,
os_unsigned_int32 cardinality = 0,
void *fill_value = 0

);

Creates a new array in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new
array is allocated in that cluster. If the specified object is transient,
the array is allocated in transient memory. The rest of the
arguments are just as described above.

os_array::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior.

os_array::destroy()

static void destroy(os_array&);

Deletes the specified array and deallocates associated storage.

os_array::operator =()

os_array &operator =(const os_array &s);

os_array &operator =(const os_collection &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_array &operator =(const void *e);

Clears the target array, inserts the element e into the target array,
and returns the target array.

Note on assignment
operator semantics

The assignment operator semantics are described throughout the
ObjectStore Collections C++ API Reference in terms of insert
operations into the target array. Describing the semantics in terms
of insert operations serves to illustrate how duplicate, null, and
26 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
order semantics are enforced. The actual implementation of the
assignment might be quite different, while still maintaining the
associated semantics.

os_array::operator |=()

os_array &operator |=(const os_collection &s);

Inserts the elements contained in s into the target collection, and
returns the target collection.

os_array &operator |=(const void *e);

Inserts the element e into the target collection, and returns the
target collection.

Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::operator |()

os_collection &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If either
operand allows nulls, the result does. The result allows duplicates
and does not maintain cursors or signal duplicates.

os_collection &operator |(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If this
allows nulls, the result does. The result allows duplicates and
does not maintain cursors or signal duplicates.

Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::operator &=()

os_array &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. If the collection is ordered and contains
Release 5.1 27

os_array
duplicates, it does so by retaining the appropriate number of
leading elements. It returns the target collection.

os_array &operator &=(const void *e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::operator &()

os_array &operator &(const os_collection &s) const;

Copies the contents of this into a new array, a, and then performs
a &= s . The new array, a, is then returned. If either operand allows
nulls, the result does. The result allows duplicates and does not
maintain cursors or signal duplicates.

os_array &operator &(const void *e) const;

Creates a new array and copies the element e into it if this-> e
returns true. Behavior bits match those of the original array. That
is, if this allows nulls, the result does. The result allows duplicates
and does not maintain cursors or signal duplicates.

Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::operator –=()

os_array &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. If the
collection is ordered, it is the first s.count(e) elements that are
removed. It returns the target collection.

os_array &operator –=(const void *e);

Removes the element e from the target collection. If the collection
is ordered, it is the first occurrence of the element that is removed
from the target collection. It returns the target collection.
28 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::operator –()

os_array &operator –(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If either
operand allows nulls, the result does. The result allows duplicates
and does not maintain cursors or signal duplicates.

os_array &operator –(const void *e) const;

Copies the contents of this into a new array and then removes e
from the array and returns the new array. If this allows nulls, the
result does. The result allows duplicates and does not maintain
cursors or signal duplicates.

Note: Assignment operator semantics are described in terms of
insert operations into the target array. Note, however that the
actual implementation might be different, while still maintaining
the associated semantics.

os_array::os_array()

os_array();

Returns an empty array.

os_array(os_collection_size);

The user should pass an os_int32 as the os_collection_size
argument. Returns an empty array whose initial implementation
is based on the expectation that the specified os_int32 indicates
the approximate usual cardinality of the array, once it has been
loaded with elements.

os_array(const os_array&);

Returns an array that results from assigning the specified array to
an empty array.

os_array(const os_collection&);

Returns an array that results from assigning the specified
collection to an empty array.
Release 5.1 29

os_array
os_array(os_unsigned_int32 card, void *fill_value);

Returns an array with cardinality card , all of whose elements are
fill_value .

os_array::set_cardinality()

void set_cardinality(os_unsigned_int32 new_card, void *fill_value);

Augments the array to have the specified cardinality, using the
specified fill_value to occupy the array’s new slots.
30 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_backptr

If there is a possibility that a data member of an object could be
modified and this data member is used in an index, then index
maintenance must occur before and after the update. This is
possible only if the object has an os_backptr data member and
appropriate index maintenance occurs. The os_backptr is an
object that allows the object to point back to all indexes it
participates in.

The os_backptr declaration must appear before the declaration of
the data members intended to be indexable. Note that you must
define at most one data member of type os_backptr . With one such
member, all members (data and function) of the class declared
after it are established as indexable.

When an element is inserted or removed from a collection that has
an index on it, implicit index maintenance occurs, whether the
element has an os_backptr or not. Another possibility for update
of data members that participate in an index is that you remove
the element from the collection, update the data member, then
insert it back into the collection. This then performs the
appropriate index maintenance. Using this scenario avoids the
requirement of having an os_backptr in your object. Because an
os_backptr data member takes up twelve bytes and points back to
the indexes, using an os_backptr data member might not be
desirable in some cases, such as when using reference-based
indexes.

ObjectStore supports inheritance of the os_backptr data member
provided that the member is inherited from a base class along the
leftmost side of the type inheritance lattice and provided that the
leftmost base class is not a virtual base class (directly or through
inheritance). In all other cases, the user must define a data
member of type os_backptr directly in the class defining the
members desired to be indexable.

The os_backptr member is used internally by ObjectStore for
index maintenance associated with indexable members defined
using the os_indexable_member() macro or with data members for
which you are doing manual index maintenance (break_link() or
make_link()). An example of where manual index maintenance is
required is if the data member is a pointer and what gets updated
Release 5.1 31

os_backptr
is what is pointed to rather than the pointer value. The member
functions described below can also be used explicitly by the user
for index maintenance associated with indexable members
defined without the os_indexable_member() macro.

The break_link() function should be invoked to break the index
association before a modification to an indexable data member.
This removes an entry from the index. In addition, after an
indexable member has been given a new value, make_link()
should be invoked to bring the index up to date. This inserts a new
entry into the index, indexing the object by its new member value.
You can ensure that this happens by encapsulating these calls in a
member function for setting the value of the indexable member.
The function should call break_link() , assign the new value to the
member, and then call make_link() . There are also special
considerations for index maintenance when member functions
are incurred.

member functions that will be used in query strings or index paths

For examples, see User-Controlled Index Maintenance with an
os_backptr in the ObjectStore Advanced C++ API User Guide.

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_backptr::break_link()

void break_link(void *, void*, os_int32 = 0) const;

Removes an entry from the index associated with the indexable
data member pointed to by the void* arguments. For a class, C,
with os_backptr member C::b and indexable member m, the void*
arguments should both be

&m

The os_int32 argument should be

os_index(C,b) – os_index(C,m)

The this pointer points to the os_backptr for the object indexed by
the removed entry. The removed entry indexes the object by the
value of the specified member, m.

void break_link(
void* ptr_to_obj,
32 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
void* ptr_to_obj,
const char* class_name,
const char* function_name

) const;

Use this function to maintain indexes keyed by paths containing
member function calls.

ptr_to_obj is the object whose state changed, requiring an update
to one or more indexes. When you call these functions, supply the
same value for the first and second arguments.

class_name is the name of the class that defines the member
function called in the path of the indexes to be updated.

function_name is the name of the member function itself.

Call this function before you perform an update that affects the
return value of any member function appearing in an index. You
must make a pair of calls (one to break_link() and one to make_
link()) for each such member function affected by each data
member change. If there are multiple functions affected by
change, then you must call it for each function that participates in
an index.

Call break_link() just before making the change (this removes an
entry from each relevant index), and call make_link() just after
making the change (this inserts a new entry into each relevant
index, indexing the object by the new value of the relevant path).
You can ensure that this happens by encapsulating these calls in a
member function for setting the value of the data member.

For indexes keyed by paths that go through the elements of a
collection (for example, * ((*get_children())[]->get_location())),
index maintenance is performed automatically when you change
the membership of a collection.

os_backptr::make_link()

void make_link(void *, void*, os_int32 = 0) const;

Inserts an entry into the index associated with the indexable data
member pointed to by the void* arguments. For a class, C, with os_
backptr member C::b and indexable member m, the void*
arguments should both be

&m
Release 5.1 33

os_backptr
and the os_int32 argument should be

os_index(C,b) – os_index(C,m)

The this pointer points to the os_backptr for the object being
indexed. The inserted entry indexes this object by the value of the
specified member, m.

void make_link(
void* ptr_to_obj,
void* ptr_to_obj,
const char* class_name,
const char* function_name

) const;

Use this function to maintain indexes keyed by paths containing
member function calls.

ptr_to_obj is the object whose state changed, requiring an update
to one or more indexes. When you call these functions, supply the
same value for the first and second arguments.

class_name is the name of the class that defines the member
function called in the path of the indexes to be updated.

function_name is the name of the member function itself.

Call this function before you perform an update that affects the
return value of any member function appearing in an index. You
must make a pair of calls (one to break_link() and one to make_
link()) for each such member function affected by each data
member change. If there are multiple functions affected by
change, then you must call it for each function that participates in
an index.

Call break_link() just before making the change (this removes an
entry from each relevant index), and call make_link() just after
making the change (this inserts a new entry into each relevant
index, indexing the object by the new value of the relevant path).
You can ensure that this happens by encapsulating these calls in a
member function for setting the value of the data member.

For indexes keyed by paths that go through the elements of a
collection (for example, * ((*get_children())[]->get_location())),
index maintenance is performed automatically when you change
the membership of a collection.
34 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Bag

template <class E>
class os_Bag : public os_Collection<E>

Characteristics A bag (sometimes called a multiset) is an unordered collection.
Unlike sets, values can occur in a bag more than once at a given
time.

The count of a value in a given bag is the number of times it occurs
in the bag. Repeated insertion of a value into a bag increases its
count in the bag by one each time. The count of a value in a bag is
0 if and only if the value is not an element of the bag.

Values can be inserted into an os_Bag anywhere. That is, the user
has no control over the ordering of the elements.

Create bags with the member create() or, for stack-based or
embedded bags, with a constructor. Do not use new to create bags.

In summary, every bag has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are allowed.

Using the behavior argument, you can customize the behavior of
new bags. See Customizing Collection Behavior in the ObjectStore
Advanced C++ API User Guide for further information.

You can also presize a bag with a nondefault value when it is
created. See os_Bag::create() on page 41 and os_Bag::os_Bag() on
page 45.

Representation policy The default representation policy for newly created bags is as
follows:

• A bag created as an embedded object has the representation of
os_tiny_array (0 to 4 elements). An embedded bag becomes out
of line and mutates to an os_chained_list when the fifth element
is inserted.

• A bag created with ::create with cardinality <= 20 is
represented as an os_chained_list .

• Once the bag grows past 20, os_dyn_bag is used, unless the
array has maintain_cursors behavior, in which case os_packed_
list is used.
Release 5.1 35

os_Bag
Using the behavior argument, you can customize the
representation of a new bag. For more information, see
Customizing Collection Representation in the ObjectStore
Advanced C++ API User Guide.

Parameterized classes The class os_Bag is parameterized, with a parameter for
constraining the type of values allowable as elements (for the
nonparameterized version of this class, see os_bag on page 46).
This means that when specifying os_Bag as a function’s formal
parameter, or as the type of a variable or data member, you must
specify the parameter (the bag’s element type). This is
accomplished by appending to os_Bag the name of the element
type enclosed in angle brackets, < >:

os_Bag< element-type-name>

The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

The element type of any instance of os_Bag must be a pointer
type.

Required header files Programs using bags must include the header file <ostore/coll.hh>
after including <ostore/ostore.hh> .

Required libraries Programs using bags must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Tables of member
functions and
enumerators

Below are two tables. The first table lists the member functions
that can be performed on instances of os_Bag . The second table
lists the enumerators inherited by os_Bag from os_collection .
Many functions are also inherited by os_Bag from os_Collection
or os_collection . The full explanation of each inherited function or
enumerator appears in the entry for the class from which it is
inherited. The full explanation of each function defined by os_Bag
appears in this entry, after the tables. In each case, the Defined By
column gives the class whose entry contains the full explanation.
36 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32,
 os_segment* = 0)

(const os_index_path&,
 os_int32,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void os_collection

cardinality () const os_int32 os_collection

change_behavior (os_unsigned_int32 behavior_enums,
 os_int32 = verify_enum)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

create (static) (os_database *db,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_Bag<E>& os_Bag

(os_segment *seg,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_Bag<E>&

(os_object_cluster *clust,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_Bag<E>&
Release 5.1 37

os_Bag
(void *proximity,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_Bag<E>&

default_behavior
(static)

() os_unsigned_int32 os_Bag

destroy (static) (os_Bag<E>&) void os_Bag

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,

char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options) const

os_int32 os_collection

insert (const E) void os_Collection

multi_trans_add_
index

static void multi_trans_add_index(
os_reference c,
const os_index_path & p,
os_int32 index_options,
os_segment * index_seg,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

multi_trans_drop_
index

static void multi_trans_drop_index(
os_reference c,
const os_index_path & p,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
os_Array<E>&

() const os_Collection

Name Arguments Returns Defined By
38 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
operator
 os_array&

() os_collection

operator const
os_array&

() const os_collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
os_Set<E>&

() const os_Collection

operator os_set& () os_collection

operator const
os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
Release 5.1 39

os_Bag
operator = (const os_Bag<E>&) const

(const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag<E>&

os_Bag

operator |= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator | (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator & (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator - (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_Bag ()

(os_collection_size expected_size)

(const os_Bag<E>&)

(const os_Collection<E>&)

os_Bag

pick () const

(const os_index_path&,
 const os_coll_range&) const

E

E

os_Collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename,

os_unsigned_int32) const

(const os_bound_query&) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0)
 const

(const os_bound_query&) const

E

E

os_Collection

remove (const E) os_int32 os_Collection

Name Arguments Returns Defined By
40 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Bag enumerators The following table lists the enumerators inherited by os_Bag
from os_collection .

os_Bag::create()

static os_Bag<E> &create(
os_database *db,
os_unsigned_int32 behavior_enums = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain_enum = dont_associate_policy

);

Creates a new bag in the database pointed to by db . If the transient
database is specified, the bag is allocated in transient memory.

A new bag has the following default properties:

remove_at (const os_Cursor<E>&) void os_Collection

replace_at (const E,
 const os_Cursor<E>&)

E os_Collection

retrieve (const os_Cursor<E>&) const E os_Collection

Name Arguments Returns Defined By

Enumerator Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection
Release 5.1 41

os_Bag
• Its entries have no intrinsic order.

• Duplicate elements are allowed os_collection::allow duplicates
(required)

• Performing pick() on an empty result of querying the bag raises
err_coll_empty.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

Using the behavior argument, you can customize the behavior of
new bags with regard to the last three properties. See
Customizing Collection Behavior in the ObjectStore Advanced C++
API User Guide.

An os_Bag can have the following additional behaviors:

• os_collection::pick_from_empty_returns_null

• os_collection::allow_nulls

You can also customize the representation of a new collection (see
Customizing Collection Representation in the ObjectStore
Advanced C++ API User Guide).

The default representation policy for bags created with create() is
as follows:

• A bag created as an embedded object has a representation of
os_tiny_array (0 to 4 elements). An embedded bag becomes out
of line when the fifth element is inserted and the representation
mutates to os_chained _list .

• Nonembedded bags have a representation of os_chained_list if
the expected size is less than 20.

• Once the bag grows past 20, os_dyn_bag is used, unless the bag
has maintain_cursors behavior, in which case os_packed_list is
used. (See the description in Chapter 4, Advanced Collections,
of ObjectStore Advanced C++ API User Guide.)

If you want a new collection presized for a different cardinality,
supply the expected_size argument explicitly.

So, for example, if expected_size is 21, os_dyn_bag is used for the
collection’s entire lifetime (unless you use change_rep()).
42 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
static os_Bag<E> &create(
os_segment * seg,
os_unsigned_int32 behavior_enums = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain_enum = dont_associate_policy

);

Creates a new bag in the segment pointed to by seg . If the
transient segment is specified, the bag is allocated in transient
memory. The rest of the arguments are just as described above.

static os_Bag<E> &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new bag in the object cluster pointed to by clust . The rest
of the arguments are just as described above.

static os_Bag<E> &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new bag in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new bag
is allocated in that cluster. If the specified object is transient, the
bag is allocated in transient memory. The rest of the arguments
are just as described above.

os_Bag::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior,
which is os_collection::allow_duplicates .

os_Bag::destroy()

static void destroy(os_Bag<E>&);

Deletes the specified collection and deallocates associated storage.
This is the same as calling delete on the os_Bag.
Release 5.1 43

os_Bag
Assignment Operator Semantics

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.

os_Bag::operator =()

os_Bag<E> &operator =(const os_Collection<E> &s);

os_Bag<> &operator=(const os_Bag<E> &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The target
collection semantics are enforced as usual during the insertion
process.

os_Bag<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_Bag::operator |=()

os_Bag<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection, and
returns the target collection.

os_Bag<E> &operator |=(const E e);

Inserts the element e into the target collection, and returns the
target collection.

Note: Assignment operator semantics are described in terms of
insert operations into the target bag. Note, however that the actual
implementation might be different, while still maintaining the
associated semantics.

os_Bag::operator &=()

os_Bag<E> &operator &=(const os_Collection<E> &s);
44 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. It returns the target collection.

os_Bag<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_Bag::operator –=()

os_Bag<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. It returns the
target collection.

os_Bag<E> &operator –=(const E e);

Removes the element e from the target collection. It returns the
target collection.

os_Bag::os_Bag()

os_Bag();

Returns an empty bag.

os_Bag(os_collection_size);

The user should pass an os_int32 as the os_collection_size
argument. Returns an empty bag whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual size of the bag, once it has been loaded with
elements.

os_Bag(const os_Bag<E>&);

Returns a bag that results from assigning the specified bag to an
empty bag.

os_Bag(const os_Collection<E>&);

Returns a bag that results from assigning the specified collection
to an empty bag.
Release 5.1 45

os_bag
os_bag

class os_bag : public os_collection

A bag (sometimes called a multiset) is an unordered collection.
Unlike sets, values can occur in a bag more than once at a given
time. The count of a value in a given bag is the number of times it
occurs in the bag. Repeated insertion of a value into a bag
increases its count in the bag by one each time. The count of a
value in a bag is 0 if and only if the value is not an element of the
bag.

The class os_bag is nonparameterized. For the parameterized
version of this class, see os_Bag on page 35.

Required header files Program that use bags must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use bags must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Tables of member
functions and
enumerators

Below are two tables. The first table lists the member functions
that can be performed on instances of os_bag . The second table
lists the enumerators inherited by os_bag from os_collection .
Many functions are also inherited by os_bag from os_collection .
The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The
full explanation of each function defined by os_bag appears in
this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.
46 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32,
 os_segment* = 0)

(const os_index_path&,
 os_int32,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_int32 os_collection

change_behavior (os_unsigned_int32 behavior_enums,
 os_int32 = verify_enum)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain_enum

= dont_associate_policy)

void os_collection

clear () void os_collection

contains (const void*) const os_int32 os_collection

count (const void*) const os_int32 os_collection

create (static) (os_database *db,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_bag& os_bag

(os_segment *seg,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_bag&

(os_object_cluster *clust,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_bag&
Release 5.1 47

os_bag
(void *proximity,
 os_unsigned_int32 behavior_enums = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor
 *rep_policy = 0,
 os_int32 retain_enum
 = dont_associate_policy)

os_bag&

default_behavior
(static)

() os_unsigned_int32 os_bag

destroy (static) (os_bag&) void os_bag

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,

os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options) const

os_int32 os_collection

insert (const void*) void os_collection

multi_trans_add_
index

static void multi_trans_add_index(
os_reference c,
const os_index_path & p,
os_int32 index_options,
os_segment * index_seg,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

os_collection

multi_trans_drop_
index

static void multi_trans_drop_index(
os_reference c,
const os_index_path & p,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans)

void os_Collection

only () const void* os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

Name Arguments Returns Defined By
48 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_bag&) const

(const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

os_bag

operator |= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator | (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator &= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator & (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator –= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

Name Arguments Returns Defined By
Release 5.1 49

os_bag
os_bag enumerators The following table lists the enumerators inherited by os_Bag
from os_collection .

operator - (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

os_bag ()

(os_collection_size expected_size)

(const os_bag&)

(const os_collection&)

os_bag

pick () const

(const os_index_path&,
 const os_coll_range&) const

void*

void*

os_collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,

char *filename,
 os_unsigned_int32) const

(const os_bound_query&) const

os_collection&

os_collection&

os_collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0)
 const

(const os_bound_query&) const

void*

void*

os_collection

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&) void os_collection

replace_at (const void*,
 const os_cursor&)

void* os_collection

retrieve (const os_cursor&) const void* os_collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection
50 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_bag::create()

static os_bag &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new bag in the database pointed to by db . If the transient
database is specified, the bag is allocated in transient memory.

Every bag has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are allowed.

By default a new bag also has the following properties:

• Performing pick() on an empty result of querying the bag raises
err_coll_empty .

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

Using the behavior argument, you can customize the behavior of
new bags with regard to these last three properties. See
Customizing Collection Behavior in the ObjectStore Advanced C++
API User Guide.

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
Release 5.1 51

os_bag
By default, bags are presized with a representation suitable for
cardinality 20 or less. If you want a new collection presized for a
different cardinality, supply the expected_size argument
explicitly.

If you want to customize the representation of a new collection,
see Customizing Collection Representation in the ObjectStore
Advanced C++ API User Guide.

The default representation policy for bags is as follows:

• As the collection grows from 0 to 15, the representation is os_
chained_list .

• Once the collection grows past 15, os_dyn_bag is used, unless
the collection has maintain_cursors behavior, in which case os_
packed_list is used.

Note that expected_size determines the initial representation. So,
for example, if expected_size is 21, os_dyn_bag is used for the
collection’s entire lifetime (unless you use change_rep()).

static os_bag &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new bag in the segment pointed to by seg . If the
transient segment is specified, the bag is allocated in transient
memory. The rest of the arguments are just as described above.

static os_bag &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new bag in the object cluster pointed to by clust . The rest
of the arguments are just as described above.

static os_bag &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
52 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_int32 retain = dont_associate_policy
);

Creates a new bag in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new
collection is allocated in that cluster. If the specified object is
transient, the bag is allocated in transient memory. The rest of the
arguments are just as described above.

os_bag::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior.

os_bag::destroy()

static void destroy(os_bag&);

Deletes the specified collection and deallocates associated storage.

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.

os_bag::operator =()

os_bag &operator = (const os_collection &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The target
collection semantics are enforced as usual during the insertion
process.

os_bag &operator =(const void *e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_bag::operator |=()

os_bag &operator |=(const os_bag &s);

Inserts the elements contained in s into the target collection and
returns the target collection.
Release 5.1 53

os_bag
os_bag &operator |=(const void *e);

Inserts the element e into the target collection and returns the
target collection.

os_bag::operator |()

os_bag &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If either
operand allows nulls, the result does. The result allows duplicates
and does not maintain order, maintain cursors, or signal
duplicates.

os_bag &operator |(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c |= e. The new collection, c, is then returned. If this
allows nulls, the result does. The result allows duplicates and
does not maintain order, maintain cursors, or signal duplicates.

os_bag::operator &=()

os_bag &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. It returns the target collection.

os_bag &operator &=(const void *e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_bag::operator &()

os_bag &operator &(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If either
operand allows nulls, the result does. The result allows duplicates
and does not maintain order, maintain cursors, or signal
duplicates.

os_bag &operator &(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c &= e . The new collection, c, is then returned. If this
54 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
allows nulls, the result does. The result allows duplicates and
does not maintain order, maintain cursors, or signal duplicates.

os_bag::operator –=()

os_bag &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. It returns the
target collection.

os_bag &operator –=(const void *e);

Removes the element e from the target collection. It returns the
target collection.

os_bag::operator –()

os_collection &operator –(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If either
operand allows nulls, the result does. The result allows duplicates
and does not maintain order, maintain cursors, or signal
duplicates.

os_collection &operator –(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c –= e. The new collection, c, is then returned. If this
allows nulls, the result does. The result allows duplicates and
does not maintain order, maintain cursors, or signal duplicates.

os_bag::os_bag()

os_bag();

Returns an empty bag.

os_bag(os_collection_size);

The user should pass an os_int32 as the os_collection_size
argument. Returns an empty bag whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual cardinality of the bag, once it has been loaded
with elements.

os_bag(const os_bag&);
Release 5.1 55

os_bag
Returns a bag that results from assigning the specified bag to an
empty bag.

os_bag(const os_collection&);

Returns a bag that results from assigning the specified collection
to an empty bag.
56 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_bound_query

Instances of this class are query objects built from instances of os_
coll_query and os_keyword_arg_list . Bound queries must be
transiently allocated; they should not be allocated in persistent
memory.

os_bound_query::os_bound_query()

os_bound_query(
const os_coll_query&,
const os_keyword_arg_list&

);

Creates a bound query, binding the free references in the os_coll_
query according to the os_keyword_arg_list .

os_bound_query(
const os_coll_query&

);

Creates a bound query from an os_coll_query with no free
references.
Release 5.1 57

os_Collection
os_Collection

template <class E>
class os_Collection : public os_collection

A collection is an object that serves to group together other
objects. The objects so grouped are the collection’s elements. For
some collections, a value can occur as an element more than once.
The count of a value in a given collection is the number of times
(possibly 0) it occurs in the collection.

The class os_Collection is parameterized, with a parameter for
constraining the type of values allowable as elements (for the
nonparameterized version of this class, see os_collection on
page 87). This means that when specifying os_Collection as a
function’s formal parameter, or as the type of a variable or data
member, you must specify the parameter (the collection’s element
type). This is accomplished by appending to os_Collection the
name of the element type enclosed in angle brackets, < >:

os_Collection< element-type-name >

The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

The element type of any instance of os_Collection must be a
pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Required header files Programs that use os_Collection s must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use os_Collection s must link with the library file
oscol.lib (UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Below are two tables. The first table lists the member functions
that can be performed on instances of os_Collection . The second
table lists the enumerators inherited by os_Collection from os_
58 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
collection . Many functions are also inherited by os_Collection
from os_collection . The full explanation of each inherited function
or enumerator appears in the entry for the class from which it is
inherited. The full explanation of each function defined by os_
Collection appears in this entry, after the tables. In each case, the
Defined By column gives the class whose entry contains the full
explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_unsigned_int32 os_collection

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

change_rep (os_unsigned_int32 expected_size
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

create (static) (os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Collection<E>& os_Collection

(os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Collection<E>&
Release 5.1 59

os_Collection
(os_object_cluster *cluster,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Collection<E>&

(void *proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Collection<E>&

default_behavior
(static)

() os_unsigned_int32 os_collection

destroy (static) (os_Collection<E>&) void os_Collection

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options = unordered)
 const

os_int32 os_collection

insert (const E) void os_Collection

insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

Name Arguments Returns Defined By
60 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
multi_trans_add_
index

(os_reference c,
 const os_index_path & p,
 os_int32 index_options,
 os_segment * index_seg,
 os_segment * scratch_seg,
 os_unsigned_int32 num_per_trans)

os_collection

multi_trans_drop_
index

(os_reference c,
 const os_index_path & p,
 os_segment * scratch_seg,
 os_unsigned_int32 num_per_trans)

os_collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection

operator const
os_Bag<E>&

() const os_Collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
os_Set<E>&

() const os_Collection

operator os_set& () os_collection

Name Arguments Returns Defined By
Release 5.1 61

os_Collection
operator const
os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator |= (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator | (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator & (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator - (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

pick () const

(const os_index_path&,
 const os_coll_range&) const

E

E

os_Collection

Name Arguments Returns Defined By
62 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Collection
enumerators

The following table lists the enumerators for os_Collection .

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line,
 os_boolean dups) const

 (const os_bound_query&) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

E

E

os_Collection

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

retrieve_first () const

(E&) const

E

os_int32

os_Collection

retrieve_last () const

(E&) const

E

os_int32

os_Collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection
Release 5.1 63

os_Collection
os_Collection::contains()

os_int32 contains(E) const;

Returns a nonzero os_int32 if the specified E is an element of the
specified collection, and 0 otherwise.

os_Collection::count()

os_int32 count(E);

Returns the number of occurrences (possibly 0) of the specified E
in the collection for which the function was called.

os_Collection::create()

static os_Collection<E> &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the database pointed to by db . If the
transient database is specified, the collection is allocated in
transient memory.

Every instance of os_Collection has the following properties:

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
64 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• Its entries have no intrinsic order.

• Duplicate elements are not allowed.

By default a new os_Collection object also has the following
properties:

• Performing pick() on an empty result of querying the collection
raises err_coll_empty.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

Using the behavior argument, you can customize the behavior of
new os_Collection s with regard to these last three properties. See
Customizing Collection Behavior in the ObjectStore Advanced C++
API User Guide.

Collections are the most flexible container class. The behaviors
that they can have are

• allow_duplicates

• maintain_order

• signal_duplicates

• allow_nulls

• pick_from_empty_returns_null

• maintain_cursors

By default, instances of os_Collection are presized with a
representation suitable for cardinality 20 or less. If you want a
new collection presized for a different cardinality, supply the
expected_size argument explicitly.

If you want to customize the representation of a new collection,
see Customizing Collection Representation in the ObjectStore
Advanced C++ API User Guide.

The default representation policy for os_Collection s is as follows:

• A collection created as an embedded object has the
representation of os_tiny_array (0 to 4 elements).

• An embedded collection becomes out of line and mutates to an
os_chained_list when the fifth element is inserted.
Release 5.1 65

os_Collection
• A collection created with ::create with cardinality <= 20 is
represented as an os_chained_list .

• Once the collection grows past 20, os_dyn_hash is used for the
collection’s entire lifetime (unless you use change_rep).

Note that expected_size determines the initial representation. So,
for example, if expected_size is 21, os_dyn_hash is used for the
collection’s entire lifetime (unless you use change_rep() .

static os_Collection<E> &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the segment pointed to by seg . If the
transient segment is specified, the collection is allocated in
transient memory. The rest of the arguments are just as described
above.

static os_Collection<E> &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the object cluster pointed to by clust .
The rest of the arguments are just as described above.

static os_Collection<E> &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the segment occupied by the object
pointed to by proximity . If the object is part of an object cluster, the
new collection is allocated in that cluster. If the specified object is
transient, the collection is allocated in transient memory. The rest
of the arguments are just as described above.
66 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Collection::default_behavior()

os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior. In
this case, the bit pattern is 0.

os_Collection::destroy()

static void destroy(os_Collection<E>&);

Deletes the specified collection and deallocates associated storage.
This is the same as calling delete() on an os_Collection .

os_Collection::drop_index()

void drop_index(const os_index_path &p);

Destroys the index into the specified collection whose key is
specified by p. The argument p does not need to be the same
instance of os_index_path supplied when the index was added,
but it must specify the same key. Two os_index_path s created
with the same path string and type string specify the same index
key.

Collections with large cardinality might warrant removing the
index with multiple transactions. See os_collection::multi_trans_
drop_index() on page 111.

An err_no_such_index exception is signaled if an index with the
specified key does not exist for the collection.

os_Collection::exists()

exists(query_string);

os_Collection::insert()

void insert(const E);

Adds the specified instance of E to the collection for which the
function was called. The behavior of insert() depends on the
characteristics of the collection you are using:

• If the collection is ordered, the element is inserted at the end of
the collection.

• If the collection disallows duplicates (has behavior signal_
duplicates) , and the specified E is already present in the
Release 5.1 67

os_Collection
collection, err_coll_duplicates is signaled. Otherwise the
insertion is ignored.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

os_Collection::insert_after()

void insert_after(const E, const os_Cursor<E>&);

Adds the specified instance of E to the collection for which the
function was called. The new element is inserted immediately
after the element at which the specified cursor is positioned. The
index of all elements after the new element increases by 1. The
cursor must be a default cursor (that is, one that results from a
constructor call with only a single argument). If the cursor is null,
err_null_cursor is signaled. If the cursor is invalid, err_coll_illegal_
cursor is signaled.

The behavior of insert_after() depends on the characteristics of the
collection you are using:

• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has behavior signal_
duplicates) , and the specified E is already present in the
collection, err_coll_duplicates is signaled. Otherwise the
insertion is ignored.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

If the collection has behavior maintain_cursors and the cursor has
behavior update_safe , the next element in the forward iteration
will be E.

void insert_after(const E, os_unsigned_int32);

Adds the specified instance of E to the collection for which the
function was called. The new element is inserted after the position
indicated by the os_unsigned_int32 . The index of all elements
after the new element increases by 1. If the index is not less than
the collection’s cardinality, err_coll_out_of_range is signaled.

The behavior of insert_after() depends on the characteristics of the
collection you are using:
68 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has the behavior signal_
duplicates), and the specified E is already present in the
collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

• If the collection has behavior maintain_cursors and the cursor
has behavior update_safe , the next element in the forward
iteration will be E.

os_Collection::insert_before()

void insert_before(const E, const os_Cursor<E>&);

Adds the specified instance of E to the collection for which the
function was called. The new element is inserted immediately
before the element at which the specified cursor is positioned. The
index of all elements after the new element increases by 1. The
cursor must be a default cursor (that is, one that results from a
constructor call with only a single argument). If the cursor is null,
err_null_cursor is signaled. If the cursor is invalid, err_coll_illegal_
cursor is signaled.

The behavior of insert_before() depends on the characteristics of
the collection you are using:

• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has the behavior signal_
duplicates), and the specified E is already present in the
collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

• If the collection has behavior maintain_cursors , and the cursor
has behavior update_safe , the previous element in the
backwards iteration will be E.

• If the collection is an array, all elements after this element will
be pushed down.

void insert_before(const E, os_unsigned_int32);
Release 5.1 69

os_Collection
Adds the specified instance of E to the collection for which the
function was called. The new element is inserted immediately
before the position indicated by the os_unsigned_int32 . The index
of all elements after the new element increases by 1. If the index is
not less than the collection’s cardinality, err_coll_out_of_range is
signaled.

The behavior of insert_before() depends on the characteristics of
the collection you are using:

• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has the behavior signal_
duplicates), and the specified E is already present in the
collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

• If the collection has behavior maintain_cursors , and the cursor
has behavior update_safe , the previous element in the
backwards iteration will be E.

• If the collection is an array, all elements after this element will
be pushed down.

os_Collection::insert_first()

void insert_first(const E);

Adds the specified instance of E to the beginning of the collection
for which the function was called. The behavior of insert_first()
depends on the characteristics of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has the behavior signal_
duplicates), and the specified E is already present in the
collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

• If the collection is an array, all elements after this element will
be pushed down.
70 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Collection::insert_last()

void insert_last(const E);

Adds the specified instance of E to the end of the collection for
which the function was called.

• If the collection is not ordered, err_coll_not_supported is
signaled.

• If the collection disallows duplicates (has the behavior signal_
duplicates), and the specified E is already present in the
collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified E is 0, err_coll_
nulls is signaled.

os_Collection::only()

E only() const;

Returns the only element of the specified collection. If the
collection has more than one element, err_coll_not_singleton is
signaled. If the collection is empty, err_coll_empty is signaled,
unless the collection’s behavior includes os_collection::pick_
from_empty_returns_null , in which case 0 is returned.

os_Collection::operator os_Array()

operator os_Array<E>&();

Returns an array with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of arrays.

os_Collection::operator const os_Array()

operator const os_Array<E>&() const;

Returns an array with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of arrays.

os_Collection::operator os_Bag()

operator os_Bag<E>&();

Returns a bag with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of bags.
Release 5.1 71

os_Collection
os_Collection::operator const os_Bag()

operator const os_Bag<E>&() const;

Returns a bag with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of bags.

os_Collection::operator os_List()

operator os_List<E>&();

Returns a list with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of lists.

os_Collection::operator const os_List()

operator const os_List<E>&() const;

Returns a list with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of lists.

os_Collection::operator os_Set()

operator os_Set<E>&();

Returns a set with the same elements and behavior as the specified
collection. An exception is signaled if the collection’s behavior is
incompatible with the required behavior of sets.

os_Collection::operator const os_Set()

operator const os_Set<E>&() const;

Returns a set with the same elements and behavior as the specified
collection. An exception is signaled if the collection’s behavior is
incompatible with the required behavior of sets.

os_Collection::operator ==()

os_int32 operator ==(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) == s.count(element) and both collections
have the same cardinality. Note that the comparison does not take
order into account.

os_int32 operator ==(const E s) const;
72 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Returns a nonzero value if and only if the collection contains s and
nothing else.

os_Collection::operator !=()

os_int32 operator !=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if it is not the case both that
(1) for each element in the this collection count(element) ==
s.count(element) , and (2) both collections have the same
cardinality. Note that the comparison does not take order into
account.

os_int32 operator !=(const E s) const;

Returns a nonzero value if and only if it is not the case that the
collection contains s and nothing else.

os_Collection::operator <()

os_int32 operator <(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) <= s.count(element) and cardinality()
< s.cardinality() .

os_int32 operator <(const E s) const;

Returns a nonzero value if and only if the specified collection is
empty.

os_Collection::operator <=()

os_int32 operator <=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) <= s.count(element) .

os_int32 operator <=(const E s) const;

Returns a nonzero value if and only if the specified collection is
empty or e is the only element in the collection.

os_Collection::operator >()

os_int32 operator >(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element of s,
count(element) >= s.count(element) and cardinality() >
s.cardinality() .
Release 5.1 73

os_Collection
os_int32 operator >(const E s) const;

Returns a nonzero value if and only if count(s) >= 1 and
cardinality() > 1 .

os_Collection::operator >=()

os_int32 operator >=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element of s,
count(element) >= s.count(element) .

os_int32 operator >=(const E s) const;

Returns a nonzero value if and only if count(s) >= 1 .

Assignment operator
semantics

The assignment operator semantics are described below in terms
of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.

os_Collection::operator =()

os_Collection<E> &operator =(const os_Collection<E> &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_Collection<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_Collection::operator |=()

os_Collection<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection, and
returns the target collection.

os_Collection<E> &operator |=(const E e);

Inserts the element e into the target collection, and returns the
target collection.
74 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Collection::operator |()

os_Collection<E> &operator |(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_Collection<E> &operator |(const E e) const;

Copies the contents of this into a new collection, c, and then
performs c |= e. The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.

os_Collection::operator &=()

os_Collection<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. If the collection is ordered and contains
duplicates, it does so by retaining the appropriate number of
leading elements. It returns the target collection.

os_Collection<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_Collection::operator &()

os_Collection<E> &operator &(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_Collection<E> &operator &(E e) const;

Copies the contents of this into a new collection, c, and then
performs c &= e . The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.
Release 5.1 75

os_Collection
os_Collection::operator –=()

os_Collection<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. If the
collection is ordered it is the first s.count(e) elements that are
removed. It returns the target collection.

os_Collection<E> &operator –=(E e);

Removes the element e from the target collection. If the collection
is ordered, it is the first occurrence of the element that is removed
from the target collection. It returns the target collection.

os_Collection::operator –()

os_Collection<E> &operator –(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_Collection<E> &operator –(E e) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.

os_Collection::pick()

E pick() const;

Returns an arbitrary element of the specified collection. If the
collection is empty, err_coll_empty is signaled, unless the
collection’s behavior includes os_collection::pick_from_empty_
returns_null , in which case 0 is returned.

os_Collection::query()

os_Collection<E> &query(
char *element_type_name,
char *query_string,
os_database *schema_database = 0,
char *file_name = 0,
os_unsigned_int32 line = 0,
76 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_boolean dups = query_dont_preserve_duplicates
) const;

Returns a reference to a heap-allocated collection with default
behavior containing those elements of this that satisfy the
selection criterion expressed by the query_string . When you no
longer need the resulting collection, you should reclaim its
memory with ::operator delete() or os_collection::destroy() to
avoid memory leaks.

The argument element_type_name is the name of the element type
of this . Names established through the use of typedef are not
allowed.

The query_string is a C++ control expression indicating the query’s
selection criterion. An element, e, satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this .

Any string consisting of an os_int32 -valued C++ expression is
allowed in a query string, as long as

• Variables are also data members of the elements of the
collection.

• For local variables (free references), you create an os_coll_
query object.

• For global functions (free references), you create an os_coll_
query object.

• There are no function calls, except calls to strcmp() or strcoll() .

