
C++ API
USER GUIDE

RELEASE 5.1

March 1998

ObjectStore C++ API User Guide

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number:SW-OS-DOC-UGD-510

Contents

Preface . xv

Chapter 1 ObjectStore Concepts . 1

Persistent Storage . 2

ObjectStore Processes. 3

Rawfs Databases . 5

ObjectStore Memory Mapping Architecture 6

Memory Mapping and Schema Information 9

Generating Schemas for ObjectStore Applications. 10

Input to Schema Generation. 10

Schema Generator Output . 10

Programming Interface. 12

Chapter 2 Persistence . 13

Basic Behaviors . 15

Persistent new() and delete(). 15

Prerequisites to Persistent Access . 15

Databases . 15

Clustering . 16

Transactions . 16

Roots and Entry-Point Objects . 17

Requirements for ObjectStore Applications 18

Initializing ObjectStore . 18

Single-Threaded Applications . 18
Release 5.1 iii

Contents
Fault Handler Macros for Multithreaded Applications 18

Creating Databases . 20

Creating a Database with os_database::create() 20

Database Pathnames . 20

Database Modes . 21

Automatic Overwrite . 21

Schema Databases . 21

Return Value . 22

Creating Databases with os_database::open() 22

Destroying Databases with os_database::destroy() 23

Opening Databases with os_database::open() 25

Opening a Database with os_database::open() 25

Database Pathnames . 25

Opening Read-Only . 25

Automatic Creation . 26

Schema Database . 26

Multiversion Concurrency Control (MVCC) 26

Closing Databases with os_database::close() 27

Nested Database Opens . 28

Nested Opens and Read-Only Access 28

Determining Database Open Status . 29

Finding a Specified Database . 30

Pathname Lookup . 30

Rawfs Databases . 31

Rawfs Host Prefix . 31

Creating ObjectStore Directories . 31

Finding a Rawfs Pathname . 31

Aliases . 32

Persistent new and delete . 33

Creating Nonarrays with Operator new() 33

Creating Arrays with Persistent new() . 34

Persistent Unions . 34
iv ObjectStore C++ API User Guide

Contents
Pointers to and from Persistent Memory 35

Clustering . 35

Using Typespecs . 36

Typespecs for Fundamental Types . 36

Typespecs for Classes . 37

The os_typespec Constructor . 37

Parameterized Typespecs . 38

Example: Linked List of Notes. 40

Pointer Validity . 42

Pointers to Persistent Memory . 42

Cross-Database Pointers. 42

Cross-Transaction Pointers . 43

Pointers to Transient Memory . 43

Pointer Validity Summary . 44

Basic Clustering . 45

Transient Allocation . 45

Database Entry Points and Data Retrieval 47

When to Use Persistent Names. 47

Establishing Entry Points . 48

Creating Database Roots. 48

Setting the Value of a Root . 49

Clustering of Roots. 49

Retrieving Entry Points . 50

Type Safety for Database Roots . 51

Deleting Database Roots . 52

Application Schemas . 53

Including a Class in the Application Schema 53

Database Schemas . 55

Batch Database Schema Installation . 55

Incremental Database Schema Installation 55

Comparison Between Batch and Incremental Installation . . . 56

Timing of Installation . 57
Release 5.1 v

Contents
Schema Validation . 58

Specific Schema Verification Implementation 58

Timing of Validation . 59

Creating Segments . 60

Referring Across Databases and Transactions. 61

Cross-Database Pointers and Relative Pathnames 63

Default Relative Directory . 64

Specifying a Relative Directory . 64

Using Absolute Pathnames . 65

The oschangedbref Utility. 65

Ensuring Data Access During System Calls 66

Chapter 3 Transactions. 69

Transactions Overview . 70

Fault Tolerance . 70

Concurrency Control . 70

Transaction Commit and Abort. 71

Using Transactions . 72

Lexical and Dynamic Transactions . 72

Choosing Transaction Boundaries. 72

Multiversion Concurrency Control (MVCC) 73

Using Lexical Transactions . 74

Using Dynamic Transactions . 76

Locking . 77

Waiting for Locks . 77

Database- Compared to Segment-Level Locks 77

Read Locks and Write Locks . 77

Lock Timeouts . 78

Reducing Wait Time . 78

Lock Probes . 78

Explicit Lock Acquisition . 78

Organizing Transaction Code. 79

Hiding Intermediate Results . 79
vi ObjectStore C++ API User Guide

Contents
Preventing Other Processes’ Changes . 80

Rolling Back to Persistent State . 81

Aborting the Current Transaction . 81

Aborting the Top-Level Transaction . 81

Aborting a Specified Transaction . 81

Threads and Thread Locking . 84

Thread Safety . 84

When You Need Thread Locking. 84

Disabling and Enabling Thread Locking 85

Local and Global Transactions . 85

Costs and Benefits of Global Transactions 86

Using Global Transactions. 86

Nesting and Global Transactions. 87

Chapter 4 Notification. 89

Notification Overview . 90

Notification. 90

Range of Locations . 90

Subscription . 91

Notification Queuing. 91

Receiving Notifications . 92

Notification Retrieval Alternatives . 93

Thread-Based Notification Retrieval . 93

Polling-Based Notification Retrieval. 93

File-Descriptor-Based Notification Retrieval 94

General Notification Behavior . 95

Subscribing and Unsubscribing . 95

Transactions . 95

Security . 96

Performance Considerations . 96

Notification Usage. 97

Network Service. 98

Notification Errors . 98
Release 5.1 vii

Contents
ObjectStore Utilities for Managing Notification 98

Notifications Example . 99

Chapter 5 Collections . 101

Collections Overview . 102

Collection Class Library . 102

Collection Query and Manipulation Features 102

Requirements for Applications Using Collections 104

Include Files . 104

Initializing the Collection Facility . 104

Linking. 104

Using Persistent Collections . 105

Using Persistent Dictionaries . 105

Thread Locking . 105

Introductory Collections Example . 106

Choosing a Collection Type . 108

os_Set and os_set . 108

os_Bag and os_bag . 109

os_List and os_list. 109

os_Collection and os_collection . 109

os_Array and os_array . 109

os_Dictionary and os_rDictionary . 110

Using a Decision Tree to Select a Collection Type 110

Collection Characteristics and Behaviors 112

Collections Store Pointers to Objects . 112

Collections Can Be Transient or Persistent 112

Parameterized and Nonparameterized Collections 112

Class Hierarchy Diagram . 112

Collection Behaviors . 113

Expected Collection Size . 114

Performing pick() on an Empty Set. 114

Collection Representations . 114
viii ObjectStore C++ API User Guide

Contents
Templated and Nontemplated Collections 116

Using Collections with the Element Type Parameter. 116

Using Collections Without Parameterization 117

Creating Collections . 119

General Guidelines . 119

Creating Dictionaries . 121

Destroying Collections. 123

Inserting Collection Elements . 124

Inserting Dictionary Elements . 124

Duplicate Insertions . 124

Null Insertions . 125

Ordered Collections . 125

Duplicate Keys . 125

Changing a Collection’s Behavior . 125

Changing a Collection’s Representation Policy 125

Removing Collection Elements with remove(). 126

Ordered Collections . 126

Removing Dictionary Elements . 126

Testing Collection Membership with contains(). 128

Dictionaries. 128

Finding the Count of an Element with count(). 129

Dictionaries. 129

Finding the Size of a Collection with cardinality() 130

Checking for an Empty Collection with empty(). 130

Using Cursors for Navigation . 131

Cursors. 131

Accessing Collection Elements with a Cursor or Numerical
Index . 132

Traversing Collections with Default Cursors. 134

Creating Default Cursors . 134

os_Cursor::first() . 135

os_Cursor::next() . 135

os_Cursor::more() . 135
Release 5.1 ix

Contents
Rebinding Cursors to Another Collection. 136

Copying, Combining, and Comparing Collections. 137

Dual Purpose of the Operators . 137

Ordered Collections and Collections with Duplicates 138

Dictionaries . 139

Marking Persistent Dictionaries . 139

Marking Transient Dictionaries . 140

Dictionary Behavior. 140

Dictionary Representation . 141

Visiting the Elements with Specified Keys 141

Picking the Element with a Specified Key 142

Writing Destructors for Dictionaries . 144

Example: Using Dictionaries. 146

Chapter 6 Data Integrity . 153

Data Integrity Considerations . 154

Inverse Members . 154

Illegal Pointers . 154

Inverse Data Members . 155

Inverse Member End-User Interface . 156

Defining Relationships . 158

Relationship Macros . 158

Macro Arguments . 159

Relationship Examples. 160

Example: Single-Valued Relationships 160

Example: Many-Valued Relationships 163

Example: One-to-Many and Many-to-One Relationships . . . 164

Duplicates and Many-Valued Inverse Relationships 166

Use of Parameterized Types . 169

Deletion Propagation and Required Relationships 170

Indexable Inverse Members . 171

Detecting Illegal Pointers . 172

Controlling Illegal Pointer Checking . 173
x ObjectStore C++ API User Guide

Contents
Controlling the Consequences of Illegal
Pointer Detection . 175

Illegal Pointer Modes Are Process Local 177

Chapter 7 Database Access Control . 179

Access Control Methods . 180

Setting User Category Permissions . 180

Restricting Database Access Using Schema Keys. 180

Categories of Users. 181

Owner of a Directory, Database, or Segment. 181

Group of a Directory, Database, or Segment 181

Group of a User . 181

Permissions. 182

Directory Permissions . 182

Database Permissions . 182

Segment Permissions . 182

Permission Checks. 183

Directory-Level Access . 183

Database-Level Access . 183

Segment-Level Access . 183

Segment-Level Permissions API. 185

Establishing Access Permissions with os_segment_access . . . 185

os_segment_access::set_primary_group(). 186

os_segment_access::get_primary_group() 186

os_segment_access::set_default() . 186

os_segment_access::get_default() . 187

os_segment_access::os_segment_access() 187

os_segment_access::operator =(). 188

os_segment_access::~os_segment_access() 188

os_segment::set_access_control() . 188

os_segment::get_access_control() . 189

os_database::get_all_segments_and_permissions(). 189

Segment-Level Permissions and Locking 190
Release 5.1 xi

Contents
Permissions and Related Segments. 191

Schema Keys . 192

Database Schema Keys. 192

Application Schema Keys . 192

Key Mismatch . 193

Schema Key API . 194

Setting a Database Schema Key with
change_schema_key() . 194

Setting Application Schema Keys with
set_current_schema_key(). 195

Freezing a Database Key with freeze_schema_key() 195

Schema Key Environment Variables. 197

Chapter 8 Schema Evolution . 199

What Is Schema Evolution? . 200

Making Use of Schema Evolution . 201

Planning Your Schema Evolution. 201

Sequence of Planning Your Schema Evolution 202

Schema Evolution with ossevol . 204

ossevol Options . 204

Using osscheq to Verify Schema Changes 206

Using osverifydb to Verify Pointers and References 206

Designing a Schema Evolution Application 207

Example Using ossevol for Schema Evolution 207

Implementing Schema Evolution. 208

The Schema Evolving Application . 208

Validation Activities . 209

Testing. 209

Troubleshooting . 209

Deploying Schema Evolution . 210
xii ObjectStore C++ API User Guide

Contents
Chapter 9 Using Asian Language String Encodings. 211

The Class Library: os_str_conv . 211

Automatic Detection of a Source String Encoding. 212

How to Instantiate the Converter . 215

Guidelines for Extensions to os_str_conv 215

What Are the Different Modes and Their Meanings? 215

Variations Among Standard Character Mappings 216

Instructions on Overriding Particular Mappings 216

Example . 217

Byte Order . 218

Overhead. 218

Restrictions . 219

Performance Notes . 219

Chapter 10 Support for the XA Standard for Transaction
Processing . 221

Transactions in the DTP Model . 223

Registering ObjectStore as a Resource Manager 225

Using the Transaction Manager. 226

Two-Phase Commit and Recovery . 227

Restrictions . 227

Chapter 11 Component Schemas. 229

Component Schema and Application Schema. 230

Differences Between an Application Schema and a
Component Schema . 230

Uses for Component Schemas. 230

How to Use Component Schemas . 232

Building Component Schemas . 234

DLL Loading and Unloading. 235

DLL Load and Unload Reporting . 235

DLL Identifiers . 236
Release 5.1 xiii

Contents
Schema Generation Macros . 238

OS_REPORT_DLL_LOAD_AND_UNLOAD 238

OS_SCHEMA_DLL_ID . 238

OS_SCHEMA_INFO_NAME. 238

Creating a DLL Identifier Prefix. 238

Compiler Dope Damage . 240

Schema Evolution . 241

Exceptions . 241

Index. 243
xiv ObjectStore C++ API User Guide

Preface

Purpose The ObjectStore C++ API User Guide describes how to use the basic
C++ programming interface to ObjectStore to create database
applications, using the fundamental features of ObjectStore. This
book supports ObjectStore Release 5.1.

This publication’s companion volume, the ObjectStore Advanced
C++ API User Guide, provides descriptions of the more complex
features in ObjectStore.

Audience This book assumes the reader is experienced with C++.

Scope Information in this book assumes that ObjectStore is installed and
configured.

How This Book Is Organized

The book begins with a chapter on basic ObjectStore concepts.
Each chapter after that covers a broad area of database
functionality, including persistence, transactions, notifications,
query processing, integrity control, access control, and schema
evolution, among others.

In contrast to the ObjectStore C++ API Reference and ObjectStore
Collections C++ API Reference manuals, both of which are
organized alphabetically, the two ObjectStore user guides are
organized functionally. This manual, the ObjectStore C++ API
User Guide, describes fundamental functions and macros. The
ObjectStore Advanced C++ API User Guide contains advanced
features; it also organizes the ObjectStore API into groups of
related functions and macros.
Release 5.1 xv

Preface
Notation Conventions

This document uses the following conventions:

ObjectStore C++ Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
online in web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Convention Meaning

Bold Bold typeface indicates user input or
code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You
can specify only one of the enclosed
items. Vertical bars represent OR
separators. For example, you can specify
a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system
named inside the circle supports or does
not support the feature being discussed.

UNIX UNIX
xvi ObjectStore C++ API User Guide

Preface
Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a Web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the online support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.
Release 5.1 xvii

Preface
Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
xviii ObjectStore C++ API User Guide

Chapter 1
ObjectStore Concepts

This chapter introduces the basic concepts you need to
understand in order to use ObjectStore successfully. The
information is organized as conceptual overviews of the
following topics:

Persistent Storage 2

ObjectStore Processes 3

Rawfs Databases 5

ObjectStore Memory Mapping Architecture 6

Memory Mapping and Schema Information 9

Generating Schemas for ObjectStore Applications 10

Programming Interface 12
Release 5.1 1

Persistent Storage
Persistent Storage

Persistent data is data that survives beyond the lifetime of the
process that created it. ObjectStore stores persistent data in stable
storage in databases, typically disks. There are two kinds of
databases. A file database is a regular operating system file. A rawfs
database resides in an ObjectStore file system managed by an
ObjectStore Server. Rawfs databases are discussed further on
page 5.

Each database is made up of segments, which are variable-sized
regions of memory that can be used as the unit of transfer from
persistent storage to program, or transient, memory. Each
segment, in turn, is made up of pages. A specified number of
pages can be used instead of segments as the unit of transfer to
program memory.

Segments

Pages

Databases

Persistent Storage

File Systems
2 ObjectStore C++ API User Guide

Chapter 1: ObjectStore Concepts
ObjectStore Processes

ObjectStore ObjectStore applications require two auxiliary processes for
application execution — an ObjectStore Server and a Cache
Manager. A Server handles access to ObjectStore databases,
including storage and retrieval of persistent data. When
ObjectStore is installed, the system administrator typically
arranges for each Server to start when its host machine boots. A
single application can use several databases, including databases
on different file systems, handled by different Servers. Most users
never have to worry about starting and stopping Servers.

A Cache Manager is started automatically when an ObjectStore
application starts. The cache manager is a daemon that runs on the
machine running the client application. Its function is to respond
to Server requests as a stand-in for the client application, in order
to participate in the management of the application’s client cache.
The client cache is the local holding area for data mapped or
waiting to be mapped into virtual memory.

If additional ObjectStore applications are started on the same
machine, the same Cache Manager functions similarly for these
applications as well. Although the same machine can run several
ObjectStore applications at once, only a single Cache Manager is
ever running on a given machine. As with Servers, most users
never have to worry about starting or stopping Cache Managers.