• There are no comparison operators for which the user might be
required to define a corresponding rank/hash function.

• There are no calls to member functions that satisfy the
restrictions listed below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Restrictions Functions called in query strings are subject to certain restrictions:

• The return type can be a basic type (int , char , float , char*).

• If the function is a member function it can also return a pointer
or a reference to a class type.
Release 5.1 77

os_Collection
• The function can take up to two arguments. The first argument
must be a pointer. For member functions this is the implied first
argument.

• Global functions are free references and must be used in an os_
coll_query object.

• Member functions can be used like data members.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example if it returns a pointer to newly allocated
memory), memory leaks can result; ObjectStore does not free the
space the function allocates. So member functions used in paths or
queries should not allocate persistent memory or memory in the
transient heap.

Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function. It must precede the member
function declaration in the class definition.

• Call the macro os_query_function() . This should be defined at
file scope, for example, in the header file that contains the class
that defines the member function. See os_query_function() in
Chapter 4, Macros and User-Defined Functions of the
ObjectStore Collections C++ API Reference for more information.

• Call the macro os_query_function_body() . This should be
defined at file scope in a source file that will only be compiled
into the application once. See os_query_function_body() for
more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() . This should
be defined at file scope, for example, in the header file that
78 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
contains the class that defines the member function. See os_
query_function_body_returning_ref() for more information.

• Call the macro os_query_function_body_returning_ref() . This
should be defined at file scope in a source file that will only be
compiled into the application once. See os_query_function_
body_returning_ref() for more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

To maintain indexes keyed by paths containing member function
calls, use os_backptr::make_link() and os_backptr::break_link() .

The query string can itself contain queries. A notation is defined
to allow the user to conveniently specify such nested queries in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_Collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one of them is picked and
returned.

A nested query returning a collection will be converted to an os_
int32 when appropriate, using os_collection::operator os_int32() .

The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized. If
this argument is not supplied, the database in which the collection
resides is used, which is always adequate. If the query is being
performed over a transient collection, the application schema
database is used by default.
Release 5.1 79

os_Collection
In addition to being used as the default schema database for
queries over transient collections, the application schema
database is used if the transient database is supplied explicitly.

Since the application schema database is never opened just prior
to analysis of a query, use of the application schema database in
query analysis carries the overhead of a database open. Therefore,
explicitly supplying an appropriate database that is already open
will improve query performance.

ObjectStore uses file_name and line when reporting errors related
to the query. You can set them to identify the location of the
query’s source code.

If dups is the enumerator os_collection::query_dont_preserve_
duplicates , duplicate elements that satisfy the query condition are
not included in the query result. If dups is the enumerator os_
collection::query_preserve_duplicates , duplicate elements that
satisfy the query condition are included in the query result.

os_Collection <E> &query(
const os_bound_query&,
os_boolean dups = query_dont_preserve_duplicates

) const;

Returns a reference to a heap-allocated collection with default
behavior containing those elements of this that satisfy the os_
bound_query . If dups is the enumerator query_dont_preserve_
duplicates , duplicate elements that satisfy the query condition are
not included in the query result. If dups is the enumerator query_
preserve_duplicates , duplicate elements that satisfy the query
condition are included in the query result.

When you no longer need the resulting collection, you should
reclaim its memory with ::operator delete() or os_
collection::destroy() to avoid memory leaks.

os_Collection::query_pick()

E query_pick(
char *element_type_name,
char *query_string,
os_database *schema_database = 0,
char *filename, os_unsigned_int32 line,

) const;
80 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Returns an element of this that satisfies the selection criterion
expressed by the query_string . If there is more than one such
element, one is picked arbitrarily and returned. If no element
satisfies the query or the collection is empty, 0 is returned.

The argument element_type_name is the name of the element type
of this . Names established through the use of typedef are not
allowed.

The query_string is a C++ control expression indicating the query’s
selection criterion. An element, e, satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this .

Any string consisting of an os_int32 -valued C++ expression is
allowed, as long as

• Variables are also data members of the elements of the
collection.

• For local variables (free references), you create an os_coll_
query object.

• For global functions (free references), you create an os_coll_
query object.

• There are no function calls, except calls to strcmp() or strcoll() .

• There are no comparison operators for which the user might be
required to define a corresponding rank/hash function.

• There are no calls to member functions that satisfy the
restrictions listed below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Restrictions Functions called in query strings are subject to certain restrictions:

• The return type can be a basic type (int , char , float , char*).

• If the function is a member function it can also return a pointer
or a reference to a class type.

• The function can take up to two arguments. The first argument
must be a pointer. For member functions this is the implied first
argument.
Release 5.1 81

os_Collection
• Global functions are free references and must be used in an os_
coll_query object.

• Member functions can be used like data members.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example if it returns a pointer to newly allocated
memory), memory leaks can result; ObjectStore does not free the
space the function allocates. So member functions used in paths or
queries should not allocate persistent memory or memory in the
transient heap.

Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function. It must precede the member
function declaration in the class definition.

• Call the macro os_query_function() . This should be defined at
file scope, for example, in the header file that contains the class
that defines the member function. See os_query_function() for
more information.

• Call the macro os_query_function_body() . This should be
defined at file scope in a source file that will only be compiled
into the application once. See os_query_function_body() for
more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() . This should
be defined at file scope, for example, in the header file that
contains the class that defines the member function. See os_
query_function_body_returning_ref() for more information.

• Call the macro os_query_function_body_returning_ref() . This
should be defined at file scope in a source file that will only be
82 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
compiled into the application once. See os_query_function_
body_returning_ref() for more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

To maintain indexes keyed by paths containing member function
calls, use os_backptr::make_link() and os_backptr::break_link() .

The query string can itself contain queries. A notation is defined
to allow the user to conveniently specify such nested queries in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_Collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one of them is picked and
returned.

A nested query returning a collection is converted to an os_int32
when appropriate, using os_collection::operator os_int32() .

The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often an
appropriate choice for this.

If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query.

E query_pick(const os_bound_query&) const;

Returns an element of this that satisfies the os_bound_query . If
there is more than one such element, one is picked arbitrarily and
Release 5.1 83

os_Collection
returned. If no element satisfies the query or the collection is
empty, 0 is returned.

os_Collection::remove()

os_int32 remove(const E);

Removes the specified instance of E from the collection for which
the function was called, if present. If the collection is ordered, the
first occurrence of the specified E is removed. If the collection is an
array, all elements after this element are pushed up.

os_Collection::remove_first()

os_int32 remove_first(E&);

Removes the first element from the specified collection, if the
collection is not empty; returns a nonzero os_int32 if the collection
was not empty; and modifies its argument to refer to the removed
element. If the specified collection is not ordered, err_coll_not_
supported is signaled. If the collection is an array, all elements after
this element are pushed up.

E remove_first();

Removes the first element from the specified collection and
returns the removed element, or 0 if the collection is empty. Note
that for collections that allow null elements, the significance of the
return value can be ambiguous. The alternative overloading of
remove_first() , above, can be used to avoid the ambiguity. If the
specified collection is not ordered, err_coll_not_supported is
signaled. If the collection is an array, all elements after this
element are pushed up.

os_Collection::remove_last()

os_int32 remove_last(const E&);

Removes the last element from the specified collection, if the
collection is not empty; returns a nonzero os_int32 if the collection
is not empty; and modifies its argument to refer to the removed
element. If the specified collection is not ordered, err_coll_not_
supported is signaled.

E remove_last();

Removes the last element from the specified collection and
returns the removed element, or 0 if the collection was empty.
84 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Note that for collections that allow null elements, the significance
of the return value can be ambiguous. The alternative overloading
of remove_last() , above, can be used to avoid the ambiguity. If the
specified collection is not ordered, err_coll_not_supported is
signaled.

os_Collection::replace_at()

E replace_at(const E, const os_Cursor<E>&);

Returns the element at which the specified cursor is positioned,
and replaces it with the specified instance of E. The cursor must be
a default cursor (that is, one that results from a constructor call
with only a single argument). If the cursor is null, err_coll_null_
cursor is signaled. If the cursor is invalid, err_coll_illegal_cursor is
signaled.

E replace_at(const E, os_unsigned_int32 position);

Returns the element with the specified position, and replaces it
with the specified instance of E. If the position is not less than the
collection’s cardinality, err_coll_out_of_range is signaled. If the
collection is not ordered, err_coll_not_supported is signaled.

os_Collection::retrieve()

E retrieve(const os_Cursor<E>&) const;

Returns the element at which the specified cursor is positioned.
The cursor must be a default cursor (that is, one that results from
a constructor call with only a single argument). If the cursor is
null, err_coll_null_cursor is signaled. If the cursor is invalid, err_coll_
illegal_cursor is signaled.

E retrieve(os_unsigned_int32 position) const;

Returns the element with the specified position. If the position is
not less than the collection’s cardinality, err_coll_out_of_range is
signaled. If the collection is not ordered, err_coll_not_supported is
signaled.

os_Collection::retrieve_first()

E retrieve_first() const;

Returns the specified collection’s first element, or 0 if the
collection is empty. For collections that contain zeros, see the other
Release 5.1 85

os_Collection
overloading of this function, following. If the collection is not
ordered, err_coll_not_supported is signaled.

os_int32 retrieve_first(const E&) const;

Returns 0 if the specified collection is empty; returns a nonzero
os_int32 otherwise. Modifies the argument to refer to the
collection’s first element. If the collection is not ordered, err_coll_
not_supported is signaled.

os_Collection::retrieve_last()

E retrieve_last() const;

Returns the specified collection’s last element, or 0 if the collection
is empty. For collections that contain zeros, see the other
overloading of this function, following. If the collection is not
ordered, err_coll_not_supported is signaled.

os_int32 retrieve_last(const E&) const;

Returns 0 if the specified collection is empty; returns a nonzero
os_int32 otherwise. Modifies the argument to refer to the
collection’s last element. If the collection is not ordered, err_coll_
not_supported is signaled.
86 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection

A collection is an object that serves to group together other
objects. The objects so grouped are the collection’s elements. For
some collections, a value can occur as an element more than once.
The count of a value in a given collection is the number of times
(possibly 0) it occurs in the collection.

This class has a parameterized subtype. See os_Collection on
page 58.

The element type of any instance of os_collection must be a
pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Required include files Any program using collections must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use os_collection s must link with the library file
oscol.lib (UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

In addition, the static member function os_collection::initialize()
must be executed in a process before any use of ObjectStore
collection or relationship functionality is made.

Below are two tables. The first table lists the member functions
defined by os_collection , together with their formal argument
lists and return types. The second table lists the enumerators
defined by os_collection . The full explanation of each function
and enumerator follows these tables.
Release 5.1 87

os_collection
Name Arguments Returns

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

cardinality () const os_unsigned_int32

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void

change_rep (os_unsigned_int32 expected_size
 const os_coll_rep_descriptor *policy= 0,
 os_int32 retain = dont_associate_policy)

void

clear () void

contains (const void*) const

count (const void*) const os_int32

create (static) (os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_collection&

(os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_collection&

(os_object_cluster *clust,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_collection&

(void* proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_collection&

default_behavior (static) () os_unsigned_int32
88 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
destroy (static) (os_collection&) void

drop_index (const os_index_path&) void

empty () os_int32

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

get_behavior () const os_unsigned_int32

get_indexes () const os_collection*

get_rep () const os_coll_rep_
descriptor&

get_thread_locking (static) () os_boolean

has_index (const os_index_path&,
 os_int32 index_options = unordered) const

os_int32

insert (const void*) void

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

insert_first (const void*) void

insert_last (const void*) void

multi_trans_add_index (os_reference c,
 const os_index_path & p,
 os_int32 index_options,
 os_segment * index_seg,
 os_segment * scratch_seg,
 os_unsigned_int32 num_per_trans)

multi_trans_drop_index (os_reference c,
 const os_index_path & p,
 os_segment * scratch_seg,
 os_unsigned_int32 num_per_trans)

only () const E

Name Arguments Returns
Release 5.1 89

os_collection
operator os_array& ()

operator const os_array& () const

operator os_bag& ()

operator const os_bag& () const

operator os_list& ()

operator const os_list& () const

operator os_set& ()

operator const os_set& () const

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

operator = (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator |= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator | (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator &= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator & (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator –= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

Name Arguments Returns
90 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
operator - (const os_collection&) const

(const void*) const

os_collection&

os_collection&

pick () const

(const os_index_path &path,
 const os_coll_range &range) const

void*

void*

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line,
 os_boolean dups) const

(const os_bound_query&) const

os_collection&

os_collection&

query_pick (char *element_type_name,
 char *query_string,

os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

void*

void*

remove (const void*) os_int32

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

remove_first (const void*&)

()

os_int32

void*

remove_last (const void*&)

()

os_int32

void*

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

retrieve_first () const

(const void*&) const

void*

os_int32

retrieve_last () const

(const void*&) const

void*

os_int32

set_thread_locking (static) (os_boolean) void

Name Arguments Returns
Release 5.1 91

os_collection
os_collection
enumerators

The following table lists enumerators for os_collection .

os_collection::add_index()

void add_index(
const os_index_path&,
os_int32 options,
os_segment* = 0

);

Creates an index into the specified collection, keyed by the
specified os_index_path . The presence of the index allows
optimization of queries involving lookup of collection elements
based on the specified path. See the class os_index_path on
page 179. If the specified collection already has an index with the
specified key, this call is ignored. Two instances of os_index_path
specify the same key if they were created with the same path
string and element type.

Enumerators

allow_duplicates

allow_nulls

associate_policy

dont_associate_policy

dont_verify

EQ

GE

GT

LE

LT

maintain_cursors

maintain_order

NE

order_by_address

pick_from_empty_returns_null

signal_cardinality

signal_duplicates

unordered

verify
92 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Collections with large cardinality might warrant adding the index
using multiple transactions. See os_collection::multi_trans_add_
index() on page 110.

The exception err_am is signaled if a class mentioned in the path
serving as index key cannot be found in the schema of the
database containing the index (or the application schema, if the
index is transient).

The options argument is a bit pattern indicating the behavior of
the index. You supply the bit pattern by forming the bit-wise
disjunction (using |) of enumerators signifying the desired
behavior. These enumerators, together with the behaviors they
signify, are listed below.

• os_index_path::ordered : indicates an ordered index,
implemented as a B-tree, supporting optimization of range
queries, that is, queries involving the comparison operators <,
>, <=, and >=. Specifying both ordered and unordered (see
below) for the same index results in an ordered index.

• os_index_path::unordered : indicates an unordered index,
implemented as a hash table. Such an index does not support
optimization of range queries. Specifying both ordered and
unordered for the same index results in an ordered index.

• os_index_path::allow_duplicates : indicates an index that allows
duplicate keys. You should use such an index for collections in
which two or more elements can share a key value. Specifying
both allow_duplicates and no_duplicates (see below) for the
same index results in a no_duplicates index.

• os_index_path::no_duplicates : indicates an index that does not
allow duplicate key values. You should use such an index for
collections in which no two elements can share a key value. If
duplicate key values might accidentally occur, use this
enumerator together with os_index_path::signal_duplicates
(see below). Without signal_duplicates , duplicate keys will not
be detected and can have unpredictable results. Specifying
both allow_duplicates and no_duplicates (see above) for the
same index results in a no_duplicates index.

• os_index_path::signal_duplicates : indicates an index that
detects duplicate key values. Can only be used together with
os_index_path::no_duplicates . If an index that signals
Release 5.1 93

os_collection
duplicates is added to a collection containing two or more
elements that share a key value, the exception err_index_
duplicate_key is signaled. In addition, for a collection with an
index that signals duplicates, inserting an element with the
same key value as some other element also provokes an err_
index_duplicate_key exception.

• os_index_path::copy_key (default): indicates an index with
entries consisting of key-value/element pairs, as opposed to
pointer-to-key-value/element pairs (see os_index_path::point_
to_key , below). For a copy_key index, form an entry by copying
the object at the end of the os_index_path that specifies the key.
Such an index generally takes up more space than one that
points to its keys, but it provides faster access times because of
reduced paging costs. Specifying both copy_key and point_to_
key for the same index results in a point_to_key index.

• os_index_path::point_to_key : indicates an index with entries
consisting of pointer-to-key-value/element pairs, as opposed
to key-value/element pairs. For a point_to_key index, an entry
includes a pointer to the object at the end of the os_index_path
that specifies the key. Because of increased paging costs, such
an index generally provides slower access times than an index
that copies its keys; but a point_to_key index takes up less
space. Specifying both copy_key and point_to_key for the same
index results in a point_to_key index.

• os_index_path::use_references : indicates a reference-based (as
opposed to pointer-based) index. For very large collections,
using an os_ixonly representation and a reference-based index
(or indexes) can, for many operations, significantly reduce
address space consumption. Collections using any reference-
based index must use only reference-based indexes.

By default, indexes have the following behavior:

os_index_path::unordered |
os_index_path::allow_duplicates |
os_index_path::copy_key.

The os_segment* argument points to the segment in which the
new index is to be allocated. If the argument is omitted or if 0 is
supplied, the index is allocated in the same segment as the
collection being indexed. Putting each index in its own dedicated
segment often results in better performance.
94 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
The function add_index() can be invoked at any point in the
lifetime of a collection.

In a given database, the first time an unordered index is created
for a particular key type, ObjectStore modifies the database’s
schema. Similarly, the first time an ordered index is created for a
particular key type, ObjectStore modifies the schema. Schema
modification write-locks segment 0, which effectively locks the
entire database.

void add_index(
const os_index_path&,
os_int32 options,
os_database*

);

Creates an index into the specified collection, keyed by the
specified os_index_path . The presence of the index allows
optimization of queries involving lookup of collection elements
based on the specified path. See the class os_index_path on
page 179. If the specified collection already has an index with the
specified key, this call is ignored. The os_database* argument
points to the database in which the new index is to be allocated.
See above for an explanation of the options argument.

void add_index(
const os_index_path&,
os_segment* = 0

);

Creates an index into the specified collection, keyed by the
specified os_index_path . The presence of the index allows
optimization of queries involving lookup of collection elements
based on the specified path. See the class os_index_path on
page 179. If the specified collection already has an index with the
specified key, this call is ignored. The os_segment* argument
points to the segment in which the new index is to be allocated. If
the argument is omitted or if 0 is supplied, the index is allocated
in the same segment as the collection being indexed.

void add_index(
const os_index_path&,
os_database*

);

Creates an index into the specified collection, keyed by the
specified os_index_path . The presence of the index allows
Release 5.1 95

os_collection
optimization of queries involving lookup of collection elements
based on the specified path. See the class os_index_path on
page 179. If the specified collection already has an index with the
specified key, this call is ignored. The os_database* argument
points to the database in which the new index is to be allocated.

os_collection::allow_duplicates

Possible disjunct of the bit-wise disjunction composing the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , and their subtypes.

Indicates that the new or changed collection should allow
duplicate elements, that is, multiple occurrences of the same
element. Inserting a value into a collection that allows duplicates
always increases the collection’s cardinality, and increases the
count of that value in the collection. If duplicates are not allowed,
insertion of an element that is already present either is silently
ignored or signals the exception err_coll_duplicates. See os_
collection::insert() on page 107. Allowing duplicates generally
increases the efficiency of insert operations, since the operations
do not have to check for the presence of the inserted element, as
they do if duplicates are not allowed.

os_collection::allow_nulls

Possible disjunct of the bit-wise disjunction composing the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , and their subtypes.
Indicates that the new or changed collection should allow null
elements, that is, 0. Inserting a value into a collection that
disallows nulls signals the exception err_coll_nulls. See os_
collection::insert() on page 107.

os_collection::associate_policy

Possible argument to create() and change_rep() members of os_
collection , os_Collection , and their subtypes. Indicates that the
rep_policy argument to create() or change_rep() should be used to
determine how the new or changed collection’s representation
changes in response to changes in cardinality. See also os_
collection::dont_associate_policy on page 101.
96 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection::be_an_array

Possible disjunct of the bit-wise disjunction composing the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , os_list , and os_List . For
collections that maintain order only. With this behavior, access to
the nth element is an O(1) operation.

os_collection::cardinality()

os_unsigned_int32 cardinality() const;

Returns the sum of the count of each element of the specified
collection.

os_collection::cardinality_estimate()

os_unsigned_int32 cardinality_estimate() const;

Returns an estimate of a collection’s cardinality. This is an O(1)
operation in the size of the collection. This function returns the
cardinality as of the last call to os_collection::update_cardinality() ;
or, for collections that maintain cardinality, the actual cardinality
is returned. See os_ixonly_bc .

os_collection::cardinality_is_maintained()

os_int32 cardinality_is_maintained() const;

Returns nonzero if the collection maintains cardinality; returns 0
otherwise. See os_ixonly_bc .

os_collection::change_behavior()

void change_behavior(
os_unsigned_int32 behavior,
os_int32 = verify

);

Changes the behavior of the specified collection.

The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating all the desired properties
for the changed collection. The enumerators are

• os_collection::allow_nulls

• os_collection::allow_duplicates

• os_collection::signal_duplicates
Release 5.1 97

os_collection
• os_collection::maintain_order

• os_collection::maintain_cursors

• os_collection::signal_cardinality

• os_collection::pick_from_empty_returns_null

A run-time error is signaled if an attempt is made to change a
collection to both signal and allow duplicates. A run-time error is
signaled if an attempt is made to change an os_bag or os_Bag to
disallow duplicates or be ordered, or to change an os_set or os_
Set to allow duplicates or be ordered, or to change an os_list or
os_List to be unordered.

os_collection::verify When you change a collection so that it no longer allows duplicate
or null insertions, you might want to check to see if duplicates or
nulls are already present. Such a check is performed for you if you
supply the enumerator os_collection::verify as the second
argument. If nulls are found, err_coll_nulls is signaled. If duplicates
are found, and signal_duplicates is on, err_coll_duplicates is
signaled. If signal_duplicates is not on, the first among each set of
duplicates is retained and trailing duplicates are silently removed.
If os_collection::verify is not used, the resulting collection is
assumed to be free of duplicates or nulls.

os_collection::change_rep()

void change_rep(
os_unsigned_int32 expected_size,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Changes the representation or representation policy of the
specified collection.

The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
overhead of transforming the collection’s representation as it
grows during loading.

The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
98 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_packed_list .)

os_collection::clear()

void clear();

Removes all elements of the specified collection.

os_collection::contains()

os_int32 contains(const void*) const;

Returns a nonzero os_int32 if the specified void* is an element of
the specified collection, and 0 otherwise.

os_collection::count()

os_int32 count(const void*) const

Returns the number of occurrences (possibly zero) of the specified
void* in the collection for which the function was called.

os_collection::create()

static os_collection &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the database pointed to by db . If the
transient database is specified, the collection is allocated in
transient memory.

Properties Every instance of os_Collection has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are not allowed.

By default a new os_Collection object also has the following
properties:

• Performing pick() on an empty result of querying the collection
raises err_coll_empty.
Release 5.1 99

os_collection
• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

Using the behavior argument, you can customize the behavior of
new os_Collection s with regard to these last three properties. See
Customizing Collection Representation in ObjectStore Advanced
C++ API User Guide.

By default, instances of os_Collection are presized with a
representation suitable for cardinality 20 or less. If you want a
new collection presized for a different cardinality, supply the
expected_size argument explicitly.

If you want to customize the representation of a new collection,
see Customizing Collection Representation in ObjectStore
Advanced C++ API User Guide.

The default representation policy for os_Collection s is as follows:

• As the collection grows from 0 to 15, the representation is os_
chained_list .

• Once the collection grows past 15, os_dyn_hash is used.

Note that expected_size determines the initial representation. So,
for example, if expected_size is 21, os_dyn_hash is used for the
collection’s entire lifetime (unless you use change_rep() .

static os_collection &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the segment pointed to by seg . If the
transient segment is specified, the collection is allocated in
transient memory. The rest of the arguments are just as described
above.

static os_collection &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
100 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_int32 retain = dont_associate_policy
);

Creates a new collection in the object cluster pointed to by clust .
The rest of the arguments are just as described above.

static os_collection &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new collection in the segment occupied by the object
pointed to by proximity . If the object is part of an object cluster, the
new collection is allocated in that cluster. If the specified object is
transient, the collection is allocated in transient memory. The rest
of the arguments are just as described above.

os_collection::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior.

os_collection::destroy()

static void destroy(os_collection&);

Deletes the specified collection and deallocates associated storage.

os_collection::dont_associate_policy

Possible argument to create() and change_rep() members of os_
collection , os_Collection , and their subtypes. Indicates that the
rep_policy argument to create() or change_rep() should be used,
together with expected_size , only to determine the new or
changed collection’s initial representation. See also os_
collection::associate_policy on page 96.

os_collection::dont_verify

Possible argument to os_collection::change_behavior() , when
changing a collection to allow duplicates or nulls. If this
enumerator is supplied, the changed collection is assumed to be
free of duplicates and nulls. See also os_collection::verify on
page 98.
Release 5.1 101

os_collection
os_collection::drop_index()

void drop_index(const os_index_path &p);

Destroys the index into the specified collection whose key is
specified by p. The argument p does not need to be the same
instance of os_index_path supplied when the index was added,
but it must specify the same key. Two os_index_path s created
with the same path string and type string specify the same index
key.

Collections with large cardinality might warrant removing the
index with multiple transactions. See os_collection::multi_trans_
drop_index() on page 111.

An err_no_such_index exception is signaled if an index with the
specified key was never added to the collection.

os_collection::EQ

Possible return value of the user-supplied rank() functions, and
possible argument to os_coll_range constructors, signifying equal.

os_collection::empty()

os_int32 empty();

Returns a nonzero os_int32 if the specified collection is empty,
and 0 otherwise.

os_collection::exists()

os_int32 exists(
char *element_type_name,
char *query_string,
os_database *schema_database = 0,
char *filename,
os_unsigned_int32

) const;

Returns a nonzero os_int32 (true) if there exists an element of this
that satisfies the selection criterion expressed by the query_string .
Otherwise, 0 (false) is returned.

The argument element_type_name is the name of the element type
of this . Names established through the use of typedef are not
allowed.
102 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
The query_string is a C++ control expression indicating the query’s
selection criterion. An element e satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this .

Any string consisting of an os_int32 -valued C++ expression is
allowed, as long as

• There are no variables that are not data members.

• There are no function calls, except calls to strcmp() or strcoll() ,
calls involving a comparison operator for which the user has
defined a corresponding rank function, calls to rank functions
themselves, and calls to member functions that satisfy the
restrictions described below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Restrictions Member functions called in query strings are subject to certain
restrictions:

• The return type must be a pointer type or an arithmetic type
(int , char , float , and so on — see The Annotated C++ Reference
Manual, Section 3.6.1). If it is not, a compile-time error results.

• The function must take no arguments except the this argument.
Otherwise, a compile-time error results.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example if it returns a pointer to newly allocated
memory), memory leaks can result; ObjectStore does not free the
space the function allocates. So member functions used in paths or
queries should not allocate persistent memory or memory in the
transient heap.

Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function() . This should be defined at
file scope, for example, in the header file that contains the class
Release 5.1 103

os_collection
that defines the member function. See os_query_function() for
more information.

• Call the macro os_query_function_body() . This should be
defined at file scope in a source file that will only be compiled
into the application once. See os_query_function_body() for
more information.

Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() . This should
be defined at file scope, for example, in the header file that
contains the class that defines the member function. See os_
query_function_body_returning_ref() for more information.

• Call the macro os_query_function_body_returning_ref() . This
should be defined at file scope in a source file that will only be
compiled into the application once. See os_query_function_
body_returning_ref() for more information.

To maintain indexes keyed by paths containing member function
calls, use os_backptr::make_link() and os_backptr::break_link() .

Nested queries The query string can itself contain queries. A notation is defined
to allow the user to specify such nested queries conveniently in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one of them is picked and
returned. If no element satisfies the query, an err_coll_empty
exception is signaled.
104 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often appropriate.

If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query.

os_int32 exists(const os_bound_query&) const;

Returns a nonzero os_int32 (true) if there exists an element of this
that satisfies the os_bound_query . Otherwise, 0 (false) is returned.

os_collection::GE

Possible argument to os_coll_range constructors, signifying
greater than or equal to.

os_collection::GT

Possible return value of the user-supplied rank() functions, and
possible argument to os_coll_range constructors, signifying
greater than.

os_collection::get_behavior()

os_unsigned_int32 get_behavior() const;

Returns a bit pattern indicating the specified collection’s behavior.

os_collection::get_indexes()

os_collection *get_indexes() const;

If this has associated indexes, returns a collection of os_index_
name*s, one for each index. If this has no indexes, 0 is returned.
The caller is responsible for deleting the collection and its
contents.

os_collection::get_rep()

const os_coll_rep_descriptor &get_rep() const;

Returns a pointer to the specified collection’s currently active rep
descriptor.
Release 5.1 105

os_collection
os_collection::get_thread_locking()

static os_boolean get_thread_locking();

If nonzero is returned, collections thread locking is enabled; if 0 is
returned, collections thread locking is disabled. See os_
collection::set_thread_locking() on page 127.

os_collection::has_index()

os_int32 has_index(
const os_index_path&,
os_int32 index_options = unordered

) const;

Returns a value saying whether an index can support the index
type specified with index_options . Possible values for index_
option are ordered and unordered .

You must supply a path string and one of the index options. An
index that supports exact match queries (hash table) can only be
used for exact matches. An index that supports range queries
(binary tree) can be used for both exact match and range queries.
In effect, os_collection::has_index answers the question “can this
index support this type of query” and not what option was used
to create the index.

• For an index created with the ordered option, the following is
true:

• For an index created with the unordered option, the following
is true:

Returns a nonzero os_int32 (true) if the collection has an index
that supports the functionality of an index with the given options.
That is, an ordered index (one that supports queries of the form
“all things greater than X”) can be used as an unordered index
(one that only supports queries of the form “all things equal to
X”). However, an unordered index cannot be used as an ordered

has_index(path,os_index::ordered) Returns true

has_index(path,os_index::unordered) Returns true

has_index(path,os_index::ordered) Returns false

has_index(path,os_index::unordered) Returns true
106 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
index. See os_collection::add_index() on page 92 for additional
information.

os_collection::initialize()

static void initialize();

Must be executed in a process before any use of ObjectStore
collection or relationship functionality is made. After the first
execution of initialize() in a given process, subsequent executions
in that process have no effect.

os_collection::insert()

void insert(const void*);

Adds the specified void* to the collection for which the function
was called. If the collection is ordered, the element is inserted at
the end of the collection. If the collection disallows and signals
duplicates, and the specified void* is already present in the
collection, err_coll_duplicates is signaled. If the collection disallows
duplicates and does not signal duplicates, and the specified void*
is already present in the collection, the insertion is silently
ignored. If the collection disallows nulls, and the specified void* is
0, err_coll_nulls is signaled.

os_collection::insert_after()

void insert_after(const void*, const os_cursor&);

Adds the specified void* to the collection for which the function
was called. The new element is inserted immediately after the
element at which the specified cursor is positioned. The index of
all elements after the new element increases by 1. The cursor must
be a default cursor (that is, one that results from a constructor call
with only a single argument). If the cursor is null, err_null_cursor is
signaled. If the cursor is invalid, err_coll_illegal_cursor is signaled.
If the collection is not ordered, err_coll_not_supported is signaled. If
the collection disallows duplicates, and the specified void* is
already present in the collection, err_coll_duplicates is signaled. If
the collection disallows nulls, and the specified void* is 0, err_coll_
nulls is signaled.

void insert_after(const void*, os_unsigned_int32);

Adds the specified void* to the collection for which the function
was called. The new element is inserted after the position
Release 5.1 107

os_collection
indicated by the os_unsigned_int32 . The index of all elements
after the new element increases by 1. If the index is not less than
the collection’s cardinality, err_coll_out_of_range is signaled. If the
collection is not ordered, err_coll_not_supported is signaled. If the
collection disallows duplicates, and the specified void* is already
present in the collection, err_coll_duplicates is signaled. If the
collection disallows nulls, and the specified void* is 0, err_coll_nulls
is signaled.

os_collection::insert_before()

void insert_before(const void*, const os_cursor&);

Adds the specified void* to the collection for which the function
was called. The new element is inserted immediately before the
element at which the specified cursor is positioned. The index of
all elements after the new element increases by 1. The cursor must
be a default cursor (that is, one that results from a constructor call
with only a single argument). If the cursor is null, err_null_cursor is
signaled. If the cursor is invalid, err_coll_illegal_cursor is signaled.
If the collection is not ordered, err_coll_not_supported is signaled. If
the collection disallows duplicates, and the specified void* is
already present in the collection, err_coll_duplicates is signaled. If
the collection disallows nulls, and the specified void* is 0, err_coll_
nulls is signaled.

void insert_before(const void*, os_unsigned_int32);

Adds the specified instance of void* to the collection for which the
function was called. The new element is inserted immediately
before the position indicated by the os_unsigned_int32 . The index
of all elements after the new element increases by 1. If the index is
not less than the collection’s cardinality, err_coll_out_of_range is
signaled. If the collection is not ordered, err_coll_not_supported is
signaled. If the collection disallows duplicates, and the specified
void* is already present in the collection, err_coll_duplicates is
signaled. If the collection disallows nulls, and the specified void*
is 0, err_coll_nulls is signaled.

os_collection::insert_first()

void insert_first(const void*);

Adds the specified void* to the beginning of the collection for
which the function was called. The index of all elements after the
108 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
new element increases by 1. If the collection is not ordered, err_
coll_not_supported is signaled. If the collection disallows
duplicates, and the specified void* is already present in the
collection, err_coll_duplicates is signaled. If the collection disallows
nulls, and the specified void* is 0, err_coll_nulls is signaled.

os_collection::insert_last()

void insert_last(const void*);

Adds the specified void* to the end of the collection for which the
function was called. If the collection is not ordered, err_coll_not_
supported is signaled. If the collection disallows duplicates, and the
specified void* is already present in the collection, err_coll_
duplicates is signaled. If the collection disallows nulls, and the
specified void* is 0, err_coll_nulls is signaled.

os_collection::LE

Possible argument to os_coll_range constructors, signifying less
than or equal to.

os_collection::LT

Possible return value of the user-supplied rank() functions, and
possible argument to os_coll_range constructors, signifying less
than.

os_collection::maintain_cursors

Possible element of the bit-wise disjunction that makes up the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , and their subtypes.
Indicates that the new or changed collection should support
updates during iteration. If specified for an unordered collection,
iterations over the collection that use safe cursors are guaranteed
to visit elements that are inserted during the iteration. If specified
for an ordered collection, iterations over the collection that use
safe cursors are guaranteed to visit elements that are inserted
during the iteration, provided the element was inserted later in
the cursor’s associated order than the cursor’s position at the time
of the insertion. See also os_cursor::safe on page 149.
Release 5.1 109

os_collection
os_collection::maintain_order

Possible element of the bit-wise disjunction that makes up the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , and their subtypes.
Indicates that the new or changed collection should maintain its
elements in their order of insertion with insert() . This order is used
as the default iteration order, as well as the relevant order for the
members insert_after() , insert_before() , insert_first() , insert_last() ,
remove_at() , remove_first() , remove_last() , retrieve_first() ,
retrieve_last() , and replace_at() .

os_collection::multi_trans_add_index()

static void multi_trans_add_index(
os_reference c,
const os_index_path & p,
os_int32 index_options,
os_segment * index_seg,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans);

Creates an index into the collection specified by the os_reference
c, keyed by the specified os_index_path . This function adds the
given index to the given collection using multiple transactions.
Until the index is fully added, it is unusable. That is, the index
raises an exception if an attempt is made to insert or remove
through other means. This implies that the collection is effectively
write-locked until all the transactions needed to add the index
commit.

Function arguments • c is an os_reference to the collection to which to add the index.

• p is an os_index_path .

• index_options is the same as it is for add_index .

• index_seg is the segment in which to create the index (just like
add_index).

• scratch_seg is a segment that is used internally and can be
deleted when the function returns. It cannot be os_
segment::get_transient_segment() .

• num_per_trans is the number of collection elements to insert
into the collection per transaction.

If the multi_trans_add_index operation fails partway through, os_
collection::drop_index() can be used.
110 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection::multi_trans_drop_index()

static void multi_trans_drop_index(
os_reference c,
const os_index_path & p,
os_segment * scratch_seg,
os_unsigned_int32 num_per_trans);

Destroys the index into the specified collection whose key is
specified by p. This differs from os_collection::drop_index() only
in that index maintenance is done using multiple transactions.

The index is unusable while it is being removed. The index raises
an exception if an attempt is made to insert or remove it by other
means. This means that the collection is effectively write-locked
until all the transactions needed to remove the index commit.

Function arguments • c is an os_reference to the collection from which the index
should be removed.

• p is an os_index_path .

• scratch_seg is the segment that is used internally and can be
deleted when the function returns. It cannot be os_
segment::get_transient_segment() .

• num_per_trans is the number of collection elements to update
per transaction.

Ifs the multi_trans_drop_index operation fails partway through,
os_collection::drop_index() can be used.

os_collection::NE

Possible argument to os_coll_range constructors, signifying not
equal to.

os_collection::only()

void* only() const;

Returns the only element of the specified collection. If the
collection has more than one element, err_coll_not_singleton is
signaled. If the collection is empty, err_coll_empty is signaled,
unless the collection has behavior os_collection::pick_from_
empty_returns_null , in which case 0 is returned.
Release 5.1 111

os_collection
os_collection::operator os_int32()

operator os_int32() const;

Returns a nonzero os_int32 if the specified collection is not empty,
and 0 otherwise.

os_collection::operator os_array&()

operator os_array&();

Returns an array with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of arrays.

os_collection::operator const os_array&()

operator const os_array&() const;

Returns a const array with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of arrays.

os_collection::operator os_bag&()

operator os_bag&();

Returns a bag with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of bags.

os_collection::operator const os_bag&()

operator const os_bag&() const;

Returns a const bag with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of bags.

os_collection::operator os_list&()

operator os_list&();

Returns a list with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of lists.

os_collection::operator const os_list&()

operator const os_list&() const;
112 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Returns a const list with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of lists.

os_collection::operator os_set&()

operator os_set&();

Returns a set with the same elements and behavior as the specified
collection. An exception is signaled if the collection’s behavior is
incompatible with the required behavior of sets.

os_collection::operator const os_set&()

operator const os_set&() const;

Returns a const set with the same elements and behavior as the
specified collection. An exception is signaled if the collection’s
behavior is incompatible with the required behavior of sets.

os_collection::operator ==()

os_int32 operator ==(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) == s.count(element) and both collections
have the same cardinality. Note that the comparison does not take
order into account.

os_int32 operator ==(const void* s) const;

Returns a nonzero value if and only if the collection contains s and
nothing else.

os_collection::operator !=()

os_int32 operator !=(const os_collection &s) const;

Returns a nonzero value if and only if it is not the case both that
(1) for each element in the this collection count(element) ==
s.count(element) , and (2) both collections have the same
cardinality. Note that the comparison does not take order into
account.

os_int32 operator !=(const void* s) const;

Returns a nonzero value if and only if it is not the case that the
collection contains s and nothing else.
Release 5.1 113

os_collection
os_collection::operator <()

os_int32 operator <(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) <= s.count(element) and
cardinality() < s.cardinality() .

os_int32 operator <(const void* s) const;

Returns a nonzero value if and only if the specified collection is
empty.

os_collection::operator <=()

os_int32 operator <=(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this
collection count(element) <= s.count(element) .

os_int32 operator <=(const void* s) const;

Returns a nonzero value if and only if the specified collection is
empty or e is the only element in the collection.

os_collection::operator >()

os_int32 operator >(const os_collection &s) const;

Returns a nonzero value if and only if for each element of s,
count(element) >=s.count(element) and cardinality() >
s.cardinality() .

os_int32 operator >(const void* s) const;

Returns a nonzero value if and only if count(s) >= 1 and
cardinality() > 1 .

os_collection::operator >=()

os_int32 operator >=(const os_collection &s) const;

Returns a nonzero value if and only if for each element of s,
count(element) >=s.count(element) .

os_int32 operator >=(const void* s) const;

Returns a nonzero value if and only if count(s) >= 1 .