ObjectStore/Single ObjectStore/Single applications have combined the Server and
Cache Manager functions into one process. The diagrams that
follow point out the distinctions between the ObjectStore and
ObjectStore/Single implementations. It is important to remember
that although the implementation differs, the functions
performed by the Server and Cache Manager are preserved in
ObjectStore/Single. For more information, see ObjectStore
Building C++ Interface Applications, Chapter 6, Working with
ObjectStore/Single.
Release 5.1 3

ObjectStore Processes
ObjectStore processes

Each site has one or more Servers to handle persistent data. Each
node running one or more ObjectStore applications has a Cache
Manager to handle application data.

ObjectStore/Single
process

The nonnetworked ObjectStore/Single application provides the
same functions, but the two processes have been combined into
one.

Server

Application

disk

node

node

nodenode

node

node

network

Cache ManagerCache ManagerCache Manager

Cache Manager

Application

Application

Application Application

node

disk Server

ObjectStore/Single

Stand-Alone, Single-Process
Server/Cache Manager
System

disk

Application
4 ObjectStore C++ API User Guide

Chapter 1: ObjectStore Concepts
Rawfs Databases

Using ObjectStore, you have the option of storing some or all of
your databases in ObjectStore file systems managed by
ObjectStore Servers instead of storing databases as regular files
managed by the operating system. Each ObjectStore file system,
known as a rawfs, is either a raw partition or an operating system
file. For information on setting up and managing a rawfs, see
ObjectStore Management, Chapter 1, Overview of Managing
ObjectStore, Managing the Rawfs.

Each rawfs provides a separate name space and directory
hierarchy. Rawfs directories form hierarchical structures just as
operating system directories do. But rawfs directory hierarchies
are independent of the operating system directory hierarchies.

Each ObjectStore Server can manage a hierarchy of rawfs
directories, and maintains permission modes, creation dates,
owners, and groups for each entry. There can be several
independent rawfs directory hierarchies at a given site, each
managed by a different Server, and the same application can use
databases in different hierarchies.

ObjectStore/Single Currently, ObjectStore/Single supports only file databases, not
rawfs databases.
Release 5.1 5

ObjectStore Memory Mapping Architecture
ObjectStore Memory Mapping Architecture

With ObjectStore, data is transferred between database memory
and program memory completely automatically in a manner
transparent to the user. ObjectStore detects any reference in a
running program to persistent data, and automatically transfers
the page containing the referenced data (possibly together with
adjacent pages) across the network to the application’s cache.
Then the page containing the referenced data is mapped into
virtual memory.

Sometimes the referenced data is already in the client cache
(because data in the same pages was already used, and the
required page was not swapped out of the cache), and all that is
required is the virtual memory mapping. Sometimes the data is
already mapped into virtual memory (because data on the same
page was already used in the current transaction) and then
nothing additional is required to access it. Once data has been
mapped into virtual memory, access to it is as fast as access to
regular, transient data.

The paragraphs that follow provide a summary of how the
transfer of data between persistent and transient memory is
handled.

ObjectStore achieves the combination of transparency and
efficiency with a unique memory mapping architecture. All data
is stored in an ObjectStore database in its native C++ format. All
pointers in a database take the form of regular virtual memory
pointers. The value of a pointer in a given segment is the
segment’s pseudoaddress for the object the pointer refers to.

Pseudoaddresses A pseudoaddress is the identifier a segment uses for an object
pointed to by that segment. Two pointers (pseudoaddresses) in
the same segment have the same value if and only if they refer to
the same object. But two pointers (pseudoaddresses) in different
segments might have the same value and yet refer to different
objects. And two pointers (pseudoaddresses) in different
segments might have different values and yet refer to the same
object. This is what makes relocation necessary.
6 ObjectStore C++ API User Guide

Chapter 1: ObjectStore Concepts
Relocation is the process of changing the pointers on a page of
data as it is mapped into the client cache or unmapped from the
client cache. Here is how relocation works.

Persistent relocation
map (PRM)

Each segment has an associated persistent table, the persistent
relocation map (PRM), that allows determination of an object’s on-
disk location (that is, database name, segment number, and
offset), given its pseudoaddress. The PRM does not actually have
an entry for each different pseudoaddress. Instead, each entry
covers a range of pseudoaddresses.

When a page of data is mapped into the cache, all
pseudoaddresses on the page must be converted into virtual
addresses within the process’s persistent address space region.
Within a transaction, a single unified mapping (across all
segments) that establishes the translation between database
location (again, database name, segment number, and offset) to
virtual address is built up. Also, for each segment, a transient
mapping that establishes the direct bidirectional translation
between pseudoaddresses and virtual addresses is built up. The
manner in which these mappings are built depends on whether
the segment is using

• Immediate address-space assignment

• Deferred address-space assignment

With immediate assignment, a segment’s whole PRM is
incorporated into the unified mapping, and the whole
pseudoaddress-to-virtual-address mapping for that segment is
built prior to the first time any page in that segment is mapped
into the cache.

With deferred assignment, the unified mapping and the
pseudoaddress-to-virtual-address mapping are augmented from
the segment’s PRM as necessary to translate each pseudoaddress
encountered during the relocation. In both cases, each pointer
(pseudoaddress) on the page being relocated is changed to the
virtual address determined by its on-disk location and the
transient mappings described above. Once inbound relocation is
complete, the page is mapped into virtual memory at the location
assigned it by the unified mapping.

Outbound relocation When a modified page is written to the database, outbound
relocation is performed on it, which causes its pointers to be
Release 5.1 7

ObjectStore Memory Mapping Architecture
changed back to their original pseudoaddresses. Any new
pointers to on-disk locations not yet assigned pseudoaddresses
cause the page’s PRM to be augmented with new entries.

Transient relocation
map (TRM)

In some cases, ObjectStore skips outbound relocation, because it
knows that the page’s pointers and the corresponding
pseudoaddresses are the same (this is determined by ObjectStore
during inbound relocation). In such a case, the PRM is augmented
with entries to accommodate all on-disk locations currently in the
in-use transient relocation map (TRM).

Advantages of this
architecture

Two of the major advantages of this architecture can be described
as follows:

• Persistence is specified on a per-instance basis, independent of
type. The same type can have both persistent and nonpersistent
instances, and the same function can operate on both persistent
and nonpersistent data. Moreover, instances of any built-in
C++ type (such as int) can be designated as persistent. This
means that your existing routines, developed for use with
transient data, can also be used in ObjectStore applications.

• Pointers are processed at memory speeds. Once an object has
been transferred and mapped into virtual memory, all pointers
to it are regular virtual memory pointers, and are processed at
regular hardware speeds, with none of the overhead associated
with soft pointer schemes, and no continual checking for
database references.
8 ObjectStore C++ API User Guide

Chapter 1: ObjectStore Concepts
Memory Mapping and Schema Information

For ObjectStore to realize the advantages inherent in this memory
mapping architecture, it needs to store schema information in each
database — that is, it needs to store information in each database
about the classes of objects stored there, and the layout of
instances of these classes. This allows ObjectStore to identify the
locations of pointer fields in each newly retrieved segment (so it
can perform relocation).

ObjectStore stores schema information as C++ objects. Classes
themselves are not run-time objects in C++ (they cannot, for
example, be values of variables or other expressions). So
ObjectStore must generate representations of classes in order to
manage database memory.

These representations are generated, before link time, for each
application that might store information in a database. So, at run
time, when the application stores an object in a database, a
representation of the object’s class is ready to be added to the
database’s schema along with the object itself; or, if instances of
that class are already in the database, the application’s class
representation is checked against that of the database to make
sure they agree.

An application’s schema information (generated by the
ObjectStore schema generator) is stored in two places: a source file
and an ObjectStore database. Because you must use the schema
generator when building an ObjectStore application, you are
making use of ObjectStore’s database management capabilities,
which are described in ObjectStore Management.
Release 5.1 9

Generating Schemas for ObjectStore Applications
Generating Schemas for ObjectStore Applications

Building an ObjectStore application has a step not associated with
regular, nondatabase C++ applications: the generation of schema
information. This process is performed by the ObjectStore schema
generator, and produces both an ObjectStore database, known as
the application schema database, and an object file, the application
schema source file.

Input to Schema Generation

The input to schema generation consists of schema source files,
possibly together with library schemas. Schema source files are files
you provide. In them, you list those classes whose instances are
created and stored in persistent memory by the application, or
whose instances serve as entry points into persistent memory (see
Database Entry Points and Data Retrieval on page 47). The
schema source file that you provide should include additional
information if you use either ObjectStore dictionaries (see
Dictionaries on page 139), or query functions (see Chapter 5,
Queries and Indexes, in the ObjectStore Advanced C++ API User
Guide).

By performing a transitive closure operation, the schema generator
determines all those classes reachable by navigation from the
classes in the schema source file, and adds information about
them to the application schema database.

Library schemas are ObjectStore databases that contain schema
information for libraries that store or retrieve persistent data.
ObjectStore provides library schemas for its libraries. You can also
use the schema generator to generate library schemas for other
libraries.

Schema Generator Output

The application schema source file is an output file that is created by
the ObjectStore schema generator, and must be compiled and
linked with your application. This file records the location of the
application schema database and the names of the application’s
virtual function dispatch tables. It also contains discriminant
functions for anonymous unions.
10 ObjectStore C++ API User Guide

Chapter 1: ObjectStore Concepts
For complete instructions on building ObjectStore applications
and libraries, see ObjectStore Building C++ Interface Applications. In
particular, there is a good summary of tasks in Chapter 1,
Overview of Building an Application. The process of schema
generation itself is discussed in detail in Chapter 3, Generating
Schemas, of that publication.
Release 5.1 11

Programming Interface
Programming Interface

The ObjectStore C++ interface is designed for the development of
C++ and C applications that require database services. Although
some of your interaction with ObjectStore takes place from the
shell (you issue commands, for example, to create rawfs
directories or generate schemas), most of it takes place from
within programs.

With ObjectStore and ObjectStore/Single, you can use a variety of
C++ compilers, together with the C++ library interface. This is a
library of classes whose member functions, data members, and
enumerators provide access to database functionality. Also
included are global functions, such as an overloading of operator
new() that allows dynamic allocation of persistent memory for any
type of object.

The class templates feature of C++ is included in the ANSI
Standard for C++. If you are using a compiler that supports
templates, you can use the parameterized versions of some classes
in the class library. Using parameterized classes enhances the type
safety of your applications.
12 ObjectStore C++ API User Guide

Chapter 2
Persistence

With ObjectStore, storing persistent data is a lot like storing
transient data with plain C++ or C — you allocate memory and
assign a value to that memory. The only difference is that if you
want to store persistent data, you allocate persistent memory. What
sort of memory you allocate (persistent or transient) is
independent of the type of value you want to store there, so any
type of value can be stored in either persistent or transient
memory.

The information is organized as follows:

Basic Behaviors 15

Requirements for ObjectStore Applications 18

Creating Databases 20

Destroying Databases with os_database::destroy() 23

Opening Databases with os_database::open() 25

Closing Databases with os_database::close() 27

Nested Database Opens 28

Determining Database Open Status 29

Finding a Specified Database 30

Rawfs Databases 31

Persistent new and delete 33

Using Typespecs 36

Example: Linked List of Notes 40

Pointer Validity 42

Basic Clustering 45
Release 5.1 13

Database Entry Points and Data Retrieval 47

Establishing Entry Points 48

Retrieving Entry Points 50

Type Safety for Database Roots 51

Deleting Database Roots 52

Application Schemas 53

Database Schemas 55

Schema Validation 58

Creating Segments 60

Referring Across Databases and Transactions 61

Cross-Database Pointers and Relative Pathnames 63

Ensuring Data Access During System Calls 66
14 ObjectStore C++ API User Guide

Chapter 2: Persistence
Basic Behaviors

The paragraphs that follow introduce key characteristics and
provide references to more detailed discussions about each.

Persistent new() and delete()

You can allocate and initialize persistent memory by using an
overloaded C++ new operator, supplied by the ObjectStore API.
There is also a version of the C++ delete operator that you can use
to delete persistent objects and free persistent memory. Creation
and deletion of persistent objects with new and delete are
described in Persistent new and delete on page 33.

Once you have allocated persistent memory, you can use pointers
to this memory in the same way you use any pointers to virtual
memory. Pointers to persistent memory, in fact, always take the
form of virtual memory pointers. See ObjectStore Memory
Mapping Architecture on page 6 for an understanding of how
memory mapping works.

Prerequisites to Persistent Access

Before you access persistent memory, you must set the stage by
performing a few other operations:

• A database must be created or opened.

• A transaction must be started.

• A database root must be retrieved or created.

All these operations are described briefly in this chapter. For more
detailed information on transactions, however, see Chapter 3,
Transactions, on page 69.

Databases

When you create a persistent object, you create it in a particular
database. You specify the database as an argument to persistent
new . Before any of this, however, you must create a database. In
subsequent processes, you must open the database each time you
read from or write to it. These topics are discussed in the
following sections:

• Creating Databases on page 20
Release 5.1 15

Basic Behaviors
• Opening Databases with os_database::open() on page 25

• Persistent new and delete on page 33

Clustering

In addition to specifying a new object’s database, you can specify
the segment (object cluster) within that database in which you
want the object stored. By clustering together objects that are
expected to be used together by applications, you can improve
application performance. Effective clustering reduces both the
number of disk and network transfers the applications require
and it increases concurrency among applications. Clustering is
one of the most important ways of optimizing database
performance. Segments and clustering are described in the
following sections:

• Basic Clustering on page 45

• Creating Segments on page 60

Additional information on segments and clustering can be found
in Chapter 1, Advanced Persistence, of the ObjectStore Advanced
C++ API User Guide.

Transactions

A program must, before it accesses persistent data, start a
transaction. While the transaction is in progress, the program’s
actions can include reads and writes to persistent objects. The
program can then either commit or abort the transaction at any
time.

When a transaction is committed, changes made to persistent data
during the transaction are made permanent in the database and
visible to other processes. These changes are made permanent and
visible only if and when the transaction commits. Changes to
persistent data are undone or rolled back if the transaction in which
they were made is aborted.

So transactions do two things:

• They mark off code sections whose effects can be undone.

• They mark off functional program areas that are isolated from
the changes performed by other processes. From the point of
view of other processes, these functional sections execute either
16 ObjectStore C++ API User Guide

Chapter 2: Persistence
all at once or not at all. That is, other processes do not see the
intermediate results.

This latter aspect of transactions is important in preventing
concurrency anomalies that can arise from the sharing of
persistent data. The former aspect is important in preventing data
corruption due to system or network failure.

Transactions are discussed in further detail in Chapter 3,
Transactions, on page 69. Additional information can be found in
Chapter 2, Advanced Transactions, of the ObjectStore Advanced
C++ API User Guide.

Roots and Entry-Point Objects

A database root provides a way to give an object a persistent
name, allowing the object to serve as an initial entry point into
persistent memory. When an object has a persistent name, any
process can look it up by that name to retrieve it. Once you have
retrieved one object, you can retrieve any object related to it by
using navigation (that is, following data member pointers), or by
a query (a query selects all elements of a given collection that
satisfy a specified condition — see Chapter 5, Queries and
Indexes, in the ObjectStore Advanced C++ API User Guide).

Each database typically has a relatively small number of entry
point objects (that is, named objects), each of which allows access
to a large network or collection of related objects. See

• Establishing Entry Points on page 48

• Retrieving Entry Points on page 50
Release 5.1 17

Requirements for ObjectStore Applications
Requirements for ObjectStore Applications

For a program to use any ObjectStore features, it must include the
file ostore/ostore.hh and link with the ObjectStore library. For
information about these requirements, see ObjectStore Header
Files in Chapter 2 of ObjectStore Building C++ Interface Applications.

Initializing ObjectStore

Any program using ObjectStore functionality (with certain
exceptions, listed below) must first call the static member function
objectstore::initialize() .

static void initialize() ;

A process can execute initialize() more than once; after the first
execution, calling this function has no effect.

The following functions are exceptions to this, and must be called
before objectstore::initialize() :

• objectstore::set_application_schema_pathname()

• objectstore::set_cache_size()

• objectstore::set_client_name()

See the entry for the class objectstore in the ObjectStore C++ API
Reference for more information on these functions.

Single-Threaded Applications

If your application does not use multiple threads, you must
disable thread locking by issuing the following two calls at the
beginning of the transaction:

objectstore::set_thread_locking(0) ;
os_collection::set_thread_locking(0) ;

For information on thread locking, see Threads and Thread
Locking on page 84.

Fault Handler Macros for Multithreaded Applications

On the HP–UX, SGI IRIX, and Digital UNIX platforms, signal
handlers are installed strictly on a per-thread basis and are not
inherited across pthread_create calls. On these platforms, then,
you must use the OS_ESTABLISH_FAULT_HANDLER and OS_
18 ObjectStore C++ API User Guide

Chapter 2: Persistence
END_FAULT_HANDLER macros at the beginning and end of any
thread that performs ObjectStore operations. Note that these
macros are only required for threads that use ObjectStore.

See the UNIX-specific information regarding fault handlers in
Establishing Fault Handlers in POSIX Thread Environments in
Chapter 4, of ObjectStore Building C++ Interface Applications.
Release 5.1 19

Creating Databases
Creating Databases

You create databases with members of the class os_database . This
is true for both file databases and ObjectStore rawfs databases.

Creating a Database with os_database::create()

You create a database by calling the static member function os_
database::create() . This function also opens a newly created
database. You can call this function from either inside or outside
a transaction, although, in general, it is best to create databases
outside a transaction.

static os_database *create(
const char *pathname,
os_int32 mode = 0664,
os_boolean if_exists_overwrite = 0,
os_database *schema_database = 0

) ;

Note that, since os_database::create() is static, it has no this
argument.

Database Pathnames

pathname is the name you want the new database to have. It is the
only required argument for os_database::create() .

When you create file databases, the pathname consists of an
operating system pathname. (This book uses UNIX-style database
pathnames with slashes (/) as separators, but your operating
system might use a different style of pathname.)

os_database *db1 = os_database::create("/ken/parts1") ;

ObjectStore takes into account local network mount points when
interpreting the pathname, so the pathname can refer to a
database on a foreign host. Remember that an ObjectStore Server
must be running on any host containing an ObjectStore database.

If you want to refer to a file database on a foreign UNIX host for
which there is no local mount point, you can use a Server host
prefix, the name of the foreign host followed by a colon (:), as in
oak:/foo/bar .

The requisite database pathname syntax differs for rawfs
databases. See Rawfs Databases on page 31.
20 ObjectStore C++ API User Guide

Chapter 2: Persistence
If you supply the pathname of a database that already exists, the
exception err_database_exists is signaled at run time (but see
Automatic Overwrite, below).

Database Modes

The mode argument specifies a protection mode (see the oschmod
utility in ObjectStore Management). The mode defaults to 0664. The
mode argument must begin with a zero (0) to indicate that it is an
octal number. For example:

os_database *db1 = os_database::create("/ken/parts1", 0666) ;

Automatic Overwrite

It is possible to direct os_database::create() to overwrite any
existing database with the same name, instead of signaling an
exception. You do this by specifying a nonzero value (true) as the
value of the optional argument if_exists_overwrite .

os_database *db1 = os_database::create("/ken/parts1", 0666, 1);

This argument defaults to 0 (false). If no database of that name
already exists, the third argument has no effect.

Schema Databases

Every ObjectStore database has associated schema information; that
is, information about the classes of objects the database contains.
See Database Schemas on page 55.

When you create a database, if the schema_database argument is
0, schema information is stored in the new database (which you
are creating). If schema_database is nonzero, the argument is
interpreted to be another, extant, database that will be used as the
schema database for the newly created database. ObjectStore puts
all the schema information for the new database in the specified
schema database; the new database itself will have no schema
information in it.

The specified schema database must be open at the time of the call
to create() ; if it is not, err_schema_database is signaled. If the
schema database is open for read only, ObjectStore attempts to
reopen it for read/write. If this fails because of protections on the
database, it remains open for read only. Consequently, the newly
created database cannot accept any updates that require schema
Release 5.1 21

Creating Databases
information, since no schema information could be written to the
schema database.

Note that the new database’s schema database can also contain
regular user data (that is, data other than schema information).
The schema database must store its own schema locally. If the
schema for the user data in schema_database is stored remotely,
err_schema_database is signaled.

See also os_database::get_schema_database() and os_
database::set_schema_database() in the ObjectStore C++ API
Reference.

Return Value

The static member function os_database::create() returns a
pointer to an object of type os_database . You use this pointer as
the this argument to other nonstatic member functions of the class
os_database , such as os_database::close() (the function you use to
close a database).

The database object is actually transient, unlike the database it
stands for. That is, it exists only for the duration of the current
process. If you copy it into persistent storage, it will be
meaningless when retrieved by another process. If you want to
record the identity of a database in persistent storage, you should
record the database’s pathname.

Creating Databases with os_database::open()

Typically, os_database::create() is used to create a database, but,
under some circumstances, the function os_database::open()
creates a database. One form of this function requires you to
specify the pathname of the database you want to open; you can
specify an optional argument to direct the function to create a
database if a database with the specified pathname does not exist.
See the description of this function in Opening Databases with os_
database::open() on page 25.
22 ObjectStore C++ API User Guide

Chapter 2: Persistence
Destroying Databases with
os_database::destroy()

You can destroy a database with the os_ database::destroy()
function.

void destroy() ;

This function takes no arguments (other than the this argument),
and has no return value.

os_database* db1;
. . .
db1–>destroy();

If the database is open at the time of the call, destroy() closes the
database before deleting it. Note that to help ensure program
portability, you should call the destroy function from outside any
transaction.

Warning: potential
effects on other
processes

When a process destroys a database, this can affect any other
process that has the database opened. Such a process might then
be unable to access some of the database’s data — even if it has
already successfully accessed the database earlier in the same
transaction.

Data already cached in the process’s client cache will continue to
be accessible, but attempts to access other data will cause
ObjectStore to signal err_database_not_found. Attempts to open the
database will also provoke err_database_not_found. Note that
performing os_database::lookup() on the destroyed database’s
pathname might succeed, since the instance of os_database
representing the destroyed database might still be in the process’s
local cache.

If you call this function to destroy a database from within a
transaction, be aware of the following:

• The effects of calling this function cannot be undone by
aborting the transaction.

• On some but not all platforms, calling destroy() from within a
transaction causes ObjectStore to signal the exception err_
database_lock_conflict if another process is accessing the
database.
Release 5.1 23

Destroying Databases with os_database::destroy()
• If you attempt to access data in a destroyed database in the
same transaction in which it was destroyed, err_database_not_
found is signaled.

• In most cases the database is actually destroyed (deleted from
the Server on which it resides) at the end of the transaction; in
some cases, however, it might be destroyed earlier. For
example, suppose that, before the transaction ends, you create
a new database with the same pathname as the database on
which you called destroy() . In this case, the old database is
removed before the new database is created.

If you attempt to operate on a destroyed instance of os_database ,
err_database_is_deleted is signaled.
24 ObjectStore C++ API User Guide

Chapter 2: Persistence
Opening Databases with os_database::open()

Before you can read or write data, you must open the database in
which the data resides. A database is automatically opened when
you create it with os_database::create() , as described in Creating
Databases on page 20.

Opening a Database with os_database::open()

If you want to open a previously created database, you use the
function os_database::open() .

static os_database *open(
const char *pathname,
os_boolean read_only = 0,
os_int32 create_mode = 0

) ;

static os_database *open(
const char *pathname,
os_boolean read_only,
os_int32 create_mode,
os_database *schema_database

) ;

void open(os_boolean read_only = 0) ;

The first two overloadings return a pointer to the opened database
(see Return Value on page 22).

Database Pathnames

If there is no database with the specified pathname, an err_
database_not_found exception is signaled. For information about
pathnames for file databases, see Database Pathnames on page 20.

Rawfs databases use a somewhat different pathname syntax; see
Rawfs Databases on page 31.

Opening Read-Only

The os_database::open() function has an optional argument, an
os_boolean (int or long , whichever is 32 bits on your platform) that
specifies whether the database is to be opened for read only. A
nonzero integer indicates read only, and 0 indicates that write
access is allowed. The default is

os_database *db1 = os_database::open("/ken/parts1", 1) ;
Release 5.1 25

Opening Databases with os_database::open()
If you attempt write access to a database that has been opened for
read only, an err_opened_read_only exception is signaled.

Automatic Creation

The optional create_mode argument to os_database::open() can
specify the mode of a new database to be created if a database
with the specified pathname does not exist. If this argument is not
0 and a database with the specified name does not exist, instead of
signaling an exception, a new database is created with the
specified mode (see Database Modes on page 21). This argument
defaults to 0, so if it is not supplied (or if 0 is supplied explicitly),
ObjectStore signals an err_database_not_found instead of creating a
new database.

os_database* db1 = os_database::open("/ken/parts1", 0, 0664);

Schema Database

If no database named pathname is found, and schema_database is
nonzero, schema_database is used as the schema database for the
newly created database. This means that ObjectStore installs in
the schema database all schema information for the data stored in
the new database; the new database itself will have no schema
information in it. See Schema Databases on page 21 for
information on how this is handled.

Multiversion Concurrency Control (MVCC)

If you want to use multiversion concurrency control (MVCC), which
allows you to perform nonblocking reads of a database, you can
do so with the following members of os_database :

void open_mvcc();

static os_database *open_mvcc(const char *pathname);

Multiversion Concurrency Control (MVCC) is described in
Chapter 2 of the ObjectStore Advanced C++ API User Guide.
26 ObjectStore C++ API User Guide

Chapter 2: Persistence
Closing Databases with os_database::close()

You close a database by calling os_database::close() .

void close() ;

This makes the database’s data inaccessible (assuming you have
not performed nested opens — see Nested Database Opens on
page 28). If the call to os_database::close() occurs inside a
transaction, the database is not actually closed until the end of the
outermost transaction. That is, the data remains accessible until
the outermost transaction terminates.

os_database* db1;
. . .
OS_BEGIN_TXN(tx1, 0, os_transaction::update)

. . .
db1–>close();
. . . /* data in db1 remains accessible */

OS_END_TXN(tx1)

/* end of transaction, so db1 data is now inaccessible */
Release 5.1 27

Nested Database Opens
Nested Database Opens

What happens if you open the same database twice, without
closing it between the two opens? This is not an error. It simply
means that two calls to os_database::close() will be required to
close the database.

This is because, whenever os_database::open() is performed on a
database, its open count is incremented by one. In order to close a
database and make it inaccessible, its open count must reach zero.
Each call to os_database::close() decrements the open count by
one. If the call occurs inside a transaction, it does not actually take
effect until the end of the outermost transaction. That is, the open
count is not decremented until the outermost transaction
terminates.

Nested Opens and Read-Only Access

If you open a database, say, for read/write access (changing the
open count from 0 to 1), and then open it again for read-only
access (increasing the open count to 2), only read access is allowed
until the next call to os_database::close() (changing the open
count back to 1). In general, the last call to os_database::open()
that incremented the open count to n determines the type of access
(read/write or read-only) allowed as long as the open count is n.

#define TRUE 1

main(){
os_database* db1;
. . .
db1–>open(); /* open count is 1, read/write access */
. . .
my_func(db1);
. . .
db1–>close(); /* open count is 0, data inaccessible */

}

void my_func (os_database *the_db) {
the_db–>open(TRUE); /* open count is 2, read-only access */
. . .
the_db–>close(); /* open count is 1, read/write access */

}

28 ObjectStore C++ API User Guide

Chapter 2: Persistence
Determining Database Open Status

You can check the status of a database — whether and how it is
opened — with members of the class os_database .

os_boolean is_open() const;

os_boolean is_open_read_only() const;

os_boolean is_open_mvcc() const;

These functions return a nonzero integer for true and 0 for false.
So, for example, the loop shown below repeatedly calls close() on
the database db1 until its open count is zero:

os_database* db1;
. . .
while (db1–>is_open())

db1–>close();

Warning against
infinite loop

Do not include a loop like this within a transaction. This is because
the calls to os_database::close() do not take effect until the
transaction ends, as noted earlier, so is_open() will always return
true and your program will contain an infinite loop.
Release 5.1 29

Finding a Specified Database
Finding a Specified Database

You can find a database by its pathname using the static member
function os_database::lookup() , if you simply want to retrieve a
pointer to a database without opening it.

static os_database *lookup(const char *pathname, create_mode) ;

If the named database exists, a pointer to the database is returned,
but the database remains unopened. If no such database exists
and the create_mode argument is either 0 or absent, an err_
database_not_found exception is signaled. If create_mode is
nonzero, however, ObjectStore attempts to create the database,
just as os_database::open() does (see Opening Databases with os_
database::open() on page 25).

os_database::lookup() is described in the ObjectStore C++ API
Reference.

Pathname Lookup

You can find the pathname of a database, given a pointer to it, by
using the function os_database::get_pathname() .

char *get_pathname() const ;

This function returns a char* , the pathname of the database
pointed to by the this argument. The char* points to an array
allocated on the heap by this function, so it is your responsibility
to deallocate the array when it is no longer needed.
30 ObjectStore C++ API User Guide

Chapter 2: Persistence
Rawfs Databases

In addition to file databases, which are regular operating system
files contained in operating system directory hierarchies,
ObjectStore supports rawfs databases, which are contained in
ObjectStore directory hierarchies and managed by ObjectStore
Servers.

Rawfs Host Prefix

Pathname arguments in the database functions described in
preceding sections (os_database::create() , open() , and lookup())
can designate rawfs databases by including a rawfs host prefix of
the form host-name:: (for example, beech::/foo/bar).

In the prefix, host-name names the machine running the
ObjectStore Server managing the desired ObjectStore directory
hierarchy. The example below specifies that a newly created
database named /ken/design/parts1 is to be stored in the hierarchy
managed by the Server running on the host named beech .

os_database *db1=
os_database::create("beech::/ken/design/parts1");

Creating ObjectStore Directories

Note that the directory portion of the path, /ken/design in the
example above, must be the name of an ObjectStore directory.
Unlike databases, which must be created from within a program,
ObjectStore directories can be created either from within a
program (with the function objectstore::mkdir()) or with the
ObjectStore utility osmkdir. See ObjectStore Management for a
description of all these options, as well as any platform-specific
information that may apply.

Note that pathnames of ObjectStore directories and databases use
forward slashes no matter which operating system is being used,
and pathnames always begin with a slash (/).

Finding a Rawfs Pathname

The function os_database::get_pathname() returns a pathname
with a rawfs host prefix.
Release 5.1 31

Rawfs Databases
Aliases

You can use alternative names (aliases) when specifying hosts, but
when you use the utility osls to determine a database’s host
machine, the host is identified with its complete, or canonical,
name. ObjectStore Management describes the osls utility.
32 ObjectStore C++ API User Guide

Chapter 2: Persistence
Persistent new and delete

Most of the time, you create persistent objects with an overloading
of operator new() provided by ObjectStore. You use new just as you
would to allocate transient storage, except that you supply a
placement. Placements are standard in C++. They allow arguments
to be supplied to overloadings of new .

This section describes the basic use of persistent new . More
sophisticated uses of persistent new allow you to control data
clustering, and perform transient allocation. See Basic Clustering
on page 45.

Creating Nonarrays with Operator new()

Use the following overloadings of ::operator new() for creating
scalar objects in persistent memory:

extern void * operator new (
size_t,
os_database *where,
os_typespec *typespec

) ;

extern void * operator new (
size_t,
os_segment *where,
os_typespec *typespec

) ;

extern void * operator new (
size_t,
os_object_cluster *where,
os_typespec *typespec

) ;

where specifies where in persistent storage the new object is to be
stored; that is, you specify the database or, if you would like, the
particular segment (object cluster) in which the new object should
reside.

typespec specifies the type of the object you are creating. See
Using Typespecs on page 36.

The simplest form of new requires you to supply just two
arguments, an os_database* and an os_typespec* .

os_typespec *part_type = new os_typespec("part") ;
part *a_part = new(db1, part_type) part(111) ;
Release 5.1 33

Persistent new and delete
In this example, the new object will be stored in the database
pointed to by db1 . Here, as with ordinary new , a pointer to the
newly created object is returned. All memory allocated by
ObjectStore new is initialized with zeros.

Creating Arrays with Persistent new()

Use the following overloadings of ::operator new() for creating
arrays of persistent objects:

extern void * operator new (
size_t,
os_database *where,
os_typespec *typespec,
os_int32 how_many

) ;

extern void * operator new (
size_t,
os_segment *where,
os_typespec *typespec,
os_int32 how_many

) ;

extern void * operator new (
size_t ,
os_object_cluster *where,
os_typespec *typespec,
os_int32 how_many

) ;

how_many specifies the number of elements you want the array to
have. For example:

part *some_parts = new(db1, part_type, 10) part[10];

This call allocates and initializes an array of ten parts. Notice that
an os_typespec for the type part is passed, not part[] or part[10] . In
fact, there are no os_typespec s for array types.

On OS/2, overloadings of ::operator new[]() are provided instead
of the three overloadings of ::operator new() above. They have the
same arguments and return type.

Persistent Unions

When you define a union type that you intend to have persistent
instances, you must supply an associated discriminant function.
Discriminant functions are an advanced topic described in

OS/2
34 ObjectStore C++ API User Guide

Chapter 2: Persistence
ObjectStore Advanced C++ API User Guide in Chapter 1, Advanced
Persistence.

Pointers to and from Persistent Memory

The persistent new operator returns a pointer to persistent
memory. You use pointers to and from persistent memory in
much the same way as you use pointers to and from transient
memory. There are a few restrictions that apply, which are
discussed in Pointer Validity on page 42.