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
114 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.

os_collection::operator =()

os_collection &operator =(const os_collection &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_collection &operator =(const void* e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_collection::operator |=()

os_collection &operator |=(const os_collection &s);

Inserts the elements contained in s into the target collection, and
returns the target collection.

os_collection &operator |=(const void* e);

Inserts the element e into the target collection, and returns the
target collection.

os_collection::operator |()

os_collection &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_collection &operator |(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c |= e. The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.
Release 5.1 115

os_collection
os_collection::operator &=()

os_collection &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. If the collection is ordered and contains
duplicates, it does so by retaining the appropriate number of
leading elements. It returns the target collection.

os_collection &operator &=(const void* e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_collection::operator &()

os_collection &operator &(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_collection &operator &(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c &= e . The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.

os_collection::operator –=()

os_collection &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. If the
collection is ordered it is the first s.count(e) elements that are
removed. It returns the target collection.

os_collection &operator –=(const void* e);

Removes the element e from the target collection. If the collection
is ordered, it is the first occurrence of the element that is removed
from the target collection. It returns the target collection.
116 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection::operator -()

os_collection &operator -(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If both
operands maintain order, the result does. The result does not
maintain cursors or signal duplicates.

os_collection &operator -(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c –= e. The new collection, c, is then returned. If this
allows duplicates, maintains order, or allows nulls, the result
does. The result does not maintain cursors or signal duplicates.

os_collection::order_by_address

Possible argument to cursor constructor, indicating that the
cursor’s associated ordering is the order in which elements appear
in persistent memory.

If you dereference each collection element as you retrieve it, and
the objects pointed to by collection elements do not all fit in the
client cache at once, this order can dramatically reduce paging
overhead. An order-by-address cursor is update insensitive.

os_collection::ordered

Used as an argument to os_collection::add_index , to specify that
an ordered index (B-tree) is to be maintained. Use of os_index_
path::ordered is now preferred.

os_collection::pick()

void* pick() const;

Returns an arbitrary element of the specified collection. If the
collection is empty, err_coll_empty is signaled, unless the collection
has behavior os_collection::pick_from_empty_returns_null , in
which case 0 is returned.

void* pick(
const os_index_path &path,
const os_coll_range &range

) const;
Release 5.1 117

os_collection
Returns an element of the specified collection such that the result
of applying path to the element is a value that satisfies range (see
the class os_coll_range on page 138). If there is no such element,
err_coll_empty is signaled, unless the collection has behavior pick_
from_empty_returns_null , in which case 0 is returned.

os_collection::pick_from_empty_returns_null

Possible disjunct of the bit-wise disjunction composing the
behavior argument to the create() and change_behavior()
members of os_collection , os_Collection , and their subtypes.
Indicates that only() and pick() should return 0 when performed
on empty collections. Without this behavior, performing these on
empty collections provokes the exception err_coll_empty.

os_collection::query()

os_collection &query(
char *element_type_name,
char *query_string,
os_database *schema_database = 0,
char *file_name = 0,
os_unsigned_int32 line = 0,
os_boolean dups = query_dont_preserve_duplicates

) const;

Returns a reference to a heap-allocated collection containing those
elements of this that satisfy the selection criterion expressed by the
query_string . When you no longer need the resulting collection,
you should reclaim its memory with ::operator delete() to avoid
memory leaks.

The argument element_type_name is the name of the element type
of this . Names established through the use of typedef are not
allowed.

The query_string is a C++ control expression indicating the query’s
selection criterion. An element, e, satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this .

Any string consisting of an os_int32 -valued C++ expression is
allowed, as long as

• There are no variables that are not data members.
118 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• There are no function calls, except calls to strcmp() or strcoll() ,
calls involving a comparison operator for which the user has
defined a corresponding rank function, and calls to member
functions that satisfy the restrictions listed below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Restrictions Member functions called in query strings are subject to certain
restrictions:

• The return type must be a pointer type or an arithmetic type
(int , char , float , and so on — see The Annotated C++ Reference
Manual, Section 3.6.1). If it is not, a compile-time error results.

• The function must take no arguments except the this argument.
Otherwise, a compile-time error results.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example, if it returns a pointer to newly
allocated memory), memory leaks can result; ObjectStore does not
free the space the function allocates. So member functions used in
paths or queries should not allocate persistent memory or
memory in the transient heap.

Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function() . This should be defined at
file scope, for example, in the header file that contains the class
that defines the member function. See os_query_function() for
more information.

• Call the macro os_query_function_body() . This should be
defined at file scope in a source file that will only be compiled
into the application once. See os_query_function_body() for
more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.
Release 5.1 119

os_collection
Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() . This should
be defined at file scope, for example, in the header file that
contains the class that defines the member function. See os_
query_function_body_returning_ref() for more information.

• Call the macro os_query_function_body_returning_ref() . This
should be defined at file scope in a source file that will only be
compiled into the application once. See os_query_function_
body_returning_ref() for more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Nested queries The query string can itself contain queries. A notation is defined
to allow the user to specify such nested queries conveniently in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one of them is picked and
returned.

A nested query returning a collection is converted to an os_int32
when appropriate, using os_collection::operator os_int32() .
120 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often appropriate.

ObjectStore uses file_name and line when reporting errors related
to the query. You can set them to identify the location of the
query’s source code.

If dups is the enumerator query_dont_preserve_duplicates ,
duplicate elements that satisfy the query condition are not
included in the query result. If dups is the enumerator query_
preserve_duplicates , duplicate elements that satisfy the query
condition are included in the query result.

If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query.

os_collection &query(
const os_bound_query&,
os_boolean dups = query_dont_preserve_duplicates

) const;

Returns a reference to a heap-allocated collection containing those
elements of this that satisfy the os_bound_query . If dups is the
enumerator query_dont_preserve_duplicates , duplicate elements
that satisfy the query condition are not included in the query
result. If dups is the enumerator query_preserve_duplicates ,
duplicate elements that satisfy the query condition are included in
the query result.

When you no longer need the resulting collection, you should
reclaim its memory with ::operator delete() to avoid memory
leaks.

os_collection::query_pick()

void *query_pick(
char *element_type_name,
char *query_string,
os_database *schema_database = 0,
char *filename,
os_unsigned_int32 line=0

) const;
Release 5.1 121

os_collection
Returns an element of this that satisfies the selection criterion
expressed by the query_string . If there is more than one such
element, one is picked arbitrarily and returned. If no element
satisfies the query or the collection is empty, 0 is returned.

The argument element_type_name is the name of the element type
of this . Names established through the use of typedef are not
allowed.

The query_string is a C++ control expression indicating the query’s
selection criterion. An element, e, satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this .

Any string consisting of an os_int32 -valued C++ expression is
allowed, as long as

• There are no variables that are not data members.

• There are no function calls, except calls to strcmp() or strcoll() ,
calls involving a comparison operator for which the user has
defined a corresponding rank function, and calls to member
functions that satisfy the restrictions listed below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Member functions called in query strings are subject to certain
restrictions:

• The return type must be a pointer type or an arithmetic type
(int , char , float , and so on — see The Annotated C++ Reference
Manual, Section 3.6.1). If it is not, a compile-time error results.

• The function must take no arguments except the this argument.
Otherwise, a compile-time error results.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example, if it returns a pointer to newly
allocated memory), memory leaks can result; ObjectStore does not
free the space the function allocates. So member functions used in
paths or queries should not allocate persistent memory or
memory in the transient heap.
122 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function() .

• Call the macro os_query_function_body() .

• Call the macro OS_MARK_QUERY_FUNCTION() .

Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() .

• Call the macro os_query_function_body_returning_ref() .

• Call the macro OS_MARK_QUERY_FUNCTION() .

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Nested queries The query string can itself contain queries. A notation is defined
to allow the user to specify such nested queries conveniently in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one is picked arbitrarily and
returned. If no element satisfies the query, 0 is returned.

The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
Release 5.1 123

os_collection
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often appropriate.

If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query.

void *query_pick(const os_bound_query&) const;

Returns an element of this that satisfies the os_bound_query . If
there is more than one such element, one is picked arbitrarily and
returned. If no element satisfies the query or the collection is
empty, 0 is returned.

os_collection::remove()

os_int32 remove(const void*);

Removes the specified void* from the collection for which the
function was called, if the void* is an element of the collection. If
the collection is ordered, the first occurrence of the specified void*
is removed. Returns a nonzero os_int32 if an element was
removed, 0 otherwise.

os_collection::remove_at()

void remove_at(const os_cursor&);

Removes from the specified collection the element at which the
cursor is positioned. The position of all elements after the
removed element decreases by 1. The cursor must be a default
cursor (that is, one that results from a constructor call with only a
single argument). If the cursor is not positioned at an element, err_
coll_illegal_cursor is signaled. If the collection is not ordered, err_
coll_not_supported is signaled.

void remove_at(os_unsigned_int32 position);

Removes from the specified collection the element with the
specified position. The position of all elements after the removed
element decreases by 1. If the position is not less than the
collection’s cardinality, err_coll_out_of_range is signaled. If the
collection is not ordered, err_coll_not_supported is signaled.

os_collection::remove_first()

os_int32 remove_first(const void*&);
124 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Removes the first element from the specified collection, if the
collection is not empty; returns a nonzero os_int32 if the collection
was not empty, 0 otherwise; and modifies its argument to refer to
the removed element. If the specified collection is not ordered, err_
coll_not_supported is signaled.

void* remove_first();

Removes the first element from the specified collection; returns
the removed element, or 0 if the collection was empty. Note that
for collections that allow null elements, the significance of the
return value can be ambiguous. The alternative overloading of
remove_first() , above, can be used to avoid the ambiguity. If the
specified collection is not ordered, err_coll_not_supported is
signaled.

os_collection::remove_last()

os_int32 remove_last(const void*&);

Removes the last element from the specified collection, if the
collection is not empty; returns a nonzero os_int32 if the collection
was not empty, and modifies its argument to refer to the removed
element. If the specified collection is not ordered, err_coll_not_
supported is signaled.

void* remove_last();

Removes the last element from the specified collection; returns the
removed element, or 0 if the collection was empty. Note that for
collections that allow null elements, the significance of the return
value can be ambiguous. The alternative overloading of remove_
first() , above, can be used to avoid the ambiguity. If the specified
collection is not ordered, err_coll_not_supported is signaled.

os_collection::replace_at()

void* replace_at(const void*, const os_cursor&);

Returns the element at which the specified cursor is positioned,
and replaces it with the specified void* . The cursor must be a
default cursor (that is, one that results from a constructor call with
only a single argument). If the cursor is null, err_coll_null_cursor is
signaled. If the cursor is nonnull but not positioned at an element,
err_coll_illegal_cursor is signaled.

void* replace_at(const void*, os_unsigned_int32 position);
Release 5.1 125

os_collection
Returns the element with the specified position, and replaces it
with the specified void* . If the position is not less than the
collection’s cardinality, err_coll_out_of_range is signaled. If the
collection is not ordered, err_coll_not_supported is signaled.

os_collection::retrieve()

void* retrieve(const os_cursor&) const;

Returns the element at which the specified cursor is positioned.
The cursor must be a default cursor (that is, one that results from
a constructor call with only a single argument). If the cursor is
null, err_coll_null_cursor is signaled. If the cursor is nonnull but not
positioned at an element, err_coll_illegal_cursor is signaled.

void* retrieve(os_unsigned_int32 position) const;

Returns the element with the specified position. If the position is
not less than the collection’s cardinality, err_coll_out_of_range is
signaled. If the collection is not ordered, err_coll_not_supported is
signaled.

os_collection::retrieve_first()

void* retrieve_first() const;

Returns the specified collection’s first element, or 0 if the
collection is empty. For collections that contain zeros, see the other
overloading of this function, below. If the collection is not
ordered, err_coll_not_supported is signaled.

os_int32 retrieve_first(const void*&) const;

Returns 0 if the specified collection is empty; returns a nonzero
os_int32 otherwise. Modifies the argument to refer to the
collection’s first element. If the collection is not ordered, err_coll_
not_supported is signaled.

os_collection::retrieve_last()

void* retrieve_last() const;

Returns the specified collection’s last element, or 0 if the collection
is empty. For collections that contain zeros, see the other
overloading of this function, below. If the collection is not
ordered, err_coll_not_supported is signaled.

os_int32 retrieve_last(const void*&) const;
126 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Returns 0 if the specified collection is empty; returns a nonzero
os_int32 otherwise. Modifies the argument to refer to the
collection’s last element. If the collection is not ordered, err_coll_
not_supported is signaled.

os_collection::set_query_memory_mode()

static void set_query_memory_mode(
os_query_memory_mode mode);

os_query_memory_mode is an enumeration type whose
enumerators are:

os_query_memory_mode_none — Use this mode when you know
you are doing small or well optimized queries and do not want to
incur even a small amount of overhead. This mode is the default
when the query is being executed in a nested transaction.

os_query_memory_mode_normal — Marks the address space at
the start of the query. If at any time during the query address
space runs out, the query is restarted from the beginning using
low memory mode.

Use this mode if your application typically does not run queries
that use large amounts of address space, but you still want to
safeguard against running out of address space. This mode is the
default for queries being executed in nonnested transactions.

os_query_memory_mode_low — Marks the address space at the
start of the query. Put the results in a collection of references.
Catch the err_address_space_full exception inside the query
processor. When the exception is signaled, release the address
space and continue the query from where it left off. At the end of
the query, a final release is performed.

Use this mode for running large queries that can use a great deal
of address space. This mode requires some overhead, but ensures
the query completes without restarting.

os_collection::set_thread_locking()

static void set_thread_locking(os_boolean);

Collections thread locking is enabled by default when you link
with a threads library. To enable collections thread locking
explicitly, pass a nonzero value. ObjectStore thread locking must be
Release 5.1 127

os_collection
enabled at the time of the call for this to have any effect. To disable
collections thread locking, pass 0 to this function.

If your application uses multiple threads, and the synchronization
coded in your application allows two threads to be within the
collections or queries libraries at the same time, you need
collections thread locking enabled. See also objectstore::set_
thread_locking() .

os_collection::update_cardinality()

os_unsigned_int32 update_cardinality();

Updates the value returned by os_collection::cardinality_
estimate() , by scanning the collection and computing the actual
cardinality. Before you add a new index to an os_ixonly_bc
collection, call this function. If you do not, add_index() will work
correctly, but less efficiently than if you do.
128 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection_size

This class serves as a formal argument to an overloading of the
collection subtype constructors. It is used to specify the new
collection’s expected size. An integer type is not used as the
formal in order to prevent certain undesirable conversions and
conversion ambiguities. The actual argument supplied to the
collection constructors can be an os_int32 , since os_collection_size
defines a conversion constructor, os_collection_size::os_
collection_size(os_int32) .

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.
Release 5.1 129

os_coll_query
os_coll_query

Instances of this class are query objects. For more information on
query objects, see Preanalyzed Queries in the ObjectStore Advanced
C++ API User Guide

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_coll_query::create()

static const os_coll_query &create(
const char *element_type,
const char *query_string,
os_database *schema_database,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates a query object, possibly with free variables and function
references. The query object can be used to create an os_bound_
query , which can then be executed with os_collection::query() .

The argument element_type is the name of the element type of
this . Names established through the use of typedef are not
allowed.

The query_string is a C++ control expression indicating the query’s
selection criterion. An element, e, satisfies the selection criterion if
the control expression evaluates to a nonzero os_int32 (true) when
e is bound to this . Only some kinds of function calls are allowed
in the query string. See “Restrictions on member functions in
query strings” on page 131 for more information.

The schema_database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often appropriate.
If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query.

If cache_query is a nonzero os_int32 (true), the query object is
allocated in the schema segment of the database specified. If the
130 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
database specified is the transient database, the object is allocated
in the schema segment of the application schema database. If
cache_query is zero (the default), the object is transiently allocated
and the user is responsible for deleting it.

file_name , if supplied, should be the name of the source file
containing the call to create() . It is used only if an error is signaled
during query analysis. Its sole purpose is to allow the resulting
error message to make reference to the source file containing the
code that caused an error.

line , if supplied, should be the number of the line in the source file
on which the call to create() appears. It is used only if an error is
signaled during query analysis. Its sole purpose is to allow the
resulting error message to make reference to the source file line
containing the code that caused an error.

Restrictions on
member functions in
query strings

Any string consisting of an os_int32 -valued C++ expression is
allowed in a query string, as long as

• Variables are also data members of the elements of the
collection.

• For local variables (free references), you create an os_coll_
query object.

• For global functions (free references), you create an os_coll_
query object.

• There are no function calls, except calls to strcmp() or strcoll() ,

• There are no comparison operators for which the user might be
required to define a corresponding rank/hash function.

• There are no calls to member functions that satisfy the
restrictions listed below.

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies.

Restrictions Functions called in query strings are subject to certain restrictions:

• The return type can be a basic type (int , char , float , char*).

• If the function is a member function it can also return a pointer
or a reference to a class type.
Release 5.1 131

os_coll_query
• The function can take up to two arguments. The first argument
must be a pointer. For member functions this is the implied first
argument.

• Global functions are free references and must be used in an os_
coll_query object.

• Member functions can be used like data members.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example if it returns a pointer to newly allocated
memory), memory leaks can result; ObjectStore does not free the
space the function allocates. So member functions used in paths or
queries should not allocate persistent memory or memory in the
transient heap.

Member function in a
query string

Applications that use a member function (not returning a
reference) in a query string must do four things:

• Define an os_backptr -valued data member in the class that
defines the member function. It must precede the member
function declaration in the class definition.

• Call the macro os_query_function() . This should be defined at
file scope, for example, in the header file that contains the class
that defines the member function. See os_query_function() for
more information.

• Call the macro os_query_function_body() . This should be
defined at file scope in a source file that will only be compiled
into the application once. See os_query_function_body() for
more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

Member function,
returning a reference,
in a query string

For applications that use a member function that returns a
reference in a query string, you must do the following four things:

• Define an os_backptr -valued data member in the class that
defines the member function.

• Call the macro os_query_function_returning_ref() . This should
be defined at file scope, for example, in the header file that
132 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
contains the class that defines the member function. See os_
query_function_body_returning_ref() for more information.

• Call the macro os_query_function_body_returning_ref() . This
should be defined at file scope in a source file that will only be
compiled into the application once. See os_query_function_
body_returning_ref() for more information.

• Call the macro OS_MARK_QUERY_FUNCTION() . This macro
should be invoked in the schema source file. See OS_MARK_
QUERY_FUNCTION() on page 268 for more information.

To maintain indexes keyed by paths containing member function
calls, use os_backptr::make_link() and os_backptr::break_link() .

The query string can itself contain queries. A notation is defined
to allow the user to conveniently specify such nested queries in a
single call to a query member function.

A nested collection-valued query has the form

collection-expression [: os_int32-expression :]

where collection-expression is an expression of type os_Collection ,
and os_int32-expression is the selection criterion for the nested
query.

A nested single-element query has the form

collection-expression [% os_int32-expression %]

where collection-expression and os_int32-expression are as for nested
collection-valued queries. This form evaluates to one element of
collection-expression. If there is more than one element that satisfies
the nested query’s selection criterion, one of them is picked and
returned.

A nested query returning a collection is converted to an os_int32
when appropriate, using os_collection::operator os_int32() .

static const os_coll_query &create(
const char *element_type,
const char *query_string,
os_segment *schema,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);
Release 5.1 133

os_coll_query
Creates a query object, possibly with free variables and function
references. The query object can be used to create an os_bound_
query . The arguments are the same as those for the previous
version of create() , except the schema database is specified with a
pointer to one of its segments.

static const os_coll_query &create(
const char *element_type,
const char *query_string,
void *schema,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates a query object, possibly with free variables and function
references. The query object can be used to create an os_bound_
query . The arguments are the same as those for the previous
version of create() , except the schema database is specified with a
pointer to an object it contains.

os_coll_query::create_exists()

static const os_coll_query &create_exists(
const char *element_type,
const char *query_string,
os_database *schema_database,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates an existential query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::exists() . The arguments are the same as those for os_
coll_query::create() on page 130, except the schema database is
specified with a pointer to its os_database .

static const os_coll_query &create_exists(
const char *element_type,
const char *query_string,
os_segment *schema_database_segment,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);
134 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Creates an existential query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::exists() . The arguments are the same as those for the
previous version of create_exists() , except the schema database is
specified with a pointer to one of its segments.

static const os_coll_query &create_exists(
const char *element_type,
const char *query_string,
void *schema_database_object,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates an existential query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::exists() . The arguments are the same as those for the
previous version of create_exists() , except the schema database is
specified with a pointer to an object it contains.

os_coll_query::create_pick()

static const os_coll_query &create_pick(
const char *element_type,
const char *query_string,
os_database *schema_database,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates a single-element query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::query_pick() . The arguments are the same as those for
os_coll_query::create() .

static const os_coll_query &create_pick(
const char *element_type,
const char *query_string,
os_segment *schema_database_segment,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);
Release 5.1 135

os_coll_query
Creates a single-element query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::query_pick() . The arguments are the same as those for
the previous version of create_pick() , except the schema database
is specified with a pointer to one of its segments.

static const os_coll_query &create_pick(
const char *element_type,
const char *query_string,
void *schema_database_object,
os_boolean cache_query = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

);

Creates a single-element query object, possibly with free variables
and function references. The query object can be used to create an
os_bound_query , which can then be executed with os_
collection::query_pick() . The arguments are the same as those for
the previous version of create_pick() , except the schema database
is specified with a pointer to an object it contains.

os_coll_query::destroy()

static void destroy(const os_coll_query&);

Deletes the specified instance of os_coll_query . This is the same as
calling delete for the os_coll_query object.

os_coll_query::get_element_type()

const char *get_element_type() const;

Returns a string naming the element type supplied when the
specified os_coll_query was created.

os_coll_query::get_query_string()

const char *get_query_string() const;

Returns the query string supplied when the specified os_coll_
query was created.

os_coll_query::get_file_name()

const char *get_file_name() const;

Returns the file name supplied when the specified os_coll_query
was created.
136 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_coll_query::get_line_number()

os_unsigned_int32 get_line_number() const;

Returns the line number supplied when the specified os_coll_
query was created.
Release 5.1 137

os_coll_range
os_coll_range

An instance of this class can be used to represent a selection
criterion for collection elements. Each os_coll_range is associated
with either a particular value or range of values. They can be used
as argument to the os_Cursor constructor to create a restricted
cursor, or as arguments to os_Dictionary::pick() .

os_coll_range::os_coll_range()

The constructor for os_coll_range has several overloadings. Each
overloading falls into one of the following two groups:

• Overloadings that specify a lower bound only or an upper
bound only (for example, “all values less than or equal to 7”)

• Overloadings that specify both a lower and upper bound on a
range of values (for example, “all values greater than 4 and less
than or equal to 7”)

In each of these two groups, there is one overloading for each C++
fundamental type of value, and one for the type void* . To specify
a range for any type of pointer value, use a void* overloading and
pass a pointer to the value to serve as upper or lower bound.

Overloadings that
specify a boundary
only

os_coll_range(
os_collection::restriction rel_op,
unsigned char value

);

os_coll_range(
os_collection::restriction rel_op,
short value

);

os_coll_range(
os_collection::restriction rel_op,
os_signed_int8

);

os_coll_range(
os_collection::restriction rel_op,
unsigned short value

);

os_coll_range(
os_collection::restriction rel_op,
int value

);
138 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_coll_range(
os_collection::restriction rel_op,
unsigned int value

);

os_coll_range(
os_collection::restriction rel_op,
long value

);

os_coll_range(
os_collection::restriction rel_op,
float value

);

os_coll_range(
os_collection::restriction rel_op,
double value

);

os_coll_range(
os_collection::restriction rel_op,
long double value

);

os_coll_range(
os_collection::restriction rel_op,
const void* value

);

These construct an os_coll_range satisfied by all values that bear
the relation rel_op to value . The argument rel_op should be coded
as one of the following enumerators:

• os_collection::EQ (equal to)

• os_collection::NE (not equal to)

• os_collection::LT (less than)

• os_collection::LE (less than or equal to)

• os_collection::GT (greater than)

• os_collection::GE (greater than or equal to)

Overloadings that
specify a range

os_coll_range(
os_collection::restriction rel_op1,
unsigned char value1,
os_collection::restriction rel_op2,
unsigned char value2);

os_coll_range(
os_collection::restriction rel_op1,
int value1,
os_collection::restriction rel_op2,
Release 5.1 139

os_coll_range
int value2);

os_coll_range(
os_collection::restriction rel_op1,
unsigned int value1,
os_collection::restriction rel_op2,
unsigned int value2

);

os_coll_range(
os_collection::restriction rel_op1,
short value1,
os_collection::restriction rel_op2,
short value2

);

os_coll_range(
os_collection::restriction rel_op1,
unsigned short value1,
os_collection::restriction rel_op2,
unsigned short value2

);

os_coll_range(
os_collection::restriction rel_op1,
os_signed_int8 value1,
os_collection::restriction rel_op2,
os_signed_int8 value2

);

os_coll_range(
os_collection::restriction rel_op1, long value1,
os_collection::restriction rel_op2, long value2

);

os_coll_range
os_collection::restriction rel_op1,
unsigned long value1,
os_collection::restriction rel_op2,
unsigned long value2

);

os_coll_range
os_collection::restriction rel_op1,
float value1,
os_collection::restriction rel_op2,
float value2

);

os_coll_range
os_collection::restriction rel_op1,
double value1,
os_collection::restriction rel_op2,
double value2
140 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
);

os_coll_range
os_collection::restriction rel_op1,
long double value1,
os_collection::restriction rel_op2,
long double value2

);

os_coll_range
os_collection::restriction rel_op1,
const void *value1,
os_collection::restriction rel_op2,
const void *value2

);

Each of these constructs an os_coll_range satisfied by all values
that bear both the relation rel_op1 to value1 and the relation rel_
op2 to value2 . The arguments rel_op1 and rel_op2 should be one
of the following enumerators:

Examples When the value type is char* , these relations are defined in terms
of strcmp() . When the value type is a pointer to a user-defined
class object, the user must supply rank/hash functions.

The following example is satisfied by all int s greater than 4 and
less than or equal to 7.

os_coll_range(os_collection::GT, 4, os_collection::LE, 7)

Do not specify the null range, for example,

os_coll_range(os_collection::LT, 4, os_collection::GT, 7)

Do not specify a discontinuous range, for example,

os_coll_range(os_collection::GT, 4, os_collection::NE, 7)

If you do, the exception err_am is signaled, and the following
message is issued:

Enumerator Meaning

os_collection::EQ Equal to

os_collection::NE Not equal to

os_collection::LT Less than

os_collection::LE Less than or equal to

os_collection::GT Greater than

os_collection::GE Greater than or equal to
Release 5.1 141

os_coll_range
No handler for exception:
<maint-0023-0001>invalid restriction on unordered index (err_am)
142 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_coll_rep_descriptor

The class os_coll_rep_descriptor has no direct instances. Each
instance is a direct instance of one of its subtypes:

Each instance has an associated cardinality range. In addition,
each instance can contain a pointer to another os_coll_rep_
descriptor . A list of descriptors linked together in this way
designates a representation policy, a mapping from cardinality to
representation type. How a collection’s representation changes in
response to cardinality changes is determined by the policy (if
any) associated with that collection.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_coll_rep_descriptor::allowed_behavior()

os_unsigned_int32 allowed_behavior() const;

Returns a bit-wise disjunction of enumerators indicating this
representation’s allowed behaviors. See os_Collection::create() on
page 64.

os_coll_rep_descriptor::copy()

os_coll_rep_descriptor ©(os_segment*) const;

Creates a copy of the specified descriptor, allocated in the
specified segment, and returns a reference to the copy.

os_coll_rep_descriptor::get_grow_rep_descriptor()

os_coll_rep_descriptor *get_grow_rep_descriptor() const;

Returns a pointer to the os_coll_rep_descriptor that becomes
active when the cardinality increases past the growth threshold of
the specified os_coll_rep_descriptor .

os_chained_list_descriptor os_ptr_bag_descriptor

os_ixonly_bc_descriptor os_ptr_hash_descriptor

os_ixonly_descriptor os_tinyarray_descriptor

os_packed_list_descriptor os_ordered_ptr_hash_descriptor
Release 5.1 143

os_coll_rep_descriptor
os_coll_rep_descriptor::get_max_size()

os_unsigned_int32 get_max_size() const;

Returns the maximum size of the specified descriptor.

os_coll_rep_descriptor::get_min_size()

os_unsigned_int32 get_min_size() const;

Returns the minimum size of the specified descriptor.

os_coll_rep_descriptor::rep_enum()

os_int32 rep_enum() const;

Returns an enumerator used to designate this representation type.
See os_Collection::create() on page 64.

os_coll_rep_descriptor::rep_name()

char *rep_name() const;

Returns the name of this representation type. It is the user’s
responsibility to deallocate the returned string when it is no
longer needed.

os_coll_rep_descriptor::required_behavior()

os_unsigned_int32 required_behavior() const;

Returns a bit-wise disjunction of enumerators indicating this
representation’s required behaviors. See os_Collection::create()
on page 64.
144 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Cursor

template <class E>
class os_Cursor : public os_cursor

An instance of this class serves to record the state of an iteration
by pointing to the current element of an associated collection. A
cursor’s associated collection is specified when the cursor is
created. The user can position the cursor in a relative fashion
(using next() and previous()) or in absolute fashion (using first()
and last()). The current element is retrieved using the positioning
functions or retrieve() .

You can allocate a cursor in either transient or persistent memory.

Every cursor has an associated ordering for the elements of its
associated collection. This ordering can be the order in which
elements appear in the collection (for ordered collections), an
arbitrary order (for unordered collections), the order in which
elements appear in persistent memory (see os_collection::order_
by_address on page 117), or an order based on an attribute or path
of the elements. In the last case, the order is specified by an os_
index_path specified when the cursor is created.

If a cursor is positioned at a collection’s last element (in the
cursor’s associated ordering) and next() is performed on it, the
cursor becomes null. Similarly, if a cursor is positioned at a
collection’s first element (in the cursor’s associated ordering) and
previous() is performed on it, the cursor becomes null. In other
words, a cursor becomes null when it is either advanced past the
last element or positioned before the first element. The function
os_cursor::more() returns a nonzero os_int32 (true) if the specified
cursor is not null, and returns 0 (false) if it is null.

If a cursor is positioned at an element of a collection, and then that
element is removed from the collection, the cursor becomes
invalid. Repositioning such a cursor has undefined results, unless
the flag os_cursor::safe was passed to the cursor constructor
when the cursor was created, and the cursor’s associated
collection was created with os_collection::maintain_cursors
behavior (see os_collection::create() on page 99). The function os_
cursor::valid() returns nonzero (true) if the specified cursor is
valid, and returns 0 (false) if it is invalid.
Release 5.1 145

os_Cursor
The states null and invalid are mutually exclusive.

For a safe cursor whose associated collection maintains cursors,
an invalid cursor’s position is defined in terms of the immediate
successor, s, of the removed element just prior to removal: such a
cursor’s position immediately after the removal is between s and
the immediate predecessor, p, of s. This means performing next()
on the cursor moves the cursor to s, and performing previous()
moves the cursor to p.

If an invalid cursor is between an element, s, and the predecessor
of s, p, and then elements are inserted between p and s, the cursor
is then positioned between s and the new immediate predecessor,
p’ , of s.

In addition, whenever an invalid cursor is between an element, s,
and its predecessor, p, removal of s results in repositioning the
cursor so that it is between p and s’s immediate successor, and
removal of p results in repositioning the cursor so that it is
between s and p’s immediate predecessor.

A safe cursor whose associated collection maintains cursors has
the following behavior during iteration:

• Any element that has been removed and not yet visited will not
be visited.

• If the cursor’s associated order is arbitrary, elements inserted
during the iteration will be visited exactly once.

null invalid valid

collection element

removed from collection

null

a cursor

Key:

validvalid
146 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• If the iteration order was specified by an os_index_path ,
elements inserted before the current cursor position will not be
visited, while those inserted after will be visited.

The class os_Cursor is parameterized, with a parameter indicating
the element type of the associated collection — if an attempt is
made to associate a cursor with a collection whose element type
does not match the cursor’s parameter, a compile-time error
results. (For the nonparameterized version of this class, see os_
cursor on page 153.) This means that when specifying os_Cursor
as a function’s formal parameter, or as the type of a variable or
data member, you must specify the parameter (the cursor’s
element type). This is accomplished by appending to os_Cursor the
name of the element type enclosed in angle brackets, < >:

os_Cursor< element-type-name >

The parameter E occurs in the signatures of some of the functions
described below. The parameter is used by the compiler to detect
type errors.

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_Cursor::first()

E first();

Locates the specified cursor at the first element, in the cursor’s
associated ordering, of the cursor’s associated collection. The first
element is returned. If the collection is empty, the cursor is set to
null and 0 is returned.

os_Cursor::insert_after()

void insert_after(const E p) const;

Inserts p into the cursor’s associated collection immediately after
the cursor’s current location. If performed on a null cursor, err_
coll_null_cursor is signaled. If the collection is an array, all elements
after this one being inserted will be pushed down.

os_Cursor::insert_before()

void insert_before(const E p) const;
Release 5.1 147

os_Cursor
Inserts p into the cursor’s associated collection immediately
before the cursor’s current location. If performed on a null cursor,
err_coll_null_cursor is signaled. If the collection is an array, all
elements after this one being inserted will be pushed down.

os_Cursor::last()

E last();

Locates the specified cursor at the last element, in the cursor’s
associated ordering, of the cursor’s associated collection. The last
element is returned. If the collection is empty, the cursor is set to
null and 0 is returned.

os_Cursor::more()

os_int32 more();

Returns a nonzero os_int32 (true) if the specified cursor is not null,
that is, if the cursor is located at an element of the specified set or
is invalid. The function returns 0 (false) otherwise.

os_Cursor::next()

E next();

Advances the specified cursor to the immediate next element of
the cursor’s associated collection, according to the cursor’s
associated ordering. The next element is returned. If there is no
next element, or if the set is empty, the cursor is set to null and 0
is returned. If the cursor is null, a run-time error is signaled.

os_Cursor::null()

os_int32 null();

Returns a nonzero os_int32 (true) if the specified cursor is null.
The function returns 0 (false) if the cursor is located at an element
of the specified set or is invalid. Inherited from os_cursor .

os_Cursor::os_Cursor()

os_Cursor<E> (
const os_collection & coll,
os_int32 options = os_cursor::unsafe

);

Constructs a cursor associated with coll . If the collection is not
ordered, the cursor’s associated order is arbitrary, unless option is
148 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection::order_by_address , in which case the cursor’s
associated order is the order in which elements appear in
persistent memory. If the collection is ordered and option is os_
cursor::unsafe or os_cursor::safe , the cursor’s associated order is
the order in which elements appear in the collection.

If you update a collection while traversing it without using an
update-insensitive or safe cursor, the results of the traversal are
undefined.

If option is os_collection::order_by_address , the cursor’s
associated order is the order in which elements appear in
persistent memory. If you dereference each collection element as
you retrieve it, and the objects pointed to by collection elements
do not all fit in the client cache at once, this order can dramatically
reduce paging overhead. An order-by-address cursor is update
insensitive.

If option is os_collection::update_insensitive , the collection
supports updates to it during traversal. The traversal visits exactly
the elements of the collection at the time the cursor was bound. No
insertions or removals performed during the traversal are
reflected in the traversal.

If option is os_cursor::unsafe , the cursor does not support updates
to its associated collection during iteration.

If option is os_cursor::safe , and the cursor’s associated collection
has the behavior specified by os_collection::maintain_cursors , the
cursor supports updates during iteration over its associated
collection. It visits any elements inserted later in the traversal
order, and does not visit any elements that are later in the
traversal order that are removed.

If option is os_cursor::safe , and the cursor’s associated collection
does not have the behavior specified by os_collection::maintain_
cursors , err_coll_not_supported is signaled.

os_cursor(
const os_collection & coll,
_Rank_fcn rfcn,
os_int32 options = os_cursor::unsafe

);

An _Rank_fcn is a rank function for the element type of coll .
Iteration using that cursor will follow the order determined by the
Release 5.1 149

os_Cursor
specified rank function. Rank-function-based cursors are update
insensitive.

os_Cursor<E> (
const os_Collection<E> & coll,
const os_index_path &path,
os_int32 options = os_cursor::unsafe

);

Constructs a cursor associated with coll . The path specifies the
cursor’s associated order. If safety is os_cursor::unsafe , the cursor
does not support updates to its associated collection during
iteration. If safety is os_cursor::safe , and the cursor’s associated
collection has the behavior specified by os_collection::maintain_
cursors , the cursor supports updates during iteration over its
associated collection. If safety is os_cursor::safe , and the cursor’s
associated collection does not have the behavior specified by os_
collection::maintain_cursors , err_coll_not_supported is signaled.

Upon creation of the first persistent, unsafe, ordered,or restricted
cursor with a particular key type (where the key type is the
specified path’s terminal type), ObjectStore performs schema
modification, provided the collection does not have an index on
the specified path.

os_Cursor<E> (
const os_Collection<E> & coll,
const char *typename,
os_int32 options = os_cursor::unsafe

);

typename is the name of the element type. Iteration using that
cursor will follow the order determined by the element type’s
rank function. Rank-function-based cursors are update
insensitive.

os_Cursor<E> (
const os_Dictionary & coll,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

);

For traversing dictionaries. A traversal with this cursor visits only
those collection elements whose key satisfies range . The order of
iteration is arbitrary.

os_Cursor<E> (
const os_Collection<E> & coll,
const os_index_path &path,
150 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

);

A traversal with this cursor visits only those collection elements
that satisfy the cursor’s restriction. An element satisfies the
cursor’s restriction if the result of applying path to the element
satisfies range . The order of iteration is determined by os_index_
path based on the index. If the index is not present, it is created.

You can construct a new cursor by copying with the following
function, defined by the os_cursor class.

os_cursor (
const os_cursor & c

);

os_Cursor::owner()

const os_collection *owner() const;

Returns a pointer to the specified cursor’s associated collection.
Inherited from os_cursor .

os_collection *owner();

Returns a pointer to the specified cursor’s associated collection.
Inherited from os_cursor .

os_Cursor::previous()

E previous();

Moves the specified cursor to the immediate previous element of
the cursor’s associated collection, according to the cursor’s
associated ordering. If there is no previous element, or if the
collection is empty, the cursor is set to null and 0 is returned. If the
cursor is null, a run-time error is signaled.

os_Cursor::rebind()

void rebind(const os_Collection<E>&);

Associates the specified cursor with the specified collection,
positioning the cursor at the collection’s first element.

void rebind(const os_collection &, _Rank_Fcn);

Associates the specified cursor with the specified collection,
positioning the cursor at the collection’s first element.
Release 5.1 151

os_Cursor
os_Cursor::remove_at()

void remove_at() const;

Removes that element of the cursor’s associated collection at
which the specified cursor is currently located. If performed on a
null or invalid cursor, err_coll_null_cursor is signaled.

os_Cursor::retrieve()

E retrieve();

Returns the element of the specified cursor’s associated collection
at which the specified cursor is currently located. A run-time error
is signaled if the cursor is not located at an element of the set.

os_Cursor::valid()

os_int32 valid();

Returns a nonzero os_int32 (true) if the specified cursor is null or
is located at an element of the associated collection. The function
returns 0 (false), if the cursor was located at an element that has
been removed. Inherited from os_cursor .

os_Cursor::~os_Cursor()

void ~os_Cursor();

Breaks the association between the cursor and its associated
collection.
152 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_cursor

An instance of this class serves to record the state of an iteration
by pointing to the current element of an associated collection. A
cursor’s associated collection is specified when the cursor is
created. The user can position the cursor in a relative fashion
(using next() and previous()) or in absolute fashion (using first()
and last()). The current element is retrieved using the positioning
functions or retrieve() .

You can allocate a cursor in either transient or persistent memory.

Every cursor has an associated ordering for the elements of its
associated collection. This ordering can be the order in which
elements appear in the collection (for ordered collections), an
arbitrary order (for unordered collections), the order in which
elements appear in persistent memory (see os_collection::order_
by_address on page 117), or an order based on an attribute or path
of the elements. In the last case, the order is specified by an os_
index_path supplied when the cursor is created.