Clustering

If an object points to an auxiliary data structure, like an associated
character array, it is sometimes a good idea to allocate the object
and the auxiliary structure within the same segment, or region of
memory. See Basic Clustering on page 45.
Release 5.1 35

Using Typespecs
Using Typespecs

Typespecs, instances of the class os_typespec , are used as
arguments to persistent new to help maintain type safety when
you are manipulating database roots. A typespec represents a
particular type, such as char , part , or part* .

For more information about persistent new , see Persistent new
and delete on page 33, and for more information on type safety
see Type Safety for Database Roots on page 51.

Typespecs for Fundamental Types

ObjectStore provides some special functions for retrieving
typespecs for types. The first time such a function is called by a
particular process, it allocates the typespec and returns a pointer
to it. Subsequent calls to the function in the same process do not
result in further allocation; instead, a pointer to the same os_
typespec object is returned.

The functions are static members of the class os_typespec . Here is
a list of their declarations within the definition of os_typespec :

static os_typespec *get_char();
static os_typespec *get_short();
static os_typespec *get_int();
static os_typespec *get_long();
static os_typespec *get_float();
static os_typespec *get_double();
static os_typespec *get_long_double();
static os_typespec *get_pointer();
static os_typespec *get_signed_char();
static os_typespec *get_signed_short();
static os_typespec *get_signed_int();
static os_typespec *get_signed_long();
static os_typespec *get_unsigned_char();
static os_typespec *get_unsigned_short();
static os_typespec *get_unsigned_int();
static os_typespec *get_unsigned_long();

Example: retrieving
typespecs

Here is an example:

class employee {
public:

char *name;
employee(char* n) {

name = new(
os_database::of(this),
36 ObjectStore C++ API User Guide

Chapter 2: Persistence
os_typespec::get_char(),
strlen(n)+1
) char[strlen(n)+1];

strcpy(name, n);
}

} ;

Typespecs for Classes

If you can add a member to a class, the best way to retrieve a
typespec for that class is to use a get_os_typespec() member
function. To do this, add to the class definition the following
member function declaration:

static os_typespec *get_os_typespec() ;

The ObjectStore schema generator will automatically supply a
body for this function, which will return a pointer to a typespec
for the class.

If you cannot modify the class definition, use the os_typespec
constructor.

The os_typespec Constructor

It is advisable whenever possible to use typespecs for
fundamental types or classes. But if, for example, you could not
use typespecs for classes because you are unable to add a new
member function to the class definition, you can use the os_
typespec constructor. In such a case, be sure to follow the
guidelines below that illustrate how to limit the activity required
in the loop.

To create an os_typespec , pass a string (the name of the type you
want to create a typespec for) to the os_typespec constructor. This
works for built-in types (such as int and char), for classes, and for
pointer-to-class and pointer-to-built-in types. The typespec must
be allocated in transient memory. Here is an example:

os_typespec *part_type = new os_typespec("part");

When you create an os_typespec , the type-name argument cannot
include a space. So, if the type-name argument includes the
character * (asterisk) for pointer types, the character must not be
preceded by a space:

os_typespec *part_pointer_type = new os_typespec("part*");
Release 5.1 37

Using Typespecs
Once you have created an os_typespec for a particular type (the
type part in the example above), you can use it to create all the
program’s new instances of that type; there is no need to create a
separate os_typespec for each call to new . Although it is legal, it
would be inefficient to do so.

os_typespec models For example, use the following model:

os_typespec part_type ("part");
for (int i=1; i<100000; i++)

new(db1, &part_type) part (i);

Do not use the following inefficient model that includes
unnecessary repetition within the loop:

for (int i=1; i<100000; i++){
os_typespec part_type("part");
new(db1, &part_type) part (i);

}

Typespecs should only be allocated transiently; you should not
create a typespec with persistent new .

Parameterized Typespecs

get_os_typespec() member functions (see Typespecs for Classes
on page 37) are particularly useful if you are using class templates
and you want to create a parameterized typespec. For example,
suppose you need a parameterized class that defines a function to
persistently allocate an instance of that class and an instance of the
parameter. The class might be declared this way:

template <class T> class PT {
. . .
void foo(os_database *db) {

/* allocate PT<T> persistently */
new(db, "PT< ??? >") PT<T>() ;

/* allocate type T persistently */
new(db, " ??? ") T() ;

}
} ;

This approach does not work, however, since there is no way to
know, when coding, what to fill in for ??? . T cannot be used
because the C++ template facility will not instantiate it properly
— it is inside a string.
38 ObjectStore C++ API User Guide

Chapter 2: Persistence
The solution is to declare a get_os_typespec() member function
for the parameterized class, as well as for each class that will serve
as parameter.

class PT_parm {
public:

static os_typespec *get_os_typespec() ;
} ;

template <class T> class PT {

static os_typespec *get_os_typespec() ;

void foo(os_database *db) {

/* allocate new PT<T> persistently */
new(db, PT<T>::get_os_typespec()) PT<T>() ;

/* allocate type T persistently */
/*(assuming it is a suitable class) */
new(db, T::get_os_typespec()) T() ;

}

} ;
Release 5.1 39

Example: Linked List of Notes
Example: Linked List of Notes

Below is a simple example defining a class that records a note
entered by the user. Notes are maintained in reverse order from
that in which they were created; that is, the most recent note is at
the head of the list. At start-up, the database file is read and the
notes are created in memory. The existing notes are displayed and
the user is prompted to enter a new note. The database file is
rewritten starting with the new note.

Header file: note.hh #include <ostore/ostore.hh>

class note {
public:

/* Public Member functions */
note(const char*, note*, int);
~note();
void display(ostream& = cout);
static os_typespec* get_os_typespec();

/* Public Data members */
char* user_text;
note* next;
int priority;

};

In order to establish an entry point, an os_database_root called
root_head is assigned and points to the value returned from the
find_root member function defined on the class os_database . The
head variable is assigned to point to the value returned by the get_
value function applied to root_head .

Each note instance and its user text is allocated persistently, and a
transaction surrounds the code that touches persistent data. The
value of the database root is set to the head of the linked list.

user text /3

user text /2

user text /1

database file

note 3

note 1
note 2

head
user text /1

user text /2

user text /3
40 ObjectStore C++ API User Guide

Chapter 2: Persistence
It is important to recognize that embedding the linked list by
means of note*next; is not always a reasonable practice. The use of
a collection class is a better method of establishing the order of the
notes. This method is explained in Chapter 5, Collections, on
page 101.

Note program:
main.cc

#include "note.hh"
extern "C" void exit(int);
extern "C" int atoi(char*);

/*Head of linked list of notes */
note* head = 0;
const int note_text_size = 100;

main(int argc, char** argv) {

if(argc!=2) {
cout << "Usage: note <database>" << endl;
exit(1);

} /* end of if */

objectstore::initialize();
char buff[note_text_size];
char buff2[note_text_size];
int note_priority;
os_database *db = os_database::open(argv[1], 0, 0644);

OS_BEGIN_TXN(t1,0,os_transaction::update {

os_database_root *root_head = db->find_root("head");
if(!root_head) root_head = db->create_root("head");
head = (note *)root_head->get_value();

/* Display existing notes */
for(note* n=head; n; n=n->next)

n->display();

/* Prompt user for a new note */
cout << "Enter a new note: " << flush;
cin.getline(buff, sizeof(buff));

/* Prompt user for a note priority */
cout << "Enter a note priority: " << flush;
cin.getline(buff2, sizeof(buff2));
note_priority = atoi(buff2);

head = new(db, note::get_os_typespec())
note(buff, head, note_priority);

root_head->set_value(head);

} /* end transaction */
OS_END_TXN(t1)

db->close();
}

Release 5.1 41

Pointer Validity
Pointer Validity

Pointers to Persistent Memory

The persistent new operator returns a pointer to persistent
memory. Use this pointer just as you would use a pointer to
transient memory, except for the following:

• Do not use a pointer to persistent memory outside a
transaction. If you do, err_no_trans is signaled (except possibly
for multithreaded applications — see Threads and Thread
Locking on page 84).

• Do not pass a pointer to persistent memory to a non-
ObjectStore process, with either a system call or interprocess
communication.

The reason for the first restriction concerns concurrency control
(see Transactions on page 16) and fault tolerance (see Fault
Tolerance on page 70).

The reason for the second restriction concerns ObjectStore’s
memory mapping architecture. Pointers to persistent memory are
sometimes virtual memory addresses that are, as yet, unmapped.
When dereferenced, a hardware fault occurs and ObjectStore
handles the fault to retrieve the intended data. If you pass such a
pointer to a non-ObjectStore process, and the process dereferences
the pointer, ObjectStore will not handle the fault. (See also
ObjectStore Memory Mapping Architecture on page 6.)

Cross-Database Pointers

To help boost the performance of certain kinds of applications,
ObjectStore’s default mode for new databases and segments does
not permit cross-database, or external, pointers. In this mode, if a
pointer to persistent memory in one database is assigned to
persistent memory in a different database, that pointer is valid
only until the end of the outermost transaction in which the
assignment occurred.

If you want to use cross-database pointers, you can specify
particular databases or segments as allowing them. See Referring
Across Databases and Transactions on page 61.
42 ObjectStore C++ API User Guide

Chapter 2: Persistence
Cross-Transaction Pointers

ObjectStore supports a mode in which transient pointers to
persistent memory are invalidated at the end of each transaction.
In this mode, if you assign to transient memory a pointer to
persistent memory, the pointer is valid only until the end of the
outermost transaction in which the assignment occurred. This can
save on address space consumption and provide a performance
improvement for some applications that do not need to retain
such pointers across transaction boundaries.

In order to retain such pointers across transaction boundaries you
need to understand more advanced operations. See Retaining
Pointer Validity Across Transactions in Chapter 1 of ObjectStore
Advanced C++ API User Guide.

Pointers to Transient Memory

Do not use pointers from persistent to transient memory across
transaction boundaries. If a pointer to transient memory is
assigned to persistent memory, that pointer is valid only until the
end of the outermost transaction in which the assignment
occurred.

Use of access hooks If pointers from persistent to transient memory are useful for your
application (for example because some persistent objects point to
data structures that you want to take one form in persistent
memory and another form in transient memory), you might find
ObjectStore access hooks useful. See the discussion on os_
database::set_access_hooks() in the ObjectStore C++ API
Reference.
Release 5.1 43

Pointer Validity
Pointer Validity Summary

Persistent memory Transient memory

Always valid

Always valid, or valid for single transaction
(default), as specified by the user

Valid only for single transaction

db1

db2
44 ObjectStore C++ API User Guide

Chapter 2: Persistence
Basic Clustering

If an object points to an auxiliary data structure, like an associated
character array, it is sometimes a good idea to allocate the object
and the auxiliary structure in the same database segment. For
example, if you want the constructor for the class employee to
allocate a character array to hold the new employee’s name, you
might want to allocate the array in the same segment as the
employee.

Segments, as you may recall, are specified regions of memory
within a database. The class os_segment provides a useful
function, os_segment::of() , that allows you to determine the
segment in which a given object resides.

os_segment* segment_of() const;

Here is how to use os_segment::of() to cluster an employee with
the employee’s name:

extern os_typespec *char_type;

class employee {
public:

char *name;
. . .
employee(char* n) {

name = new(os_segment::of(this),
char_type, strlen(n)+1)
char[strlen(n)+1];

strcpy(name, n);
}

};

For information on how to create segments, see Creating
Segments on page 60.

Transient Allocation

Writing the constructor in this way has the added advantage that,
if the employee is transiently allocated, the character array holding
the name will be transiently allocated as well. This is because os_
segment::of() returns a pointer to the transient segment when its
argument is transient. Passing the transient segment to
ObjectStore’s new operator results in transient allocation. This
allows you to use ObjectStore new to allocate either persistent or
Release 5.1 45

Basic Clustering
transient memory, depending on the run-time values of its
arguments.

If you specify the transient segment, you can supply 0 for the os_
typespec* argument.
46 ObjectStore C++ API User Guide

Chapter 2: Persistence
Database Entry Points and Data Retrieval

Once you have allocated an object in persistent storage, and stored
some data there, how do you retrieve it in subsequent processes?
There are four possibilities:

• Look it up by its persistent name.

• Retrieve it based on its persistent name.

• Navigate to it just as you would navigate through transient
memory, following pointers.

• Retrieve it using a query (see Chapter 5, Queries and Indexes, in
the ObjectStore Advanced C++ API User Guide).

Database entry point
objects

You can look up a persistent object by name if that object is a
database entry point object, that is, if it has previously been given a
persistent name. Establishing Entry Points on page 48 shows you
how to name a persistent object, using os_database_root , and
Retrieving Entry Points on page 50 shows you how to look
persistent objects up, using os_database::find_root() .

When to Use Persistent Names

It is important to realize that you do not have to give most objects
persistent names. This is because you usually retrieve objects in
one of the other two ways — either by query or navigation. The
only reason you need to name objects is to provide yourself with
an entry point into persistent memory. Once you have retrieved an
entry point object, all objects reachable from it by navigation or
query will be automatically retrieved when needed.

For example, suppose that you need to store an assembly in
persistent memory. It is typically sufficient to name just the
topmost object in the assembly. Once you have retrieved the
topmost object using name lookup, you can simply navigate to the
other objects in the assembly (assuming each component has a
data member pointing to a collection of its children). Since most
persistent objects are part of a network of related objects like an
assembly, you usually do not have to name or explicitly retrieve
them. You only have to do that for one entry point object.
Release 5.1 47

Establishing Entry Points
Establishing Entry Points

An object can be used as an entry point if you associate a string
with it by using a root, an instance of the system-supplied class
os_database_root . Each root’s sole purpose is to associate an
object with a name. Once the association is made, you can retrieve
a pointer to the object by performing a lookup on the name using
a member function of the class os_database.

Creating Database Roots

Below are some examples. They show how to associate an object
with a name using a root, so the object can be used as an entry
point. They also show how to retrieve from the database a pointer
to the object by performing a lookup on the name.

os_database *db1;
part *a_part;
os_typespec *part_type = new os_typespec("part");
. . .
a_part = new(db1, part_type) part(111);
os_database_root *a_root = db1–>create_root("part_0");
a_root–>set_value(a_part);

In this example, a root is created with a member of the class os_
database , the function os_database::create_root() . The function
returns a pointer to an instance of the class os_database_root . The
this argument for the function must be the database in which the
entry point is stored. If you use the transient database, an err_
database_not_open exception is signaled.

This function requires you to specify the name to be associated
with the entry point, but the entry point itself is specified in a
separate call, using the function os_database_root::set_value() .

The return value of create_root() is a pointer to the new root. The
root is stored in the specified database, in a special segment for
database roots. create_root() copies the name you supply into this
persistent memory, so you can pass a transiently allocated string.

If you pass a name to create_root() that is already associated with
a root in the specified database, an err_root_exists exception is
signaled.

You can get the string associated with a root with the function os_
database_root::get_name() . This function returns a char* .
48 ObjectStore C++ API User Guide

Chapter 2: Persistence
Setting the Value of a Root

The set_value() function takes a pointer to the entry point object as
argument. It has no return value. The entry point object is first
created and stored in the database db1 through the use of
persistent new . (This special overloading of operator new() is
discussed in Persistent new and delete on page 33.)

The pointer you supply as argument to set_value() must point to
memory in the database containing the root. If it points to
transient memory or memory in another database, the exception
err_invalid_root_value is signaled.

See also Type Safety for Database Roots on page 51.

Clustering of Roots

You cannot control the clustering of database roots. ObjectStore
always stores the roots of each database together in a special
segment.

In addition, you can only create a root in persistent storage. If you
supply a transient database to create_root() , you will get an
exception (err_database_not_open).
Release 5.1 49

Retrieving Entry Points
Retrieving Entry Points

Once one process within an application has created the database
root and set its value (to point to the entry point), other processes
(or the same process) can retrieve the entry point this way:

os_database *db1;
part *a_part;
os_database_root *a_root;
. . .
a_root = db1->find_root("part_0");
if (a_root)

a_part = (part*) (a_root–>get_value());

The this argument of os_database::find_root() (db1 in this
example) is a pointer to the database containing the root you want
to look up. The other argument (part_0 in this example) is the
root’s name. If a root with that name exists in the specified
database, a pointer to it is returned. If there is no such root, the
function returns 0.

The function os_database_root::get_value() returns a void* , a
pointer to the entry point object associated with the specified root.
Since the returned value is typed as void* , a cast is usually
required when retrieving it. Here, the returned value is cast to
part* , since the entry point is a part .