Upon creation of a persistent, unsafe, ordered cursor for which the
collection does not have an index on the given path, a write lock
is acquired on segment 0 that effectively locks the entire database.

If a cursor is positioned at a collection’s last element (in the
cursor’s associated ordering) and next() is performed on it, the
cursor becomes null. Similarly, if a cursor is positioned at a
collection’s first element (in the cursor’s associated ordering) and
previous() is performed on it, the cursor becomes null. In other
words, a cursor becomes null when it is either advanced past the
last element or positioned before the first element. The function
os_cursor::more() returns a nonzero os_int32 (true) if the specified
cursor is not null, and returns 0 (false) if it is null.

If a cursor is positioned at an element of a collection, and then that
element is removed from the collection, the cursor becomes
invalid. Repositioning such a cursor has undefined results, unless
the flag os_collection::safe was passed to the cursor constructor
when the cursor was created, and the cursor’s associated
collection was created with maintain_cursors behavior (see os_
collection::create() on page 99). The function os_cursor::valid()
Release 5.1 153

os_cursor
returns nonzero (true) if the specified cursor is valid, and returns
0 (false) if it is invalid.

Valid and invalid
cursors

The states null and invalid are mutually exclusive.

For safe cursors whose associated collection maintains cursors, an
invalid cursor’s position is defined in terms of the immediate
successor, s, of the removed element just prior to removal: such a
cursor’s position immediately after the removal is between s and
the immediate predecessor of s, p. This means performing next()
on the cursor moves the cursor to s, and performing previous()
moves the cursor to p.

If an invalid cursor is between an element, s, and its predecessor,
p, and elements are subsequently inserted between p and s, the
cursor is then positioned between s and the new immediate
predecessor of s.

In addition, whenever an invalid cursor is between an element, s,
and its predecessor, p, removal of s results in repositioning the
cursor so that it is between p and s’s immediate successor.
Similarly, removal of p results in repositioning the cursor so that
it is between s and p’s immediate predecessor.

A safe cursor whose associated collection maintains cursors has
the following behavior during iteration:

null invalid valid

collection element

removed from collection

null

a cursor

Key:

validvalid
154 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• Any element that has been removed and not yet visited will not
be visited.

• If the cursor’s associated order is arbitrary, elements inserted
during the iteration will be visited exactly once.

• If the iteration order was specified by an os_index_path ,
elements inserted before the current cursor position will not be
visited, while those inserted after will be visited.

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_cursor::first()

void *first();

Locates the specified cursor at the first element of the cursor’s
associated collection, according to the cursor’s associated
ordering. The first element is returned. If the collection is empty,
the cursor is set to null and 0 is returned.

os_cursor::insert_after()

void insert_after(const void *p) const;

Inserts p into the cursor’s associated collection immediately after
the cursor’s current location. If performed on a null cursor, err_
coll_null_cursor is signaled.

os_cursor::insert_before()

void insert_before(const void *p) const;

Inserts p into the cursor’s associated collection immediately
before the cursor’s current location. If performed on a null cursor,
err_coll_null_cursor is signaled.

os_cursor::last()

void *last();

Locates the specified cursor at the last element of the cursor’s
associated collection, according to the cursor’s associated
ordering. The last element is returned. If the collection is empty,
the cursor is set to null and 0 is returned.
Release 5.1 155

os_cursor
os_cursor::more()

os_int32 more();

Returns a nonzero os_int32 (true) if the specified cursor is not null,
that is, if the cursor is located at an element of the specified set or
is invalid. The function returns 0 (false) otherwise.

os_cursor::next()

void *next();

Advances the specified cursor to the immediate next element of
the cursor’s associated collection, according to the cursor’s
associated ordering. The next element is returned. If there is no
next element, or if the set is empty, the cursor is set to null and 0
is returned. If the cursor is null, a run-time error is signaled.

os_cursor::null()

os_int32 null();

Returns a nonzero os_int32 (true) if the specified cursor is null.
The function returns 0 (false) if the cursor is located at an element
of the specified set or is invalid.

os_cursor::os_cursor()

os_cursor(
const os_collection & coll,
os_int32 options = os_cursor::unsafe

);

Constructs a cursor associated with coll . If the collection is not
ordered, the cursor’s associated order is system-supplied, unless
options is os_collection::order_by_address , in which case the
cursor’s associated order is the order in which elements appear in
persistent memory. If the collection is ordered and options is os_
cursor::unsafe or os_cursor::safe , the cursor’s associated order is
the order in which elements appear in the collection.

If you update a collection while traversing it without using an
update-insensitive or safe cursor, the results of the traversal are
undefined.

If options is os_collection::order_by_address , the cursor’s
associated order is the order in which elements appear in
persistent memory. If you dereference each collection element as
156 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
you retrieve it, and the objects pointed to by collection elements
do not all fit in the client cache at once, this order can dramatically
reduce paging overhead. An order-by-address cursor is update
insensitive.

If options is os_collection::update_insensitive , the collection
supports updates to it during traversal. The traversal visits exactly
the elements of the collection at the time the cursor was bound. No
insertions or removals performed during the traversal are
reflected in the traversal.

If options is os_cursor::unsafe , the cursor does not support
updates to its associated collection during iteration.

If options is os_cursor::safe , and the cursor’s associated collection
has the behavior specified by os_collection::maintain_cursors , the
cursor supports updates during iteration over its associated
collection. It visits any elements inserted later in the traversal
order, and does not visit any elements that are later in the
traversal order that are removed.

If options is os_cursor::safe , and the cursor’s associated collection
does not have the behavior specified by os_collection::maintain_
cursors , err_coll_not_supported is signaled.

os_cursor(
const os_collection & coll,
const os_index_path &path,
os_int32 options = os_cursor::unsafe

);

Constructs a cursor associated with coll . The path specifies the
cursor’s associated order. If options is os_cursor::unsafe , the
cursor does not support updates to its associated collection during
iteration. If options is os_cursor::safe , and the cursor’s associated
collection has the behavior specified by os_collection::maintain_
cursors , the cursor supports updates during iteration over its
associated collection. If options is os_cursor::safe , and the cursor’s
associated collection does not have the behavior specified by os_
collection::maintain_cursors , err_coll_not_supported is signaled.

Upon creation of the first persistent, unsafe, ordered, or restricted
cursor with a particular key type (where the key type is the
specified path’s terminal type), provided the collection does not
have an index on the specified path.
Release 5.1 157

os_cursor
os_cursor(
const os_collection & coll,
const char *typename,
os_int32 options = os_cursor::unsafe

);

typename is the name of the element type as argument. Iteration
using that cursor will follow the order determined by the element
type’s rank function.

os_cursor(
const os_collection & coll,
_Rank_fcn rnk,
os_int32 options = os_cursor::unsafe

);

An _Rank_fcn is a rank function for the element type of coll .
Iteration using that cursor will follow the order determined by the
specified rank function.

os_cursor(
const os_collection & coll,
const os_index_path &path,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

);

A traversal with this cursor visits only those collection elements
that satisfy the cursor’s restriction. An element satisfies the
cursor’s restriction if the result of applying path to the element
satisfies range . The order of iteration is arbitrary.

Upon creation of a persistent, unsafe, ordered cursor for which the
collection does not have an index on the given path, ObjectStore
performs schema modification, which effectively write-locks the
entire database.

os_cursor(
const os_dictionary & coll,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

);

For traversing dictionaries. A traversal with this cursor visits only
those collection elements whose key satisfies range . The order of
iteration is arbitrary.

Copying a cursor os_cursor (
const os_cursor & c

);
158 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Constructs a new cursor by copying the contents of the cursor
specified by c.

os_cursor::owner()

const os_collection *owner() const;

Returns a pointer to the specified cursor’s associated collection.

os_collection *owner();

Returns a pointer to the specified cursor’s associated collection.

os_cursor::previous()

void *previous();

Moves the specified cursor to the immediate previous element of
the cursor’s associated collection, according to the cursor’s
associated ordering. If there is no previous element, or if the
collection is empty, the cursor is set to null and 0 is returned. If the
cursor is null, a run-time error is signaled.

os_cursor::rebind()

void rebind(os_collection&);

Associates the specified cursor with the specified collection,
positioning the cursor at the collection’s first element.

void rebind(const os_collection&);

Associates the specified cursor with the specified collection,
positioning the cursor at the collection’s first element.

os_cursor::remove_at()

void remove_at() const;

Removes that element of the cursor’s associated collection at
which the specified cursor is currently located. If performed on a
null or invalid cursor, err_coll_null_cursor is signaled.

os_cursor::retrieve()

void *retrieve();

Returns the element of the specified cursor’s associated collection
at which the specified cursor is currently located. A run-time error
is signaled if the cursor is not located at an element of the
collection.
Release 5.1 159

os_cursor
os_cursor::valid()

os_int32 valid();

Returns a nonzero os_int32 (true) if the specified cursor is null or
is located at an element of the associated collection. The function
returns 0 (false), if the cursor was located at an element that has
been removed.

os_cursor::~os_cursor()

void ~os_cursor();

Breaks the association between the cursor and its associated
collection.
160 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Dictionary

template <class K, class E>
class os_Dictionary<K, E> : public os_Collection<E>

Like bags, dictionaries are unordered collections that allow
duplicate elements. Unlike bags, however, dictionaries associate a
key with each element. The key can be a value of any C++
fundamental type or user-defined class. If the key is a pointer it
must be a void* . When you insert an element into a dictionary, you
specify the key along with the element. You can retrieve an
element with a given key or retrieve those elements whose keys
fall within a given range. os_Dictionary inherits from os_
collection .

os_rDictionary is just like os_Dictionary , except that it records its
elements using references (as do os_vdyn_hash and os_vdyn_
bag), which eliminates address space reservation and can reduce
relocation overhead. See os_rDictionary on page 210 for a
description of this class.

Dictionaries are always implemented as B-trees or hash tables, so
lookup of elements based on their keys is efficient.

If you use persistent dictionaries, you must call the macro OS_
MARK_DICTIONARY() in your source file for each key-
type/element-type pair that you use. If you are using only
transient dictionaries, call the macro OS_TRANSIENT_
DICTIONARY() in your source file.

The element type of any instance of os_Dictionary must be a
pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Requirements Requirements for classes used as keys are listed below.

• Types used as keys also need a public operator=.

• For integer keys, specify one of the following as the key type:

- os_int32 (a signed 32-bit integer)

- os_unsigned_int32 (an unsigned 32-bit integer)

- os_int16 (a signed 16-bit integer)
Release 5.1 161

os_Dictionary
- os_unsigned_int16 (an unsigned 16-bit integer)

• For class keys, the class must have a destructor, and if the class
contains any pointers, they must be zeroed out.

• You must define and register (using os_index_key) rank/hash
functions for the class type.

Use the type void* for pointer keys other than char* keys.

For char[] keys, use the parameterized type os_char_array<S> ,
where the actual parameter is an integer literal indicating the size
of the array in bytes.

The key type char* is treated as a class whose rank and hash
functions are defined in terms of strcmp() or strcoll() . For example:

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string “Smith”
(that is, whose key, k, is such that strcmp(k, "Smith") is 0).

If a dictionary’s key type is char* and it is ordered, the dictionary
makes its own copies of the character array upon insert. If the key
type is char* and the dictionary has the behavior maintain_key_
order , it will point to the string rather than making a copy of it. If
the dictionary does not allow duplicate keys you can significantly
improve performance by using the type os_char_star_nocopy as
the key type. With this key type, the dictionary copies the pointer
to the array and not the array itself. You can freely pass char* s to
this type.

Note that you cannot use os_char_star_nocopy with dictionaries
that allow duplicate keys.

Although it is possible to set up an os_Cursor on an os_Dictionary ,
you cannot set up a safe cursor that allows insertions/removals
during the iteration. That is, os_Dictionary does not support the
behavior os_collection::maintain_cursors .

Required header files Any program using dictionaries must include the header files
<ostore/ostore.hh> followed by <ostore/coll.hh>. In addition your
program will require the inclusion of <ostore/coll/dict_pt.hh> or
<ostore/coll/dict_pt.cc>.

If your program instantiates a template, include dict_pt.cc at the
point where you instantiate the template. If you are using the
template, but not instantiating it, include dict_pt.hh . Since dict_
162 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
pt.cc includes dict_pt.hh , you do not need both. You have to
include dict_pt.cc because it contains the bodies of the functions
declared in dict_pt.hh .

Required libraries Programs that use dictionaries must link with the library file
oscol.lib (UNIX platforms) or oscol.ldb (Windows platforms).

Below are two tables. The first table lists the member functions
that can be performed on instances of os_Dictionary . The second
table lists the enumerators inherited by os_Dictionary from os_
collection . Many functions are also inherited by os_Dictionary
from os_Collection or os_collection . The full explanation of each
inherited function or enumerator appears in the entry for the class
from which it is inherited. The full explanation of each function
defined by os_Dictionary appears in this entry, after the tables. In
each case, the Defined By column gives the class whose entry
contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_unsigned_int32 os_collection

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

clear () void os_collection

contains (const K &key_ref,
const E element) const

(const K *key_ptr,
const E element) const

os_int32

os_int32

os_Dictionary

count (const E) const os_int32 os_Collection

count_values (const K &key_ref) const

(const K * key_ptr) const

os_int32

os_unsigned_int32

os_Dictionary
Release 5.1 163

os_Dictionary
create (static) (os_database *db,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

(os_segment *seg,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

(os_object_cluster *clust,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

(os_object_cluster *proximity,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

os_Dictionary
<K,E>&

os_Dictionary
<K,E>&

os_Dictionary
<K,E>&

os_Dictionary
<K,E>&

os_Dictionary

default_behavior
(static)

() os_unsigned_int32 os_Dictionary

destroy (static) (os_Dictionary<K, E>&) void os_Dictionary

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

has_index (const os_index_path&,
 os_int32 index_options) const

os_int32 os_collection

insert (const K &key_ref,
const E element)

(const K *key_ptr,
const E element)

void

void

os_Dictionary

only () const E os_Collection

os_Dictionary (os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

os_Dictionary

pick (const os_coll_range&) const

(const K &key_ref) const

(const K *key_ptr) const

() const

E

E

E

E

os_Dictionary

Name Arguments Returns Defined By
164 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Dictionary
enumerators

The following table lists enumerators for the os_Dictionary class.

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename = 0,
 os_unsigned_int32 line = 0,
 os_boolean dups) const

(const os_bound_query&,
 os_boolean dups) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* filename = 0,
 os_unsigned_int32 line = 0) const

(const os_bound_query&) const

E

E

os_Dictionary

remove (const K &key_ref,
const E element)

(const K *key_ptr,
const E element)

void

void

os_Dictionary

remove_value (const K &key_ref,
 const E os_unsigned_int32 n = 1)

(const K *key_ptr,
 os_unsigned_int32 n = 1)

E

E

os_Dictionary

retrieve (const os_cursor&) const E os_Dictionary

retrieve_key (const os_cursor&) K* os_Dictionary

Name Arguments Returns Defined By

Name Inherited From

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_key_order os_Dictionary

maintain_order os_collection
Release 5.1 165

os_Dictionary
os_Dictionary::change_behavior()

change_behavior(os_unsigned_int_32 behavior);

Changes the behavior of the specified collection.

Take 1 behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating all the desired properties
for the changed collection. The enumerators are

• os_collection::allow_nulls

• os_collection::signal_duplicates

• os_collection::signal_cardinality

• os_collection::pick_from_empty_returns_null

When you change a collection so that it no longer allows null
insertions, you might want to check to see if nulls are already
present.

Take 2 You can customize the behavior of new dictionaries with regard
to these last three properties. You do this by supplying a behavior
argument to create() , an unsigned 32-bit integer, a bit pattern
indicating the collection’s properties. The bit pattern is obtained
by forming the bit-wise disjunction (using bit-wise or, |) of
enumerators taken from the following possibilities:

• os_collection::pick_from_empty_returns_null : Performing
pick() on an empty dictionary returns 0 rather than raising an
exception.

• os_dictionary::signal_dup_keys : Duplicate keys are not
allowed; err_am_dup_key is signaled if an attempt is made to
establish two or more elements with the same key.

pick_from_empty_returns_null os_collection

no_dup_keys os_Dictionary

signal_cardinality os_collection

signal_dup_keys os_Dictionary

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
166 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• os_dictionary::maintain_key_order : Range lookups are
supported using pick() or restricted cursors.

These are instances of an enumeration defined in the scope of the
os_Dictionary . Each enumerator is associated with a different bit,
and including an enumerator in the disjunction sets its associated
bit.

You can turn these behaviors on and off throughout the
dictionary’s lifetime. See os_collection::change_behavior() on
page 97.

os_Dictionary::contains()

os_boolean contains(const K &key_ref, const E element) const;

Returns nonzero (true) if this contains an entry with the specified
element and the key referred to by key_ref . If there is no such
entry, 0 (false) is returned. This overloading of contains() differs
from the overloading following only in that the key is specified
with a reference instead of a pointer.

os_boolean contains(const K *key_ptr, const E element) const;

Returns nonzero (true) if this contains an entry with the specified
element and the key pointed to by key_ptr . If there is no such
entry, 0 (false) is returned. This overloading of contains() differs
from the preceding overloading only in that the key is specified
with a pointer instead of a reference.

os_Dictionary::count_values()

os_unsigned_int32 count_values(const K &key_ref) const;

Returns the number of entries in this with the key referred to by
key_ref . This overloading of count_values() differs from the
overloading following only in that the key is specified with a
reference instead of a pointer.

os_unsigned_int32 count_values(const K *key_ptr) const;

Returns the number of entries in this with the key pointed to by
key_ptr . This overloading of count_values() differs from the
preceding overloading only in that the key is specified with a
pointer instead of a reference.
Release 5.1 167

os_Dictionary
os_Dictionary::create()

static os_Dictionary<K, E> &create(
os_database *db,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior_enums = 0

);

Creates a new dictionary in the database pointed to by db . If the
transient database is specified, the dictionary is allocated in
transient memory. K can be a basic type, a pointer, or a class type.
If the key type is a class type, the class’s rank/hash functions must
be registered with the os_index_key macro.

db: This is one of four overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

expected_cardinality: Unlike the create operations for other
collection classes, there are no arguments relating to
representation policies. This is because you cannot directly
control the representation for dictionaries.

By default, dictionaries are presized with a representation suitable
for cardinality 10. If you want a new dictionary presized for a
different cardinality, supply the expected_cardinality argument
explicitly.

behavior: Every dictionary has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are allowed.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

By default a new dictionary also has the following properties:

• Performing pick() on an empty dictionary raises err_coll_empty.

• Duplicate keys are allowed; that is, two or more elements can
have the same key.
168 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• Range lookups are not supported; that is, key order is not
maintained.

You can customize the behavior of new dictionaries with regard
to these last three properties. You do this by supplying a behavior
argument to create() , an unsigned 32-bit integer, a bit pattern
indicating the collection’s properties. The bit pattern is obtained
by forming the bit-wise disjunction (using bit-wise or, |) of
enumerators taken from the following possibilities:

• os_collection::pick_from_empty_returns_null : Performing
pick() on an empty dictionary returns 0 rather than raising an
exception.

• os_dictionary::signal_dup_keys : Duplicate keys are not
allowed; err_am_dup_key is signaled if an attempt is made to
establish two or more elements with the same key.

• os_dictionary::maintain_key_order : Range lookups are
supported using pick() or restricted cursors.

These are instances of an enumeration defined in the scope of the
os_Dictionary . Each enumerator is associated with a different bit,
and including an enumerator in the disjunction sets its associated
bit.

You can turn these behaviors on and off throughout the
dictionary’s lifetime. See os_collection::change_behavior() on
page 97.

For large dictionaries that maintain key order, there is also an
option for reducing contention. With os_collection::dont_
maintain_cardinality behavior, insert() and remove() do not update
cardinality information, avoiding contention in the collection
header. This can significantly improve performance for large
dictionaries subject to contention. The disadvantage of this
behavior is that cardinality() is an O(n) operation, requiring a scan
of the whole dictionary. See the following members of os_
collection() : os_collection::cardinality_is_maintained() on page 97,
os_collection::cardinality_estimate() on page 97, and os_
collection::update_cardinality() on page 128.

Unlike the create operations for other collection classes, there are
no arguments relating to representation. This is because you
cannot directly control the representation for dictionaries. You
Release 5.1 169

os_Dictionary
can, however, use the class os_rDictionary instead of os_
Dictionary . The former class is just like os_Dictionary , except that
it records its elements using references (as do os_vdyn_hash and
os_vdyn_bag), which can eliminate address space reservation and
can reduce relocation overhead. See the description of os_
rDictionary on page 210.

static os_Dictionary<K, E> &create(
os_segment *seg,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);

Creates a new dictionary in the segment pointed to by seg . If the
transient segment is specified, the dictionary is allocated in
transient memory.

This is one of four overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

The rest of the arguments are just as described previously for the
first overloading of this function.

static os_Dictionary<K, E> &create(
os_object_cluster *clust,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);

Creates a new dictionary in the object cluster pointed to by clust .

This is one of four overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

The rest of the arguments are just as described previously for the
first overloading of this function.

static os_Dictionary<K, E> &create(
os_object_cluster *proximity,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);
170 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Creates a new dictionary in the segment occupied pointed to by
proximity . If the object is part of an object cluster, the new
dictionary is allocated in that cluster. If the specified object is
transient, the array is allocated in transient memory. The rest of
the arguments are just as described previously for the first
overloading of this function.

os_Dictionary::default_behavior()

static unsigned long default_behavior ();

Returns a bit pattern indicating this type’s default behavior,
which includes allowing duplicates and allowing nulls. See the
enumerators os_collection::allow_duplicates and os_
collection::allow_nulls .

os_Dictionary::destroy()

static void destroy(os_Dictionary<K, E>&);

Deletes the specified collection and deallocates associated storage.
This is the same as calling delete() on the dictionary.

os_Dictionary::insert()

void insert(const K &key_ref, const E element);

Inserts the specified element with the key referred to by key_ref .
This overloading of insert() differs from the overloading
following only in that the key is specified with a reference instead
of a pointer.

Each insertion increases the collection’s cardinality by 1 and
increases by 1 the count (or number of occurrences) of the inserted
element in the collection, unless the dictionary already contains an
entry that matches both the key and the element (in which case the
insert is silently ignored).

If you insert a null pointer (0), the exception err_coll_nulls is
signaled.

For dictionaries with signal_dup_keys behavior, if an attempt is
made to insert something with the same key as an element already
present, err_am_dup_key is signaled.

void insert(const K *key_ptr, const E element);
Release 5.1 171

os_Dictionary
Inserts the specified element with the key pointed to by key_ptr .
This overloading of insert() differs from the above overloading
only in that the key is specified with a pointer instead of a
reference. See the documentation for the preceding overloading.

os_Dictionary::os_Dictionary()

os_Dictionary(
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);

Use the dictionary constructor only to create stack-based
dictionaries, or dictionaries embedded within other objects. See
os_Dictionary::create() , above.

os_Dictionary::pick()

E pick(const os_coll_range&) const;

Returns an element of this that satisfies the specified os_coll_
range . If there is more than one such element, an arbitrary one is
picked and returned. If there is no such element, 0 is returned. If
the dictionary is empty, err_coll_empty is signaled. If the dictionary
has behavior pick_from_empty_returns_null , calling os_
Dictionary::pick() on an empty dictionary returns 0.

E pick(const K &key_ref) const;

Returns an element of this that has the value of the key referred to
by the value of key_ref . If there is more than one such element, an
arbitrary one is picked and returned. If there is no such element, 0
is returned. If the dictionary is empty, err_coll_empty is signaled. If
the dictionary has behavior pick_from_empty_returns_null , calling
os_Dictionary::pick() on an empty dictionary returns 0.

E pick(const K *key_ptr) const;

Returns an element of this that has the value of the key pointed to
by key_ptr . If there is more than one such element, an arbitrary one
is picked and returned. If there is no such element, 0 is returned.
If the dictionary is empty, err_coll_empty is signaled. If the
dictionary has behavior pick_from_empty_returns_null , calling
os_Dictionary::pick() on an empty dictionary returns 0.

E pick() const;
172 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Picks an arbitrary element of this and returns it. If the dictionary
is empty, err_coll_empty is signaled, unless the collection’s
behavior includes os_collection::pick_from_empty_returns_null ,
in which case 0 is returned.

os_Dictionary::query()

???Returns an os_collection .

os_Dictionary::query_pick()

E query_pick(
char *element_type,
char *query_string,
os_database *schema_database = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

) const;

Returns an element of this that satisfies the specified query_string .
See the documentation of query_string for os_Collection::query()
on page 76.

If there is no such element or the dictionary is empty, 0 is returned.

The argument element_type is the name of the element type of
this . Names established through the use of typedef are not
allowed.

The schema_database is a database whose schema contains all the
types mentioned in query_string . This database provides the
environment in which the query is analyzed and optimized. The
database in which the collection resides is often appropriate.

void *query_pick(const os_bound_query&) const;

Returns an element of this that satisfies the specified bound query.
If there is no such element or the dictionary is empty, 0 is returned.
If there is no such element and the dictionary does not have pick_
from_empty_returns_null behavior, err_coll_empty is signaled.

os_Dictionary::remove()

void remove(const K &key_ref, const E element);

Removes the dictionary entry with the element element at the
value of the key referred to by key_ref . This overloading of
remove() differs from the next overloading only in that the key is
specified with a reference instead of a pointer. If removing this
Release 5.1 173

os_Dictionary
element leaves no other elements at this key value, the key is
removed and deleted.

If there is no such entry, the dictionary remains unchanged. If
there is such an entry, the collection’s cardinality decreases by 1
and the count (or number of occurrences) of the removed element
in the collection decreases by 1.

void remove(const K *key_ptr, const E element);

Removes the dictionary entry with the element element and the
key referred to by key_ref . This overloading of remove() differs
from the preceding overloading only in that the key is specified
with a pointer instead of a reference. If removing this element
leaves no other elements at this key value, the key is removed and
deleted. See the documentation for the previous overloading.

os_Dictionary::remove_value()

E remove_value(const K &key_ref, os_unsigned_int32 n = 1);

Removes n dictionary entries with the value of the key referred to
by key_ref . If there are fewer than n, all entries in the dictionary
with that key are removed. If there is no such entry, the dictionary
remains unchanged.

This overloading of remove_value() differs from the next
overloading only in that the key is specified with a reference
instead of a pointer.

For each entry removed, the collection’s cardinality decreases by
1 and the count (or number of occurrences) of the removed
element in the collection decreases by 1. If removing this element
leaves no other elements at this key value, the key is removed and
deleted.

void remove_value(const K *key_ptr, os_unsigned_int32 n = 1);

Removes n dictionary entries with the value of the key pointed to
by key_ptr . This overloading of insert() differs from the preceding
overloading only in that the key is specified with a pointer instead
of a reference. If removing this element leaves no other elements
at this key value, the key is removed and deleted. See the
documentation for the previous overloading.
174 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Dictionary::retrieve()

E retrieve(const os_cursor&) const;

Returns the element of this at which the specified cursor is located.
If the cursor is null, err_coll_null_cursor is signaled. If the cursor is
invalid, err_coll_illegal_cursor is signaled.

os_Dictionary::retrieve_key()

const K *retrieve_key(const os_cursor&) const;

Returns a pointer to a dictionary key. Do not modify the key being
pointed to. Like all collections functions that take cursor
arguments, this function works only with vanilla cursors. A
vanilla cursor is any cursor that was not created with a cursor
option, index path, rank function, or an os_coll_range .
Release 5.1 175

os_dynamic_extent
os_dynamic_extent

Derived from os_Collection , an instance of this class can be used
to create an extended collection of all objects of a particular type,
regardless of which segments the objects reside in. All objects are
retrieved in an arbitrary order that is stable across traversals of the
segments, as long as no objects are created or deleted from the
segment, and no reorganization is performed (using schema
evolution or compaction).

os_dynamic_extent is useful for joining together multiple
collections of the same object type into a new collection. The new
collection is created dynamically, which results in no additional
storage consumption.

You iterate over the os_dynamic_extent collection by creating an
associated instance of os_cursor . Only the os_cursor::more, os_
cursor::first , and os_cursor::next functions are supported by os_
dynamic_extent . You can create an index for the os_dynamic_
extent collection by calling add_index() ; however, creating an
index requires additional storage.

os_dynamic_extent::os_dynamic_extent()

os_dynamic_extent(
os_database * db,
os_typespec * typespec

);

Constructs an os_dynamic_extent that associates all objects of os_
typespec that exist in the specified os_database . This constructor
should be used only for transient instances of os_dynamic_extent .

os_dynamic_extent(
os_typespec * typespec,
os_boolean options = os_dynamic_extent::all_segments

);

Constructs an os_dynamic_extent that associates all objects of os_
typespec . This constructor assumes that the os_dynamic_extent is
persistent and searches the database where the os_dynamic_
extent resides. If the option is os_dynamic_extent::all_segments ,
all segments are searched. The alternative option is os_dynamic_
extent::of_segment , which searches only the segment in which the
os_dynamic_extent is allocated.
176 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_dynamic_extent(
os_database * db,
os_typespec* typespec,
os_segment* seg

);

Constructs an os_dynamic_extent that associates only those
objects of os_typespec that exist in the specified os_database and
os_segment . This constructor should be used only for transient
instances of os_dynamic_extent.

os_dynamic_extent::insert()

void insert(const void*);

Adds the specified void* to the index for the current os_dynamic_
extent collection. You must first create an index by calling os_
dynamic_extent::add_index() . See os_collection::add_index() .

os_dynamic_extent::remove()

os_int32 remove(const void*);

Removes the specified void* from the os_dynamic_extent
collection index.

If the index is ordered, the first occurrence of the specified void* is
removed. Returns a nonzero os_int32 if an element was removed;
returns 0 otherwise.

os_dynamic_extent::~os_dynamic_extent()

~os_dynamic_extent();

Performs internal maintenance associated with os_dynamic_
extent deallocation.
Release 5.1 177

os_index_name
os_index_name

An instance of this class encapsulates information about a
particular index. Functions are provided for retrieving a string
representation of the index’s associated path and a bit pattern
indicating the index’s associated options. See also os_
collection::get_indexes() on page 105, which returns a collection of
os_index_name s.

os_index_name::get_options()

os_int32 get_options();

Returns a bit pattern indicating the index options associated with
the index named by this .

os_index_name::get_path_name()

char *get_path_name();

Returns a string representation of the path associated with the
index named by this . The caller is responsible for freeing the
memory pointed to by the return value.
178 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_index_path

Instances of the class os_index_path are used in specifying
iteration order, as well as in specifying index keys to enable query
optimization.

Each path specifies a certain kind of mapping by specifying a
sequence of member names. Applying the mapping is equivalent
to accessing a data member, applying a member function, or
accessing a data member of a data member, and so on.

For example, suppose the type employee defines a data member
department , whose values are pointers to instances of a type that
defines a data member manager . Then a path might be specified
with the path_string "department–>manager" . This path maps
pointers to instances of employee to the manager of the given
employee’s department.

Path expressions have some additional expressive power. They
can indicate iterative retrieval of the elements of path results that
are collections. For example, consider specifying a key for an
index that optimizes lookup of a part based on the emp_id of any
of the responsible_engineers for the part (suppose that the
member responsible_engineers is collection valued). You can use
the path created by the following call:

os_index_path::create(
"part*","responsible_engineers[]->emp_id", db1)

Here the data member name "responsible_engineers " is followed
by the symbols [] , indicating that the next component of the path
(emp_id) is to be applied to each element of the collection of
responsible engineers, rather than to the collection itself.

os_index_path::create()

static os_index_path &create(
const char *element_type_string,
const char *path_string,
const os_database*

);

Creates a transient heap-allocated os_index_path .

The element_type_string , known as the path’s type string, is a
string consisting of the name of the element type of collections
Release 5.1 179

os_index_path
whose elements can serve as path starting points. Names created
with a typedef cannot be used.

The path_string consists of a sequence of member names,
separated by dots or arrows.

Given a path string, path-string , ending in a member function
name, you can form a path string whose values are the results of
dereferencing the result of path-string this way:

" *(parent-> theChild()) "

*(path-string)

The parentheses are not necessary if the original path string
specifies a single-step path.

You cannot specify a dereferenced data member at the end of a
path string. For example, you cannot specify

" *(parent->child) "

or

" * Foo "

A collection-valued path followed by a pair of brackets [] forms a
multivalued path whose values are the collection’s elements. To
indicate element retrieval (using []) from a nonparameterized
collection, the part of the path designating the collection must be
preceded by a cast to os_Collection<E> , where E is the collection’s
element type os_collection .

The value type of a data member referred to in a path expression
must be a built-in type, a class, or a pointer to a built-in type or
class. The type person** , for example, is not allowed.

If an illegal path_string is supplied, err_illegal_index_path is
signaled.

Data members mentioned in the path_string , except const and
collection-valued members, must be indexable if there is any
possibility of their being updated when participating in an index.

For applications that use member functions, see “Member
function in a query string” on page 78. In addition, when you
create an index path that ends in a member function, the member
function should return something that is either a basic type, a
180 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
pointer to a persistent object, or a class object that will be copied
into the index.

An application must supply a rank function (see Chapter 5, User-
Supplied Functions, in ObjectStore C++ API Reference) for a class
type, T, if the application uses a path ending in T as an index key
or to specify iteration order. An application must supply a hash
function (see Chapter 5, User-Supplied Functions, in ObjectStore
C++ API Reference) for a class, T, if the application uses a path
ending in T as a key for an unordered index.

The os_database* is a database whose schema contains the classes
defining the members mentioned in the path_string .

Once the path generated by create() is no longer needed, you
should deallocate with ::operator delete() to avoid memory leaks.

static os_index_path &create(
const char *element_type_string,
const char *path_string,
const os_segment*

);

Creates a transient heap-allocated os_index_path . Same as the
preceding version of create() , except that the os_segment*
indicates a segment in a database whose schema contains the
classes defining the members mentioned in the path_string .

static os_index_path &create(
const char *element_type_string,
const char *path_string,
const void*

);

Creates a transient heap-allocated os_index_path . Same as the
preceding version of create() , except that the void* indicates an
object in a database whose schema contains the classes defining
the members mentioned in the path_string .

os_index_path::destroy()

static void destroy(os_index_path&);

Deletes the specified path. This is the same as deleting the os_
index_path .
Release 5.1 181

os_keyword_arg
os_keyword_arg

An instance of this class is used to specify the binding of a free
reference in an os_coll_query . An os_keyword_arg or os_keyword_
arg_list (see os_keyword_arg_list on page 185) is used together
with an os_coll_query to create an os_bound_query . Each os_
keyword_arg associates a variable name with a value of the
appropriate type.

os_keyword_arg::operator ,()

os_keyword_arg_list &operator ,(const os_keyword_arg
arg&)const;

Returns a reference to an os_keyword_arg_list whose elements are
the instances of os_keyword_arg referred to by this and arg . The
comma operator of this class and os_keyword_arg_list is
overloaded in such a way that you can designate a keyword_arg_
list with an expression of the following form:

(
keyword_arg-expr,
keyword_arg-expr,
... ,
keyword_arg-expr

)

os_keyword_arg::os_keyword_arg()

os_keyword_arg(
const char *name,
os_signed_int8 value

);

Constructs an os_keyword_arg that binds the char -valued variable
specified by name to value .

os_keyword_arg(
const char *name ,
unsigned char value

);

Constructs an os_keyword_arg that binds the unsigned char -
valued variable specified by name to value .

os_keyword_arg(
const char *name,
short value

);
182 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Constructs an os_keyword_arg that binds the short -valued
variable specified by name to value .

os_keyword_arg(
const char *name,
unsigned short value

);

Constructs an os_keyword_arg that binds the unsigned short -
valued variable specified by name to value .

os_keyword_arg(
const char *name,
int value

);

Constructs an os_keyword_arg that binds the int -valued variable
specified by name to value .

os_keyword_arg(
const char *name,
unsigned int value

);

Constructs an os_keyword_arg that binds the unsigned int -valued
variable specified by name to value .

os_keyword_arg(
const char *name,
long value

);

Constructs an os_keyword_arg that binds the long -valued variable
specified by name to value .

os_keyword_arg(
const char *name,
unsigned long value

);

Constructs an os_keyword_arg that binds the unsigned long -
valued variable specified by name to value .

os_keyword_arg(
const char *name,
float value

);

Constructs an os_keyword_arg that binds the float -valued variable
specified by name to value .

os_keyword_arg(
const char *name,
Release 5.1 183

os_keyword_arg
double value
);

Constructs an os_keyword_arg that binds the double -valued
variable specified by name to value .

os_keyword_arg(
const char *name,
long double value

);

Constructs an os_keyword_arg that binds the long double -valued
variable specified by name to value .

os_keyword_arg(
const char *name,
void* value

);

Constructs an os_keyword_arg that binds the void* -valued
variable specified by name to value and void* .

os_keyword_arg(
const char *name,
const void* value

);

Constructs an os_keyword_arg that binds the const void* -valued
variable specified by name to value and void* .
184 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_keyword_arg_list

An instance of this class is used to specify the binding of free
variables in an os_coll_query . An os_keyword_arg_list or os_
keyword_arg (see os_keyword_arg on page 182) is used together
with an os_coll_query to create an os_bound_query . Each os_
keyword_arg_list associates a variable name with a value of the
appropriate type.

os_keyword_arg_list::operator ,()

os_keyword_arg_list &operator ,(const os_keyword_arg&);

Returns a reference to an os_keyword_arg_list whose elements are
the elements of this together with the specified os_keyword_arg .
The comma operator of this class and os_keyword_arg is
overloaded in such a way that you can designate an os_keyword_
arg_list with an expression of the following form:

(
keyword_arg-expr,
keyword_arg-expr,
... ,
keyword_arg-expr

)

os_keyword_arg_list::os_keyword_arg_list()

os_keyword_arg_list(
const os_keyword_arg&,
const os_keyword_arg_list* = 0

);

Constructs an os_keyword_arg_list whose elements are the
specified os_keyword_arg together with the elements of the
specified os_keyword_arg_list . This constructor allows conversion
of an os_keyword_arg to a single-element os_keyword_arg_list .
This is useful when calling the os_bound_query constructor. For
example:

os_bound_query bq(my_coll_query, os_keyword_arg(age, 5));

Between this constructor, the comma operator of this class, and
the comma operator of os_keyword_arg , it should never be
necessary for you to reference an os_keyword_arg_list explicitly.
Release 5.1 185

os_List
os_List

template <class E>
class os_List : public os_Collection<E>

A list is an ordered collection. As with other ordered collections,
list elements can be inserted, removed, replaced, or retrieved
based on a specified numerical index or based on the position of a
specified cursor.

By default, lists are ordered, allow duplicates, and disallow null
elements.

If an element is inserted or removed from an os_List , all other
elements are either pushed up or down with respect to their
ordinal index in the list.

The class os_List is parameterized, with a parameter for
constraining the type of values allowable as elements (for the
nonparameterized version of this class, see os_list on page 198).
This means that when specifying os_List as a function’s formal
parameter, or as the type of a variable or data member, you must
specify the parameter (the list’s element type). This is accomplished
by appending to os_List the name of the element type enclosed in
angle brackets, < >:

os_List< element-type-name>

The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

The element type of any instance of os_List must be a pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Required header files Programs that use lists must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use lists must link with the library files liboscol.so
and liboscol.ldb (UNIX platforms) or oscol.ldb and oscoll.lib
(Windows platforms).
186 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Below are two tables. The first table lists the member functions
that can be performed on instances of os_List . The second table
lists the enumerators inherited by os_List from os_collection .
Many functions are also inherited by os_List from os_Collection
or os_collection . The full explanation of each inherited function or
enumerator appears in the entry for the class from which it is
inherited. The full explanation of each function defined by os_List
appears in this entry, after the tables. In each case, the Defined By
column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_int32 os_collection

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

create (static) (os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_List<E>& os_List
Release 5.1 187

os_List
(os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_List<E>&

(os_object_cluster *clust,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_List<E>&

(void* proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_List<E>&

default_behavior
(static)

() os_unsigned_int32 os_List

destroy (static) (os_List<E>&) void os_List

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options = unordered)
 const

os_int32 os_collection

insert (const E) void os_Collection

insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

os_Collection

Name Arguments Returns Defined By
188 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection

operator const
 os_Bag<E>&

() const os_Collection

operator
 os_bag&

() os_collection

operator const
 os_bag&

() const os_collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
os_Set<E>&

() const os_Collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
Release 5.1 189

os_List
operator < (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator = (const os_List<E>&) const

(const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List<E>&

os_List

operator |= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator | (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator & (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator - (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_List ()

(os_collection_size expected_size)

(const os_List<E>&)

(const os_Collection<E>&)

os_List

pick () const

(const os_index_path&,
 const os_coll_range&) const

E

E

os_Collection

Name Arguments Returns Defined By
190 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_List enumerators The following table lists the enumerators inherited by os_List
from os_collection .

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* filename = 0,
 os_unsigned_int32 line,
 os_boolean dups) const

(const os_bound_query&,
 os_boolean dups) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

E

E

os_Collection

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

retrieve_first () const

(const E&) const

E

os_int32

os_Collection

retrieve_last () const

(const E&) const

E

os_int32

os_Collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection
Release 5.1 191

os_List
os_List::create()

static os_List<E> &create (
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the database pointed to by db . If the transient
database is specified, the list is allocated in transient memory.

The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating the desired behaviors. The
enumerators are

• os_collection::allow_nulls

• os_collection::allow_duplicates

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

order_by_address os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
192 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
• os_collection::signal_duplicates

• os_collection::pick_from_empty_returns_null

• os_collection::maintain_cursors

• os_collection::be_an_array

See the class os_collection on page 87 for an explanation of each
enumerator.

The specified behaviors supplement the default behaviors for
lists. If 0 is supplied for behavior , only the default behaviors are
enabled. The default behavior is given by

os_collection::maintain_order | os_collection::allow_duplicates

A run-time error is signaled if an attempt is made to create a list
that is not ordered.

Representation policy The default representation policy for lists created with create() is
as follows:

• A list created as an embedded object has the representation of
os_tiny_array (0 to 4 elements).

• An embedded list becomes out of line and mutates to an os_
chained_list when the fifth element is inserted.

• A list created with ::create with cardinality <= 20 is represented
as an os_chained_list .

• Once the list grows past 20, its representation is os_packed_list .

The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
overhead of transforming the collection’s representation as it
grows during loading.

The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_dyn_bag .)
Release 5.1 193

os_List
Additional behaviors An os_List can also have these behaviors:

• pick_from_empty_returns_null

• signal_duplicates

• allow_nulls

• maintain_cursors

static os_List<E> &create (
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the segment pointed to by seg . If the transient
segment is specified, the list is allocated in transient memory. The
rest of the arguments are just as described previously.

static os_List<E> &create (
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the object cluster pointed to by clust . The rest
of the arguments are just as described previously.

static os_List<E> &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new list
is allocated in that cluster. If the specified object is transient, the
list is allocated in transient memory. The rest of the arguments are
just as described previously.

os_List::default_behavior()

static os_unsigned_int32 default_behavior();
194 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Returns a bit pattern indicating this type’s default behavior,
which is maintain_order and allow_duplicates .

os_List::destroy()

static void destroy(os_List<E>&);

Deletes the specified collection and deallocates associated storage.
This is the same as deleting the list.

Assignment Operator Semantics

Note: The assignment operator semantics are described in the next
section in terms of insert operations into the target collection.
Describing the semantics in terms of insert operations serves to
illustrate how duplicate, null, and order semantics are enforced.
The actual implementation of the assignment might be quite
different, while still maintaining the associated semantics.

os_List::operator =()

os_List<E> &operator =(const os_List<E> &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection
(in order), and inserting each element into the target collection.
The target collection semantics are enforced as usual during the
insertion process.

os_List<E> &operator =(const os_Collection<E> &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection
(in order), and inserting each element into the target collection.
The target collection semantics are enforced as usual during the
insertion process.

os_List<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_List::operator |=()

os_List<E> &operator |=(const os_Collection<E> &s);
Release 5.1 195

os_List
Inserts the elements contained in s into the target collection, and
returns the target collection.

os_List<E> &operator |=(const E e);

Inserts the element e into the target collection, and returns the
target collection.

os_List::operator &=()

os_List<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. It does so by retaining the appropriate
number of leading elements. It returns the target collection.

os_List<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_List::operator –=()

os_List<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. The first
s.count(e) elements are removed. It returns the target collection.

os_List<E> &operator –=(const E e);

Removes the element e from the target collection. The first
occurrence of the element is removed from the target collection. It
returns the target collection.

os_List::os_List()

os_List();

Returns an empty list.

os_List(os_collection_size);

The user should pass an os_int32 for the os_collection_size actual
argument. Returns an empty list whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual cardinality of the list, once it has been loaded
with elements.
196 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_List(const os_List<E>&);

Returns a list that results from assigning the specified list to an
empty list.

os_List(const os_Collection<E>&);

Returns a list that results from assigning the specified collection to
an empty list.
Release 5.1 197

os_list
os_list

class os_list : public os_collection

A list is an ordered collection. As with other ordered collections,
list elements can be inserted, removed, replaced, or retrieved
based on a specified numerical index or based on the position of a
specified cursor.

The class os_list is nonparameterized. For the parameterized
version of this class, see os_List on page 186.

By default, lists allow duplicates and disallow null elements.

The element type of any instance of os_list must be a pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Behavior • The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating the desired properties.
The enumerators are

• os_collection::allow_nulls

• os_collection::allow_duplicates

• os_collection::signal_duplicates

• os_collection::pick_from_empty_returns_null

• os_collection::maintain_cursors

• os_collection::be_an_array

See the class os_collection on page 87 for an explanation of each
enumerator.

The specified behaviors supplement the default behaviors for
lists. If 0 is supplied for behavior , only the default behaviors are
enabled. The default behavior is given by

os_collection::maintain_order | os_collection::allow_duplicates

A run-time error is signaled if an attempt is made to create a list
that is not ordered.

Expected cardinality The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
198 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
overhead of transforming the collection’s representation as it
grows during loading.

Representations The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_dyn_bag .)

Required header files Programs that use lists must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use lists must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Tables of member
functions and
enumerators

Below are two tables. The first table lists the member functions
that can be performed on instances of os_list . The second table
lists the enumerators inherited by os_list from os_collection . The
full explanation of each inherited function or enumerator appears
in the entry for the class from which it is inherited. The full
explanation of each function defined by os_list appears in this
entry, after the tables. In each case, the Defined By column gives
the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection
Release 5.1 199

os_list
cardinality () const os_int32 os_collection

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const void*) const os_collection

count (const void*) const os_int32

create (static) (os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_list os_list

(os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_list

(os_object_cluster *clust,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_list

(void* proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_list

default_behavior
(static)

() os_unsigned_int32 os_set

destroy (static) (os_list&) void os_list

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

Name Arguments Returns Defined By
200 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
get_behavior () const os_unsigned_int32 os_collection

get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options = unordered)
 const

os_int32 os_collection

insert (const void*) void os_collection

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_first (const void*) void os_Collection

insert_last (const void*) void os_Collection

only () const void* os_Collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator os_set& () os_collection

operator const
os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

Name Arguments Returns Defined By
Release 5.1 201

os_list
operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_list&) const

(const os_collection&) const

(const void*) const

os_list&

os_list&

os_list&

os_list

operator |= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator | (const os_collection&) const

(const void*) const

os_collection

os_collection

os_list

operator &= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator & (const os_collection&) const

(const void*) const

os_collection

os_collection

os_list

operator –= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator - (const os_collection&) const

(const void*) const

os_collection

os_collection

os_list

os_list ()

(os_collection_size expected_size)

(const os_list&)

(const os_collection&)

os_list

pick () const

(const os_index_path&,
 const os_coll_range&) const

void*

void*

os_collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* filename = 0,
 os_unsigned_int32 line,
 os_boolean dups) const

(const os_bound_query&,
 os_boolean dups) const

os_collection&

os_collection&

os_collection

Name Arguments Returns Defined By
202 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_list enumerators The following table lists the enumerators inherited by os_list from
os_collection .

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

void*

void*

os_collection

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

os_collection

remove_first (const void*&)

()

os_int32

void*

os_collection

remove_last (const void*&)

()

os_int32

void*

os_collection

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

os_collection

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

os_collection

retrieve_first () const

(const void*&) const

void*

os_int32

os_collection

retrieve_last () const

(const void*&) const

void*

os_int32

os_collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection
Release 5.1 203

os_list
os_list::create()

static os_list &create (
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the database pointed to by db . If the transient
database is specified, the list is allocated in transient memory.

The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating the desired properties. The
enumerators are

• os_collection::allow_nulls

• os_collection::allow_duplicates

• os_collection::signal_duplicates

• os_collection::pick_from_empty_returns_null

• os_collection::maintain_cursors

• os_collection::be_an_array

See the class os_collection on page 87 for an explanation of each
enumerator.

The specified behaviors supplement the default behaviors for
lists. If 0 is supplied for behavior , only the default behaviors are
enabled. The default behavior is given by

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

order_by_address os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
204 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_collection::maintain_order | os_collection::allow_duplicates

A run-time error is signaled if an attempt is made to create a list
that is not ordered.

The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
overhead of transforming the collection’s representation as it
grows during loading.

The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_packed_list .)

static os_list &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the segment pointed to by seg . If the transient
segment is specified, the list is allocated in transient memory. The
rest of the arguments are just as described previously.

static os_list &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new list in the object cluster pointed to by clust . The rest
of the arguments are just as described previously.

static os_list &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
Release 5.1 205

os_list
os_int32 retain = dont_associate_policy
);

Creates a new list in the segment occupied by the object pointed
to by proximity . If the object is part of an object cluster, the new list
is allocated in that cluster. If the specified object is transient, the
list is allocated in transient memory. The rest of the arguments are
just as described previously.

os_list::default_behavior()

static os_unsigned long default_behavior();

Returns a bit pattern indicating this type’s default behavior. The
default behavior is to maintain order and allow duplicates.

os_list::destroy()

static void destroy(os_list&);

Deletes the specified collection and deallocates associated storage.

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.

os_list::operator =()

os_list &operator =(const os_collection &s);

os_list &operator = (const os_list &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_list &operator =(const void *e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_list::operator |=()

os_list &operator |=(const os_collection &s);
206 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Inserts the elements contained in s into the target collection and
returns the target collection.

os_list &operator |=(const void *e);

Inserts the element e into the target collection and returns the
target collection.

os_list::operator |()

os_collection &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. The result
does not maintain cursors or signal duplicates.

os_collection &operator |(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c |= s . The new collection, c, is then returned. If this
allows duplicates or nulls, the result does. The result does not
allow nulls, maintain cursors, or signal duplicates.

os_list::operator &=()

os_list &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. It does so by retaining the appropriate
number of leading elements. It returns the target collection.

os_list &operator &=(const void *e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_list::operator &()

os_collection &operator &(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. The result
does not maintain cursors or signal duplicates.

os_collection &operator &(const void *e) const;
Release 5.1 207

os_list
Copies the contents of this into a new collection, c, and then
performs c &= e . The new collection, c, is then returned. If this
allows duplicates, the result does. If this allows nulls, the result
does. The result does not maintain cursors or signal duplicates.

os_list::operator –=()

os_list &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. The first
s.count(e) elements are removed. It returns the target collection.

os_list &operator –=(const void *e);

Removes the element e from the target collection. The first
occurrence of the element is removed from the target collection. It
returns the target collection.

os_list::operator –()

os_collection &operator –(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If either
operand allows duplicates or nulls, the result does. If s is ordered,
the result is. The result does not maintain cursors or signal
duplicates.

os_collection &operator –(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If this
allows duplicates or nulls, the result does. The result does not
maintain cursors or signal duplicates.

os_list::os_list()

os_list();

Returns an empty list.

os_list(os_collection_size);

The user should pass an os_int32 for the os_collection_size actual
argument. Returns an empty list whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual cardinality of the list, once it has been loaded
with elements.
208 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_list(const os_list&);

Returns a list that results from assigning the specified list to an
empty list.

os_list(const os_collection&);

Returns a list that results from assigning the specified collection to
an empty list.
Release 5.1 209

os_rDictionary
os_rDictionary

template <class K, class E, class R>
class os_rDictionary<K, E, R> :

Dictionaries are unordered collections that allow duplicate
elements and associate a key with each element. The key can be a
value of any C++ fundamental type or user-defined class. If the
key is a pointer, it must not be of the type void * . When you insert
an element into a dictionary, you specify the key along with the
element. You can retrieve an element with a given key or retrieve
those elements whose keys fall within a given range.

Unlike the create operations for other collection classes, there are
no arguments relating to representation in the os_Dictionary class.
To control the representation for dictionaries, you use the class
os_rDictionary , which records its elements as references. Using
references can eliminate address space reservation and reduce
relocation overhead.

The set of functions in the os_rDictionary class is identical to the
set for os_Dictionary , with the difference that in addition to the
key type and element type parameters, functions of the class os_
rDictionary have a reference type parameter whose value must be
an ObjectStore reference types.

Persistent and
transient dictionaries

If you use persistent dictionaries, you must call the macro OS_
MARK_RDICTIONARY() in your schema source file for each key-
type/element-type/os_reference type triplet that you use. If you
are using only transient dictionaries, call the macro OS_
TRANSIENT_RDICTIONARY() in your source file.

Required header files Programs that use the class os_rDictionary must include these
header files: <ostore/ostore.hh> followed by <ostore/coll.hh> and
<ostore/coll/rdict_pt.hh> . <ostore/coll/rdict_pt.cc> must be
included in any source file that instantiates an os_rDictionary .

Required libraries Programs that use the class os_rDictionary must link with the
library file oscol.lib (UNIX platforms) or oscol.ldb (Windows
platforms).

Creating os_
rDictionary collections

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.
210 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
Keys, elements, and
references

For os_rDictionary , the key can be a value of any C++ fundamental
type or user-defined class. When you insert an element into a
dictionary, you specify the key along with the element and
reference type. You can retrieve an element with a given key or
retrieve those elements whose keys fall within a given range.

The element type of any instance of os_rDictionary must be a
pointer type.

The reference type of any instance of os_rDictionary must be os_
reference.

Classes used as keys Requirements for classes used as keys are listed below.

• Types used as keys must have a no-arg constructor.

• The no-arg constructor should not allocate anything.

• Types used as keys also need a public operator= and copy
constructor.

These requirements apply to os_rDictionaries that do not have the
maintain_key_order flag set at creation time. If the maintain_key_
order flag is on, ObjectStore does not run any user code when
manipulating keys.

For class keys, the class must have a destructor.

Integer keys For integer keys, specify one of the following as the key type:

• os_int32 (a signed 32-bit integer)

• os_unsigned_int32 (an unsigned 32-bit integer)

• os_int16 (a signed 16-bit integer)

• os_unsigned_int16 (an unsigned 16-bit integer)

Use the type void* for pointer keys other than char* keys.

For char[] keys, use the parameterized type os_char_array<S> ,
where the actual parameter is an integer literal indicating the size
of the array in bytes.

The key type char* is treated as a class whose rank and hash
functions are defined in terms of strcmp() or strcoll() . For example:

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string “Smith”
(that is, whose key, k, is such that strcmp(k, "Smith") is 0).
Release 5.1 211

os_rDictionary
If a dictionary’s key type is char* and it is unordered,the
dictionary makes its own copies of the character array upon
insert. If the key type is char* and the dictionary has the behavior
maintain_key_order , then it will point to the string rather than
making a copy of it.

If the dictionary does not allow duplicate keys, you can
significantly improve performance by using the type os_char_
star_nocopy as the key type. With this key type the dictionary
copies the pointer to the array and not the array itself. You can
freely pass char* s to this type.

Note that you cannot use os_char_star_nocopy with dictionaries
that allow duplicate keys.

Although it is possible to set up an os_Cursor on an os_
rDictionary , you cannot iterate through it while you are doing
insertions and removals from the os_rDictionary (safe cursor).
That is, os_rDictionary does not support the behavior os_
collection::maintain_cursors .

Below are two tables. The first table lists the member functions
that can be performed on instances of os_rDictionary . The second
table lists the enumerators used by os_rDictionary. Many
functions and enumerators are inherited by os_rDictionary from
internal collection classes. The full explanation of each inherited
function or enumerator appears in the documentation for os_
collection or os_Collection , as specified. The full explanation of
each function and enumerator defined by os_rDictionary appears
in this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database = 0)

void

void

void

void

os_collection
212 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
cardinality () const os_unsigned_int32 os_collection

change_
behavior

(os_unsigned_int32 behavior_ enums,
 os_int32 = verify)

void os_collection

clear () void os_collection

contains (const E element)

(const K &key_ref,
const E element) const

(const K *key_ptr,
const E element) const

os_boolean

os_boolean

os_Collection

os_rDictionary

count (const E) const os_int32 os_Collection

count_values (const K &key_ref) const

(const K * key_ptr) const

os_int32

os_unsigned_int32

os_Dictionary

create (static) (os_segment *seg,
 os_unsigned_int32 expected_card = 10,

 os_unsigned_int32 behavior_enums = 0)

(os_database *db,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior_enums = 0)

(os_object_cluster *clust,
 os_unsigned_int32 expected_card = 10,

 os_unsigned_int32 behavior_enums = 0)

(os_object_cluster *proximity,
 os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior_enums = 0)

os_rDictionary
<K,E,R>&

os_Dictionary
<K,E,R>&

os_Dictionary
<K,E,R>&

os_Dictionary
<K,E,R>&

os_rDictionary

default_
behavior (static)

() os_unsigned_int32 os_Dictionary

destroy (static) (os_rDictionary<K, E.R>&) void os_Dictionary

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

has_index (const os_index_path&,
 os_int32 index_options = 0) const

os_int32 os_collection

Name Arguments Returns Defined By
Release 5.1 213

os_rDictionary
insert (const K &key_ref,
const E element)

(const K *key_ptr,
const E element)

void

void

os_rDictionary

only () const E os_Collection

os_Dictionary (os_unsigned_int32 expected_card = 10,
 os_unsigned_int32 behavior = 0)

os_rDictionary

pick (const os_coll_range&) const

(const K &key_ref) const

(const K *key_ptr) const

() const

E

E

E

E

os_rDictionary

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename = 0,
 os_unsigned_int32 line = 0,
 os_boolean dups

= query_dont_preserve_duplicates)
 const

(const os_bound_query& ,
 os_boolean dups

= query_dont_preserve_duplicates)
 const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char *filename = 0,
 os_unsigned_int32 line = 0) const

(const os_bound_query&) const

E

jelm
E

os_Collection

remove (const K &key_ref,
const E element)

(const K *key_ptr,
const E element)

void

void

os_rDictionary

remove_value (const K &key_ref,
 const E os_unsigned_int32 n = 1)

(const K *key_ptr,
 os_unsigned_int32 n = 1)

E

E

os_rDictionary

retrieve (const os_cursor&) const E os_rDictionary

retrieve_key (const os_cursor&) K* os_rDictionary

Name Arguments Returns Defined By
214 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_rDictionary
enumerators

The following table lists enumerators for the os_rDictionary class.

os_rDictionary::contains()

os_boolean contains(const K &key_ref, const E element) const;

Returns nonzero (true) if this contains an entry with the specified
element and the key referred to by key_ref . If there is no such
entry, 0 (false) is returned. This overloading of contains() differs
from the next overloading only in that the key is specified with a
reference instead of a pointer.

os_boolean contains(const K *key_ptr, const E element) const;

Returns nonzero (true) if this contains an entry with the specified
element and the key pointed to by key_ptr . If there is no such
entry, 0 (false) is returned. This overloading of contains() differs
from the previous overloading only in that the key is specified
with a pointer instead of a reference.

os_rDictionary::count_values()

os_unsigned_int32 count_values(const K &key_ref) const;

Name Inherited From

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_key_order os_rDictionary

maintain_order os_collection

pick_from_empty_returns_null os_collection

no_dup_keys os_rDictionary

signal_cardinality os_collection

signal_dup_keys os_rDictionary

signal_duplicates os_collection

unordered os_collection

verify os_collection
Release 5.1 215

os_rDictionary
Returns the number of entries in this with the key referred to by
key_ref . This overloading of count_values() differs from the next
overloading only in that the key is specified with a reference
instead of a pointer.

os_unsigned_int32 count_values(const K *key_ptr) const;

Returns the number of entries in this with the key pointed to by
key_ptr . This overloading of count_values() differs from the
previous overloading only in that the key is specified with a
pointer instead of a reference.

os_rDictionary::create()

static os_rDictionary<K, E, R> &create(
os_database *db,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior_enums = 0

);

Creates a new dictionary in the database pointed to by db . If the
transient database is specified, the dictionary is allocated in
transient memory. K can be either a pointer, a basic type, or a class
type. R is always os_reference .

This is one of three overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

Usage note For os_rDictionary::create() , the cardinality and behavior
arguments are the third and fourth arguments to the function.
This differs from os_collection::create() , where the behavior
argument precedes the expected size argument.

db: The database to which the new dictionary will be allocated.

expected_cardinality: Unlike the create operations for other
collection classes, there are no arguments relating to
representation policies. This is because you cannot directly
control the representation for dictionaries.

By default, dictionaries are presized with a representation suitable
for cardinality 10. If you want a new dictionary presized for a
different cardinality, supply the expected_cardinality argument
explicitly.
216 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
If the key type is a class type, then the rank/hash functions for this
type must be defined and registered through the os_index_key()
macro.

behavior_enums: Every dictionary has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are allowed.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

By default a new dictionary also has the following properties:

• Performing pick() on an empty dictionary raises an err_coll_
empty exception.

• Duplicate keys are allowed; that is, two or more elements can
have the same key.

• Range lookups are not supported; that is, key order is not
maintained.

You can customize the behavior of new dictionaries with regard
to these last three properties. You do this by supplying a behavior
argument to create() , an unsigned 32-bit integer, a bit pattern
indicating the collection’s properties. The bit pattern is obtained
by forming the bit-wise disjunction (using bit-wise or, |) of
enumerators taken from the following possibilities:

• os_collection::pick_from_empty_returns_null : Performing
pick() on an empty dictionary returns 0 rather than raising an
exception.

• os_dictionary::signal_dup_keys : Duplicate keys are not
allowed; err_am_dup_key is signaled if an attempt is made to
establish two or more elements with the same key.

• os_dictionary::maintain_key_order : Range lookups are
supported using pick() or restricted cursors.

For example:

os_rDictionary<K,E,R>::default_behavior(), or

os_rDictionary<K,E,R>::create
(db,n,os_collection::pick_from_empty_returns_null)
Release 5.1 217

os_rDictionary
These enumerators are instances of an enumeration defined in the
scope of the os_rDictionary . Each enumerator is associated with a
different bit, and including an enumerator in the disjunction sets
its associated bit.

You can change the behavior pick_from_empty_returns_null after
an os_rDictionary has been created. See os_collection::change_
behavior() on page 97.

For large dictionaries that maintain key order, there is also an
option for reducing contention. With os_collection::dont_
maintain_cardinality behavior, insert() and remove() do not update
cardinality information, avoiding contention in the collection
header. This can significantly improve performance for large
dictionaries subject to contention. The disadvantage of this
behavior is that cardinality() is an O(n) operation, requiring a scan
of the whole dictionary. See the following members of os_
collection :

static os_rDictionary<K, E, R> &create(
os_segment *seg,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);

Creates a new dictionary in the segment pointed to by seg . If the
transient segment is specified, the dictionary is allocated in
transient memory.

This is one of three overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

The rest of the arguments are just as described previously for the
first overloading of this function.

static os_rDictionary<K, E, R> &create(
os_object_cluster *clust,
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

os_collection::cardinality_is_maintained() on page 97

os_collection::cardinality_estimate() on page 97

os_collection::update_cardinality() on page 128
218 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
);

Creates a new dictionary in the os_object_cluster pointed to by
clust .

This is one of three overloadings of create() . As with the create
operations for the other types of collections, these overloadings
differ only in the first argument, which specifies where to allocate
the new dictionary. Depending on the overloading, it specifies a
database, segment, or object cluster.

The rest of the arguments are just as described previously for the
first overloading of this function.

os_rDictionary::destroy()

static void destroy(os_rDictionary<K, E, R>& c);

Deletes the specified collection and deallocates associated storage.

This function has the same effect as deleting the os_rDictionary
object.

os_rDictionary::insert()

void insert(const K &key, const E element)

Inserts the specified element with the key referred to by key_ref .
This overloading of insert() differs from the next overloading only
in that the key is specified with a reference instead of a pointer.

For os_rDictionary <K,E,R>::insert the element is automatically
converted to an os_reference so that the pointer is not stored in the
os_rDictionary .

Each insertion increases the collection’s cardinality by 1 and
increases by 1 the count (or number of occurrences) of the inserted
element in the collection, unless the dictionary already contains an
entry that matches both the key and the element (in which case the
insert is silently ignored).

If you insert a null pointer (0), the exception err_coll_nulls is
signaled.

For dictionaries with signal_dup_keys behavior, if an attempt is
made to insert something with the same key as an element already
present, err_am_dup_key is signaled.

void insert(const K *key, const E element)
Release 5.1 219

os_rDictionary
Inserts the specified element with the key pointed to by key_ptr .
This overloading of insert() differs from the preceding
overloading of insert() only in that the key is specified with a
pointer instead of a reference.

os_rDictionary::os_rDictionary()

os_rDictionary(
os_unsigned_int32 expected_cardinality = 10,
os_unsigned_int32 behavior = 0

);

Use the dictionary constructor only to create stack-based
dictionaries, or dictionaries embedded within other objects. See
os_Dictionary::create() for more information on creating
ObjectStore dictionaries.

os_rDictionary::pick()

E pick(const os_coll_range&) const;

Returns an element of this that satisfies the specified os_coll_
range . Even though the os_rDictionary contains elements that are
stored as os_references , this function converts the os_reference
element to a pointer and returns a pointer. The dictionary must be
created with maintain_key_order to support pick() with os_coll_
range .

If there is more than one such element, an arbitrary one is picked
and returned. If there is no such element, 0 is returned.

E pick(const K &key_ref) const;

Returns an element of this that has the key referred to by key_ref .
The value of the object referred to by key_ref is used for the test.

If there is more than one such element, an arbitrary one is picked
and returned. If there is no such element, 0 is returned. If the
dictionary is empty and has pick_from_empty_returns_null
behavior, 0 is returned. If the dictionary is empty and does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.

E pick(const K *key_ptr) const;

Returns an element of this that has the key with the same value as
*key_ptr .
220 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
If there is more than one such element, an arbitrary one is picked
and returned. If there is no such element, 0 is returned. If the
dictionary is empty and has pick_from_empty_returns_null
behavior, 0 is returned. If the dictionary is empty and does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.

E pick() const;

Picks an arbitrary element of this and returns it.

If the dictionary is empty and has pick_from_empty_returns_null
behavior, 0 is returned. If the dictionary is empty and does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.

os_rDictionary::query()

os_rDictionary::query_pick()

E query_pick(
char *element_type,
char *query_string,
os_database *schema_db = 0,
char *file_name = 0,
os_unsigned_int32 line = 0

) const;

Returns an element (pointer) of this that satisfies the specified
query_string . See the description of query_string for os_
Collection::query() on page 76.

If there is no such element, 0 is returned.

Since the os_rDictionary stores its elements as os_references ,
doing a query will require that each element’s os_reference be
resolved. This will increase query time. Ideally there would be a
reference-based index that the query can use.

The argument element_type is the name of the element type of
this . Names established through the use of typedef are not
allowed.

The schema_db is a database whose schema contains all the types
mentioned in query_string . This database provides the
environment in which the query is analyzed and optimized. The
database in which the collection resides is often appropriate.
Release 5.1 221

os_rDictionary
void *query_pick(const os_bound_query&) const;

Returns an element of this that satisfies the specified bound query.

If there is no such element, 0 is returned.

os_rDictionary::remove()

void remove(const K &key_ref, const E element);

Removes the dictionary entry with the element element at the key
value referred to by key_ref . This overloading of remove() differs
from the next overloading only in that the key is specified with a
reference instead of a pointer. If removing this element leaves no
other elements at this key value, then the key is removed and
deleted.

If there is no such entry, the dictionary remains unchanged. If
there is such an entry, the collection’s cardinality decreases by 1
and the count (or number of occurrences) of the removed element
in the collection decreases by 1.

void remove(const K *key_ptr, const E element);

Removes the dictionary entry with the element element and the
key referred to by key_ptr . This overloading differs from the
preceding overloading of remove() only in that the key is specified
with a pointer instead of a reference. If removing this element
leaves no other elements at this key value, the key is removed and
deleted.

os_rDictionary::remove_value()

E remove_value(const K &key_ref, os_unsigned_int32 n = 1);

Removes n dictionary entries with the key value referred to by
key_ref . If there are fewer than n, all entries in the dictionary with
that key are removed. If there is no such entry, the dictionary
remains unchanged. If removing this element leaves no other
elements at this key value, the key is removed and deleted.

This overloading of remove_value() differs from the next
overloading only in that the key is specified with a reference
instead of a pointer.

For each removed entry, the collection’s cardinality decreases by
1 and the count (or number of occurrences) of the removed
element in the collection decreases by 1.
222 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
void remove_value(const K *key_ptr, os_unsigned_int32 n = 1);

Removes n dictionary entries with the key pointed to by key_ptr .
This overloading differs from the previous overloading of insert()
only in that the key is specified with a pointer instead of a
reference. If removing this element leaves no other elements at
this key value, the key is removed and deleted.

os_rDictionary::retrieve()

E retrieve(const os_cursor&) const;

Returns the element of this at which the specified cursor is located.
If the cursor is null, err_coll_null_cursor is signaled. If the cursor is
invalid, err_coll_illegal_cursor is signaled.

os_rDictionary::retrieve_key()

const K *retrieve_key(const os_cursor&) const;

Returns the key of the element of this at which the specified cursor
is located. If the cursor is null, err_coll_null_cursor is signaled. If the
cursor is invalid, err_coll_illegal_cursor is signaled.
Release 5.1 223

os_rep
os_rep

An instance of this class is used to build an os_rep_policy or os_
rep_list . Each os_rep serves to associate a collection representation
type with a threshold cardinality. The threshold is the largest
cardinality at which the associated representation applies.

os_rep::os_rep()

os_rep(os_rep_type rep_enum, os_unsigned_int32 threshold);

Creates an os_rep that specifies a representation of rep_enum until
cardinality threshold . rep_enum should be one of the following:

• os_packed_list_rep

• os_ordered_ptr_hash_rep

• os_ptr_bag_rep

• os_chained_list_rep

• os_ixonly_rep

• os_ixonly_bc_rep

• os_dyn_hash_rep

• os_dyn_bag_rep

• os_vdyn_hash_rep_os_reference

• os_vdyn_bag_rep_os_reference
224 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Set

template <class E>
class os_Set : public os_Collection<E>

A set is an unordered collection that does not allow duplicate
element occurrences. The count of a value in a given set is the
number of times it occurs in the set — either 0 or 1.

The class os_Set is parameterized, with a parameter for
constraining the type of values allowable as elements (for the
nonparameterized version of this class, see os_set on page 235).
This means that when specifying os_Set as a function’s formal
parameter, or as the type of a variable or data member, you must
specify the parameter (the set’s element type). This is accomplished
by appending to os_Set the name of the element type enclosed in
angle brackets, < >:

os_Set< element-type-name >

The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

The element type of any instance of os_Set must be a pointer type.

Create collections with the member create() or, for stack-based or
embedded collections, with a constructor. Do not use new to
create collections.

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Required header files Programs that use sets must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use sets must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Below are two tables. The first table lists the member functions
that can be performed on instances of os_Set . The second table
lists the enumerators inherited by os_Set from os_collection .
Many functions are also inherited by os_Set from os_Collection or
os_collection . The full explanation of each inherited function or
enumerator appears in the entry for the class from which it is
Release 5.1 225

os_Set
inherited. The full explanation of each function defined by os_Set
appears in this entry, after the tables. In each case, the Defined By
column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_int32 os_collection

change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

create (static) (os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Set<E>& os_Set

(os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Set<E>&

(os_object_cluster *clust,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Set<E>&
226 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
(void* proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_Set<E>&

default_behavior
(static)

() os_unsigned_int32 os_Set

destroy (static) (os_Set<E>&) void os_Set

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* filename,
 os_unsigned_int32 line) const

 (const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

get_rep () const const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options = unordered)
 const

os_int32 os_collection

insert (const E) void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection

operator const
os_Bag<E>&

() const os_Collection

operator
 os_bag&

() os_collection

Name Arguments Returns Defined By
Release 5.1 227

os_Set
operator const
os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator os_set& () os_collection

operator const
os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Set<E>&) const

(const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set<E>&

os_Set

operator |= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

operator | (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

Name Arguments Returns Defined By
228 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Set enumerators The following table lists the enumerators inherited by os_Set from
os_collection .

operator & (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

operator - (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_Set ()

(os_collection_size)

(const os_Set<E>&)

(const os_Collection<E>&)

os_Set

pick () const

(const os_index_path&,
 const os_coll_range&) const

E

E

os_Collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_Collection<E>&

os_Collection<E>&

os_Collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

E

E

os_Collection

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&) void os_Set

replace_at (const E,
 const os_Cursor<E>&)

E os_Set

retrieve (const os_Cursor<E>&) const E os_Set

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection
Release 5.1 229

os_Set
os_Set::create()

static os_Set<E> &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the database pointed to by db . If the transient
database is specified, the set is allocated in transient memory.

The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating the desired properties. The
enumerators are

• os_collection::allow_nulls

• os_collection::signal_duplicates

• os_collection::pick_from_empty_returns_null

• os_collection::maintain_cursors

See the class os_collection on page 87 for an explanation of each
enumerator.

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

order_by_address os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection

Name Inherited From
230 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
A run-time error is signaled if an attempt is made to create a set
that is ordered or allows duplicates.

The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
overhead of transforming the collection’s representation as it
grows during loading.

Representation policy The default representation for a set is

• An os_Set created as an embedded object has a representation
of os_tiny_array (0 to 4 elements).

• An embedded set becomes out of line and mutates to an os_
chained_list when the fifth element is inserted.

• A set created with ::create and a cardinality of <= 20 is
represented as an os_chained_list .

• Once the set grows past 20 its representation is os_dyn_hash
unless it has maintain_cursors behavior, in which case the
representation is os_packed_list .

The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_packed_list .)

An os_Set can have the following additional behaviors:

• pick_from_empty_returns_nul l

• signal_duplicates

• allow_nulls

static os_Set<E> &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);
Release 5.1 231

os_Set
Creates a new set in the segment pointed to by seg . If the transient
segment is specified, the set is allocated in transient memory. The
rest of the arguments are just as described previously.

static os_Set<E> &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the object cluster pointed to by clust . The rest
of the arguments are just as described previously.

static os_Set<E> &create(
void * proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the segment occupied by the object pointed to
by proximity . If the object is part of an object cluster, the new set is
allocated in that cluster. If the specified object is transient, the set
is allocated in transient memory. The rest of the arguments are
just as described previously.

os_Set::default_behavior()

static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior.

os_Set::destroy()

static void destroy(os_Set<E>&);

Deletes the specified collection and deallocates associated storage.
This is the same as deleting the os_Set .

Assignment Operator Semantics

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order semantics are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated semantics.
232 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_Set::operator =()

os_Set<E> &operator =(const os_Collection<const E> &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_Set<E> &operator =(E e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_Set::operator |=()

os_Set<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection, and
returns the target collection.

os_Set<E> &operator |=(E e);

Inserts the element e into the target collection, and returns the
target collection.

os_Set::operator &=()

os_Set<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. It returns the target collection.

os_Set<E> &operator &=(E e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_Set::operator –=()

os_Set<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. It returns the
target collection.

os_Set<E> &operator –=(E e);
Release 5.1 233

os_Set
Removes the element e from the target collection. It returns the
target collection.

os_Set::os_Set()

os_Set();

Returns an empty set.

os_Set(os_collection_size);

The user should pass an os_int32 for the os_collection_size actual
argument. Returns an empty set whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual cardinality of the set, once it has been loaded
with elements.

os_Set(const os_Set<E>&);

Returns a set that results from assigning the specified set to an
empty set.

os_Set(const os_Collection<E>&);

Returns a set that results from assigning the specified collection to
an empty set.
234 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_set

class os_set : public os_collection

A set is an unordered collection that does not allow duplicate
element occurrences. The count of a value in a given set is the
number of times it occurs in the set — either 0 or 1.

The class os_set is nonparameterized. For the parameterized
version of this class, see os_Set on page 225.

Required header files Programs that use sets must include the header file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Required libraries Programs that use sets must link with the library file oscol.lib
(UNIX platforms) or oscol.ldb (Windows platforms).

Type definitions The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Below are two tables. The first table lists the member functions
that can be performed on instances of os_set . The second table
lists the enumerators inherited by os_set from os_collection .
Many functions are also inherited by os_set from os_collection .
The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The
full explanation of each function defined by os_set appears in this
entry, after the tables. In each case, the Defined By column gives
the class whose entry contains the full explanation.

Name Arguments Returns Defined By

add_index (const os_index_path&,
 os_int32 = unordered,
 os_segment* = 0)

(const os_index_path&,
 os_int32 = unordered,
 os_database* = 0)

(const os_index_path&,
 os_segment* = 0)

(const os_index_path&,
 os_database* = 0)

void

void

void

void

os_collection

cardinality () const os_int32 os_collection
Release 5.1 235

os_set
change_behavior (os_unsigned_int32 behavior,
 os_int32 = verify)

void os_collection

change_rep (os_unsigned_int32 expected_size,
 const os_coll_rep_descriptor *policy = 0,
 os_int32 retain = dont_associate_policy)

void os_collection

clear () void os_collection

contains (const void*) const os_collection

count (const void*) const os_int32

create (static) (os_segment *seg,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_set& os_set

(os_database *db,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_set&

(os_object_cluster *clust,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_set&

(void* proximity,
 os_unsigned_int32 behavior = 0,
 os_int32 expected_size = 0,
 const os_coll_rep_descriptor* = 0,
 os_int32 retain = dont_associate_policy)

os_set&

default_behavior
(static)

() os_unsigned_int32 os_set

destroy (static) (os_set&) void os_set

drop_index (const os_index_path&) void os_collection

empty () os_int32 os_collection

exists (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_int32

os_int32

os_collection

get_behavior () const os_unsigned_int32 os_collection

Name Arguments Returns Defined By
236 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
get_rep () const os_coll_rep_
descriptor&

os_collection

has_index (const os_index_path&,
 os_int32 index_options = unordered)

const

os_int32 os_collection

insert (const void*) void os_collection

only () const void* os_Collection

operator
 os_array&

() os_collection

operator const
os_array&

() const os_collection

operator os_bag& () os_collection

operator const
os_bag&

() const os_collection

operator os_list& () os_collection

operator const
os_list&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_set&) const

(const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

os_set

operator |= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

Name Arguments Returns Defined By
Release 5.1 237

os_set
operator | (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator &= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator & (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator –= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator - (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

os_set ()

(os_collection_size)

(const os_set&)

(const os_collection&)

os_set

pick () const

(const os_index_path&,
 const os_coll_range&) const

void*

void*

os_collection

query (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,
 os_unsigned_int32 line) const

(const os_bound_query&) const

os_collection&

os_collection&

os_collection

query_pick (char *element_type_name,
 char *query_string,
 os_database *schema_database = 0,
 char* file,

os_unsigned_int32 line) const

(const os_bound_query&) const

void*

void*

os_collection

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&) void os_set

replace_at (const void*,
 const os_cursor&)

void* os_set

retrieve (const os_cursor&) const void* os_set

Name Arguments Returns Defined By
238 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
os_set enumerators The following table lists the enumerators inherited by os_set from
os_collection .

os_set::create()

static os_set &create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the database pointed to by db . If the transient
database is specified, the set is allocated in transient memory.