Use of pvars You can, alternatively, use ObjectStore pvars to maintain valid
pointers to an entry point object across transactions. ObjectStore
pvars are described in ObjectStore Pvars in Chapter 1 of the
ObjectStore Advanced C++ API User Guide.
50 ObjectStore C++ API User Guide

Chapter 2: Persistence
Type Safety for Database Roots

You can gain some additional type safety in your use of database
roots by supplying an os_typespec* (see Using Typespecs on
page 36) as the last argument to os_database_root::set_value() and
os_database_root::get_value() . The typespec should designate the
type of the entry point object, the object pointed to by the root’s
value. The first function stores the typespec in the database, and
the second function signals an err_type_mismatch exception if the
specified typespec does not match the stored one.

os_database *db1;
part *a_part;
os_typespec *part_type = new os_typespec("part");
. . .
a_part = new(db1, part_type) part(111);
db1–>create_root("part_0")–>set_value(a_part, part_type);

In this example, notice that the os_typespec* argument to set_
value() and get_value() points to a typespec for part (not part*).

Note that get_value() checks only that the typespec supplied to it
matches the stored typespec, and does not check the type of the
entry point object itself.
Release 5.1 51

Deleting Database Roots
Deleting Database Roots

If you want to give an object a different name, or stop using it as
an entry point, you can delete its associated root:

os_database *db1;
. . .
delete db1->find_root("part_0");

When you delete a root, the os_database_root destructor deletes
the associated persistent string as well, but the associated entry
point object is not deleted.

Frequently the only way of retrieving an entry point object is
through its associated root. So be careful to retrieve such an object
before deleting its root. Then you can delete it or establish another
access path to it.
52 ObjectStore C++ API User Guide

Chapter 2: Persistence
Application Schemas

As described earlier (see Memory Mapping and Schema
Information on page 9), each application and each database has a
schema, which consists of the information about classes it uses in
a persistent context. You must indicate which classes form an
application’s schema by supplying one or more schema source files,
which are used as input to the schema generator (see ObjectStore
Building C++ Interface Applications).

Including a Class in the Application Schema

The OS_MARK_
SCHEMA_TYPE()
macro

To include a class in the application schema you mark it with a call
to the macro OS_MARK_SCHEMA_TYPE() inside a function body.
You should simply use a dummy function for this purpose (you
can name the function anything you want).

You must mark every class on which the application might
perform persistent new , as well as every class whose instances the
application might read from a database. You must also mark every
class that appears in a library interface query string or index path in
the application.

Each schema source file must have an include line for each class
that it marks. Each schema source file must also include
<ostore/manschem.hh> after including any ObjectStore header
files the application uses. Here is an example:

Example: macro use #include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>

#include "part.hh"
#include "epart.hh"
#include "mpart.hh"

void dummy() {
OS_MARK_SCHEMA_TYPE(epart);
OS_MARK_SCHEMA_TYPE(mpart);
OS_MARK_SCHEMA_TYPE(part);

}

See ObjectStore Building C++ Interface Applications for information
on class templates and schema source files.

If you supply the -make_reachable_classes_persistent yes flag to
the schema generator (see ObjectStore Management), you do not
Release 5.1 53

Application Schemas
actually need to mark every class used in a persistent context; it is
sufficient to mark those classes

• On which the application might perform persistent new to
create a direct instance of the class

• Whose instances are used by the application as database entry
points

• Appearing in a library interface query string or index path

The schema generator performs a transitive closure operation on the
marked classes to determine the full set of classes reachable from
the specified classes. This way, other classes used in a persistent
context, such as a class of object embedded in or pointed to by an
entry point object, are included in the application schema.

For applications that link with libraries that operate on persistent
data, the application schema includes the schemas for the
libraries. Library schemas are recorded in library schema
databases (see ObjectStore Building C++ Interface Applications), and
are themselves generated from schema source files.
54 ObjectStore C++ API User Guide

Chapter 2: Persistence
Database Schemas

As described earlier (see Memory Mapping and Schema
Information on page 9), each application has a schema, which
consists of the classes it uses in a persistent context. Each database
has a schema as well. This section describes when and how classes
are added to database schemas, and explains when an application
schema and a database schema are compatible.

A database’s schema is determined by the schemas of the
applications that access the database. An application augments
the schema of a database in one of two ways: through batch schema
installation or through incremental schema installation. Batch
installation is the default.

Batch Database Schema Installation

With batch schema installation, whenever an application first
accesses a database, each class in the application’s schema that
might be persistently allocated is added to the database’s schema
(if not already present in the database schema). Subsequent runs
of the application will not have to install schema in that database,
unless the application’s schema changes (as evidenced by a
change in date of the application schema database).

Incremental Database Schema Installation

If you want you can specify, for a particular database, that schema
installation should be incremental. With incremental schema
installation, a class is added to a database’s schema only when an
instance of that class is first allocated in the database.

Incremental schema
installation by
database

By default, each new database is in batch installation mode. You
can change this by using the OS_INC_SCHEMA_INSTALLATION
environment variable, described in ObjectStore Management, or by
using the os_database::set_incremental_schema_installation()
function. Performing this function on a database, with a nonzero
32-bit integer (true) as argument, causes the applications that
subsequently open the database to install schema in an
incremental fashion. The function is declared

void os_database::set_incremental_schema_installation(
os_boolean

) ;
Release 5.1 55

Database Schemas
os_boolean is a 32-bit integer type defined as int or long ,
depending on platform. Calling this function with 0 (false) as its
argument sets the specified database’s installation mode to batch.

Incremental schema
installation by
application

Calling the static member function objectstore::set_incremental_
schema_installation() with a nonzero integer (true) as argument
specifies that the current application run should perform
incremental schema installation on all databases it accesses,
regardless of the database’s mode.

This function also specifies the schema installation mode for
databases yet to be created by an application. If an application
calls this function with a nonzero integer (true) as argument,
databases subsequently created by the current execution of the
application will be in incremental mode, and the schema of the
creating application will be installed incrementally. This function
is declared

static void objectstore::set_incremental_schema_installation(
os_boolean

) ;

Comparison Between Batch and Incremental Installation

Advantages of
incremental
installation

Incremental installation has the following advantages over batch
installation:

• Creating an empty database is faster, since no user schema is
installed at the time of creation (a minimal internally used
schema is installed at create time).

• Database schemas will in general be smaller, since only the
classes actually required to describe objects in the database will
be installed.

• Since database schemas will not contain unnecessary classes,
spurious incompatibilities between application and database
schemas will be reduced.

Disadvantages of
incremental
installation

The disadvantages of incremental installation, as compared with
batch installation, are as follows:

• The first persistent allocation of an object of a given class will
be slower, since it involves installation of that class into the
database schema. (The speed of subsequent allocations of
objects of that class is unchanged with regard to batch schema
installation.)
56 ObjectStore C++ API User Guide

Chapter 2: Persistence
• If an application actually uses all the classes in its schema for
access to a given database, the total time to install the schema
will increase, because of the overhead associated with
incremental schema merging.

Timing of Installation

Batch schema installation occurs when a database is created,
assuming neither the database nor the application is in
incremental installation mode. For databases not created by the
application, it occurs the first time the application accesses the
database, within an update transaction, while it is opened for
read/write — again, assuming neither the database nor the
application is in incremental installation mode. Note that
modifying the application’s schema is considered to result in a
different application.
Release 5.1 57

Schema Validation
Schema Validation

When an application accesses a database, the application’s
schema and the database’s schema must be compatible.
ObjectStore checks for this compatibility during schema validation.
For each transaction in which an application accesses a database,
ObjectStore checks to make sure that the definitions of all classes
in both schemas agree. In other words, if a class named C appears
in both the application schema and the database schema,
ObjectStore verifies that the application schema’s definition of C
agrees with the database schema’s definition of C. Two class
definitions agree, in this sense, if and only if

• They have the same base classes in the same order.

• They have the same data members declared in the same order
and with the same value types.

• Either they both define no virtual functions or they both define
at least one virtual function.

• They have the same set of discriminant function names (see
Discriminant Functions, discussed in Chapter 1 of the
ObjectStore Advanced C++ API User Guide).

If an application and database schema are incompatible, the
exception err_schema_validation_error is signaled.

Specific Schema Verification Implementation

Schema verification is implemented to be strictly based on
assignment compatibility and size. That is, if C++ defined a
compatible assignment of a value of type T1 to a location of type
T2 and

sizeof(T1) == sizeof(T2)

then and only then would T1 and T2 verify validly. Consequently,

1 Any type T is compatible with any other type T.

2 char , unsigned char , and signed char are compatible.

3 short , unsigned short , and signed short are compatible.

4 int , unsigned int , and signed int are compatible.

5 long , unsigned long , and signed long are compatible.
58 ObjectStore C++ API User Guide

Chapter 2: Persistence
6 An array T1[n1] is only compatible with T2[n2].

T1 == T2

and

n1 == n2

(Strictly speaking, short , int , and long are the same as signed
short , signed int , and signed long respectively.)

With pointers, however, C++ assignment compatibility is relaxed
when the referent is an integral type. Pointer T1* is compatible
with pointer T2* if

T1 == T2

or T1 and T2 are covered by rules 2, 3, 4, or 5 above. That is, T1 and
T2 are integral types of the same size.

Timing of Validation

Schema validation occurs for a database the first time in each
transaction that the application accesses the database. Note that
implicit database access sometimes occurs after a transaction has
been initiated but before execution of the transaction’s first
statement. For this reason, if you want to handle err_schema_
validation_error, the handlers should generally enclose transactions
in which database access might occur.
Release 5.1 59

Creating Segments
Creating Segments

Every database when first created contains a default segment and,
if its schema is not stored remotely, a schema segment. (The schema
segment contains schema information used internally by
ObjectStore, as well as all the database’s roots.)

If you use the simple form of persistent new described in
Persistent new and delete on page 33 (specifying only a database,
not a segment), the new object is stored in the default segment.
This segment, like all segments, expands to accommodate
whatever new data is stored in it. If you want a database to have
a new segment, you create it using the member function os_
database::create_segment() .

os_segment *create_segment() ;

The function os_database::create_segment() takes as this
argument a pointer to the database in which the segment is to be
created. This function takes no other arguments. It returns a
pointer to an instance of the system-supplied class os_segment .

As with instances of os_database , the segment object is actually
transient, unlike the segment it stands for. That is, it exists only for
the duration of the current process. If you copy it into persistent
storage, it will be meaningless when retrieved by another process.

See Basic Clustering on page 45, as well as Creating Object
Clusters in Chapter 1 of the ObjectStore Advanced C++ API User
Guide.
60 ObjectStore C++ API User Guide

Chapter 2: Persistence
Referring Across Databases and Transactions

If you want to use cross-database pointers, you can specify
particular databases or segments as allowing such pointers. This
is done with the function os_database::allow_external_pointers()
or os_segment::allow_external_pointers() . These functions must
be called from within a transaction.

allow_external_
pointers()

void allow_external_pointers() ;

Here is an example of a call to the os_database::allow_external_
pointers() function.

#include <ostore/ostore.hh>
#include "part.hh"

void f() {

objectstore::initialize();
static os_database *db1 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

db1->allow_external_pointers();

/* now cross-database pointers from db1 are allowed */
. . .

OS_END_TXN(tx1)

db1–>close();
}

Once you perform allow_external_pointers() on a database, the
current process and subsequent processes can store cross-
database pointers there. When you access a cross-database
pointer, if the database it points to is not open, it is opened
automatically.

There is a small performance cost to allowing cross-database
pointers. Allowing external pointers augments the entries in the
tables that associate virtual memory addresses with on-disk object
locations. This slightly increases the time it takes for ObjectStore
to transfer data into memory.

This increase applies to all data stored in the database from which
external pointers are allowed. You can localize the performance
cost by allowing external pointers from a particular segment or
segments rather than from the entire database.
Release 5.1 61

Referring Across Databases and Transactions
Example #include <ostore/ostore.hh>
#include "part.hh"

void f() {

objectstore::initialize();

static os_database *db1 = os_database::open("/thx/parts");
static os_segment *seg1 = db1->get_default_segment();

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

seg1->allow_external_pointers();

/* now cross-database pointers from seg1 are allowed */
. . .

OS_END_TXN(tx1)

db1–>close();
}

In addition to localizing the performance cost, allowing cross-
database pointers on a per-segment basis gives you greater
control over integrity management, since what counts as an illegal
pointer can be different from segment to segment within the same
database.

Cross-database pointers are resolved according to the relative
pathname of the database containing the referenced data. See
Cross-Database Pointers and Relative Pathnames on page 63.

Cross-transaction
pointers

You can also allow cross-transaction pointers in the current
process by calling the static function objectstore::retain_
persistent_addresses(). See Retaining Pointer Validity Across
Transactions in Chapter 1 of the ObjectStore Advanced C++ API
User Guide.

ObjectStore
references

If you only need to refer across databases in a few cases, you can
avoid the slight performance cost of allowing cross-database
pointers from an entire database or segment by using ObjectStore
references instead. You can also use ObjectStore references to refer
across transaction boundaries on a case-by-case basis, instead of
using retain_persistent_addresses() . See Using ObjectStore
References in Chapter 1 of the ObjectStore Advanced C++ API User
Guide.
62 ObjectStore C++ API User Guide

Chapter 2: Persistence
Cross-Database Pointers and Relative Pathnames

Cross-database pointers are resolved according to the relative
pathname of the database containing the referenced data. For
example, suppose a database with pathname /thx/parts contains a
pointer to data in a database with pathname /thx/engineers . Since
these two databases have a common ancestor directory (/thx),
pointers to /thx/engineers are resolved according to the relative
pathname ../engineers . (Remember that pathnames of ObjectStore
directories and databases use slashes no matter which operating
system is being used, and pathnames always begin with a slash
(/).)

In implementation terms, this means that ObjectStore records
only a relative pathname when recording the on-disk location of
the referent object (in the tables that associate virtual memory
addresses with on-disk locations; see ObjectStore Memory
Mapping Architecture on page 6).

In practical terms, resolution by relative pathname can be
understood as follows. Suppose that you copy the two databases
/thx/parts and /thx/engineers , giving the copies the pathnames
/odi/parts and /odi/engineers . Because resolution is by relative
pathname, the copy of the outgoing pointer from the parts
database will refer to data in the copy of the engineers database,
/odi/engineers . If the cross-database pointer had been resolved
according to the absolute pathname of the referent database, the
copy of the pointer would have referred to data in the original
database, /thx/engineers .

The following diagrams show the difference between resolution
according to relative and absolute pathnames.
Release 5.1 63

Cross-Database Pointers and Relative Pathnames
Resolution of cross-
database pointers by
relative pathname

Resolution of cross-
database pointers by
absolute pathname

Default Relative Directory

The pathname used in the default resolution procedure is relative
to the lowest directory in the hierarchy that the two pathnames
have in common. For example, if a pointer is stored in /A/B/C/db1
that refers to data in /A/B/D/db2 , the lowest common directory is
A/B , so the relative pathname ../../D/db2 is used to record the
referent data’s on-disk location.

Specifying a Relative Directory

If you want, you can explicitly specify the relative directory by
using the function os_database::set_relative_directory() . To see

Original databases Copy databases

/thx/parts

/thx/engineers

/odi/parts

/odi/engineers

Original databases Copy databases

/thx/parts /odi/parts

/odi/engineers/thx/engineers
64 ObjectStore C++ API User Guide

Chapter 2: Persistence
how this works, consider the previous example: you want to store
a pointer in /A/B/C/db1 that refers to data in /A/B/D/db2 . Suppose
that you want the pointer resolved according to the relative
pathname ../B/D/db2 ; that is, you want the relative directory to be
/A (not /A/B as it would be in the default case).

To ensure this, before you store the pointer, you set the relative
directory like this:

Example: setting the
relative directory

#include <ostore/ostore.hh>
#include "part.hh"

void f() {

objectstore::initialize();

static os_database *db1 = os_database::open("/thx/parts");
static os_segment *seg1 = db1->get_default_segment();

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
seg1->allow_external_pointers();
db1->set_relative_directory("/A"));
. . .

OS_END_TXN(tx1)

db1–>close();
}

Then, for the rest of the process, cross-database pointers will be
stored using pathnames that are relative to the directory you
specified (/A in the example). When a process sets the relative
directory, the effect is local to that process. Other processes,
including concurrent ones, can set a different relative directory or
use the default behavior.

If you specify null (0) instead of a string as the argument to os_
segment::set_relative_directory() , the default procedure is used to
determine the relative directory.

Using Absolute Pathnames

If you want cross-database pointers stored with absolute
pathnames, you should specify the empty string as the argument
to os_segment::set_relative_directory() .

The oschangedbref Utility

To change the database a pointer refers to, you can use the
ObjectStore utility oschangedbref . See ObjectStore Management for
more information.
Release 5.1 65

Ensuring Data Access During System Calls
Ensuring Data Access During System Calls

ObjectStore’s Virtual Memory Mapping Architecture normally
ensures that as you access persistent locations, the necessary
pages of virtual memory are made available to be read or written.
It does this by intercepting memory access violation faults,
mapping the page or pages, and continuing the faulting
instruction.

However, ObjectStore’s fault handler is circumvented for cases in
which you pass a persistent pointer to one of the following:

• A system call such as read or ReadFile

• A library function such as fread that might end up using such a
system call

• A function that itself traps faulting memory references (such as
lstrlen on Windows)

Instead, the system call returns some sort of error indication
(usually EFAULT on UNIX, ERROR_INVALID_PARAMETER on
Windows, or a 0 return from functions such as lstrlen).

To ensure that data is accessible during a system call, create an
automatic os_with_mapped object, specifying the starting address
and size of the range you want to pass to a system call, and
whether you intend to update the object.

Within the scope of the os_with_mapped object, the referenced
range is available to the system call. For example:

{
 os_with_mapped mybuf(persistent_buffer, buffer_size, 1);
 read(fd, persistent_buffer, buffer_size);
}

The constructor for os_with_mapped ensures that the necessary
pages are available and mapped with appropriate access rights,
and that those pages are wired into the client cache until the
destructor is run. The constructor signals an exception if you run
out of room in the cache, if you attempt to wire a page more than
250 times, or if obtaining a page fails because of deadlock.

The destructor allows the pages to be moved out of the cache
again as necessary.
66 ObjectStore C++ API User Guide

Chapter 2: Persistence
Object Design recommends the use of os_with_mapped whenever
you pass a persistent pointer to system calls or library functions
that might call system calls or handle memory access violations.
There is little overhead to os_with_mapped , so calling it frequently
does not generally present a performance problem.

Mapping large ranges, having many simultaneous mappings, or
keeping mappings in effect for a long time is not recommended,
because this can interfere with cache replacement and lead to a
cache-is-full exception.

Restriction An os_with_mapped object cannot be used across transaction
boundaries, including nested transactions.
Release 5.1 67

Ensuring Data Access During System Calls
68 ObjectStore C++ API User Guide

Chapter 3
Transactions

The information about transactions is organized in the following
manner:

Transactions Overview 70

Using Transactions 72

Using Lexical Transactions 74

Using Dynamic Transactions 76

Locking 77

Organizing Transaction Code 79

Rolling Back to Persistent State 81

Threads and Thread Locking 84
Release 5.1 69

Transactions Overview
Transactions Overview

A transaction is a logical unit of work, a consistent and reliable
portion of the execution of a program. You mark the beginnings
and ends of transactions in your code using calls to the
ObjectStore API. Access to persistent data must always take place
within a transaction.

Transactions in a database system serve two general purposes:

• They support fault tolerance.

• They support concurrent database access.

Fault Tolerance

In support of fault tolerance, transactions have the following
properties:

• Either all a transaction’s changes to persistent memory are
made successfully, or none are made at all. If a failure occurs in
the middle of a transaction, none of its database updates are
made.

• A transaction is not considered to have completed successfully
until all its changes are recorded safely on stable storage. Once
a transaction commits, failures such as server crashes or
network failures cannot erase the transaction’s changes.

Fault tolerance is implemented using a transaction log. For further
details, see Logging and Propagation in Chapter 2 of the
ObjectStore Advanced C++ API User Guide.

Concurrency Control

Transactions support concurrent database access by preventing
one process’s updates from interfering with another process’s
reads or updates. ObjectStore’s concurrency control facilities
prevent this interference by ensuring that transactions have the
following properties:

• A transaction’s changes to persistent data are private and
invisible to other processes until the entire transaction
completes successfully.

• Other processes’ changes to persistent data are invisible to a
transaction.
70 ObjectStore C++ API User Guide

Chapter 3: Transactions
Concurrency control is implemented using strict two-phase
locking (see Locking on page 77), and also — in the case of abort-
only transactions and multiversion concurrency control (MVCC) —
using special techniques of delaying propagation and
intentionally aborting transactions. See Using Dynamic
Transactions on page 76, as well as the discussion on Multiversion
Concurrency Control (MVCC) in Chapter 2 of the ObjectStore
Advanced C++ API User Guide.

Transaction Commit and Abort

Transactions can terminate in two ways: successfully or
unsuccessfully. When they terminate successfully, they commit,
and their changes to persistent memory are made permanent and
visible. When they terminate unsuccessfully, they abort. There are
several kinds of transaction aborts:

• Explicit aborts, which result from calls to transaction member
functions. See Rolling Back to Persistent State on page 81.

• Aborts due to deadlock conditions. See Threads and Thread
Locking on page 84.

• Aborts due to nonlocal transfer of control out of the scope of a
lexical transaction. (See Using Transactions on page 72.) This can
happen when an exception is signaled within a lexical
transaction and handled outside it, or not handled at all.

• Aborts due to system failure.

If a transaction aborts, its changes to persistent memory are not
made permanent or visible to other processes. After an abort, your
program sees persistent memory as it was just before the aborted
transaction started. But only persistent memory changes are
rolled back. Transient memory is not restored to its pretransaction
state however, and any form of output that occurred before the
abort is not, of course, undone.
Release 5.1 71

Using Transactions
Using Transactions

With ObjectStore, every statement that reads from or writes to
persistently allocated memory must be within a transaction. If you
attempt to access persistent data outside a transaction, err_no_
trans is signaled.

This applies to statements that access data in a database, but not
to all statements that operate on a database. Statements that create,
open, or close a database can be either inside or outside a
transaction, although, generally, it is advisable not to open or
close a database within a transaction.

Lexical and Dynamic Transactions

There are two ways to mark off transactions with ObjectStore:

• Lexical transactions require that the transaction be contained in
a lexical context. You mark off lexical transactions with the
ObjectStore transaction macros. See Using Lexical Transactions
on page 74.

• Dynamic transactions provide dynamically defined boundaries.
You mark off dynamic transactions with members of the class
os_transaction . See Using Dynamic Transactions on page 76.

Some applications require transactions with dynamically defined
boundaries. A typical scenario for using dynamic transactions is
in loops that commit periodically. For these programs, use
dynamic transactions.

Choosing Transaction Boundaries

When you mark off transactions in your code you must balance
the following two considerations:

• If a transaction includes too much, it can negatively affect the
performance of other concurrent applications.

• If a transaction includes too little, other concurrent applications
can interfere with the application containing the transaction,
causing the application to produce incorrect results.
Additionally, a greater number of transactions can increase
overhead.
72 ObjectStore C++ API User Guide

Chapter 3: Transactions
To help you determine how to demarcate your transaction
boundaries, look at Locking on page 77 as well as Organizing
Transaction Code on page 79.

Multiversion Concurrency Control (MVCC)

When you use multiversion concurrency control (MVCC), you can
perform nonblocking reads of a database, allowing another
ObjectStore application to update the database concurrently, with
no waiting by either the reader or the writer. If your application
contains a transaction that uses a database in a read-only fashion,
you might be able to use multiversion concurrency control. See
Multiversion Concurrency Control (MVCC) in Chapter 2 of the
ObjectStore Advanced C++ API User Guide for more information.
Release 5.1 73

Using Lexical Transactions
Using Lexical Transactions

You begin and commit lexical transactions with the following
macros:

OS_BEGIN_TXN(identifier,exception**,transaction-type)

and

OS_END_TXN(identifier)

The macro arguments are used (among other things) to
concatenate unique names. The details of macro preprocessing
differ from compiler to compiler, and in some cases you must
enter these macro arguments without white space to ensure that the
argument concatenation will work correctly.

These and other ObjectStore macros are described in Chapter 4,
System-Supplied Macros, in the ObjectStore C++ API Reference.

identifier is a transaction tag. The only requirement on the tag is
that different transactions in the same function must use different
tags. (The tags are used to construct statement labels, and so have
the same scope as labels in C++.)

exception** specifies a location in which ObjectStore will store an
exception* if the transaction is aborted because of the raising of an
exception. Raising an exception will cause a lexical transaction to
abort if the exception is handled outside the transaction’s
dynamic scope, or if there is no handler for the exception. The
stored exception* indicates the exception that caused the abort.
ObjectStore stores 0 in this location at the beginning of each
transaction.

Transaction type
enumerators

transaction-type is one of the following enumerators, defined in the
scope of os_transaction :

• os_transaction::update specifies a transaction in which updates
to persistent memory are allowed.

• os_transaction::read_only specifies a transaction in which any
attempt to update persistent memory signals the exception err_
write_permission_denied.

• os_transaction::abort_only specifies a transaction in which
writes to persistent memory are allowed, but the transaction
cannot be committed.
74 ObjectStore C++ API User Guide

Chapter 3: Transactions
If a lexical transaction is aborted due to deadlock, it is
automatically retried. See Threads and Thread Locking on
page 84.

Example: a lexical
transaction

#include <iostream.h>
#include <ostore/ostore.hh>

main(int, char **argv) {

os_database *db1 = os_database::open(argv[1]) ;

OS_BEGIN_TXN(my_tx_1,0,os_transaction::update)

int countp* = (int*)(db1->find_root("count")->get_value()) ;
cout << "Hello, world\n" ;
cout << ++*countp << "\n" ;

OS_END_TXN(my_tx_1)

db1–>close() ;
}

Release 5.1 75

Using Dynamic Transactions
Using Dynamic Transactions

You start and commit dynamic transactions with the following
members of the class os_transaction :

static os_transaction *begin(
os_int32 transaction_type = os_transaction::update

) ;

static void commit() ;

static void commpwd

it(os_transaction*) ;

The statements executed in between the calls are all within the
same transaction.

Transaction type
enumerators

transaction_type is one of the following enumerators, defined in
the scope of os_transaction :

• os_transaction::update specifies a transaction in which updates
to persistent memory are allowed.

• os_transaction::read_only specifies a transaction in which any
attempt to update persistent memory signals the exception err_
write_permission_denied.

• os_transaction::abort_only specifies a transaction in which
writes to persistent memory are allowed, but the transaction
cannot be committed. An attempt to commit the transaction
signals the exception err_commit_abort_only.

begin() returns a pointer to a transaction, an instance of the class
os_transaction .

The first overloading of commit() commits the current transaction.
In the case of nesting, it commits the most nested transaction. The
second overloading of commit() commits the specified transaction.

Unlike lexical transactions, if a dynamic transaction is aborted due
to deadlock, it is not automatically retried. See Threads and
Thread Locking on page 84.
76 ObjectStore C++ API User Guide

Chapter 3: Transactions
Locking

As with most database systems, ObjectStore tries to interleave the
operations of different processes’ transactions to maximize
concurrent usage of resources. When scheduling the operations,
ObjectStore conforms to the strict two-phase locking discipline
(except in the case of multiversion concurrency control as described
in Multiversion Concurrency Control (MVCC) in Chapter 2 of the
ObjectStore Advanced C++ API User Guide). This discipline has
been proven correct in the sense that it guarantees serializability;
that is, it guarantees that the results of the schedule will be just the
same as the results of noninterleaved scheduling of the
transactions’ operations.

Waiting for Locks

Roughly speaking, when you access data in the database, you are
given exclusive access to that data for the duration of the
transaction in which the access takes place. That is, when you
access data, that data is locked. As long as it is locked, no other
process can access it. The data is not unlocked until the end of the
transaction.

Database- Compared to Segment-Level Locks

There are different kinds of locking provided by database and
segment level locks. As its name implies, a database lock prohibits
access to the entire database. A segment-level lock only blocks
access to the specific segment affected by the transaction.

Read Locks and Write Locks

Locking actually treats reading data differently from writing data.
When your process reads a persistent data item (such as a data
member or persistent variable), the page on which the item
resides is read locked. This prevents other processes from writing to
that page, but they are still allowed read access to it. When your
process writes a data item, the page on which it resides is write
locked unless the transaction is abort_only . If the transaction is
abort_only , the client obtains read locks for all pages read or
written but does not get any write locks. This prevents other
processes from reading or writing to that page. (See Transaction
Locking Examples in Chapter 2 of the ObjectStore Advanced C++
Release 5.1 77

Locking
API User Guide, as well as os_transaction::abort_only in the
ObjectStore C++ API Reference.)

Lock Timeouts

You can set a timeout for read- or write-lock attempts, to limit the
amount of time your application will wait to acquire a lock. When
the timeout is exceeded, an exception is signaled. Handling the
exception allows you to continue with alternative processing, and
make a later attempt to acquire the lock. See the set_readlock_
timeout() and set_writelock_timeout() members of the classes
objectstore , os_database , and os_segment in the ObjectStore C++
API Reference.

Reducing Wait Time

There are a number of ways to minimize the amount of time your
process spends waiting for locks. See Reducing Wait Time for
Locks in Chapter 2 of the ObjectStore Advanced C++ API User
Guide.

Lock Probes

You can determine whether a specified address is read locked,
write locked, or unlocked with objectstore::get_lock_status() . See
the ObjectStore C++ API Reference.

Explicit Lock Acquisition

Normally, ObjectStore performs locking automatically and
transparently to the user. But you can explicitly lock a specified
page range for read or write with objectstore::acquire_lock() . See
the ObjectStore C++ API Reference.
78 ObjectStore C++ API User Guide

Chapter 3: Transactions
Organizing Transaction Code

If you make transactions too short, you might be allowing other
processes to interfere in a harmful way with your process. That is,
if some chunk of your code is grouped into two or more short
transactions when it should really be all within a single longer
transaction, your process or others could produce incorrect
results. Here are some guidelines about how to organize your
code into transactions.

Guidelines for
organizing code
within a transaction

In general, you should put a given chunk of code inside a single
transaction when

• You do not want other processes to see intermediate results of
this code’s execution.

• You want the state of the database to be frozen, from the point
of view of the code being executed, for the duration of its
execution. That is, no changes to the database made by other
concurrent processes should be visible for the duration of the
code’s execution.

Another reason to put a chunk of code in a single transaction is to
allow you to undo the code’s changes at any point before the end
of the chunk. See Rolling Back to Persistent State on page 81.

Hiding Intermediate Results

One kind of interference between processes occurs when one
process uses some intermediate results of another. Just what
constitutes an intermediate result depends on the application.
Consider, for example, an imaginary MCAD application.

Suppose each of two processes is replacing two different children
of a given part. Suppose further that each process must make
some constraint check on the assembly after the replacement has
been performed. Perhaps the total cost of the assembly must be
checked against some allowable maximum cost.

In replacing a subpart, the first process removes a child part from
the set of the assembly’s children, and then inserts a different part
into this set. But between the remove and insert, the assembly is
in an intermediate state that should not be visible to the other
process. Suppose, for example, the second process does its part
Release 5.1 79

Organizing Transaction Code
replacement while the assembly is in this intermediate state, and
then performs a cost check. The cost will be incorrect (too low),
since a subpart is missing from the assembly. If the second
process’s new part raises the actual cost above the maximum, this
will go undetected.

To prevent exposure of such intermediate states, the process
should put the remove and the insert into the same transaction.
This way, as far as other processes are concerned, the replacement
happens all at once. In general, whatever happens within a single
transaction looks to other processes as if it happens
instantaneously, since the intermediate states are not visible to
them.

Preventing Other Processes’ Changes

Another kind of interference between processes arises when one
process relies on the state of persistent memory’s being unaffected
by other processes for the duration of some operation.

Consider, for example, a routine that involves a recursive descent
of a given assembly. Suppose that another process removes a
subpart from the assembly, but it does not matter whether the
descent is performed before or after the removal. Nevertheless,
for this process to produce correct results, the assembly’s
descendents must not change during the descent itself. For if a
subpart is removed after being visited, and then, before this
removed subpart’s children are visited, new children are added to
it, these new children might be incorrectly visited as part of the
original assembly’s descendents. So all the code that performs the
descent should be within the same transaction.
80 ObjectStore C++ API User Guide

Chapter 3: Transactions
Rolling Back to Persistent State

If a transaction aborts, its changes to persistent memory are not
made permanent or visible to other processes. After an abort, your
program sees persistent memory as it was just before the aborted
transaction started. You can abort a specified transaction using
members of the class os_transaction . You can also abort a lexical
transaction by signaling an exception within the transaction and
handling the exception outside the transaction.

Aborting the Current Transaction

You can always roll back to the persistent memory state at the
beginning of the current transaction (the most deeply nested
transaction within which control currently resides) by calling the
following member of the class os_transaction :

static void abort() ;

For dynamic transactions, control flows to the next statement that
follows the abort() . For lexical transactions, control flows to the
next statement after the end of the current transaction block.

Persistent data is rolled back to its state as of the beginning of the
transaction. In addition, if the aborted transaction is not nested
within another transaction, all locks are released, and other
processes can access the pages that the aborted transaction
accessed.