The behavior is a bit pattern, the bit-wise disjunction (using the
operator |) of enumerators indicating the desired properties. The
enumerators are

• os_collection::allow_nulls

• os_collection::signal_duplicates

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

associate_policy os_collection

dont_associate_policy os_collection

dont_verify os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cursors os_collection

maintain_order os_collection

order_by_address os_collection

pick_from_empty_returns_null os_collection

signal_cardinality os_collection

signal_duplicates os_collection

unordered os_collection

verify os_collection
Release 5.1 239

os_set
• os_collection::pick_from_empty_returns_null

• os_collection::maintain_cursors

See the class os_collection on page 87 for an explanation of each
enumerator.

A run-time error is signaled if an attempt is made to create a set
that is ordered or allows duplicates.

The expected_size is the cardinality you expect the collection to
have when fully loaded. This value is used by ObjectStore to
determine the collection’s initial representation. This saves on the
overhead of transforming the collection’s representation as it
grows during loading.

The rep_policy is the representation policy to be associated with
the collection until explicitly changed, if retain is os_
collection::associate_policy . If retain is os_collection::dont_
associate_policy , the rep_policy is used, together with the
expected_size , only to determine the collection’s initial
representation. (A representation policy is, essentially, a mapping
from cardinality ranges to representation types — see os_coll_
rep_descriptor on page 143, and in ObjectStore Advanced C++ API
User Guide see os_ptr_bag and os_packed_list .)

static os_set &create(
os_segment * seg,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the segment pointed to by seg . If the transient
segment is specified, the set is allocated in transient memory. The
rest of the arguments are just as described previously.

static os_set &create(
os_object_cluster *clust,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the object cluster pointed to by clust . The rest
of the arguments are just as described previously.
240 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
static os_set &create(
os_object_cluster *proximity,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0,
const os_coll_rep_descriptor *rep_policy = 0,
os_int32 retain = dont_associate_policy

);

Creates a new set in the specified object cluster. The rest of the
arguments are just as described previously.

os_set::default_behavior()

static os_unsigned_long default_behavior();

Returns a bit pattern indicating this type’s default behavior.

os_set::destroy()

static void destroy(os_set&);

Deletes the specified collection and deallocates associated storage.

Note: The assignment operator semantics are described below in
terms of insert operations into the target collection. Describing the
semantics in terms of insert operations serves to illustrate how
duplicate, null, and order behavior are enforced. The actual
implementation of the assignment might be quite different, while
still maintaining the associated behavior.

os_set::operator =()

os_set &operator =(const os_set &s);

Copies the contents of the collection s into the target collection
and returns the target collection. The copy is performed by
effectively clearing the target, iterating over the source collection,
and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection
semantics are enforced as usual during the insertion process.

os_set &operator =(const void *e);

Clears the target collection, inserts the element e into the target
collection, and returns the target collection.

os_set::operator |=()

os_set &operator |=(const os_set &s);
Release 5.1 241

os_set
Inserts the elements contained in s into the target collection and
returns the target collection.

os_set &operator |=(const void *e);

Inserts the element e into the target collection and returns the
target collection.

os_set::operator |()

os_set &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, then inserts the
elements of s into the new collection. The new collection is then
returned. If s allows duplicates, the result does. If either operand
allows nulls, the result does. The result does not maintain order,
maintain cursors, or signal duplicates.

os_set &operator |(const void *e) const;

Copies the contents of this into a new collection, then inserts e into
the new collection. The new collection is then returned. If this
allows nulls, the result does. The result does not allow duplicates,
maintain order, maintain cursors, or signal duplicates.

os_set::operator &=()

os_set &operator &=(const os_set &s);

For each element in the target collection, reduces the count of the
element in the target to the minimum of the counts in the source
and target collections. If the collection is ordered and contains
duplicates, it does so by retaining the appropriate number of
leading elements. It returns the target collection.

os_set &operator &=(const void *e);

If e is present in the target, converts the target into a collection
containing just the element e. Otherwise, it clears the target
collection. It returns the target collection.

os_set::operator &()

os_set &operator &(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If s allows
duplicates, the result does. If either operand allows nulls, the
242 ObjectStore Collections C++ API Reference

Chapter 2: Collection, Query, and Index Classes
result does. The result does not maintain order, maintain cursors,
or signal duplicates.

os_set &operator &(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c &= s . The new collection, c, is then returned. If this
allows nulls, the result does. The result does not allow duplicates,
maintain order, maintain cursors, or signal duplicates.

os_set::operator –=()

os_set &operator –=(const os_set &s);

For each element in the collection s, removes s.count(e)
occurrences of the element from the target collection. If the
collection is ordered, it is the first s.count(e) elements that are
removed. It returns the target collection.

os_set &operator –=(const void *e);

Removes the element e from the target collection. If the collection
is ordered, it is the first occurrence of the element that is removed
from the target collection. It returns the target collection.

os_set::operator –()

os_set &operator -(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If s allows
duplicates, the result does. If either operand allows nulls, the
result does. The result does not maintain order, maintain cursors,
or signal duplicates.

os_set &operator –(const void *e) const;

Copies the contents of this into a new collection, c, and then
performs c –= s . The new collection, c, is then returned. If this
allows nulls, the result does. The result does not allow duplicates,
maintain order, maintain cursors, or signal duplicates.

os_set::os_set()

os_set();

Returns an empty set.

os_set(os_collection_size);
Release 5.1 243

os_set
The user should pass an os_int32 for the os_collection_size actual
argument. Returns an empty set whose initial implementation is
based on the expectation that the specified os_int32 indicates the
approximate usual cardinality of the set, once it has been loaded
with elements.

os_set(const os_set&);

Returns a set that results from assigning the specified set to an
empty set.

os_set(const os_collection&);

Returns a set that results from assigning the specified collection to
an empty set.

os_set::retrieve()

void* retrieve(const os_cursor&) const;

Returns the element at which the specified cursor is positioned. If
the cursor is null, err_coll_null_cursor is signaled. If the cursor is
nonnull but not positioned at an element, err_coll_illegal_cursor is
signaled.
244 ObjectStore Collections C++ API Reference

Chapter 3
Representation Types

Types os_chained_list 246

os_dyn_bag 249

os_dyn_hash 251

os_ixonly and os_ixonly_bc 253

os_ordered_ptr_hash 255

os_packed_list 257

os_ptr_bag 259

os_vdyn_bag 261

os_vdyn_hash 263
Release 5.1 245

os_chained_list
os_chained_list

The class os_chained_list is a representation type that is optimized
(in both time and space) for small- to medium-sized collections.
Each os_chained_list consists of a header and any number of
blocks. The header has a vptr , one word of state and up to 15
pointers. When the number of pointers in the header is exhausted,
an os_chained_list_block is allocated and chained to the header.

Each os_chained_list_block can contain up to 255 pointers. It has
two or three words of overhead: one word of state information, a
previous pointer, and possibly a next pointer (the first os_chained_
list_block allocated does not have a next pointer until the next
block is allocated). The default version of os_chained_list contains
four pointers in the header and seven or eight pointers in its
blocks.

The maximum cardinality for os_chained_list s is 131070.

Controlling the
number of pointers

When you create an os_chained_list , what is really allocated is an
instance of a parameterized class derived from os_chained_list :
os_chained_list_pt<NUM_PTRS_IN_HEAD,NUM_PTRS_IN_
BLOCKS> . The default parameterization is <4,8>, but you can
specify a different parameterization with the following macros:

Macros for specifying
parameterization

OS_MARK_CHAINED_LIST_REP
(ptrs_in_header,ptrs_in_blocks)

Use OS_MARK_CHAINED_
LIST_REP() in the same
dummy function as OS_
MARK_SCHEMA_TYPE() .

OS_INSTANTIATE_CHAINED_LIST_REP
(ptrs_in_header,ptrs_in_blocks)

Use OS_INSTANTIATE_
CHAINED_LIST_REP() at
file scope. It declares some
static state needed by the
representation.

OS_INITIALIZE_CHAINED_LIST_REP
(ptrs_in_header,ptrs_in_blocks)

Execute OS_INITIALIZE_
CHAINED_LIST_REP() in a
function. It registers the
new parameterization
with the collections library.
246 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
Include the files <coll/chlist.hh> , <coll/chlistpt.hh> , and
<coll/chlistpt.c> if you use these macros.

In order to create a collection using a chained list with other than
the default parameterization, you invoke the following static
member function:

static os_chained_list_descriptor*
os_chained_list_descriptor::find_rep(

os_unsigned_int32 ptrs_in_hdr,
os_unsigned_int32 ptrs_in_blocks

);

If the requested parameterization has been specified with the
above macros, the appropriate representation descriptor is
returned. Otherwise, 0 is returned.

Note that an os_chained_list must have at least four pointers in
the header but not more than 15 pointers.

An os_chained_list with a four-pointer header can change freely
into any other collection representation and the reverse. However,
other collection representations cannot change into os_chained_
list s with more than four pointers in the header. A normal
collection header is 24 bytes. An os_chained_list with more than
four pointers exceeds this limit. It is possible for an os_chained_
list with an oversized header to change into another
representation (with the same or smaller size header).

Pool allocation of
blocks

You can request pool allocation of os_chained_list_block s with the
environment variable OS_COLL_POOL_ALLOC_CHLIST_BLOCKS
and the function os_chlist_pool::configure_pool() . In some cases
this decreases the time needed for individual allocation of os_
chained_list_block s and increases the chance of getting good
locality of reference.

Setting OS_COLL_POOL_ALLOC_CHLIST_BLOCKS (to 1) turns on
pool allocation. There is one pool per segment; each pool consists
of an array of subpools. Each subpool is two pages by default.

By allocating larger subpools, you can defer the cost of allocating
new subpools at the expense of potentially wasted space. To
allocate larger subpools, use this function:

static void
os_chlist_pool::configure_pool(

os_unsigned_int32 config_options,
Release 5.1 247

os_chained_list
os_unsigned_int32 blks_per_subpool=2
);

config_options can have one of the following values:

• os_chlist_pool_no_pooled_allocation

• os_chlist_pool_allocate_blks

The second argument, which is optional and defaults to 2, controls
the number of pages allocated per subpool.

Mutation checks In order to improve performance, an os_chained_list does not
necessarily check to see if it should change to another
representation after every insert or remove operation. By default,
it checks when the cardinality is roughly a multiple of 7. However,
you can control the frequency with which it checks by invoking
the static member function

static void
os_chained_list_descriptor::set_reorg_check_interval(

os_unsigned_int32 v
);

ObjectStore sets the check interval to one less than the power of 2
that is greater than or equal to v. For example, in order to check on
every other insert or remove, pass 1 or 2 as an argument. Passing
3 or 4 results in a check on every third operation. Passing 0 inhibits
mutation. However, if the maximum cardinality for an os_
chained_list is reached, it will change to another representation.

mutate_when_full
behavior

For collections whose representation is os_chained_list , if you
specify the behavior enumerator os_collection::chained_list_
mutate_when_full , the collection’s representation will not change
until it reaches the maximum cardinality for chained lists.
248 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_dyn_bag

Instances of this class are used as ObjectStore collection
representations. The os_dyn_bag representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_dyn_
bag takes up somewhat more space than an os_packed_list .

The representation os_dyn_bag minimizes reorganization
overhead at the expense of some extra space overhead, compared
with os_ptr_bag . At large cardinalities, os_dyn_bag uses a
directory structure pointing to many small hash tables that can
reorganize independently.

This representation type does not support maintain_order or
maintain_cursors behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

If cardinality <= 64k, the small-medium cardinality data structure
is used. It contains the following:

• A header (24 bytes)

• An entry for each element (eight bytes each)

• Some number of empty entries (eight bytes each)

On average, an os_dyn_bag at low-medium cardinalities is 69%
full. You can estimate the average size as follows:

Avg. total size in bytes = 24 + (cardinality/.69) * 8

insert() O(1)

remove() O(1)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 249

os_dyn_bag
If cardinality > 64k the large cardinality data structure is used. It
contains the following:

• A header (24 bytes)

• A directory (60-byte header + 12 bytes per directory entry)

• Some number of small hash tables (two pages each, eight bytes
per entry)

On average, each small hash table in an os_dyn_bag at high
cardinalities is 70% full. You can estimate the average size as
follows:

 n_entries = Avg. number of entries per small hash table = (8192/8) * .7

n_tables = Avg. number of small hash tables = cardinality / n_entries

dir_size = Avg. directory size in bytes = 60 + (n_tables+1) * 12

Avg. total size in bytes = 24 bytes + dir_size + n_tables * 8192
250 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_dyn_hash

Instances of this class are used as ObjectStore collection
representations. The dynamic hash representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_dyn_
hash takes up somewhat more space than an os_packed_list .

At large cardinalities, os_dyn_hash uses a directory structure
pointing to many small hash tables that can reorganize
independently.

This representation type does not support allow_duplicates ,
maintain_order , or maintain_cursors behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

If cardinality <= 64k, the small-medium cardinality data structure
is used. It contains the following:

• A header (24 bytes)

• An entry for each element (four bytes each)

• Some number of empty entries (four bytes each)

On average, an os_dyn_hash at low-medium cardinalities is 69%
full. You can estimate the average size as follows:

Avg. total size in bytes = 24 + (cardinality/.69) * 4

If cardinality > 64k the large cardinality data structure is used. It
contains the following:

insert() O(1)

remove() O(1)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 251

os_dyn_hash
• A header (24 bytes)

• A directory (60-byte header + 12 bytes per directory entry)

• Some number of small hash tables (two pages each, four bytes
per entry)

On average, each small hash table in an os_dyn_hash at high
cardinalities is 70% full. You can estimate the average size as
follows:

n_entries = Avg. number of entries per small hash table = (8192/4) * .7

n_tables = Avg. number of small hash tables = cardinality / n_entries

dir_size = Avg. directory size in bytes = 60 + (n_tables+1) * 12

Avg. total size in bytes = 24 bytes + dir_size + n_tables * 8192
252 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_ixonly and os_ixonly_bc

Instances of these classes are used as ObjectStore collection
representations. They are both index-only representations that
support O(1) element lookup. Operations such as contains() and
remove() are O(1) (in the number of elements). But they take up
somewhat more space than an os_packed_list .

For large collections subject to contention, os_ixonly_bc can
provide significantly better performance than os_ixonly . See os_
ixonly_bc , below.

The next chapter discusses associating indexes with collections to
improve the efficiency of queries. With os_ixonly or os_ixonly_bc ,
you can save space by telling ObjectStore to record the
membership of the collection in one of its indexes, as opposed to
recording the membership in both the index and the collection. In
other words, you can save space by using an index as a collection’s
representation.

When these representation types are specified for a collection, you
must add an index to it before any operations are performed on it.
Additional indexes can also be added.

These representation types are incompatible with the following
behaviors: maintain_order , maintain_cursors , allow_nulls , and
allow_duplicates .

Note that using these representations can save on space overhead
at the expense of reducing the efficiency of some collection
operations. If the only time-critical collection operation is index-
based element lookup, an index-only representation is likely to be
beneficial.

For cardinalities below 30, os_chained_list might be a better
representation type.

os_ixonly_bc is just like os_ixonly , except that insert() and
remove() do not update cardinality information, avoiding
contention in the collection header. The disadvantage of os_
ixonly_bc is that cardinality() is an O(n) operation, requiring a scan
of the whole collection.
Release 5.1 253

os_ixonly and os_ixonly_bc
You can determine if a collection updates its cardinality in this
way with the following member of os_collection :

os_int32 cardinality_is_maintained() const;

This function returns nonzero if the collection maintains
cardinality; it returns 0 otherwise.

The following member of os_collection , which returns an estimate
of a collection’s cardinality, is an O(1) operation in the size of the
collection:

os_unsigned_int32 cardinality_estimate() const;

This function returns the cardinality as of the last call to os_
collection::update_cardinality() — see below. For collections that
maintain cardinality, the actual cardinality is returned.

Before you add a new index to an os_ixonly_bc collection, call the
following member of os_collection :

os_unsigned_int32 update_cardinality();

If you do not, add_index() will work correctly, but less efficiently
than if you do. This function updates the value returned by os_
collection::cardinality_estimate() , by scanning the collection and
computing the actual cardinality.

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

insert() O(1)

remove() O(1)

cardinality(), os_ixonly O(1)

cardinality(), os_ixonly_bc O(n)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
254 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_ordered_ptr_hash

Instances of this class are used as ObjectStore collection
representations. Unlike the other hash tables, this representation
supports maintain_order behavior. The ordered pointer hash
representation supports O(1) element lookup, which means that
operations such as contains() and remove() are O(1) (in the number
of elements). But an os_ordered_ptr_hash takes up somewhat
more space than an os_packed_list .

This representation type does not support be_an_array behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

Time Complexity

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

Space Overhead and Clustering

An ordered pointer hash has the following components:

• Header

• Entry for each element

• Some number of empty entries

insert() O(1)

position-based insert O(n)

remove() O(1)

position-based remove O(n)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 255

os_ordered_ptr_hash
The entry for a given element is likely to be on a different page
from the collection header.

On average, a pointer hash is 58.3% full. You can estimate the
average size of a pointer hash as follows:

if cardinality <= 65535

average total size in bytes = 56 + cardinality * 8 / 58.3

if cardinality > 65535

average total size in bytes = 56 + cardinality * 12 / 58.3

The minimum fill for a packed list is 46.7%, so an upper bound on
collection space overhead can be calculated as follows:

if cardinality <= 65535

maximum total size in bytes = 56 + cardinality * 8 / 46.7

if cardinality > 65535

maximum total size in bytes = 56 + cardinality * 12 / 46.7
256 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_packed_list

Instances of this class are used as ObjectStore collection
representations. The packed list representation is relatively space-
efficient, but element lookup is an O(n) operation, which means
that operations such as remove() and contains() are O(n) (in the
number of elements). If duplicates are allowed, this
representation provides the fastest insertion times, but if
duplicates are not allowed (requiring element lookup to check for
the presence of a duplicate), insert() is O(n).

For cardinalities below 30, os_chained_list might be a better
representation type.

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

There might be “holes” in an os_packed_list if any elements have
been removed.

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

A packed list has the following components:

• Header

• Entry for each element

insert(), duplicates allowed O(1)

insert(), duplicates not allowed O(n)

position-based insert, no "holes" O(1)

position-based insert, with "holes" O(n)

remove() O(n)

position-based remove, no "holes" O(1)

position-based remove, with "holes" O(n)

cardinality() O(1)

contains() O(n)

comparisons (<=, ==, and so on) O(n2)

merges (|, &, -) O(n2)
Release 5.1 257

os_packed_list
• Some number of empty entries

The entry for a given element is likely to be on a different page
from the collection header.

On average, a packed list is 83.3% full. You can estimate the
average size of a collection as follows:

average total size in bytes = 40 + cardinality * 4 / 83.3

The minimum fill for a packed list is 66.7%, so an upper bound on
collection space overhead can be calculated as follows:

maximum total size in bytes = 40 + cardinality * 4 / 66.7
258 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_ptr_bag

Instances of this class are used as ObjectStore collection
representations. The pointer hash representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_ptr_
bag takes up somewhat more space than an os_packed_list .

In addition, as an os_ptr_bag grows, there can be overhead during
collection updates, for reorganization. The representation os_
dyn_bag minimizes reorganization overhead at the expense of
some extra space overhead by using, at large cardinalities, a
directory structure that points to many small hash tables that can
reorganize independently.

This representation type does not support maintain_order
behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

Time Complexity

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

Space Overhead and Clustering

A pointer hash has the following components:

• Header

insert() O(1)

remove() O(1)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 259

os_ptr_bag
• Entry for each element

• Some number of empty entries

• Count slot for each entry

• Some number of empty count slots

The entry for a given element is likely to be on a different page
from the collection header. In addition, the count slot for a given
element is likely to be stored on a different page from both the
header and the entry for the element.

On average, a pointer bag is 58.3% full. You can estimate the
average size of a pointer bag as follows:

average total size in bytes = 48 + cardinality * 8 / 58.3

The minimum fill for a packed list is 46.7%, so an upper bound on
collection space overhead can be calculated as follows:

maximum total size in bytes = 48 + cardinality * 8 / 46.7
260 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_vdyn_bag

Instances of this class are used as ObjectStore collection
representations. The os_vdyn_bag representation saves on
relocation overhead by recording its membership using
ObjectStore references instead of pointers. It supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_
vdyn_bag takes up more space than an os_packed_list .

The representation os_vdyn_bag minimizes reorganization
overhead at the expense of some extra space overhead, compared
with os_ptr_bag . At large cardinalities, os_vdyn_bag uses a
directory structure pointing to many small hash tables that can
reorganize independently.

This representation type does not support maintain_order or
maintain_cursors behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

This class is parameterized, with a parameter indicating the type
of ObjectStore reference to use for recording membership. The
parameter must be os_reference .

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

For an os_vdyn_bag whose reference type parameter is REF_
TYPE, if

cardinality <= 64k

insert() O(1)

remove() O(1)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 261

os_vdyn_bag
the small-medium cardinality data structure is used. You can
estimate its size as follows:

average total size = 24 bytes (header) +
(((cardinality / .69) / 16) + ((cardinality / .69) % 16)) *
(((sizeof(REF_TYPE) + 4) * 16) + 4)

If

cardinality > 64k

the large cardinality data structure is used. You can estimate its
size as follows:

entry_size:

os_reference: 20

n_tables = (cardinality / (((8192 / <entry-size>)*2) * .7))

dir_size= (n_tables +1) * 12 bytes + 60

average total size = 24 bytes (header) + dir_size + n_tables * 8192
bytes
262 ObjectStore Collections C++ API Reference

Chapter 3: Representation Types
os_vdyn_hash

Instances of this class are used as ObjectStore collection
representations. The os_vdyn_hash representation saves on
relocation overhead by recording its membership using
ObjectStore references instead of pointers. It supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_
vdyn_hash takes up more space than an os_packed_list .

At large cardinalities, os_vdyn_hash uses a directory structure
pointing to many small hash tables that can reorganize
independently.

This representation type does not support allow_duplicates,
maintain_order , or maintain_cursors behavior.

For cardinalities below 30, os_chained_list might be a better
representation type.

This class is parameterized, with a parameter indicating the type
of ObjectStore reference to use for recording membership. The
parameter must be os_reference .

In the following table, complexities are shown in terms of
collection cardinality, represented by n. (These complexities
reflect the nature of the computational overhead involved, not
overhead due to disk I/O and network traffic.)

For an os_vdyn_hash whose reference type parameter is REF_
TYPE, if

cardinality <= 64k

the small-medium cardinality data structure is used. You can
estimate its size as follows:

insert() O(1)

remove() O(1)

cardinality() O(1)

contains() O(1)

comparisons (<=, ==, and so on) O(n)

merges (|, &, -) O(n)
Release 5.1 263

os_vdyn_hash
average total size = 24 bytes (header) +
(((cardinality / .69) / 16) + ((cardinality / .69) % 16)) *
 (sizeof(REF_TYPE) + 4)

If

cardinality > 64k

the large cardinality data structure is used. You can estimate its
size as follows:

entry_size:

os_reference: 20

n_tables = (cardinality / (((8192 / <entry-size>)) * .7))

dir_size= (n_tables +1) * 12 bytes + 60

average total size = 24 bytes (header) + dir_size + n_tables * 8192
bytes
264 ObjectStore Collections C++ API Reference

Chapter 4
Macros and User-Defined
Functions

Dictionary macros OS_MARK_DICTIONARY() 267

OS_MARK_RDICTIONARY() 269

OS_TRANSIENT_DICTIONARY() 270

OS_TRANSIENT_DICTIONARY_NOKEY() 271

OS_TRANSIENT_RDICTIONARY() 272

Index and query
macros

os_index() 273

os_index_key() 274

os_index_key_hash_function() 275

os_index_key_rank_function() 276

os_indexable_body() 277

os_indexable_member() 278

os_query_function() 280

os_query_function_body() 281

os_query_function_body_returning_ref() 282

os_query_function_returning_ref() 283

Relationship macros os_rel_1_1_body() 284

os_rel_1_m_body() 286

os_rel_m_1_body() 288

os_rel_m_m_body() 290

os_rel_1_1_body_options() 292

os_rel_1_m_body_options() 294
Release 5.1 265

os_rel_m_1_body_options() 296

os_rel_m_m_body_options() 298

os_relationship_1_1() 300

os_relationship_1_m() 302

os_relationship_m_1() 305

os_relationship_m_m() 307
266 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
OS_MARK_DICTIONARY()

If you use persistent dictionaries, or any combination of persistent
and transient dictionaries, you must call the macro OS_MARK_
DICTIONARY() for each key-type/element-type pair that you use.

Form of the call OS_MARK_DICTIONARY(key_type, element_type)

Put these calls in the same function with your calls to OS_MARK_
SCHEMA_TYPE(). For example:

/*** schema.cc ***/

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/dict_pt.hh>
#include <ostore/manschem.hh>
#include "dnary.hh"

OS_MARK_DICTIONARY(void*,Course*);
OS_MARK_DICTIONARY(int,Employee**);
OS_MARK_SCHEMA_TYPE(Course);
OS_MARK_SCHEMA_TYPE(Employee);
OS_MARK_SCHEMA_TYPE(Department);

For pointer keys, specify void* as the key_type.

For class keys, the class must have a destructor, and you must
register rank and hash functions for the class.

If you use transient dictionaries, you must call the macro OS_
TRANSIENT_DICTIONARY() . The arguments are the same as for
OS_MARK_DICTIONARY() , but you call OS_TRANSIENT_
DICTIONARY() at file scope in an application source file, rather
than at function scope in a schema source file.
Release 5.1 267

OS_MARK_QUERY_FUNCTION()
OS_MARK_QUERY_FUNCTION()

Applications that use a member function in a query or path string
must call this macro.

Form of the call OS_MARK_QUERY_FUNCTION(class,func)

class is the name of the class that defines the member function.

func is the name of the member function itself.

The OS_MARK_QUERY_FUNCTION() macro should be invoked
along with the OS_MARK_SCHEMA_TYPE() macros for an
application’s schema, that is, in the schema source file. No white
space should appear in the argument list of OS_MARK_QUERY_
FUNCTION().
268 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
OS_MARK_RDICTIONARY()

If you use reference-based persistent dictionaries, or any
combination of persistent and transient dictionaries, you must call
the macro OS_MARK_RDICTIONARY() for each key-type/element-
type/reference-type triplet that you use.

Form of the call OS_MARK_RDICTIONARY(key_type, element_type, reference_type)

Put these calls in the same function with your calls to OS_MARK_
SCHEMA_TYPE(). For example:

/*** schema.cc ***/

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/rdict_pt.hh>
#include <ostore/manschem.hh>
#include "dnary.hh"

OS_MARK_RDICTIONARY(void*,Course*,os_reference);
OS_MARK_RDICTIONARY(int,Employee**,os_reference);
OS_MARK_SCHEMA_TYPE(Course);
OS_MARK_SCHEMA_TYPE(Employee);
OS_MARK_SCHEMA_TYPE(Department);

For pointer keys, specify void* as the key_type.

For class keys, the class must have a destructor, and you must
register rank and hash functions for the class.

For reference_type, specify os_reference .
Release 5.1 269

OS_TRANSIENT_DICTIONARY()
OS_TRANSIENT_DICTIONARY()

If you use only transient dictionaries, you must call the macro OS_
TRANSIENT_DICTIONARY() for each key-type/element-type pair
that you use. This is true unless there are ObjectStore dictionaries
with the same key marked persistently. In this case the macro is
not needed and its use produces error messages at link time.

Form of the call OS_TRANSIENT_DICTIONARY(key_type, element_type)

Here are some examples:

OS_TRANSIENT_DICTIONARY(void*,Course*);
OS_TRANSIENT_DICTIONARY(int,Employee**);

Put these calls at file scope in an application source file.

For pointer keys, specify void* as the key_type.

For class keys, the class must have an operator= and a destructor
that zeroes out any pointers in the key object.

If a transient os_Dictionary is instantiated and OS_TRANSIENT_
DICTIONARY is missing, _Rhash_pt<KEYTYPE>::get_os_
typespec() and _Dict_pt_slot<KEYTYPE>::get_os_typespec() are
undefined at link time.

Using user-defined
classes

In order to use a user-defined class as a key you must have get_
os_typespec() declared and defined as follows, where KEYTYPE is
the name of the user-defined class:

{ return new os_typespec("KEYTYPE"); }
270 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
OS_TRANSIENT_DICTIONARY_NOKEY()

If you use only transient dictionaries, you must call the macro OS_
TRANSIENT_DICTIONARY_NOKEY() in certain cases where you
have more than one dictionary defined with the same key type.

Form of the call OS_TRANSIENT_DICTIONARY_NOKEY(element_type)

OS_TRANSIENT_DICTIONARY defines stubs for get_os_typespec()
member functions of internal data structures parameterized by
either the key type and the value type, or by just the key type. If
you have in your application more than one dictionary with the
same key type, specifying OS_TRANSIENT_DICTIONARY multiple
times will result in multiply defined symbols at link time. Instead,
use OS_TRANSIENT_DICTIONARY_NOKEY, which defines just the
get_os_typespec() functions for internal data structures
parameterized by both the key and value type.

For example, if you had

os_Dictionary<int, Object1*> d1;
os_Dictionary<int, Object2*> d2;

You would use

OS_TRANSIENT_DICTIONARY(int, Object1*);
OS_TRANSIENT_DICTIONARY_NOKEY(int, Object2*);

Put these calls at file scope in an application source file.

For pointer keys, specify void* as the key_type.

For class keys, the class must have a destructor.

If the user-defined class being used as a key does not have get_os_
typespec() declared, then the internal function os_dk_
wrapper<KEYTYPE>::_type() (defined in dkey.hh) will complain
about KEYTYPE::get_os_typespec() ’s not being declared. If get_
os_typespec() is declared but undefined, an unresolved reference
link error will occur. Therefore, get_os_typespec() should be
defined as the following, where KEYTYPE is the name of the user-
defined class:

{ return new os_typespec("KEYTYPE") ; }
Release 5.1 271

OS_TRANSIENT_RDICTIONARY()
OS_TRANSIENT_RDICTIONARY()

If you use reference-based transient dictionaries (the os_
rDdictionaries class), you must call the macro OS_TRANSIENT_
RDICTIONARY() for each key-type/element-type/reference-type
triplet that you use.

Form of the call OS_TRANSIENT_RDICTIONARY(key_type, element_type, reference_
type)

Here are some examples:

OS_TRANSIENT_RDICTIONARY(void*,Course*,os_reference);
OS_TRANSIENT_RDICTIONARY(int,Employee**,os_reference);

Put these calls at file scope in an application source file.

For pointer keys, specify void* as the key_type.

For class keys, the class must have a destructor.
272 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_index()

This macro is used to designate a class’s os_backptr -valued
member when calling make_link() and break_link() or when
defining indexable members. The os_backptr member is used to
establish other members of the class as indexable. Bit-field
members cannot be indexable.

To use ObjectStore’s collection facility, you must include the file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Form of the call os_index(class,member)

class is the class defining the os_backptr data member.

member is the name of the os_backptr member.

Caution The macro arguments are used (among other things) to
concatenate unique names. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 273

os_index_key()
os_index_key()

This macro is used to register user-defined rank and hash
functions with ObjectStore.

To use ObjectStore’s collection facility, you must include the file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Form of the call os_index_key(class,rank_function,hash_function)

This macro must be within the scope of any query or cursor that
might need the rank or hash functions.

class is the class whose instances are ranked or hashed by the
specified functions.

rank_function is a user-defined function that, for any pair of
instances of class, provides an ordering indicator for the instances,
much as strcmp does for arrays of characters. You must supply
this function. The rank function should return one of os_
collection::LT , os_collection::GT , or os_collection::EQ . In
ObjectStore Advanced C++ API User Guide see Rank and Hash
Function Requirements on page 161.

hash_function is a user-defined function that, for each instance of
class, returns a value, an os_unsigned_int32 , that can be used as a
key in a hash table. Supplying this function is optional. If you do
not supplying a hash function for the class, specify 0 as the hash
function argument.

Caution The macro arguments are used (among other things) to
concatenate unique names. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
274 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_index_key_hash_function()

This macro is used to register user-defined hash functions with
ObjectStore. Use it only to replace a hash function registered
previously.

To use ObjectStore’s collection facility, you must include the file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Form of the call os_index_key_hash_function(class,hash_function)

This macro must be within the scope of any query or cursor that
might need the rank or hash functions.

class is the class whose instances are hashed by the specified
function.

hash_function is a user-defined function that, for each instance of
class, returns a value, an os_unsigned_int32 , that can be used as a
key in a hash table.

Caution The macro arguments are used (among other things) to
concatenate unique names. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 275

os_index_key_rank_function()
os_index_key_rank_function()

This macro is used to register user-defined rank functions with
ObjectStore. Use it only to replace a rank function registered
previously.

To use ObjectStore’s collection facility, you must include the file
<ostore/coll.hh> after including <ostore/ostore.hh> .

Form of the call os_index_key_rank_function(class,rank_function)

This macro must be within the scope of any query or cursor that
might need the rank or hash functions.

class is the class whose instances are ranked by the specified
function. class can also be char* when registering os_strcoll_for_
char_pointer() , and char[] when registering os_strcoll_for_char_
array() . These versions of strcoll() , provided by ObjectStore, will be
used, if registered, instead of strcmp() to support indexes keyed by
char* or char[] .

rank_function is a user-defined function that, for any pair of
instances of class, provides an ordering indicator for the instances,
much as strcmp does for arrays of characters. The rank function
should return one of os_collection::LT , os_collection::GT , or os_
collection::EQ . In ObjectStore Advanced C++ API User Guide see
Rank and Hash Function Requirements.

Caution The macro arguments are used (among other things) to
concatenate unique names. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
276 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_indexable_body()

This macro is used to instantiate accessor functions for an
indexable data member. Calls to this macro should appear at top
level in the source file associated with the class defining the
member.

To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> .

The actual value type of an indexable data member is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value) and a conversion operator for converting its
instances to instances of the apparent value type (for getting the
apparent value). Under most circumstances these operators make
the encapsulating objects transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the indexable
member’s apparent value explicitly.

Form of the call os_indexable_body(class,member,value_type,index)

class is the class defining the data member being declared.

member is the name of the member being declared.

value_type is the (apparent) value type of the indexable member.

index is a call to the macro os_index() , indicating the name of the
defining class’s os_backptr member.

Caution The first three macro arguments are used (among other things) to
concatenate unique names for the encapsulating class and its
accessor functions. The details of macro preprocessing differ from
compiler to compiler, and in some cases it is necessary to enter
these macro arguments without white space to ensure that the
argument concatenation will work correctly.
Release 5.1 277

os_indexable_member()
os_indexable_member()

This macro is used to establish a data member as indexable in
order to perform automatic index maintenance. Field members
cannot be indexable.

To use ObjectStore’s collection facility, you must include the file
<ostore/coll.hh> after including <ostore/ostore.hh> .

The macro call is used instead of the value type in the member
declaration.

class class-name
{

...
macro-call member-name;
...

};

The actual value type of an indexable data member is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value) and a conversion operator for converting its
instances to instances of the apparent value type (for getting the
apparent value). Under most circumstances these operators make
the encapsulating objects transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the indexable
member’s apparent value explicitly.

Form of the call os_indexable_member(class,member,value_type)

class is the class defining the data member being declared.

member is the name of the member being declared.

value_type is the (apparent) value type of the member being
declared.

Caution The first two macro arguments are used (among other things) to
concatenate unique names for the encapsulating class and its
accessor functions. The details of macro preprocessing differ from
compiler to compiler, and in some cases it is necessary to enter
278 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
these macro arguments without white space to ensure that the
argument concatenation will work correctly.
Release 5.1 279

os_query_function()
os_query_function()

Applications that use a member function (which does or does not
return a reference) in a query or path string must call this macro.

Form of the call os_query_function(class,func,return_type)

class is the name of the class defining the member function.

func is the name of the member function itself.

return_type names the type of value returned by the member
function.

The os_query_function() macro should be invoked at module level
in a header file (for example, the file containing the definition of
the class that declares the member function). No white space
should appear in the argument list.
280 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_query_function_body()

Applications that use a member function in a query or path string
must call this macro.

Form of the call os_query_function_body(class,func,return_type,bpname)

class is the name of the class that defines the member function.

func is the name of the member function itself.

return_type names the type of value returned by the member
function.

bpname is the name of the os_backptr -valued member of class .

The os_query_function_body() macro should be invoked at
module level in a source file (for example, the file containing the
definition of the member function). No white space should appear
in the argument list.
Release 5.1 281

os_query_function_body_returning_ref()
os_query_function_body_returning_ref()

This macro enables users to register a query function that returns
a reference. The application that uses this member function in a
query must call os_query_function_body_returning_ref() .

Form of the call os_query_function_body_returning_ref(class,func,return_
type,bpname)

where

• class is the name of the class defining the member function.

• func is the name of the member function itself.

• return_type names the type of value returned by the member
function. The way to use this is to pass just return_type, not
return_type&, to the return_type arguments of the macro.

• bpname is the name of the os_backptr -valued member of class .
282 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_query_function_returning_ref()

The application that uses this member function, returning a
reference, in a query must call os_query_function_returning_ref() .
A call to this macro has the form

Form of the call os_query_function_returning_ref(class,func,return_type)

where

• class is the name of the class defining the member function

• func is the name of the member function itself.

• return_type names the type of value returned by the member
function. The way to use this is to pass just return_type, not
return_type&, to the macro return_type arguments.
Release 5.1 283

os_rel_1_1_body()
os_rel_1_1_body()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> . If you also include <ostore/coll.hh> ,
include <ostore/relat.hh> after both <ostore/ostore.hh> and
<ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a single-
valued data member with a single-valued inverse data member.
Calls to this macro should appear at top level in a source file
associated with the class defining the member.

Form of the call os_rel_1_1_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.
284 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
Caution The macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 285

os_rel_1_m_body()
os_rel_1_m_body()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a single-
valued data member with a many-valued inverse data member.
Calls to this macro should appear at top level in the source file
associated with the class defining the member.

Form of the call os_rel_1_m_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to
concatenate unique names for the embedded relationship class
286 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 287

os_rel_m_1_body()
os_rel_m_1_body()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a many-
valued data member with a single-valued inverse data member.
Calls to this macro should appear at top level in the source file
associated with the class defining the member.

Form of the call os_rel_m_1_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to
concatenate unique names for the embedded relationship class
288 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 289

os_rel_m_m_body()
os_rel_m_m_body()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a many-
valued data member with a many-valued inverse data member.
Calls to this macro should appear at top level in the source file
associated with the class defining the member.

Form of the call os_rel_m_m_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
290 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 5.1 291

os_rel_1_1_body_options()
os_rel_1_1_body_options()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> . If you also include <ostore/coll.hh> ,
include <ostore/relat.hh> after both <ostore/ostore.hh> and
<ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a single-
valued data member with a single-valued inverse data member,
when deletion propagation is desired or when either member is
indexable. Calls to this macro should appear at top level in the
source file associated with the class defining the member.

Form of the call os_rel_1_1_body_options(class,member,inv_class,inv_mem,
deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.
292 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
inv_mem is the name of the inverse member.

deletion is either os_rel_propagate_delete or os_rel_dont_
propagate_delete . By default, deleting an object that participates
in a relationship automatically updates the other side of the
relationship, so that there are no dangling pointers to the deleted
object. In some cases, however, the desired behavior is actually to
delete the object on the other side of the relationship (for example,
for subsidiary component objects). This behavior is specified with
os_rel_propagate_delete .

index specifies whether the current member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

inv_index specifies whether the inverse member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 293

os_rel_1_m_body_options()
os_rel_1_m_body_options()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a single-
valued data member with a many-valued inverse data member,
when deletion propagation is desired or when either member is
indexable. Calls to this macro should appear at top level in the
source file associated with the class defining the member.