Aborting the Top-Level Transaction

When you call os_transaction::abort() with no arguments, only the
innermost transaction is aborted. But you can abort the outermost
transaction with a call to the static member function os_
transaction::abort_top_level() , with no arguments.

static void abort_top_level() ;

Aborting a Specified Transaction

You can also specify a transaction in between, by including an
argument in an os_transaction::abort() call.

static void abort(os_transaction*) ;
Release 5.1 81

Rolling Back to Persistent State
The argument is a pointer to a transaction, an instance of the
system-supplied class os_transaction . A pointer to the current
transaction (the innermost transaction in which control currently
resides) is returned by the static member function os_
transaction::get_current() .

static os_transaction *get_current() ;

A pointer to its parent (the innermost transaction within which it
is nested) is returned by the member function get_parent() .

os_transaction *get_parent() const ;

So, for example, to abort a transaction one level up from the
current transaction, you might use the following code:

os_transaction* child_tx = os_transaction::get_current() ;
if (child_tx) {

parent_tx = child_tx->get_parent() ;
if (parent_tx)

os_transaction::abort(parent_tx) ;
}

Example: abort() Consider an example involving replacement of an assembly’s
subparts. A constraint check is required after each replacement. If
the constraint check fails, you would like the replacement to be
undone. To do so, you can conditionally call os_
transaction::abort() , as in the code below:

main() {

os_database *db5 = os_database::open("/user1/db5");

OS_BEGIN_TXN(tx1,0,os_transaction::update)

os_typespec *part_type = ...;
part *a_wheel = ...;
part *a_rim = ...;

a_wheel–>children -= a_rim;
/* in this intermediate state, the wheel has no rim */
/* but this state is not visible to other processes */
a_wheel–>children |= new(db5, part_type) part(...);

if (!check_cost(a_wheel)) {
cout << "change aborted: cost check failed\n";
/* undo the part replacement* /
os_transaction::abort();

} /* end if */

OS_END_TXN(tx1)
db5–>close();

}

82 ObjectStore C++ API User Guide

Chapter 3: Transactions
Since the abort results in control’s leaving the scope of the current
transaction, the current state of all local transient memory is lost.
But transient state that is not local to this scope is unaffected by
the abort. You should explicitly roll back or reinitialize such state
before the abort, if desired.
Release 5.1 83

Threads and Thread Locking
Threads and Thread Locking

If your application uses multiple threads, you might need to take
advantage of the thread-locking facilities provided by
ObjectStore. These facilities ensure that ObjectStore does all
interlocking between threads necessary to prevent threads from
interfering with one another when within the ObjectStore run
time. You are responsible for coding any thread synchronization
required by your application while threads are not executing
within an ObjectStore library. See Chapter 3, Threads, in the
ObjectStore Advanced C++ API User Guide for more information
about thread locking in multithreaded applications.

The thread-locking facility works by either serializing the
transactions of different threads or serializing access by different
threads to the ObjectStore run time. No two threads are ever in the
ObjectStore run time at the same time.

Thread Safety

ObjectStore supports thread safety using a global mutex. This is a
data structure that is used to synchronize threads. One global
mutex coordinates all threads within an application. Thus, access
to the ObjectStore API is currently serialized with one global
mutex.

ObjectStore Release 5.1 provides a thread-safe version of the
ObjectStore API. It does this by protecting the body of each API
call with a mutex lock that only one thread can acquire at a time.

When You Need Thread Locking

If the synchronization coded in your application allows two
threads to be within the ObjectStore run time at the same time,
you need ObjectStore thread locking. A thread can enter the
ObjectStore run time under either of the following circumstances:

• The thread dereferences a pointer to persistent memory.

• The thread calls an ObjectStore API function or macro.

If only one thread at a time ever enters the ObjectStore run time,
you should disable ObjectStore thread locking. Do not use thread
locking if you do not have to, since there is some extra
performance overhead associated with it.
84 ObjectStore C++ API User Guide

Chapter 3: Transactions
Disabling and Enabling Thread Locking

ObjectStore thread locking is enabled by default. To enable
ObjectStore thread locking explicitly, pass a nonzero value to the
following member of the class objectstore :

static void set_thread_locking(os_boolean) ;

To disable ObjectStore thread locking, pass 0 to this function. To
determine if ObjectStore thread locking is enabled, use the
following member of objectstore :

static os_boolean get_thread_locking() ;

If nonzero is returned, ObjectStore thread locking is enabled; if 0
is returned, ObjectStore thread locking is disabled.

Local and Global Transactions

For applications that use multiple threads, there are two kinds of
transactions: local transactions and global transactions.
Transactions started with OS_BEGIN_TXN() are always local.
Transactions started with os_transaction::begin() are local by
default, but you can also request a global dynamic transaction. See
Using Global Transactions on page 86.

The two kinds of transactions have the following characteristics:

• Local transaction: a thread enters a local transaction by calling
os_transaction::begin() or OS_BEGIN_TXN(). When one thread
enters a local transaction, this has no effect on whether other
threads are within a transaction.

• Global transaction: a thread enters a global transaction when it
calls os_transaction::begin() or when another thread of the
same process calls os_transaction::begin() . When one thread
enters a global transaction by calling os_transaction::begin() , all
other threads automatically enter the same transaction.

Local transactions synchronize access to the ObjectStore run time
by serializing the transactions of the different threads (that is, by
making the transactions run one after another without
overlapping). After one thread starts a local transaction, if another
thread attempts to start a transaction or enter the ObjectStore run
time, it is blocked by the mutex lock until the local transaction
completes. So two threads cannot be in a local transaction at the
same time.
Release 5.1 85

Threads and Thread Locking
Global transactions allow for a somewhat higher degree of
concurrency. After one thread enters the ObjectStore run time, if
another thread attempts to enter the ObjectStore run time, it is
blocked until control in the first thread exits from the run time.
Although two threads cannot be in the ObjectStore run time at the
same time, there can be some interleaving of operations of
different threads within a transaction. See Chapter 3, Threads, in
the ObjectStore Advanced C++ API User Guide for more
information on using threads with ObjectStore.

Costs and Benefits of Global Transactions

Advantages of global
transactions

Local transactions usually provide better performance, but for
some applications, global transactions might be preferable. Here
are some of the benefits of using global transactions:

• Global transactions allow for a higher degree of concurrency.

• With local transactions, if one thread attempts to access
persistent memory from outside a transaction while another
thread is performing relocation, data corruption can result. No
exception is signaled. With global transactions (as in the
absence of threads), there is no such possibility. Any attempt to
access persistent memory from outside a transaction results in
err_no_trans.

Disadvantages of
global transactions

Some of the disadvantages of using global transactions are

• Global transactions have extra overhead, compared to local
transactions, in the form of extra memory management,
particularly if there is a lot of cache replacement.

• With global transactions, you must synchronize the threads so
that no thread attempts to access persistent data while another
thread is committing or aborting.

Using Global Transactions

You start a global transaction by passing the enumerator os_
transaction::global as the second argument to os_
transaction::begin() .

enum os_transaction_scope {
os_transaction::local = 1,os_transaction::global

};

static os_transaction::begin(
86 ObjectStore C++ API User Guide

Chapter 3: Transactions
os_int32 type = os_transaction::update,
os_int32 scope = os_transaction::local

);

If you use global transactions, be sure to synchronize the threads
so that no thread attempts to access persistent data while another
thread is committing or aborting. Place a barrier before the end of
the transaction so that all participating threads complete work on
persistent data before the end-of-transaction operation is allowed
to proceed. If you do not, data corruption and program failure can
result.

The exception err_deadlock might be signaled asynchronously in
any thread using persistent data; the application must be
prepared to handle it. Once err_deadlock is handled in the first
thread, any other threads that attempt to use the transaction will
also get err_deadlock; in particular, any threads that were waiting
for the global lock will wake up and immediately get err_deadlock.

Nesting and Global Transactions

You cannot nest a local transaction within a global transaction,
nor can you nest a global transaction within a local one. The
following table specifies how two transactions can interact.

Additional information about nested transactions is in Chapter 2,
Advanced Transactions, of the ObjectStore Advanced C++ API User
Guide. For further discussion of threads, see Chapter 3, Threads, of
that publication.

Thread A runs
global transaction

Thread A runs
local transaction

Thread A tries
global transaction

OK. Nested global
transaction.

err_trans_wrong_type
is signaled.

Thread A tries
local transaction

err_trans_wrong_type
is signaled.

OK. Nested local
transaction.

Thread B tries
global transaction

OK. Nested global
transaction.

OK, but block until
A completes.

Thread B tries
local transaction

err_trans_wrong_type
is signaled

OK, but block until
A completes.
Release 5.1 87

Threads and Thread Locking
88 ObjectStore C++ API User Guide

Chapter 4
Notification

The information about notification is organized in the following
manner:

Notification Overview 90

Notification Retrieval Alternatives 93

General Notification Behavior 95

Notifications Example 99
Release 5.1 89

Notification Overview
Notification Overview

The notification service allows an ObjectStore client to notify
other ObjectStore clients that an event has taken place. Typically,
a notification event corresponds to the modification of an object in
a database, but applications are free to assign their own meanings
to events.

A notification broadcasts to subscribers that an event (for example,
a change) has occurred at a database location (for example, the
location of a persistent object). ObjectStore applications can
subscribe to receive notifications that are posted on a database
location, or on a range of database locations. If a range is specified
in a subscription, notifications posted on any location in the range
are received by the subscribing application. Subscribers can poll
for notifications, or block (remain in a wait state) until a
notification is posted.

When an application posts a notification, it specifies the database
location, an integer code, and a character string. The code (known
as kind) and the string are made available to subscribers when
they receive the notification. The notification is sent to all
processes that are subscribed to the location at the time of the
posting.

Notification

A notification specifies a database location and two additional
user-defined items: a signed 32-bit integer and a null-terminated
C string. These items are passed to the receiving process. The
string is limited to 16,383 characters. If a notification sends a null
string (0), it is received as an empty string ("").

When a notification is posted, a message is sent to the ObjectStore
Server. The Server then matches the notification with
subscriptions and queues messages to be sent to the receiving
processes. The Server returns the number of messages queued.
Notifications then proceed asynchronously to the Cache Manager
of the receiving processes.

Range of Locations

A range of locations must be contiguous. You can specify a range
to be an entire database, a segment, a cluster, an object or a range
90 ObjectStore C++ API User Guide

Chapter 4: Notification
of objects, or a portion of an object. You can subscribe to a range
of locations (that is, every location in a segment, or an array of
objects), or to a single location. A notification, however, is always
associated with a single database location.

Subscription

A client can subscribe to many ranges of database locations
simultaneously. Subscriptions are stored in the ObjectStore Server
for as long as the corresponding database is open by the client.

You can unsubscribe to ranges just as you can subscribe to them.
The unsubscription is immediate. When you close a database, that
unsubscribes all notifications for the database.

Notification Queuing

The Cache Manager maintains a queue of notifications for each
client on a machine.

Nothing forces a client to read notifications. A client could choose
to subscribe to notifications but never receive any.

To avoid resource exhaustion in the Cache Manager, the size of
the notification queue for each client is fixed. If a notification is
received when the client’s queue is full, it is discarded. This is
called an overflow.

Overflows do not cause any exception to be signaled and do not
cause the application, the Cache Manager, or the Server to crash.

The Cache Manager keeps statistics on the notification queue that
include

• Queue size

• Number of pending notifications

• Number of overflows

These statistics are made available to clients through the use of an
API. The API, os_dbutil::cmgr_stat() , is described in Managing
Cache Managers in Chapter 10 of the ObjectStore Advanced C++
API User Guide.
Release 5.1 91

Notification Overview
Receiving Notifications

Notifications are received in response to a call to os_
notification::receive() . This function can also be used to wait for
notifications. Applications can poll for notifications without
retrieving them using os_notification::queue_status() .
92 ObjectStore C++ API User Guide

Chapter 4: Notification
Notification Retrieval Alternatives

There are two main methods of retrieving notifications. One relies
on a thread whose sole purpose is to receive notifications. The
other method requires the application to poll to determine if
notifications have arrived.

A third method available on UNIX systems is called file-
descriptor-based retrieval. This method works on both threads
and nonthread systems.

Thread-Based Notification Retrieval

Using this method, a dedicated thread is started specifically to
receive notifications. This thread calls os_notification::receive()
with arguments specifying wait forever. When it receives a
notification, it performs an application-specific action. For
example, it might post a Windows message, modify the
application’s transient data structures, or otherwise queue the
notification for processing by another thread. It then waits for the
next notification. The notification thread typically does very little
work. It might do queue management, for example, maintaining
a priority queue of notifications for another thread, or coalescing
similar notifications. However, processing should be minimal, so
the Cache Manager notification queue does not overflow.

In contrast to most other ObjectStore APIs, os_
notification::receive() and os_notification::queue_status() are not
locked out when other threads are in ObjectStore operations. If the
thread does not access persistent data or call other ObjectStore
APIs, it can run entirely asynchronously.

Polling-Based Notification Retrieval

Using this method, the application periodically polls to see if
notifications have arrived. It does so using os_notification::queue_
status() or os_notification::receive() . The application can do this
polling in a main loop, or under control of timers or similar
features provided by the environment. This mechanism is less
flexible and less efficient than thread-based notification retrieval,
but it is a reasonable option on platforms not offering threads.
There are situations where polling can be quite efficient. If you are
uncertain about the conditions affecting the level of efficiency,

UNIX
Release 5.1 93

Notification Retrieval Alternatives
contact Object Design’s Consulting Services group for assistance,
or consult a programming text such as UNIX Network
Programming by W. Richard Stevens. UNIX systems that do not
support threads can make use of File-Descriptor-Based
Notification Retrieval as described below.

The application should only check whether notifications have
arrived. The application should not wait indefinitely (forever) for
a notification, because it might be holding a lock, and the
application expected to send the notification might be waiting for
that lock. By waiting forever for a notification, you could create a
deadly embrace. The Server’s deadlock-detection mechanism
cannot detect this.

File-Descriptor-Based Notification Retrieval

On all UNIX platforms, ObjectStore can provide a file descriptor
on which notifications arrive. This feature is not currently
available on Windows or OS/2 platforms.

The clients poll or wait for notifications using the operating
system functions select() or poll() . This is particularly useful in
nonthreaded environments, where applications are designed to
wait for multiple events by doing a multiplexed wait for activity
on a set of file descriptors (fds). Many Motif implementations, for
example, fall into this category.

UNIX
94 ObjectStore C++ API User Guide

Chapter 4: Notification
General Notification Behavior

The following sections describe the main characteristics of
notification.

Subscribing and Unsubscribing

Subscribing is accomplished by means of static member functions
of class os_notification . See the ObjectStore C++ API Reference
description of the os_notification class.

You can unsubscribe to ranges just as you can subscribe to them.
The unsubscription is immediate.

Discarded
subscriptions

Closing a database for any reason unsubscribes all notifications
for the database; that is, all the subscriptions are discarded.
Therefore, it is the application’s responsibility to reinstitute the
subscriptions.

Asynchronous
processing

Notifications are processed asynchronously. After unsubscribing,
notifications that might already be queued based on previous
subscriptions might result in a client’s receiving notifications even
after unsubscribing. ObjectStore makes no guarantees whether
such notifications will be received or not.

Transactions

Transactions are entirely independent of immediate notifications,
subscriptions, unsubscriptions, and notification retrieval. Sending
of commit-time notifications is closely integrated with
transactions. Commit-time notifications can only be queued
inside a transaction, and they are only sent if

• No enclosing transaction aborts.

• The top-level enclosing transaction commits.

There are no restrictions on transaction types. The enclosing
transactions might be read-only or update, local or global.
Databases can be opened read-only, read/write, or for
multiversion concurrency control, or MVCC, which is described in
Chapter 2, Advanced Transactions, of ObjectStore Advanced C++
API User Guide.

Database changes made by an application are not visible to other
applications until the enclosing top-level transaction commits.
Release 5.1 95

General Notification Behavior
Therefore, notifications that indicate changes to persistent data
should generally be made at commit time.

In a two-phase commit transaction, either all notifications are
queued for delivery (if the transaction commits), or none are
(otherwise).

Security

In order to send and subscribe to notifications, you must open the
database in question. Consequently, if a client does not have
access to open a database, it cannot send or receive notifications
associated with it.

Within a database, notifications are not integrated with
ObjectStore security. A client can subscribe and notify based on
database locations in any segment, even if it does not have access
to the segment itself.

Performance Considerations

All notifications and subscriptions on a database go to the
ObjectStore Server. The Server routes notifications to interested
clients, and the Cache Manager queues the notifications for all its
clients. Because the Server acknowledges each notification,
sending a notification requires a round-trip message to the Server.