Form of the call os_rel_1_m_body_options(class,member,inv_class,inv_mem,
deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.
294 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
deletion is either os_rel_propagate_delete or os_rel_dont_
propagate_delete . By default, deleting an object that participates
in a relationship automatically updates the other side of the
relationship so that there are no dangling pointers to the deleted
object. In some cases, however, the desired behavior is actually to
delete the object on the other side of the relationship (for example,
for subsidiary component objects). This behavior is specified with
os_rel_propagate_delete .

index specifies whether the current member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

inv_index specifies whether the inverse member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 295

os_rel_m_1_body_options()
os_rel_m_1_body_options()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a many-
valued data member with a single-valued inverse data member,
when deletion propagation is desired or when either member is
indexable. Calls to this macro should appear at top level in the
source file associated with the class defining the member.

Form of the call os_rel_m_1_body_options(class,member,inv_class,inv_mem,
deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.
296 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
deletion is either os_rel_propagate_delete or os_rel_dont_
propagate_delete . By default, deleting an object that participates
in a relationship automatically updates the other side of the
relationship so that there are no dangling pointers to the deleted
object. In some cases, however, the desired behavior is actually to
delete the object on the other side of the relationship (for example,
for subsidiary component objects). This behavior is specified with
os_rel_propagate_delete .

index specifies whether the current member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

inv_index specifies whether the inverse member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 297

os_rel_m_m_body_options()
os_rel_m_m_body_options()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to instantiate accessor functions for a many-
valued data member with a many-valued inverse data member,
when deletion propagation is desired or when either member is
indexable. Calls to this macro should appear at top level in the
source file associated with the class defining the member.

Form of the call os_rel_m_m_body_options(class,member,inv_class,inv_mem,
deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.
298 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
deletion is either os_rel_propagate_delete or os_rel_dont_
propagate_delete . By default, deleting an object that participates
in a relationship automatically updates the other side of the
relationship so that there are no dangling pointers to the deleted
object. In some cases, however, the desired behavior is actually to
delete the object on the other side of the relationship (for example,
for subsidiary component objects). This behavior is specified with
os_rel_propagate_delete .

index specifies whether the current member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member, or use os_auto_index .

inv_index specifies whether the inverse member is indexable. For
nonindexable members, use os_no_index . For indexable
members, use a call to the macro os_index() , indicating the name
of the defining class’s os_backptr member, or use os_auto_index .

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 299

os_relationship_1_1()
os_relationship_1_1()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> . If you also include <ostore/coll.hh> ,
include <ostore/relat.hh> after both <ostore/ostore.hh> and
<ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to declare a single-valued data member with a
single-valued inverse data member. The macro call is used instead
of the value type in the member declaration.

class class-name
{

...
macro-call member-name;
...

};

Form of the call os_relationship_1_1(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.
300 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 301

os_relationship_1_m()
os_relationship_1_m()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to declare a single-valued data member with a
many-valued inverse data member. The macro call is used instead
of the value type in the member declaration.

class class-name
{

...
macro-call member-name;
...

};

Form of the call os_relationship_1_m(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.

member is the name of the member being declared.
302 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
Release 5.1 303

OS_RELATIONSHIP_LINKAGE()
OS_RELATIONSHIP_LINKAGE()

Windows platforms Specifies the linkage for classes generated by the os_relationship_
xxx macros. This macro can be used with component schema on
Windows platforms. For example, you could define the macro as
Microsoft’s __declspec(dllexport), which allows one DLL to create
a subclass of a class defined in another DLL when there are
relationship members.

You must define OS_RELATIONSHIP_LINKAGE before including
<ostore/relat.hh> . For example:

...
#define OS_RELATIONSHIP_MACRO __declspec(dllexport)
#include <ostore/relat.hh>

If not defined, the default is blank.
304 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_relationship_m_1()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to declare a many-valued data member with a
single-valued inverse data member. The macro call is used instead
of the value type in the member declaration.

class class-name
{

...
macro-call member-name;
...

};

Form of the call os_relationship_m_1(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.

member is the name of the member being declared.
Release 5.1 305

os_relationship_m_1()
inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
306 ObjectStore Collections C++ API Reference

Chapter 4: Macros and User-Defined Functions
os_relationship_m_m()

ObjectStore allows the user to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointer) so that it can intercept updates to the
encapsulated value and perform the necessary inverse
maintenance tasks.

Required include files To use this macro, you must include the file <ostore/relat.hh> after
including <ostore/ostore.hh> and <ostore/coll.hh> .

The actual value type of a data member with an inverse is a special
class whose instances encapsulate the member’s apparent value.
This implicitly defined class defines operator =() (for setting the
apparent value), as well as operator ->() , operator *() , and a
conversion operator for converting its instances to instances of the
apparent value type (for getting the apparent value). Under most
circumstances these operators make the encapsulating objects
transparent.

The implicitly defined class also defines the member functions
getvalue() , which returns the apparent value, and setvalue() ,
which takes an instance of the apparent value type as argument.
These functions can always be used to set and get the member’s
apparent value explicitly.

This macro is used to declare a many-valued data member with a
many-valued inverse data member. The macro call is used instead
of the value type in the member declaration.

class class-name
{

...
macro-call member-name;
...

};

Form of the call os_relationship_m_m(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.

member is the name of the member being declared.
Release 5.1 307

os_relationship_m_m()
inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to
concatenate unique names for the encapsulating relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments.
308 ObjectStore Collections C++ API Reference

Chapter 5
C Library Interface

ObjectStore provides C functions and macros analogous to many
of the functions in the ObjectStore C++ class and function
libraries. This chapter presents the C library interface for
ObjectStore, which allows C programs to access basic ObjectStore
functionality.

Topics Overview 310

Getting Started 311

os_backptr Functions 312

os_bound_query Functions 313

os_collection Functions and Enumerators 314

os_coll_query Functions 325

os_coll_rep_descriptor Functions 327

os_cursor Functions 329

os_index_path Functions 334
Release 5.1 309

Overview
Overview

ObjectStore includes a C library interface that allows access to
many of ObjectStore’s features directly from C programs.

This chapter presents the ObjectStore C library interface for
collections and queries. For information on the interface for other
features, see the ObjectStore C++ API Reference.

To access the C library interface, include the following directive in
your C programs:

#include <ostore/ostore.h>

Note that this header file provides access to ObjectStore’s
exception facility, which provides a stock of predefined errors that
can be signaled at run time. For more information, see Appendix,
Predefined TIX Exceptions, on page 335.

To use ObjectStore collections, also include

#include <ostore/coll.h>

Calling the C interface from a C++ main program requires the
following directives in the following order:

#define _PROTOTYPES

#include <ostore/ostore.hh>

extern "C" {
#include <ostore/ostore.h>
}

To use collections, follow this with

#include <ostore/coll.hh>

extern "C" {
#include <ostore/coll.h>
}

310 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
Getting Started

The building blocks of the C library interface are

• Type specifiers that you declare and allocate.

• The macro OS_MARK_SCHEMA_TYPE , which informs the
schema generator of the structs your application uses in a
persistent context.

• The macros OS_BEGIN_TXN and OS_END_TXN, which start and
end a transaction, and correspond to ObjectStore’s transaction
statements. (All access to persistent data must take place within
a transaction.)

• The function objectstore_initialize() , which must be executed in
a process before any use of ObjectStore functionality is made.

• The allocation functions, including os_database_alloc() and os_
segment_alloc() , which allocate persistent objects.

• The function objectstore_delete(), which corresponds to the
C++ operator delete . You can reclaim both persistent and
transient storage with the objectstore_delete function.

• C functions that correspond to ObjectStore’s member functions
and static data members.

See Building Blocks in ObjectStore C++ API Reference for more
information.
Release 5.1 311

os_backptr Functions
os_backptr Functions

The C library interface contains macros for index maintenance
analogous to members of the class os_backptr in the ObjectStore
class library: os_indexable_setvalue() and os_indexable_body_
with_copy() . These functions are used for index maintenance in
conjunction with the macros os_indexable_member() , os_
indexable_body() , os_index() , and os_index_key() . (See Chapter 4,
System-Supplied Macros and User-defined Functions, on page
283 for further information.)
312 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_bound_query Functions

The C library interface contains functions analogous to those of
the class os_bound_query in the ObjectStore class library.

os_bound_query_create

extern os_bound_query* os_bound_query_create(
os_coll_query*, /* the query to bind */
os_keyword_arg_list*/* the arg list with binding for free vars */

);

Creates a bound query. See os_bound_query::os_bound_query()
on page 57.

os_bound_query_delete

extern void os_bound_query_delete(
os_bound_query*

);

Deletes the specified bound query.
Release 5.1 313

os_collection Functions and Enumerators
os_collection Functions and Enumerators

The C library interface contains functions and enumerators
analogous to those of the class os_collection in the ObjectStore
Class Library. Programs using these functions must first call os_
collection_initialize() , and must include ostore/coll.h after
including ostore/ostore.h .

os_collection_add_index

extern void os_collection_add_index(
os_collection*,/* the collection to be indexed */
os_index_path*,/* the index path */
unsigned int/* index options */

);

See os_collection::add_index() on page 92.

os_collection_add_index_in_seg

extern void os_collection_add_index_in_seg(
os_collection*,/* the collection to be indexed */
os_index_path*,/* the index path */
unsigned int,/* index options */
os_segment*/* segment of the index */

);

See os_collection::add_index() on page 92.

os_collection_bound_query

extern os_collection* os_collection_bound_query(
os_collection*, /* the collection to query */
os_bound_query*/* the query to apply */

);

See os_collection::query() on page 118.

os_collection_bound_query_exists

extern int os_collection_bound_query_exists(
os_collection*,/* the collection to query */
os_bound_query*/* the existential query to apply */

);

See os_collection::exists() on page 102.

os_collection_bound_query_pick

extern void* os_collection_bound_query_pick(
314 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_collection*,/* the collection to query */
os_bound_query*/* the pick query to apply */

);

See os_collection::query_pick() on page 121.

os_collection_cardinality

extern unsigned int os_collection_cardinality(
os_collection*/* the collection */

);

See os_collection::cardinality() on page 97.

os_collection_change_behavior

extern void os_collection_change_behavior(
os_collection*,
unsigned int,/* new behavior flags */
int /* true means verify that coll meets behavior */

);

See os_collection::change_behavior() on page 97.

os_collection_change_rep

extern void os_collection_change_rep(
os_collection*, /* the collection to be changed */
unsigned int, /* the new expected size */
os_coll_rep_descriptor*,

/* the rep policy descriptor to change to (or 0) */
int /* true means retain rep policy descriptor */

);

See os_collection::change_rep() on page 98.

os_collection_clear

extern void os_collection_clear(
os_collection*/* the collection to clear */

);

See os_collection::clear() on page 99.

os_collection_contains

extern int os_collection_contains(
os_collection*,/* the collection */
void* /* the element to search for */

);

See os_collection::contains() on page 99.
Release 5.1 315

os_collection Functions and Enumerators
os_collection_copy

extern void os_collection_copy(
/* copy source elements to destination */
os_collection*, /* destination */
os_collection*/* source */

);

See os_collection::operator =() on page 115.

os_collection_count

extern unsigned int os_collection_count(
os_collection*, /* the collection */
void* /* the element to count */

);

See os_collection::count() on page 99.

os_collection_create

extern os_collection* os_collection_create(
os_database*,/* where to create */
unsigned int,/* flags denoting desired behavior (or 0) */
int, /* expected size (or 0) */
os_coll_rep_descriptor *,/* representation policy (or 0) */
int /* true means retain policy descriptor */

);

See os_collection::create() on page 99.

os_collection_create_in_cluster

extern os_collection* os_collection_create_in_cluster(
os_object_cluster*,/* where to create */
unsigned int,/* flags denoting desired behavior (or 0) */
int, /* expected size (or 0) */
os_coll_rep_descriptor *,/* representation policy (or 0) */
int /* true means retain policy descriptor */

);

See os_collection::create() on page 99.

os_collection_create_in_seg

extern os_collection* os_collection_create_in_seg(
os_segment*, /* where to create */
unsigned int,/* flags denoting desired behavior (or 0) */
int, /* expected size (or 0) */
os_coll_rep_descriptor *,/* representation policy (or 0) */
int /* true means retain policy descriptor */

);
316 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
See os_collection::create() on page 99.

os_collection_create_near

extern os_collection* os_collection_create_near(
void*, /* where to create */
unsigned int,/* flags denoting desired behavior (or 0) */
int, /* expected size (or 0) */
os_coll_rep_descriptor *,/* representation policy (or 0) */
int /* true means retain policy descriptor */

);

See os_collection::create() on page 99.

os_collection_delete

extern void os_collection_delete(
os_collection*/* the collection to delete */

);

Deletes the specified collection.

os_collection_difference

extern void os_collection_difference(
/* subtract source elements from destination */
os_collection*,/* destination */
os_collection*/* source */

);

See os_collection::operator -() on page 117.

os_collection_drop_index

extern void os_collection_drop_index(
os_collection*,/* the collection with the index */
os_index_path*/* the index to drop */

);

See os_collection::drop_index() on page 102.

os_collection_empty

extern int os_collection_empty(
os_collection*/* check if the collection is empty */

);

See os_collection::empty() on page 102.

os_collection_equal

extern int os_collection_equal(
os_collection*,
Release 5.1 317

os_collection Functions and Enumerators
os_collection*
);

See os_collection::operator ==() on page 113.

os_collection_get_behavior

extern unsigned int os_collection_get_behavior(
/* return flags denoting behavior */
os_collection*

);

See os_collection::get_behavior() on page 105.

os_collection_get_rep

extern os_coll_rep_descriptor* os_collection_get_rep(
os_collection*

);

See os_collection::get_rep() on page 105.

os_collection_greater_than

extern int os_collection_greater_than(
os_collection*,
os_collection*

);

See os_collection::operator >() on page 114.

os_collection_greater_than_or_equal

extern int os_collection_greater_than_or_equal(
os_collection*,
os_collection*

);

See os_collection::operator >=() on page 114.

os_collection_has_index

extern int os_collection_has_index(
os_collection*,/* the collection to look for an index on */
os_index_path*,/* the index to look for */
int /* true if looking for an ordered index */

);

See os_collection::has_index() on page 106.

os_collection_initialize

extern void os_collection_initialize();
318 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
See os_collection::initialize() on page 107.

os_collection_insert

extern void os_collection_insert(
os_collection*,/* the collection */
void* /* the element to insert */

);

See os_collection::insert() on page 107.

os_collection_insert_after_cursor

extern void os_collection_insert_after_cursor(
os_collection*,
void*,
os_cursor*

);

See os_collection::insert_after() on page 107.

os_collection_insert_after_position

extern void os_collection_insert_after_position(
os_collection*,
void*,
unsigned int

);

See os_collection::insert_after() on page 107.

os_collection_insert_before_cursor

extern void os_collection_insert_before_cursor(
os_collection*,
void*,
os_cursor*

);

See os_collection::insert_before() on page 108.

os_collection_insert_before_position

extern void os_collection_insert_before_position(
os_collection*,
void*,
unsigned int

);

See os_collection::insert_before() on page 108.
Release 5.1 319

os_collection Functions and Enumerators
os_collection_insert_first

extern void os_collection_insert_first(
os_collection*,/* the collection */
void* /* the element to insert */

);
See os_collection::insert_first() on page 108.

os_collection_insert_last

extern void os_collection_insert_last(
os_collection*,/* the collection */
void* /* the element to insert */

);
See os_collection::insert_last() on page 109.

os_collection_intersect

extern void os_collection_intersect(
os_collection*,/* destination */
os_collection*/* source */

);
See os_collection::operator &() on page 116.

os_collection_less_than

extern int os_collection_less_than(
os_collection*,
os_collection*

);

See os_collection::operator <() on page 114.

os_collection_less_than_or_equal

extern int os_collection_less_than_or_equal(
os_collection*,
os_collection*

);

See os_collection::operator <=() on page 114.

os_collection_not_equal

extern int os_collection_not_equal(
os_collection*,
os_collection*

);

See os_collection::operator !=() on page 113.
320 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_collection_only

extern void* os_collection_only(
os_collection*

);

See os_collection::only() on page 111.

os_collection_ordered_equal

extern int os_collection_ordered_equal(
os_collection*,
os_collection*

);

See os_collection::operator ==() on page 113.

os_collection_pick

extern void* os_collection_pick(
os_collection*

);

See os_collection::pick() on page 117.

os_collection_query

extern os_collection* os_collection_query(
os_collection*,/* the collection to query */
char*, /* the string denoting the element type */
char*, /* the string denoting the query expression */
os_database*,/* the database from which to get the schema */
char*, /* name of file (for error printing) or 0 */
unsigned int/* line number in file (for error printing) or 0 */

);

See os_collection::query() on page 118.

os_collection_query_exists

extern int os_collection_query_exists(
os_collection*,/* the collection to query */
char*, /* the string denoting the element type */
char*, /* the string denoting the query expression */
os_database*,/* the database from which to get the schema */
char*, /* name of file (for error printing) or 0 */
unsigned int /* line number in file (for error printing) or 0 */

);

See os_collection::exists() on page 102.
Release 5.1 321

os_collection Functions and Enumerators
os_collection_query_pick

extern void* os_collection_query_pick(
os_collection*,/* the collection to query */
char*, /* the string denoting the element type */
char*, /* the string denoting the query expression */
os_database*,/* the database from which to get the schema */
char*, /* name of file (for error printing) or 0 */
unsigned int /* line number in file (for error printing) or 0 */

);

See os_collection::query_pick() on page 121.

os_collection_remove

extern int os_collection_remove(
os_collection*,/* the collection */
void* /* the element to remove */

);

See os_collection::remove() on page 124.

os_collection_remove_at_cursor

extern void os_collection_remove_at_cursor(
os_collection*,
os_cursor*

);

See os_collection::remove_at() on page 124.

os_collection_remove_at_position

extern void os_collection_remove_at_position(
os_collection*,
unsigned int

);

See os_collection::remove_at() on page 124.

os_collection_remove_first

extern void* os_collection_remove_first(
os_collection*

);

See os_collection::remove_first() on page 124.

os_collection_remove_last

extern void* os_collection_remove_last(
os_collection*

);
322 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
See os_collection::remove_last() on page 125.

os_collection_replace_at_cursor

extern void* os_collection_replace_at_cursor(
os_collection*,
void*,
os_cursor*

);

See os_collection::replace_at() on page 125.

os_collection_replace_at_position

extern void* os_collection_replace_at_position(
os_collection*,
void*,
unsigned int

);

See os_collection::replace_at() on page 125.

os_collection_retrieve_at_cursor

extern void* os_collection_retrieve_at_cursor(
os_collection*,
os_cursor*

);

See os_collection::retrieve() on page 126.

os_collection_retrieve_at_position

extern void* os_collection_retrieve_at_position(
os_collection*,
unsigned int

);

See os_collection::retrieve() on page 126.

os_collection_retrieve_first

extern void* os_collection_retrieve_first(
os_collection*

);

See os_collection::retrieve_first() on page 126.

os_collection_retrieve_last

extern void* os_collection_retrieve_last(
os_collection*

);
Release 5.1 323

os_collection Functions and Enumerators
See os_collection::retrieve_last() on page 126.

os_collection_union

extern void os_collection_union(
/* union source elements into destination */
os_collection*,/* destination */
os_collection*/* source */

);

See os_collection::operator |() on page 115.
324 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_coll_query Functions

The C library interface contains functions analogous to those of
the class os_coll_query in the ObjectStore Class Library.

os_coll_query_create

extern os_coll_query *os_coll_query_create(
char*, /* string denoting the element type */
char*, /* string denoting the query expression */
os_database*,/* schema for query interpretation */
os_int32,/* true means cache the query in db */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates a query. See os_coll_query::create() on page 130.

os_coll_query_create_exists

extern os_coll_query *os_coll_query_create_exists(
char*, /* string denoting the element type */
char*, /* string denoting the query expression */
os_database*,/* schema for query interpretation */
os_int32,/* true means cache the query persistently in db */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates an existential query. See os_coll_query::create_exists() on
page 134.

os_coll_query_create_exists_in_seg

extern os_coll_query *os_coll_query_create_exists_in_seg(
char*, /* string denoting the element type */
char*, /* string denoting the query expression */
os_segment*,/* schema for query interpretation */
os_int32,/* true means cache the query in db */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates an existential query in the specified segment. See os_coll_
query::create_exists() on page 134.

os_coll_query_create_in_seg

extern os_coll_query *os_coll_query_create_in_seg(
char*, /* string denoting the element type */
Release 5.1 325

os_coll_query Functions
char*, /* string denoting the query expression */
os_segment*,/* schema for query interpretation */
os_int32,/* true means cache the query persistently in seg */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates a query in the specified segment. See os_coll_
query::create() on page 130.

os_coll_query_create_pick

extern os_coll_query *os_coll_query_create_pick(
char*, /* string denoting the element type */
char*, /* string denoting the query expression */
os_database*,/* schema for query interpretation */
os_int32,/* true means cache the query persistently in db */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates a single-element query. See os_coll_query::create_pick()
on page 135.

os_coll_query_create_pick_in_seg

extern os_coll_query *os_coll_query_create_pick_in_seg(
char*, /* string denoting the element type */
char*, /* string denoting the query expression */
os_segment*,/* schema for query interpretation */
os_int32,/* true means cache the query in seg */
char*, /* file name (for error messages) or 0 */
unsigned/* line number in file or 0 */

);

Creates a single-element query in the specified segment. See os_
coll_query::create_pick() on page 135.
326 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_coll_rep_descriptor Functions

The C library interface contains functions analogous to those of
the class os_coll_rep_descriptor in the ObjectStore Class Library.

os_coll_rep_descriptor

extern os_coll_rep_descriptor* os_coll_get_packed_list_rep_
descriptor();

Returns an os_packed_list rep descriptor.

extern os_coll_rep_descriptor* os_coll_get_ptr_bag_list_rep_
descriptor();

Returns an os_ptr_bag rep descriptor.

extern os_coll_rep_descriptor* os_coll_get_ptr_hash_rep_
descriptor();

Returns an os_ptr_hash rep descriptor.

extern os_coll_rep_descriptor* os_coll_get_tinyarray_rep_
descriptor();

Returns an os_tinyarray rep descriptor.

os_coll_rep_descriptor_allowed_behavior

extern unsigned os_coll_rep_descriptor_allowed_behavior(
os_coll_rep_descriptor*
/* return the behavior that this rep supports */

);

Returns a bit pattern indicating the behavior supported by the
specified rep descriptor.

os_coll_rep_descriptor_copy

extern os_coll_rep_descriptor* os_coll_rep_descriptor_copy(
os_coll_rep_descriptor,
/* make a copy of this rep descriptor */
os_segment * /* in this segment */

);

Copies the specified descriptor. See os_coll_rep_descriptor::copy()
on page 143.

os_coll_rep_descriptor_get_grow

extern os_coll_rep_descriptor* os_coll_rep_descriptor_get_grow(
os_coll_rep_descriptor*
Release 5.1 327

os_coll_rep_descriptor Functions
/* return this descriptor’s grow-into descriptor */
);

Returns the rep descriptor that becomes active when the specified
rep descriptor’s maximum cardinality is exceeded.

os_coll_rep_descriptor_get_max_size

extern unsigned os_coll_rep_descriptor_get_max_size(
os_coll_rep_descriptor*
/* return this descriptor’s max size */

);

Returns the upper bound of the specified rep descriptor’s
associated cardinality range.

os_coll_rep_descriptor_get_min_size

extern unsigned os_coll_rep_descriptor_get_min_size(
os_coll_rep_descriptor*
/* return this descriptor’s min size */

);

Returns the lower bound of the specified rep descriptor’s
associated cardinality range.

os_coll_rep_descriptor_get_shrink

extern os_coll_rep_descriptor* os_coll_rep_descriptor_get_shrink(
os_coll_rep_descriptor*
/* return this descriptor’s shrink-into descriptor */

);

Returns the rep descriptor that becomes active when the specified
rep descriptor’s minimum cardinality threshold is passed.

os_coll_rep_descriptor_required_behavior

extern unsigned os_coll_rep_descriptor_required_behavior(
os_coll_rep_descriptor*
/* return the behavior that this rep requires */

);

Returns a bit pattern indicating the behavior required of
collections with the specified representation.
328 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
os_cursor Functions

The C library interface contains functions analogous to those of
the class os_cursor in the ObjectStore Class Library.

os_cursor_copy

extern void os_cursor_copy(
os_cursor*, /* destination */
os_cursor* /* source */

);

Copies source to destination .

os_cursor_create

extern os_cursor* os_cursor_create(
os_collection*, /* create a cursor over this collection */
int /* true means allow for updates during iteration */

);

Creates a cursor for the specified collection. See os_cursor::os_
cursor() on page 156.

os_cursor_create_in_cluster(

extern os_cursor* os_cursor_create_in_cluster(
os_object_cluster*, /* create in this cluster */
os_collection*, /* create a cursor over this collection */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_create_in_db

extern os_cursor* os_cursor_create_in_db(
os_database*, /* create in this database */
os_collection*, /* create a cursor over this collection */
os_int32 /* bitmask: forward/reverse, order_by_address */

/* safe/unsafe enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_create_in_seg

extern os_cursor* os_cursor_create_in_seg(
Release 5.1 329

os_cursor Functions
os_segment*, /* create in this segment */
os_collection*, /* create a cursor over this collection */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_create_near

extern os_cursor* os_cursor_create_near(
void*, /* where to create this */
os_collection*, /* create a cursor over this collection */
os_int32 /* bitmask: forward/reverse, order_by_address */
/* safe/unsafe, etc enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_create_options

extern os_cursor* os_cursor_create_options(
os_collection*, /* create a cursor over this collection */
os_int32 /* bitmask: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_delete

extern void os_cursor_delete(
os_cursor*

);

Destroys the specified cursor and frees its associated memory.

os_cursor_first

extern void* os_cursor_first(
os_cursor* /* put the cursor on the first element and return it */

);

See os_cursor::first() on page 155.

os_cursor_insert_after

extern void os_cursor_insert_after(
os_cursor*,
 /* insert after this position, in the cursor’s collection */
330 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
void* /* element to insert */
);

See os_cursor::insert_after() on page 155.

os_cursor_insert_before

extern void os_cursor_insert_before(
os_cursor*,
*insert before this position, in the cursor’s collection */
void* /* element to insert */

);

See os_cursor::insert_before() on page 155.

os_cursor_last

extern void* os_cursor_last(
os_cursor* /* put the cursor on the last element and return it */

);

See os_cursor::last() on page 155.

os_cursor_more

extern int os_cursor_more(
os_cursor* /* return true if this cursor is not null */

);

See os_cursor::more() on page 156.

os_cursor_next

extern void* os_cursor_next(
os_cursor* /* put the cursor on the next element and return it */

);

See os_cursor::next() on page 156.

os_cursor_null

extern int os_cursor_null(
os_cursor* /* return true if this cursor is null */

);

See os_cursor::null() on page 156.

os_cursor_ordered_create

extern os_cursor* os_cursor_ordered_create(
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* true means allow for updates during iteration */
Release 5.1 331

os_cursor Functions
);

See os_cursor::os_cursor() on page 156.

os_cursor_ordered_create_in_cluster

extern os_cursor* os_cursor_ordered_create_in_cluster(
os_object_cluster*, /* create cursor in this cluster */
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_ordered_create_in_db

extern os_cursor* os_cursor_ordered_create_in_db(
os_database*, /* create in this database */
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_ordered_create_in_seg

extern os_cursor* os_cursor_ordered_create_in_seg(
os_segment*, /* create in this segment */
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_ordered_create_near

extern os_cursor* os_cursor_ordered_create_near(
void *, /* create cursor in this */
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* bitmask: forward/reverse, order_by_address */

/* safe/unsafe, etc enums */
/* safe allow for updates during iteration */
332 ObjectStore Collections C++ API Reference

Chapter 5: C Library Interface
);

See os_cursor::os_cursor() on page 156.

os_cursor_ordered_create_options

extern os_cursor* os_cursor_ordered_create_options(
os_collection*, /* create a cursor over this collection */
os_index_path*, /* path to codify order of an ordered iteration */
os_int32 /* bitmask option: forward/reverse, order_by_address */

/* safe/unsafe etc, enums */
/* safe allow for updates during iteration */

);

See os_cursor::os_cursor() on page 156.

os_cursor_previous

extern void* os_cursor_previous(
os_cursor*
 /* put the cursor on the previous element and return it */

);

See os_cursor::previous() on page 159.

os_cursor_remove_at

extern void os_cursor_remove_at(
os_cursor*
 /* remove the element in the collection at this position */

);

See os_cursor::remove_at() on page 159.

os_cursor_retrieve

extern void* os_cursor_retrieve(
os_cursor* /* return the element at the current cursor position */

);

See os_cursor::retrieve() on page 159.

os_cursor_valid

extern int os_cursor_valid(
os_cursor* /* return true if this cursor is at an element */

);

See os_cursor::valid() on page 160.
Release 5.1 333

os_index_path Functions
os_index_path Functions

The C library interface contains functions analogous to those of
the class os_index_path in the ObjectStore Class Library.

os_index_path_create

extern os_index_path* os_index_path_create(
char*, /* string denoting element type (start of path) */
char*, /* string denoting the path */
os_database*/* database in which to create path */

);

Creates an index path. See os_index_path::create() on page 179.

os_index_path_create_in_seg

extern os_index_path* os_index_path_create_in_seg(
char*, /* string denoting element type (start of path) */
char*, /* string denoting the path */
os_segment*/* segment in which to create path */

);

Creates an index path. See os_index_path::create() on page 179.

os_index_path_delete

extern void os_index_path_delete(
os_index_path*

);

Deletes an index path. See os_index_path::destroy() on page 181.
334 ObjectStore Collections C++ API Reference

Appendix
Predefined TIX Exceptions

This section contains information on significant predefined
exceptions. These exceptions are defined in client.hh and ostore.h ,
so they are automatically available to your programs.

Topics Parent Exceptions 336

Predefined Exceptions 338
Release 5.1 335

Parent Exceptions
Parent Exceptions

The following are parents in the exceptions object tree hierarchy.
They are never signaled directly, but it can be useful to set up
handlers for them in order to catch an entire set of errors.

ObjectStore
exception
inheritance hierarchy

The hierarchy is arranged as follows:

• Every TIX exception is a descendant of all_exceptions .

• Every TIX exception that is signaled by ObjectStore itself is a
child of err_objectstore , which is a child of all_exceptions .

• Every TIX exception signaled from the remote procedure call
(RPC) mechanism (which ObjectStore uses for all its network
communications) is a child of err_rpc , which is a child of err_
objectstore .

all_exceptions

err_objectstore

err_coll

err_schema_evolution

err_rpc

General exceptions
336 ObjectStore Collections C++ API Reference

Appendix: Predefined TIX Exceptions
The ObjectStore exception facility itself is presented in Appendix
A, Exception Facility, in ObjectStore C++ API Reference.
Release 5.1 337

Predefined Exceptions
Predefined Exceptions

Collection Exceptions

The following exceptions descend from err_coll , which is a
descendent of err_objectstore.

err_am . Error using indexes, for example, an attempt to add an
index where a class mentioned in the path serving as index key
cannot be found in the schema of the database containing the
index (or the application schema, if the index is transient).

Can be signaled by:

• os_collection::add_index()

• os_coll_range::os_coll_range()

err_coll . The parent of all collection exceptions.

err_coll_ambiguous .

not found in coll_class

err_coll_behavior_inconsistency . The representation policy was
semantically inconsistent with regard to the collection object.

not found in coll_class.

err_coll_cannot_grow_collection . An attempt was made to grow a
collection that could not be grown, usually because the grow_by or
the grow_at parameter to collection creation specified no growth.

err_coll_cannot_mutate_collection . A collection could not be
mutated into an alternate representation.

err_coll_dangling_pointer . A dangling pointer from a collection to
a deleted object was detected, due to the presence of os_backptr
during deletion of the containing object.

err_coll_duplicates . An attempt was made to duplicate an element
in a collection.

os_collection::allow_duplicates

os_collection::change_behavior

os_collection::insert
338 ObjectStore Collections C++ API Reference

Appendix: Predefined TIX Exceptions
os_collection::insert_after

os_Collection::insert

os_Collection::insert_after

os_Collection::insert_before

os_Collection::insert_first

err_coll_empty . The protocol expected a nonempty set, but was
used on an empty set instead.

os_Array::create (pick)

os_array::create

err_coll_evolve . The root exception for collection evolution.

err_coll_evolve_not_implemented_yet . The unimplemented part of
collection evolution.

err_coll_illegal_arg . An actual argument used in the collection
protocol failed validation. The text of the report contains details
regarding the specific argument.

err_coll_illegal_cast . An illegal cast operation was attempted.

err_coll_illegal_cursor .

err_coll_illegal_query_expression . Syntax/semantic analysis of
the query text resulted in an error.

err_coll_illegal_update . An attempt was made to update a const
collection through a cursor.

err_coll_internal . This exception is used to signal internal
collection errors.

err_coll_internal_list . An error occurred in an internal list.

err_coll_none_qualifying . An error occurred in index lookup
during scan.
Release 5.1 339

Predefined Exceptions
err_coll_not_implemented_yet . For as-yet-unimplemented
collection features.

err_coll_not_singleton . os_collection::only expected a singleton
set, but the cardinality() != 1.

err_coll_not_ordered . The operation required that the collection be
ordered, but it was not.

err_coll_not_supported . An attempt was made to use a collection
subtype-specific protocol that was not supported by this
particular subtype.

err_coll_null_cursor . The protocol expected a nonnull cursor for
the particular operation.

err_coll_nulls . An attempt was made to insert a null element into
a collection.

os_collection::allow_nulls

err_coll_out_of_range . A collection was accessed using an out-of-
bounds array subscript.

err_coll_path_interp . An error in path interpretation occurred.

err_coll_query_bind . The query had free references, but these
references were not bound at the * of the query. The report
identifies the unbound variables.

err_coll_query_evaluate . An error occurred during evaluation of a
query.

err_coll_scan . An error in scan occurred.

err_cursor . An error was made in cursor maintenance.

err_cursor_ambiguous . An error was made in cursor order
specification.

err_cursor_not_implemented_yet . Unimplemented feature.

err_cursor_internal . An error in ordered iteration occurred.

err_illegal_index_path . An error occurred during translation of an
index path expression.

err_index . An error occurred in an index.
340 ObjectStore Collections C++ API Reference

Appendix: Predefined TIX Exceptions
err_index_duplicate_key . The uniqueness constraint on an index
was violated.

err_index_evolve . An error occurred during the evolution of an
index.

err_index_not_implemented_yet . For as-yet-unimplemented index
evolution features.

err_index_invalid_ordering . An index was ordered in an invalid
way.

err_index_wrong_kind . An unordered index was used for ordered
iteration.

err_null_cursor . An attempt was made to operate on a null cursor.

err_object_init . Derived from err_objectstore , this exception can be
caught by the application (as err_objectstore). This is the
exception generated by all the error conditions that

• Are not in a transaction

• Have no type_name provided with a transient instance

• Have a type_name mismatch with a persistent instance

• Could not find schema information for type

• Are called with an embedded object (persistent only)

err_open_iteration . An iteration open on mapping being deleted.

err_pset_no_cursor . Error in _Pset iteration.
Release 5.1 341

Predefined Exceptions
342 ObjectStore Collections C++ API Reference

Release 5.1
Index
A
add_index()

os_collection , defined by 92
allow_duplicates

os_collection , defined by 96, 97
allow_nulls

os_collection , defined by 96, 97, 166
allowed_behavior()

os_coll_rep_descriptor , defined by 143
associate_policy

os_collection , defined by 96

B
bags

compared to sets 35, 46
be_an_array

os_collection , defined by 97
break_link()

os_backptr , defined by 32

C
cardinality()

os_collection , defined by 97
cardinality_estimate()

os_collection , defined by 97, 254
cardinality_is_maintained()

os_collection , defined by 97, 254

change_behavior()
os_collection , defined by 97
os_Dictionary , defined by 166

change_rep()
os_collection , defined by 98

class, system-supplied
nonparameterized

os_array 18–30
os_bag 46–56
os_collection 87–128
os_cursor 153–160
os_list 198–209
os_set 235–244

os_Array 5–17
os_array 18–30
os_backptr 31–34
os_Bag 35–45
os_bag 46–56
os_bound_query 57
os_chained_list 246–248
os_coll_query 130–137
os_coll_range 138–142
os_coll_rep_descriptor 143–144
os_Collection 58–86
os_collection 87–128
os_collection_size 129
os_Cursor 145–152
os_cursor 153–160
os_Dictionary 161–175
343

D

os_dyn_bag 249–250
os_dyn_hash 251–252
os_index_name 178
os_index_path 179–181
os_ixonly 253
os_ixonly_bc 253
os_keyword_arg 182–184
os_keyword_arg_list 185
os_List 186–197
os_list 198–209
os_ordered_ptr_hash 255
os_packed_list 257–258
os_ptr_bag 259–260
os_rDictionary ??–223
os_rep 224
os_Set 225–234
os_set 235–244
os_vdyn_bag 261–262
os_vdyn_hash 263–264
parameterized

os_Array 5–17
os_Bag 35–45
os_Collection 58–86
os_Cursor 145–152
os_Dictionary 161–175
os_List 186–197
os_rDictionary 210–223
os_Set 225–234

clear()
os_collection , defined by 99

collections
index-only 253
library interface 118

contains()
os_Collection , defined by 64
os_collection , defined by 99
os_Dictionary , defined by 167
os_rDictionary , defined by 215

copy()
os_coll_rep_descriptor , defined by 143

count()
os_Collection , defined by 64
os_collection , defined by 99

count_values()
os_Dictionary , defined by 167
os_rDictionary , defined by 215

create()
os_Array , defined by 12
os_array , defined by 24
os_Bag , defined by 41
os_bag , defined by 51
os_coll_query , defined by 130
os_Collection , defined by 64
os_collection , defined by 99
os_Dictionary , defined by 168
os_index_path , defined by 179
os_List , defined by 192
os_list , defined by 204
os_rDictionary , defined by 216
os_Set , defined by 230
os_set , defined by 239

create_exists()
os_coll_query , defined by 134

create_pick()
os_coll_query , defined by 135

D
data members

declaring indexable 31
making indexable 278

default_behavior()
os_Array , defined by 15
os_array , defined by 26
os_Bag , defined by 43
os_bag , defined by 53
os_collection , defined by 101
os_Dictionary , defined by 171
os_List , defined by 194
os_list , defined by 206
os_Set , defined by 232
os_set , defined by 241
344 ObjectStore Collections C++ API Reference

Index
destroy()
os_Array , defined by 15
os_array , defined by 26
os_Bag , defined by 43
os_bag , defined by 53
os_coll_query , defined by 136
os_Collection , defined by 67
os_collection , defined by 101
os_Dictionary , defined by 171
os_index_path , defined by 181
os_List , defined by 195
os_list , defined by 206
os_rDictionary , defined by 219
os_Set , defined by 232
os_set , defined by 241

dont_associate_policy()
os_collection , defined by 101

dont_maintain_cardinality
os_collection , defined by 169, 218

dont_verify
os_collection , defined by 101

drop_index()
os_Collection , defined by 67
os_collection , defined by 102

E
element

of collection 58, 87
element type 5, 36, 58, 147, 186, 225
empty()

os_collection , defined by 102
EQ

os_collection , defined by 102, 274, 276
err_am exception 338
err_coll exception 338
err_coll_ambiguous exception 338
err_coll_behavior_inconsistency

exception 338
err_coll_cannot_grow_collection

exception 338

err_coll_cannot_mutate_collection
exception 338

err_coll_dangling_pointer exception 338
err_coll_duplicates exception 338
err_coll_empty exception 339
err_coll_evolve exception 339
err_coll_evolve_not_implemented_yet

exception 339
err_coll_illegal_arg exception 339
err_coll_illegal_cast exception 339
err_coll_illegal_cursor exception 339
err_coll_illegal_query_expression

exception 339
err_coll_illegal_update exception 339
err_coll_internal exception 339
err_coll_internal_list exception 339
err_coll_none_qualifying exception 339
err_coll_not_implemented_yet

exception 340
err_coll_not_ordered exception 340
err_coll_not_singleton exception 340
err_coll_not_supported exception 340
err_coll_null_cursor exception 340
err_coll_nulls exception 340
err_coll_out_of_range exception 340
err_coll_path_interp exception 340
err_coll_query_bind exception 340
err_coll_query_evaluate exception 340
err_coll_scan exception 340
err_cursor exception 340
err_cursor_ambiguous exception 340
err_cursor_internal exception 340
err_cursor_not_implemented_yet

exception 340
err_illegal_index_path exception 340
err_index exception 340
err_index_duplicate_key exception 341
err_index_evolve exception 341
err_index_invalid_ordering exception 341
err_index_not_implemented_yet

exception 341
Release 5.1 345

F

err_index_wrong_kind exception 341
err_null_cursor exception 341
err_object_init exception 341
err_open_iteration exception 341
err_pset_no_cursor exception 341
exceptions

collection 338
err_am 338
err_coll 338
err_coll_ambiguous 338
err_coll_behavior_inconsistency 338
err_coll_cannot_grow_collection 338
err_coll_cannot_mutate_collection 338
err_coll_dangling_pointer 338
err_coll_duplicates 338
err_coll_empty 339
err_coll_evolve 339
err_coll_evolve_not_implemented_

yet 339
err_coll_illegal_arg 339
err_coll_illegal_cast 339
err_coll_illegal_cursor 339
err_coll_illegal_query_expression 339
err_coll_illegal_update 339
err_coll_internal 339
err_coll_internal_list 339
err_coll_none_qualifying 339
err_coll_not_implemented_yet 340
err_coll_not_ordered 340
err_coll_not_singleton 340
err_coll_not_supported 340
err_coll_null_cursor 340
err_coll_nulls 340
err_coll_out_of_range 340
err_coll_path_interp 340
err_coll_query_bind 340
err_coll_query_evaluate 340
err_coll_scan 340
err_cursor 340
err_cursor_ambiguous 340
err_cursor_internal 340

err_cursor_not_implemented_yet 340
err_illegal_index_path 340
err_index 340
err_index_duplicate_key 341
err_index_evolve 341
err_index_invalid_ordering 341
err_index_not_implemented_yet 341
err_index_wrong_kind 341
err_null_cursor 341
err_object_init 341
err_open_iteration 341
err_pset_no_cursor 341
predefined 335

exists()
os_collection , defined by 102, 134

F
first()

os_Cursor , defined by 147
os_cursor , defined by 155

G
GE

os_collection , defined by 105
get_behavior()

os_collection , defined by 105
get_element_type()

os_coll_query , defined by 136
get_file_name()

os_coll_query , defined by 136
get_grow_rep_descriptor()

os_coll_rep_descriptor , defined by 143
get_indexes()

os_collection , defined by 105
get_line_number()

os_coll_query , defined by 137
get_max_size()

os_coll_rep_descriptor , defined by 144
get_min_size()

os_coll_rep_descriptor , defined by 144
346 ObjectStore Collections C++ API Reference

Index
get_options()
os_index_name , defined by 178

get_path_name()
os_index_name , defined by 178

get_query_string()
os_coll_query , defined by 136

get_rep()
os_collection , defined by 105

get_thread_locking()
os_collection , defined by 106

GT
os_collection , defined by 105, 274, 276

H
has_index()

os_collection , defined by 106
hash functions

registering 274
replacing 275

I
index keys 179
index maintenance

and member functions 34, 79, 83, 133
indexable data members

instantiating accessor functions for 277
initialize()

os_collection , defined by 107
insert()

os_Collection , defined by 67
os_collection , defined by 107
os_Dictionary , defined by 171
os_dynamic_extent , defined by 177
os_rDictionary , defined by 219

insert_after()
os_Collection , defined by 68
os_collection , defined by 107
os_Cursor , defined by 147
os_cursor , defined by 155

insert_before()
os_Collection , defined by 69
os_collection , defined by 108
os_Cursor , defined by 147
os_cursor , defined by 155

insert_first()
os_Collection , defined by 70
os_collection , defined by 108

insert_last()
os_Collection , defined by 71
os_collection , defined by 109

iteration
order 179

L
last()

os_Cursor , defined by 148
os_cursor , defined by 155

LE
os_collection , defined by 109

lists 186, 198
LT

os_collection , defined by 109, 274, 276

M
macro, system-supplied

os_index() 267, 269, 273
os_index_key() 274
os_index_key_hash_function() 275
os_index_key_rank_function() 276
os_indexable_body() 277
os_indexable_member() 278
OS_MARK_DICTIONARY() 267, 269
OS_MARK_QUERY_FUNCTION() 268
OS_MARK_SCHEMA_TYPE() 269
os_query_function() 280
os_query_function_body() 281
os_rel_1_1_body() 284
os_rel_1_1_body_options() 292
os_rel_1_m_body() 286
Release 5.1 347

N

os_rel_1_m_body_options() 294
os_rel_m_1_body() 288
os_rel_m_1_body_options() 296
os_rel_m_m_body() 290
os_rel_m_m_body_options() 298
os_relationship_1_1() 300
os_relationship_1_m() 302
os_relationship_linkage() 304
os_relationship_m_1() 305
os_relationship_m_m() 307
OS_TRANSIENT_DICTIONARY() 270,

271, 272
maintain_cursors

os_collection , defined by 98, 109
maintain_key_order

os_Dictionary , defined by 167, 169, 172
os_dictionary , defined by 217

maintain_order
os_collection , defined by 98, 110

make_link()
os_backptr , defined by 33

more()
os_Cursor , defined by 148
os_cursor , defined by 156

multitrans_add_index()
os_collection , defined by 110

multitrans_drop_index()
os_collection , defined by 111

N
NE

os_collection , defined by 111
next()

os_Cursor , defined by 148
os_cursor , defined by 156

null()
os_Cursor , defined by 148
os_cursor , defined by 156

O
objectstore_delete() 311
objectstore_initialize() 311
only()

os_Collection , defined by 71
os_collection , defined by 111

operator !=()
os_Collection , defined by 73
os_collection , defined by 113

operator &()
os_array , defined by 28
os_bag , defined by 54
os_Collection , defined by 75
os_collection , defined by 116
os_list , defined by 207
os_set , defined by 242

operator &=()
os_Array , defined by 16
os_array , defined by 27
os_Bag , defined by 44
os_bag , defined by 54
os_Collection , defined by 75
os_collection , defined by 116
os_List , defined by 196
os_list , defined by 207
os_Set , defined by 233
os_set , defined by 242

operator -()
os_array , defined by 29
os_bag , defined by 55
os_Collection , defined by 76
os_collection , defined by 117
os_list , defined by 208
os_set , defined by 243

operator ,()
os_keyword_arg , defined by 182
os_keyword_arg_list , defined by 185

operator <()
os_Collection , defined by 73
os_collection , defined by 114
348 ObjectStore Collections C++ API Reference

Index
operator <=()
os_Collection , defined by 73
os_collection , defined by 114

operator -=()
os_Array , defined by 16
os_array , defined by 28
os_Bag , defined by 45
os_bag , defined by 55
os_Collection , defined by 76
os_collection , defined by 116
os_List , defined by 196
os_list , defined by 208
os_Set , defined by 233
os_set , defined by 243

operator =()
os_Array , defined by 15
os_array , defined by 26
os_Bag , defined by 44
os_bag , defined by 53
os_Collection , defined by 74
os_collection , defined by 115
os_List , defined by 195
os_list , defined by 206
os_Set , defined by 233
os_set , defined by 241

operator ==()
os_Collection , defined by 72
os_collection , defined by 113

operator >()
os_Collection , defined by 73
os_collection , defined by 114

operator >=()
os_Collection , defined by 74
os_collection , defined by 114

operator |()
os_array , defined by 27
os_bag , defined by 54
os_Collection , defined by 75
os_collection , defined by 115
os_list , defined by 207
os_set , defined by 242

operator |=()
os_Array , defined by 16
os_array , defined by 27
os_Bag , defined by 44
os_bag , defined by 53
os_Collection , defined by 74
os_collection , defined by 115
os_List , defined by 195
os_list , defined by 206
os_Set , defined by 233
os_set , defined by 241

operator const os_array&()
os_collection , defined by 112

operator const os_Array()
os_Collection , defined by 71

operator const os_bag&()
os_collection , defined by 112

operator const os_Bag()
os_Collection , defined by 72

operator const os_list&()
os_collection , defined by 112

operator const os_List()
os_Collection , defined by 72

operator const os_set&()
os_collection , defined by 113

operator const os_Set()
os_Collection , defined by 72

operator os_array&()
os_collection , defined by 112

operator os_Array()
os_Collection , defined by 71

operator os_bag&()
os_collection , defined by 112

operator os_Bag()
os_Collection , defined by 71

operator os_int32()
os_collection , defined by 79, 83, 112, 120,

133
operator os_list&()

os_collection , defined by 112
Release 5.1 349

O

operator os_List()
os_Collection , defined by 72

operator os_set&()
os_collection , defined by 113

operator os_Set()
os_Collection , defined by 72

order, iteration 179
order_by_address

os_collection , defined by 117
ordered

os_collection , defined by 117
os_Array()

os_Array , defined by 17
os_array()

os_array , defined by 29
os_Array , the class 5–17

create() 12
default_behavior() 15
destroy() 15
operator &=() 16
operator -=() 16
operator =() 15
operator |=() 16
os_Array() 17
set_cardinality() 17

os_array , the class 18–30
create() 24
default_behavior() 26
destroy() 26
operator &() 28
operator &=() 27
operator -() 29
operator -=() 28
operator =() 26
operator |() 27
operator |=() 27
os_array() 29
set_cardinality() 30

os_backptr 78, 82, 103, 104, 119, 120, 123,
132

designating indexable member 273

os_backptr , the class 31–34
break_link() 32
make_link() 33

os_Bag()
os_Bag , defined by 45

os_bag()
os_bag , defined by 55

os_Bag , the class 35–45
create() 41
default_behavior() 43
destroy() 43
operator &=() 44
operator -=() 45
operator =() 44
operator |=() 44
os_Bag() 45

os_bag , the class 46–56
create() 51
default_behavior() 53
destroy() 53
operator &() 54
operator &=() 54
operator -() 55
operator -=() 55
operator =() 53
operator |() 54
operator |=() 53
os_bag() 55

os_bound_query()
os_bound_query , defined by 57

os_bound_query , the class 57
os_bound_query() 57

os_bound_query_create() 313
os_bound_query_delete() 313
os_chained_list , the class 246–248
os_coll_query , the class 130–137

create() 130
create_exists() 134
create_pick() 135
destroy() 136
get_element_type() 136
350 ObjectStore Collections C++ API Reference

Index
get_file_name() 136
get_line_number() 137
get_query_string() 136

os_coll_query_create() 325
os_coll_query_create_exists() 325
os_coll_query_create_exists_in_seg() 325
os_coll_query_create_in_seg() 325
os_coll_query_create_pick() 326
os_coll_query_create_pick_in_seg() 326
os_coll_range()

os_coll_range , defined by 138
os_coll_range , the class 138–142

os_coll_range() 138
os_coll_rep_descriptor() 327
os_coll_rep_descriptor , the class 143–144

allowed_behavior() 143
copy() 143
get_grow_rep_descriptor() 143
get_max_size() 144
get_min_size() 144
rep_enum() 144
rep_name() 144
required_behavior() 144

os_coll_rep_descriptor_allowed_
behavior() 327

os_coll_rep_descriptor_copy() 327
os_coll_rep_descriptor_get_grow() 327
os_coll_rep_descriptor_get_max_size() 328
os_coll_rep_descriptor_get_min_size() 328
os_coll_rep_descriptor_get_shrink() 328
os_coll_rep_descriptor_required_

behavior() 328
os_Collection , the class 58–86

contains() 64
count() 64
create() 64
destroy() 67
drop_index() 67
insert() 67
insert_after() 68
insert_before() 69

insert_first() 70
insert_last() 71
only() 71
operator !=() 73
operator &() 75
operator &=() 75
operator -() 76
operator <() 73
operator <=() 73
operator -=() 76
operator =() 74
operator ==() 72
operator >() 73
operator >=() 74
operator |() 75
operator |=() 74
operator const os_Array() 71
operator const os_Bag() 72
operator const os_List() 72
operator const os_Set() 72
operator os_Array() 71
operator os_Bag() 71
operator os_List() 72
operator os_Set() 72
pick() 76
query() 76
query_pick() 80
remove() 84
remove_first() 84
remove_last() 84
replace_at() 85
retrieve() 85
retrieve_first() 85
retrieve_last() 86

os_collection , the class 87–128
add_index() 92
allow_duplicates 96, 97
allow_nulls 96, 97, 166
associate_policy 96
be_an_array 97
cardinality() 97
Release 5.1 351

O

cardinality_estimate() 97, 254
cardinality_is_maintained() 97, 254
change_behavior() 97
change_rep() 98
clear() 99
contains() 99
count() 99
create() 99
default_behavior() 101
destroy() 101
dont_associate_policy() 101
dont_maintain_cardinality 169, 218
dont_verify 101
drop_index() 102
empty() 102
EQ 102, 274, 276
exists() 102, 134
GE 105
get_behavior() 105
get_indexes() 105
get_rep() 105
get_thread_locking() 106
GT 105, 274, 276
has_index() 106
initialize() 107
insert() 107
insert_after() 107
insert_before() 108
insert_first() 108
insert_last() 109
LE 109
LT 109, 274, 276
maintain_cursors 98, 109
maintain_order 98, 110
multi_trans_add_index() 110
multi_trans_drop_index() 111
NE 111
only() 111
operator !=() 113
operator &() 116
operator &=() 116

operator -() 117
operator <() 114
operator <=() 114
operator -=() 116
operator =() 115
operator ==() 113
operator >() 114
operator >=() 114
operator |() 115
operator |=() 115
operator const os_array&() 112
operator const os_bag&() 112
operator const os_list&() 112
operator const os_set&() 113
operator os_array&() 112
operator os_bag&() 112
operator os_int32() 79, 83, 112, 120, 133
operator os_list&() 112
operator os_set&() 113
order_by_address 117
ordered 117
pick() 117
pick_from_empty_returns_null 98, 118,

166, 169, 217
query() 118, 130
query_pick() 121, 136
remove() 124
remove_at() 124
remove_first() 124
remove_last() 125
replace_at() 125
retrieve() 126
retrieve_first() 126
retrieve_last() 126
set_thread_locking() 127
signal_cardinality 98, 166
signal_duplicates 97, 166
update_cardinality() 128, 254
verify 98

os_collection_add_index() 314
os_collection_add_index_in_seg() 314
352 ObjectStore Collections C++ API Reference

Index
os_collection_bound_query() 314
os_collection_bound_query_exists() 314
os_collection_bound_query_pick() 314
os_collection_cardinality() 315
os_collection_change_behavior() 315
os_collection_change_rep() 315
os_collection_clear() 315
os_collection_contains() 315
os_collection_copy() 316
os_collection_count() 316
os_collection_create() 316
os_collection_create_in_cluster() 316
os_collection_create_in_seg() 316
os_collection_create_near() 317
os_collection_delete() 317
os_collection_drop_index() 317
os_collection_empty() 317
os_collection_equal() 317
os_collection_get_behavior() 318
os_collection_get_rep() 318
os_collection_greater_than() 318
os_collection_greater_than_or_equal() 318
os_collection_has_index() 318
os_collection_initialize() 318
os_collection_insert() 319
os_collection_insert_after_cursor() 319
os_collection_insert_after_position() 319
os_collection_insert_before_cursor() 319
os_collection_insert_before_position() 319
os_collection_insert_first() 320
os_collection_insert_last() 320
os_collection_intersect() 320
os_collection_less_than() 320
os_collection_less_than_or_equal() 320
os_collection_not_equal() 320
os_collection_only() 321
os_collection_ordered_equal() 321
os_collection_pick() 321
os_collection_query() 321

os_collection_query_exists() 321
os_collection_query_pick() 322
os_collection_remove() 322
os_collection_remove_at_cursor() 322
os_collection_remove_at_position() 322
os_collection_remove_first() 322
os_collection_remove_last() 322
os_collection_replace_at_cursor() 323
os_collection_replace_at_position() 323
os_collection_retrieve_at_cursor() 323
os_collection_retrieve_at_position() 323
os_collection_retrieve_first() 323
os_collection_retrieve_last() 323
os_collection_size , the class 129
os_collection_union() 324
~os_Cursor()

os_Cursor , defined by 152
os_Cursor()

os_Cursor , defined by 148
~os_cursor()

os_cursor , defined by 160
os_cursor()

os_cursor , defined by 156
os_Cursor , the class 145–152

first() 147
insert_after() 147
insert_before() 147
last() 148
more() 148
next() 148
null() 148
~os_Cursor() 152
os_Cursor() 148
owner() 151
previous() 151
rebind() 151
remove_at() 152
retrieve() 152
valid() 152
Release 5.1 353

O

os_cursor , the class 153–160
first() 155
insert_after() 155
insert_before() 155
last() 155
more() 156
next() 156
null() 156
~os_cursor() 160
os_cursor() 156
owner() 159
previous() 159
rebind() 159
remove_at() 159
retrieve() 159
valid() 160

os_cursor_copy() 329
os_cursor_create() 329
os_cursor_create_in_cluster() 329
os_cursor_create_in_db() 329
os_cursor_create_in_seg() 329
os_cursor_create_near() 330
os_cursor_create_options() 330
os_cursor_delete() 330
os_cursor_first() 330
os_cursor_insert_after() 330
os_cursor_insert_before() 331
os_cursor_last() 331
os_cursor_more() 331
os_cursor_next() 331
os_cursor_null() 331
os_cursor_ordered_create() 331
os_cursor_ordered_create_in_cluster() 332
os_cursor_ordered_create_in_db() 332
os_cursor_ordered_create_in_seg() 332
os_cursor_ordered_create_near() 332
os_cursor_ordered_create_options() 333
os_cursor_previous() 333
os_cursor_remove_at() 333
os_cursor_retrieve() 333
os_cursor_valid() 333

os_database_alloc() 311
os_Dictionary()

os_Dictionary , defined by 172
os_Dictionary , the class 161–175

change_behavior() 166
contains() 167
count_values() 167
create() 168
default_behavior() 171
destroy() 171
insert() 171
maintain_key_order 167, 169, 172
os_Dictionary() 172
pick() 172
query_pick() 173
remove() 173
remove_value() 174
retrieve() 175
retrieve_key() 175
signal_dup_keys 166, 169

os_dictionary , the class
maintain_key_order 217
signal_dup_keys 217

os_dyn_bag , the class 249–250
os_dyn_hash , the class 251–252
~os_dynamic_extent()

os_dynamic_extent , defined by 177
os_dynamic_extent()

os_dynamic_extent , defined by 176
os_dynamic_extent , the class

~os_dynamic_extent() 177
insert() 177
os_dynamic_extent() 176
remove() 177

os_index() , the macro 267, 269, 273
os_index_key() , the macro 274
os_index_key_hash_function() , the

macro 275
os_index_key_rank_function() , the

macro 276
354 ObjectStore Collections C++ API Reference

Index
os_index_name , the class 178
get_options() 178
get_path_name() 178

os_index_path , the class 179–181
create() 179
destroy() 181

os_index_path_create() 334
os_index_path_create_in_seg() 334
os_index_path_delete() 334
os_indexable_body() , the macro 277
os_indexable_member() , the macro 278
OS_INITIALIZE_CHAINED_LIST_REP()

macro 246
os_ixonly , the class 253
os_ixonly_bc , the class 253
os_keyword_arg()

os_keyword_arg , defined by 182
os_keyword_arg , the class 182–184

operator ,() 182
os_keyword_arg() 182

os_keyword_arg_list()
os_keyword_arg_list , defined by 185

os_keyword_arg_list , the class 185
operator ,() 185
os_keyword_arg_list() 185

os_List()
os_List , defined by 196

os_list()
os_list , defined by 208

os_List , the class 186–197
create() 192
default_behavior() 194
destroy() 195
operator &=() 196
operator -=() 196
operator =() 195
operator |=() 195
os_List() 196

os_list , the class 198–209
create() 204
default_behavior() 206

destroy() 206
operator &() 207
operator &=() 207
operator -() 208
operator -=() 208
operator =() 206
operator |() 207
operator |=() 206
os_list() 208

OS_MARK_DICTIONARY() , the macro 267,
269

OS_MARK_QUERY_FUNCTION() , the
macro 78, 79, 82, 83, 119, 120, 123,
132, 133, 268

OS_MARK_SCHEMA_TYPE() , the macro 269
os_ordered_ptr_hash , the class 255
os_packed_list , the class 257–258
os_ptr_bag , the class 259–260
os_query_function() , the macro 78, 82, 103,

104, 119, 120, 123, 132, 280
os_query_function_body() , the macro 78,

79, 82, 104, 119, 120, 123, 132, 133,
281

os_query_function_body_returning_ref() ,
the macro 123

os_query_function_returning_ref() , the
macro 123

os_rDictionary()
os_rDictionary , defined by 220

os_rDictionary , the class 170, 210–223
contains() 215
count_values() 215
create() 216
destroy() 219
insert() 219
os_rDictionary() 220
pick() 220
query() 221
query_pick() 221
remove() 222
remove_value() 222
Release 5.1 355

P

retrieve() 223
retrieve_key() 223

os_rel_1_1_body() , the macro 284
os_rel_1_1_body_options() , the macro 292
os_rel_1_m_body() , the macro 286
os_rel_1_m_body_options() , the macro 294
os_rel_m_1_body() , the macro 288
os_rel_m_1_body_options() , the macro 296
os_rel_m_m_body() , the macro 290
os_rel_m_m_body_options() , the macro 298
os_relationship_1_1() , the macro 300
os_relationship_1_m() , the macro 302
os_relationship_linkage() , the macro 304
os_relationship_m_1() , the macro 305
os_relationship_m_m() , the macro 307
os_rep()

os_rep , defined by 224
os_rep , the class 224

os_rep() 224
os_Set()

os_Set , defined by 234
os_set()

os_set , defined by 243
os_Set , the class 225–234

create() 230
default_behavior() 232
destroy() 232
operator &=() 233
operator -=() 233
operator =() 233
operator |=() 233
os_Set() 234

os_set , the class 235–244
create() 239
default_behavior() 241
destroy() 241
operator &() 242
operator &=() 242
operator -() 243
operator -=() 243
operator =() 241

operator |() 242
operator |=() 241
os_set() 243
retrieve() 244

OS_TRANSIENT_DICTIONARY() , the
macro 270, 271, 272

os_vdyn_bag , the class 261–262
os_vdyn_hash , the class 263–264
<ostore/relat.hh> header file 277
owner()

os_Cursor , defined by 151
os_cursor , defined by 159

P
parameter

element type 5, 36, 58, 147, 186, 225
paths 179
pick()

os_Collection , defined by 76
os_collection , defined by 117
os_Dictionary , defined by 172
os_rDictionary , defined by 220

pick_from_empty_returns_null
os_collection , defined by 98, 118, 166,

169, 217
previous()

os_Cursor , defined by 151
os_cursor , defined by 159

Q
queries

library interface 76
nested 79, 83, 120, 133

optimization 179
range 93

query optimization 179
query()

os_Collection , defined by 76
os_collection , defined by 118, 130
os_rDictionary , defined by 221
356 ObjectStore Collections C++ API Reference

Index
query_pick()
os_Collection , defined by 80
os_collection , defined by 121, 136
os_Dictionary , defined by 173
os_rDictionary , defined by 221

R
range queries 93
rank functions

registering 274
replacing 276

rebind()
os_Cursor , defined by 151
os_cursor , defined by 159

registering rank and hash functions 274
remove()

os_Collection , defined by 84
os_collection , defined by 124
os_Dictionary , defined by 173
os_dynamic_extent , defined by 177
os_rDictionary , defined by 222

remove_at()
os_collection , defined by 124
os_Cursor , defined by 152
os_cursor , defined by 159

remove_first()
os_Collection , defined by 84
os_collection , defined by 124

remove_last()
os_Collection , defined by 84
os_collection , defined by 125

remove_value()
os_Dictionary , defined by 174
os_rDictionary , defined by 222

rep_enum()
os_coll_rep_descriptor , defined by 144

rep_name()
os_coll_rep_descriptor , defined by 144

replace_at()
os_Collection , defined by 85
os_collection , defined by 125

replacing hash functions 275
replacing rank functions 276
representation policies 99, 143, 193, 199,

205, 231, 240
required_behavior()

os_coll_rep_descriptor , defined by 144
retrieve()

os_Collection , defined by 85
os_collection , defined by 126
os_Cursor , defined by 152
os_cursor , defined by 159
os_Dictionary , defined by 175
os_rDictionary , defined by 223
os_set , defined by 244

retrieve_first()
os_Collection , defined by 85
os_collection , defined by 126

retrieve_key()
os_Dictionary , defined by 175
os_rDictionary , defined by 223

retrieve_last()
os_Collection , defined by 86
os_collection , defined by 126

S
set_cardinality()

os_Array , defined by 17
os_array , defined by 30

set_thread_locking()
os_collection , defined by 127

sets 225
signal_cardinality

os_collection , defined by 98, 166
signal_dup_keys

os_Dictionary , defined by 166, 169
os_dictionary , defined by 217

signal_duplicates
os_collection , defined by 97, 166
Release 5.1 357

U

U
update_cardinality()

os_collection , defined by 128, 254

V
valid()

os_Cursor , defined by 152
os_cursor , defined by 160

verify
os_collection , defined by 98
358 ObjectStore Collections C++ API Reference

	Collections C++ A�P�I Reference
	ObjectStore Collections C++ A�P�I Reference
	Preface
	Introduction
	Query Processing
	Data Access
	Collections
	Query Optimizer
	Indexes

	Collection, Query, and Index Classes
	os_Array
	os_Array::create()
	os_Array::default_behavior()
	os_Array::destroy()
	os_Array::operator =()
	os_Array::operator |=()
	os_Array::operator &=()
	os_Array::operator –=()
	os_Array::os_Array()
	os_Array::set_cardinality()

	os_array
	os_array::create()
	os_array::default_behavior()
	os_array::destroy()
	os_array::operator =()
	os_array::operator |=()
	os_array::operator |()
	os_array::operator &=()
	os_array::operator &()
	os_array::operator –=()
	os_array::operator –()
	os_array::os_array()
	os_array::set_cardinality()

	os_backptr
	os_backptr::break_link()
	os_backptr::make_link()

	os_Bag
	os_Bag::create()
	os_Bag::default_behavior()
	os_Bag::destroy()
	Assignment Operator Semantics
	os_Bag::operator =()
	os_Bag::operator |=()
	os_Bag::operator &=()
	os_Bag::operator –=()
	os_Bag::os_Bag()

	os_bag
	os_bag::create()
	os_bag::default_behavior()
	os_bag::destroy()
	os_bag::operator =()
	os_bag::operator |=()
	os_bag::operator |()
	os_bag::operator &=()
	os_bag::operator &()
	os_bag::operator –=()
	os_bag::operator –()
	os_bag::os_bag()

	os_bound_query
	os_bound_query::os_bound_query()

	os_Collection
	os_Collection::contains()
	os_Collection::count()
	os_Collection::create()
	os_Collection::default_behavior()
	os_Collection::destroy()
	os_Collection::drop_index()
	os_Collection::exists()
	os_Collection::insert()
	os_Collection::insert_after()
	os_Collection::insert_before()
	os_Collection::insert_first()
	os_Collection::insert_last()
	os_Collection::only()
	os_Collection::operator os_Array()
	os_Collection::operator const os_Array()
	os_Collection::operator os_Bag()
	os_Collection::operator const os_Bag()
	os_Collection::operator os_List()
	os_Collection::operator const os_List()
	os_Collection::operator os_Set()
	os_Collection::operator const os_Set()
	os_Collection::operator ==()
	os_Collection::operator !=()
	os_Collection::operator <()
	os_Collection::operator <=()
	os_Collection::operator >()
	os_Collection::operator >=()
	os_Collection::operator =()
	os_Collection::operator |=()
	os_Collection::operator |()
	os_Collection::operator &=()
	os_Collection::operator &()
	os_Collection::operator –=()
	os_Collection::operator –()
	os_Collection::pick()
	os_Collection::query()
	os_Collection::query_pick()
	os_Collection::remove()
	os_Collection::remove_first()
	os_Collection::remove_last()
	os_Collection::replace_at()
	os_Collection::retrieve()
	os_Collection::retrieve_first()
	os_Collection::retrieve_last()

	os_collection
	os_collection::add_index()
	os_collection::allow_duplicates
	os_collection::allow_nulls
	os_collection::associate_policy
	os_collection::be_an_array
	os_collection::cardinality()
	os_collection::cardinality_estimate()
	os_collection::cardinality_is_maintained()
	os_collection::change_behavior()
	os_collection::change_rep()
	os_collection::clear()
	os_collection::contains()
	os_collection::count()
	os_collection::create()
	os_collection::default_behavior()
	os_collection::destroy()
	os_collection::dont_associate_policy
	os_collection::dont_verify
	os_collection::drop_index()
	os_collection::EQ
	os_collection::empty()
	os_collection::exists()
	os_collection::GE
	os_collection::GT
	os_collection::get_behavior()
	os_collection::get_indexes()
	os_collection::get_rep()
	os_collection::get_thread_locking()
	os_collection::has_index()
	os_collection::initialize()
	os_collection::insert()
	os_collection::insert_after()
	os_collection::insert_before()
	os_collection::insert_first()
	os_collection::insert_last()
	os_collection::LE
	os_collection::LT
	os_collection::maintain_cursors
	os_collection::maintain_order
	os_collection::multi_trans_add_index()
	os_collection::multi_trans_drop_index()
	os_collection::NE
	os_collection::only()
	os_collection::operator os_int32()
	os_collection::operator os_array&()
	os_collection::operator const os_array&()
	os_collection::operator os_bag&()
	os_collection::operator const os_bag&()
	os_collection::operator os_list&()
	os_collection::operator const os_list&()
	os_collection::operator os_set&()
	os_collection::operator const os_set&()
	os_collection::operator ==()
	os_collection::operator !=()
	os_collection::operator <()
	os_collection::operator <=()
	os_collection::operator >()
	os_collection::operator >=()
	os_collection::operator =()
	os_collection::operator |=()
	os_collection::operator |()
	os_collection::operator &=()
	os_collection::operator &()
	os_collection::operator –=()
	os_collection::operator -()
	os_collection::order_by_address
	os_collection::ordered
	os_collection::pick()
	os_collection::pick_from_empty_returns_null
	os_collection::query()
	os_collection::query_pick()
	os_collection::remove()
	os_collection::remove_at()
	os_collection::remove_first()
	os_collection::remove_last()
	os_collection::replace_at()
	os_collection::retrieve()
	os_collection::retrieve_first()
	os_collection::retrieve_last()
	os_collection::set_query_memory_mode()
	os_collection::set_thread_locking()
	os_collection::update_cardinality()

	os_collection_size
	os_coll_query
	os_coll_query::create()
	os_coll_query::create_exists()
	os_coll_query::create_pick()
	os_coll_query::destroy()
	os_coll_query::get_element_type()
	os_coll_query::get_query_string()
	os_coll_query::get_file_name()
	os_coll_query::get_line_number()

	os_coll_range
	os_coll_range::os_coll_range()

	os_coll_rep_descriptor
	os_coll_rep_descriptor::allowed_behavior()
	os_coll_rep_descriptor::copy()
	os_coll_rep_descriptor::get_grow_rep_descriptor()
	os_coll_rep_descriptor::get_max_size()
	os_coll_rep_descriptor::get_min_size()
	os_coll_rep_descriptor::rep_enum()
	os_coll_rep_descriptor::rep_name()
	os_coll_rep_descriptor::required_behavior()

	os_Cursor
	os_Cursor::first()
	os_Cursor::insert_after()
	os_Cursor::insert_before()
	os_Cursor::last()
	os_Cursor::more()
	os_Cursor::next()
	os_Cursor::null()
	os_Cursor::os_Cursor()
	os_Cursor::owner()
	os_Cursor::previous()
	os_Cursor::rebind()
	os_Cursor::remove_at()
	os_Cursor::retrieve()
	os_Cursor::valid()
	os_Cursor::~os_Cursor()

	os_cursor
	os_cursor::first()
	os_cursor::insert_after()
	os_cursor::insert_before()
	os_cursor::last()
	os_cursor::more()
	os_cursor::next()
	os_cursor::null()
	os_cursor::os_cursor()
	os_cursor::owner()
	os_cursor::previous()
	os_cursor::rebind()
	os_cursor::remove_at()
	os_cursor::retrieve()
	os_cursor::valid()
	os_cursor::~os_cursor()

	os_Dictionary
	os_Dictionary::change_behavior()
	os_Dictionary::contains()
	os_Dictionary::count_values()
	os_Dictionary::create()
	os_Dictionary::default_behavior()
	os_Dictionary::destroy()
	os_Dictionary::insert()
	os_Dictionary::os_Dictionary()
	os_Dictionary::pick()
	os_Dictionary::query()
	os_Dictionary::query_pick()
	os_Dictionary::remove()
	os_Dictionary::remove_value()
	os_Dictionary::retrieve()
	os_Dictionary::retrieve_key()

	os_dynamic_extent
	os_dynamic_extent::os_dynamic_extent()
	os_dynamic_extent::insert()
	os_dynamic_extent::remove()
	os_dynamic_extent::~os_dynamic_extent()

	os_index_name
	os_index_name::get_options()
	os_index_name::get_path_name()

	os_index_path
	os_index_path::create()
	os_index_path::destroy()

	os_keyword_arg
	os_keyword_arg::operator ,()
	os_keyword_arg::os_keyword_arg()

	os_keyword_arg_list
	os_keyword_arg_list::operator ,()
	os_keyword_arg_list::os_keyword_arg_list()

	os_List
	os_List::create()
	os_List::default_behavior()
	os_List::destroy()
	os_List::operator =()
	os_List::operator |=()
	os_List::operator &=()
	os_List::operator –=()
	os_List::os_List()

	os_list
	os_list::create()
	os_list::default_behavior()
	os_list::destroy()
	os_list::operator =()
	os_list::operator |=()
	os_list::operator |()
	os_list::operator &=()
	os_list::operator &()
	os_list::operator –=()
	os_list::operator –()
	os_list::os_list()

	os_rDictionary
	os_rDictionary::contains()
	os_rDictionary::count_values()
	os_rDictionary::create()
	os_rDictionary::destroy()
	os_rDictionary::insert()
	os_rDictionary::os_rDictionary()
	os_rDictionary::pick()
	os_rDictionary::query()
	os_rDictionary::query_pick()
	os_rDictionary::remove()
	os_rDictionary::remove_value()
	os_rDictionary::retrieve()
	os_rDictionary::retrieve_key()

	os_rep
	os_rep::os_rep()

	os_Set
	os_Set::create()
	os_Set::default_behavior()
	os_Set::destroy()
	os_Set::operator =()
	os_Set::operator |=()
	os_Set::operator &=()
	os_Set::operator –=()
	os_Set::os_Set()

	os_set
	os_set::create()
	os_set::default_behavior()
	os_set::destroy()
	os_set::operator =()
	os_set::operator |=()
	os_set::operator |()
	os_set::operator &=()
	os_set::operator &()
	os_set::operator –=()
	os_set::operator –()
	os_set::os_set()
	os_set::retrieve()

	Representation Types
	os_chained_list
	os_dyn_bag
	os_dyn_hash
	os_ixonly and os_ixonly_bc
	os_ordered_ptr_hash
	Time Complexity
	Space Overhead and Clustering

	os_packed_list
	os_ptr_bag
	Time Complexity
	Space Overhead and Clustering

	os_vdyn_bag
	os_vdyn_hash

	Macros and User-Defined Functions
	OS_MARK_DICTIONARY()
	OS_MARK_QUERY_FUNCTION()
	OS_MARK_RDICTIONARY()
	OS_TRANSIENT_DICTIONARY()
	OS_TRANSIENT_DICTIONARY_NOKEY()
	OS_TRANSIENT_RDICTIONARY()
	os_index()
	os_index_key()
	os_index_key_hash_function()
	os_index_key_rank_function()
	os_indexable_body()
	os_indexable_member()
	os_query_function()
	os_query_function_body()
	os_query_function_body_returning_ref()
	os_query_function_returning_ref()
	os_rel_1_1_body()
	os_rel_1_m_body()
	os_rel_m_1_body()
	os_rel_m_m_body()
	os_rel_1_1_body_options()
	os_rel_1_m_body_options()
	os_rel_m_1_body_options()
	os_rel_m_m_body_options()
	os_relationship_1_1()
	os_relationship_1_m()
	OS_RELATIONSHIP_LINKAGE()
	os_relationship_m_1()
	os_relationship_m_m()

	C Library Interface
	Overview
	Getting Started
	os_backptr Functions
	os_bound_query Functions
	os_bound_query_create
	os_bound_query_delete

	os_collection Functions and Enumerators
	os_collection_add_index
	os_collection_add_index_in_seg
	os_collection_bound_query
	os_collection_bound_query_exists
	os_collection_bound_query_pick
	os_collection_cardinality
	os_collection_change_behavior
	os_collection_change_rep
	os_collection_clear
	os_collection_contains
	os_collection_copy
	os_collection_count
	os_collection_create
	os_collection_create_in_cluster
	os_collection_create_in_seg
	os_collection_create_near
	os_collection_delete
	os_collection_difference
	os_collection_drop_index
	os_collection_empty
	os_collection_equal
	os_collection_get_behavior
	os_collection_get_rep
	os_collection_greater_than
	os_collection_greater_than_or_equal
	os_collection_has_index
	os_collection_initialize
	os_collection_insert
	os_collection_insert_after_cursor
	os_collection_insert_after_position
	os_collection_insert_before_cursor
	os_collection_insert_before_position
	os_collection_insert_first
	os_collection_insert_last
	os_collection_intersect
	os_collection_less_than
	os_collection_less_than_or_equal
	os_collection_not_equal
	os_collection_only
	os_collection_ordered_equal
	os_collection_pick
	os_collection_query
	os_collection_query_exists
	os_collection_query_pick
	os_collection_remove
	os_collection_remove_at_cursor
	os_collection_remove_at_position
	os_collection_remove_first
	os_collection_remove_last
	os_collection_replace_at_cursor
	os_collection_replace_at_position
	os_collection_retrieve_at_cursor
	os_collection_retrieve_at_position
	os_collection_retrieve_first
	os_collection_retrieve_last
	os_collection_union

	os_coll_query Functions
	os_coll_query_create
	os_coll_query_create_exists
	os_coll_query_create_exists_in_seg
	os_coll_query_create_in_seg
	os_coll_query_create_pick
	os_coll_query_create_pick_in_seg

	os_coll_rep_descriptor Functions
	os_coll_rep_descriptor
	os_coll_rep_descriptor_allowed_behavior
	os_coll_rep_descriptor_copy
	os_coll_rep_descriptor_get_grow
	os_coll_rep_descriptor_get_max_size
	os_coll_rep_descriptor_get_min_size
	os_coll_rep_descriptor_get_shrink
	os_coll_rep_descriptor_required_behavior

	os_cursor Functions
	os_cursor_copy
	os_cursor_create
	os_cursor_create_in_cluster(
	os_cursor_create_in_db
	os_cursor_create_in_seg
	os_cursor_create_near
	os_cursor_create_options
	os_cursor_delete
	os_cursor_first
	os_cursor_insert_after
	os_cursor_insert_before
	os_cursor_last
	os_cursor_more
	os_cursor_next
	os_cursor_null
	os_cursor_ordered_create
	os_cursor_ordered_create_in_cluster
	os_cursor_ordered_create_in_db
	os_cursor_ordered_create_in_seg
	os_cursor_ordered_create_near
	os_cursor_ordered_create_options
	os_cursor_previous
	os_cursor_remove_at
	os_cursor_retrieve
	os_cursor_valid

	os_index_path Functions
	os_index_path_create
	os_index_path_create_in_seg
	os_index_path_delete

	Predefined TIX Exceptions
	Parent Exceptions
	Predefined Exceptions
	Collection Exceptions

	Index