Polling for incoming messages only accesses shared memory and
is very fast. If a client does not retrieve its notifications, the Cache
Manager can run out of queue space.

Every call to os_notification::subscribe , os_
notification::unsubscribe , and os_notification::notify_immediate
costs the client one round-trip message to the ObjectStore Server.
Polling for notifications using os_notification::receive results in a
call to poll() or select() or other operating-system-specific call.
Polling for notifications using os_notification::queue_status is a
simple access to shared memory and is the fastest polling
mechanism.

If any commit-time notifications are queued during a transaction,
there is an additional RPC call to the ObjectStore Server during the
top-level commit operation.
96 ObjectStore C++ API User Guide

Chapter 4: Notification
Notifications are stored and forwarded in the Server, Cache
Manager, and sometimes even in the receiving application.
Therefore, delivery of notifications might not be particularly fast.
Performance varies according to system load and the amount of
notification processing. For example, delivery could range from
milliseconds to several seconds.

As a general rule, if you plan your application to use notification,
you should not expect high throughput. Do not expect a client
application to send or receive more than about 10 notifications per
second.

Event validation ObjectStore does not check events for validity. It is possible to
specify an address in a notification that is illegal in another
process. For example, you could allocate a new object and post an
immediate notification using its location. Other processes see this
address as invalid because the new object has not yet been
committed.

Restriction on use with
access hooks

Notification APIs cannot be called from within access hooks.
Information about access hooks can be found in the discussion on
os_database::set_access_hooks() in the ObjectStore C++ API
Reference.

Notification Usage

The guidelines for sending and receiving notifications are
summarized in the next paragraphs.

Sending notifications The main class is os_notification . You must include the ostore.hh
file, and link with -los on UNIX, and OSTORE.LIB on Windows
and OS/2 systems. The signature of the function that sends a
notification is

/* $OS_ROOTDIR/include/ostore/client/client.hh */

os_notification::notify_immediate
(os_reference&, int kind=0, const char* message=0);

To ensure that subscribers do not receive notifications until the
changes are visible in the database, use os_notification::notify_on_
commit .

Receiving
notifications

An application receives notification using the following functions:

os_notification::receive (os_notification*&, int timeout=-1);

os_reference os_notification::get_reference();
Release 5.1 97

General Notification Behavior
int os_notification::get_kind();

const char* os_notification::get_string();

Be sure to delete the returned heap-allocated os_notification object
when done.

Network Service

When an ObjectStore application uses notifications, it
automatically establishes a second network connection to the
Cache Manager daemon on the local host. The application uses
this connection to receive (and acknowledge the receipt of)
incoming notifications from the Cache Manager. (Outgoing
notifications are sent to the Server, not the Cache Manager.) See
Chapter 1, Overview of Managing ObjectStore, in ObjectStore
Management for specific information about defaults.

Notification Errors

The notification APIs do not do complete validation of the
arguments passed to them. Invalid arguments can therefore cause
segmentation violations or other undefined behavior. See the
ObjectStore C++ API Reference, Appendix A, Exception Facility, for
information on specific errors.

ObjectStore Utilities for Managing Notification

The ossvrstat utility displays statistics on the number of
notifications received and sent by the Server.

The oscmstat utility displays information on notifications queued
for clients. This is useful in debugging applications that use
notifications.

Detailed descriptions of these and other ObjectStore utilities can
be found in Chapter 4, Utilities, in ObjectStore Management.
98 ObjectStore C++ API User Guide

Chapter 4: Notification
Notifications Example

The following example illustrates the use of notifications.

#include <ostore/ostore.hh>
#include <iostream.h>
#include <assert.h>

int main(int argc, char** argv) {

const char* db_name = "notif.db";
const char* root_name = "Test Object";

/* can see client name with "ossvrstat -clients <host>" */
objectstore::set_client_name(argv[0]);
objectstore::initialize();

cout << "Opening database "<< db_name << endl;
os_database* db = os_database::open(db_name,0,0644);

os_reference ref1 = 0;
os_reference ref2 = 0;

os_transaction* txn =
os_transaction::begin(os_transaction::update);

os_database_root* root = db->find_root(root_name);
if (!root) {

cout << "Creating a couple of ints" << endl;
root = db->create_root(root_name);
root->set_value(new (db, os_typespec::get_int(), 2) int[2]);

} /* end if */

ref1 = root->get_value(); /* &int[0] */
ref2 = &((int*)ref1.resolve())[1]; /* &int[1] */
txn->commit();
delete txn;

os_notification* note;
int iterations = 0;

os_transaction::begin(os_transaction::read_only);

/* the Initiator process takes no args on command line */
if (argc == 1) {

cout << "Initiator Starting notifications..." << endl;

/* subscribe to ref2; */
os_notification::subscribe(ref2);

while (iterations < 10) {
iterations++;
cout << "sending notification, kind = "<< iterations << endl;
/* send immediate notification on ref1 with iterations */
/* as kind */
os_notification::notify_immediate(ref1,iterations);
Release 5.1 99

Notifications Example
/* now get response into note */
os_notification::receive(note);

/* make sure note response is on ref2 */
os_reference ref = note->get_reference();
assert(ref == ref2);

/* make sure correct iterations comes back */
int kind = note->get_kind();
assert(kind == iterations);

delete note; /* avoid memory leak */

sleep(2);
} /* end while */

/* Tell Responder to exit by sending
notification on ref1 with kind=0 */
cout << "sending notification, kind = 0" << endl;
os_notification::notify_immediate(ref1,0);

/* Initiator done */

} /* end if */
else {

/* the Responder process takes any args on command line */
cout << "Responder Waiting for Notifications" << endl;

/* subscribe to ref1 */
os_notification::subscribe(ref1);

while(1) {
/* receive notification for ref1 into note */
os_notification::receive(note);

/* see what kind it is */
int kind = note->get_kind();

cout << "received notification, kind = "<< kind << endl;
/* if kind is 0, exit */
if (kind == 0)
break; /* Responder done */

/* make sure notification is about ref1 */
os_reference ref = note->get_reference();
assert(ref == ref1);

delete note; /* avoid memory leak */

/* send notification on ref2 with kind */
os_notification::notify_immediate(ref2,kind);

} /* end while */

} /* end if */

return 0;
}

100 ObjectStore C++ API User Guide

Chapter 5
Collections

The information about collections is organized in the following
manner:

Collections Overview 102

Requirements for Applications Using Collections 104

Introductory Collections Example 106

Choosing a Collection Type 108

Collection Characteristics and Behaviors 112

Templated and Nontemplated Collections 116

Creating Collections 119

Destroying Collections 123

Inserting Collection Elements 124

Removing Collection Elements with remove() 126

Testing Collection Membership with contains() 128

Finding the Count of an Element with count() 129

Finding the Size of a Collection with cardinality() 130

Using Cursors for Navigation 131

Accessing Collection Elements with a Cursor or Numerical Index
132

Traversing Collections with Default Cursors 134

Copying, Combining, and Comparing Collections 137

Dictionaries 139

Writing Destructors for Dictionaries 144

Example: Using Dictionaries 146
Release 5.1 101

Collections Overview
Collections Overview

A collection is an object whose purpose is to group together other
objects. It provides a convenient means of storing and
manipulating groups of objects, supporting operations for
inserting, removing, and retrieving elements.

In order to implement collection functionality, the ObjectStore
collection facility provides

• A library of collection classes

• Facilities that allow traversal, manipulation, and retrieval of
the elements within collections

Collection Class Library

ObjectStore provides a library of collection classes. These classes
provide the data structures for representing such collections,
encapsulated by member functions that support various forms of
collection manipulation, such as element insertion and removal.
Retrieval of a given collection’s elements for examination or
processing one at a time is supported through the use of a cursor
class.

Because collections are pointers to objects — rather than the
objects themselves — an object can be contained in many different
collections. Furthermore, collections can be used in transient or
persistent memory, depending on the needs of your application.

Collection Query and Manipulation Features

Collections form the basis of the ObjectStore query facility, which
allows you to select those elements of a collection that satisfy a
specified condition. Queries with simple conditions are discussed
in this chapter. Queries with complex conditions are described in
Chapter 5, Queries and Indexes, of the ObjectStore Advanced C++
API User Guide.

The ObjectStore collection facility gives you a great deal of control
over the behavior and representation of the collections you create.
Other collection facilities allow you to iterate over the elements in
a collection, and to query collections for elements meeting simple
or sophisticated sorting criteria.
102 ObjectStore C++ API User Guide

Chapter 5: Collections
This allows you, for example, to create either ordered or
unordered collections, and collections that either do or do not
allow duplicates. You can also choose from among a group of
system-supplied collection representations, such as hash tables
and packed lists. You can even specify how a collection’s
representation is to change in response to changes in the
collection’s size.

Collections are commonly used to model many-valued attributes,
and they can also be used as class extents (which hold all instances
of a particular class). Collections of one type — dictionaries —
associate a key with each element or group of elements, and so can
be used to model binary associations or mappings. ObjectStore
dictionaries are described in detail in Dictionaries on page 139.
Release 5.1 103

Requirements for Applications Using Collections
Requirements for Applications Using Collections

Note the following requirements for using ObjectStore collections:

• All applications that use collections must include the
collections header files and initialize the collections facility.

• They must also generate schema using the collections/queries
library schemas and link in the collections/queries libraries.

• Applications using dictionaries must also mark each type of
dictionary in a schema source file.

Include Files

Programs that use ObjectStore collections must include the header
file <ostore/coll.hh> after including the standard ObjectStore
header file <ostore/ostore.hh> .

If your application uses ObjectStore dictionaries, your program
must include <ostore/coll/dict_pt.hh> and must also include
<ostore/coll/dict_pt.cc> in any source file that instantiates an os_
Dictionary , following the other header files. See ObjectStore
Header Files in Chapter 2 of ObjectStore Building C++ Interface
Applications.

Initializing the Collection Facility

Any program using collection functionality must first call the
static member function os_collection::initialize() . Call this function
after calling objectstore::initialize() . For example:

objectstore::initialize();
os_collection::initialize();

Linking

Programs that use ObjectStore collections must also link with the
appropriate ObjectStore collections libraries and library schema.
Collections library names are platform specific:

UNIX Platforms Windows and OS/2 Platforms

Collections -loscol liboscol.so

liboscol.ldb

ostore.lib

os_coll.ldb
104 ObjectStore C++ API User Guide

Chapter 5: Collections
Using Persistent Collections

If you use persistent collections (whether parameterized or not)
the actual representation that is used for storage in the database is
an os_collection internal representation. You do not have to mark
any collection type in your schema source file.

Using Persistent Dictionaries

If you use persistent dictionaries, you must call the macro OS_
MARK_DICTIONARY() for each key-type/element-type pair that
you use. Calls to this macro have the form

OS_MARK_DICTIONARY(key-type, element-type)

Specific information about marking dictionaries can be found in
Marking Persistent Dictionaries on page 139. The OS_MARK_
DICTIONARY() macro is described in the ObjectStore Collections
C++ API Reference.

Thread Locking

If your application does not use multiple threads, disable
collections thread locking by passing 0 to the following member
of the class os_collection :

static void set_thread_locking(os_boolean) ;

If your application uses multiple threads, see Chapter 3, Threads,
in the ObjectStore Advanced C++ API User Guide.

Indexes and
queries

-losqury libosqury.so

libqry.ldb

os_query.ldb

UNIX Platforms Windows and OS/2 Platforms
Release 5.1 105

Introductory Collections Example
Introductory Collections Example

Here is a simple example to illustrate how and when to use
collections. ObjectStore collections provide some alternatives to
linked lists, C++ arrays, and other aggregation data structures. In
cases where your application uses functionality such as queries
and ranges, collections are easier to use and more powerful.

Note, though, that because the functionality is so rich and varied,
the collections facilities add overhead to your code and database;
if your application does not require collections, a simple linked
list you can write yourself might be a more suitable choice.

Using the Example: Linked List of Notes on page 40 as a base, the
following example illustrates how to use collections.

Header file: note.hh #include <iostream.h>
#include <string.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>

/* A simple class which records a note entered by the user. */

class note {

public:

/* Public Member functions */
note(const char*, int);
~note();
void display(ostream& = cout);
static os_typespec* get_os_typespec();

/* Public Data members */
char* user_text;
int priority;

};

Main program:
main.cc

/* ++ Note Program - main file */

#include "note.hh"
extern "C" void exit(int);
extern "C" int atoi(char*);

/* Head of linked-list of notes */
os_list *notes = 0;
const int note_text_size = 100;

main(int argc, char** argv) {

if(argc!=2) {
cout << "Usage: note <database>" << endl;
106 ObjectStore C++ API User Guide

Chapter 5: Collections
exit(1);
} /* end if */

objectstore::initialize();
os_collection::initialize();
char buff[note_text_size];
char buff2[note_text_size];
int note_priority;

os_database *db = os_database::open(argv[1], 0, 0644);

OS_BEGIN_TXN(t1,0,os_transaction::update) {

os_database_root *root_head = db->find_root("notes");
if(!root_head)

root_head = db->create_root("notes");
notes = (os_list *)root_head->get_value();

if(!notes) {
notes = &os_list::create(db);
root_head->set_value(notes);

} /* end if */

os_cursor c(*notes);
/* Display existing notes */
for(note* n=(note *)c.first(); n; n=(note *)c.next())

n->display();

/* Prompt user for a new note */
cout << "Enter a new note: "<< flush;
cin.getline(buff, sizeof(buff));

/* Prompt user for a note priority */
cout << "Enter a note priority: "<< flush;
cin.getline(buff2, sizeof(buff2));
note_priority = atoi(buff2);

notes->insert(new(db, note::get_os_typespec())
note(buff, note_priority));

}
OS_END_TXN(t1)

db->close();
}

Release 5.1 107

Choosing a Collection Type
Choosing a Collection Type

This section contains a brief description of each type of
ObjectStore collection, followed by a simple decision tree you can
use to choose a collection type to suit your particular behavioral
requirements.

Note that all the collection types described below (with the
exception of os_Dictionary) have both a templated
(parameterized) and a nontemplated (nonparameterized) version.
For ease of differentiation, the templated versions use uppercase
letters (for example, os_Set) whereas the nontemplated versions
use lowercase (os_set). Nontemplated classes are always typed as
void* pointers.

For information on

• Differences between templated (parameterized) and
nontemplated (nonparameterized) collection classes, see
Templated and Nontemplated Collections on page 116.

• Characteristics of ObjectStore collection classes — such as their
representations, sizes, and default behaviors — see Collection
Characteristics and Behaviors on page 112.

• A hierarchical representation of the relationships between the
ObjectStore collection types, see the Class Hierarchy Diagram
on page 112.

• How to create collection classes, see Creating Collections on
page 119.

os_Set and os_set

Sets, as with familiar data structures such as linked lists and
arrays, have elements, objects that the set serves to group together.
But, in contrast to lists and arrays, the elements of a set are
unordered. You can use sets to group objects together when you
do not need to record any particular order for the objects.

Besides lacking order, something that distinguishes sets from
some other types of collections is that they do not allow multiple
occurrences of the same element. This means that inserting a value
that is already an element of a set either leaves the set unchanged
or causes the signaling of a run-time exception (depending on the
108 ObjectStore C++ API User Guide

Chapter 5: Collections
behavior you have specified for the set). In either case, sets
disallow duplicates.

os_Bag and os_bag

Bags are collections that not only keep track of what their elements
are, but also of the number of occurrences of each element. In
other words, bags allow duplicate elements. The class os_Bag
provides all the operations available for sets, as well as an
operation, count() , that returns the number of occurrences of a
given element in a given collection.

os_List and os_list

In addition to sets and bags, the ObjectStore collection facility
supports lists, collections that associate a numerical position with
each element based on insertion order. Lists can either allow or
disallow duplicates (by default they allow duplicates). In addition
to simple insert (insert into the beginning or end of the collection)
and simple remove (removal of the first occurrence of a specified
element) you can insert, remove, and retrieve elements based on a
specified numerical position, or based on a specified cursor
position (see Accessing Collection Elements with a Cursor or
Numerical Index on page 132).

os_Collection and os_collection

Of the collection types, os_Collection (and os_collection) offer the
most flexibility in making behavior changes during the lifetime of
an instance. Creating an instance of the base class os_Collection
gives you direct control over allowing duplicate elements and
maintaining element order, the behaviors that distinguish sets,
bags, and lists.

The os_Collection class permits you to change these and other
behaviors mentioned above for an os_Collection . This means that
an instance of os_Collection could, at one point in its lifetime, have
set-like behavior, and at another point have bag-like or list-like
behavior.

os_Array and os_array

ObjectStore arrays are like ObjectStore lists, except that they
always provide access to collection elements in constant time.
That is, for all allowable representations of an os_Array , the time
Release 5.1 109

Choosing a Collection Type
complexity of operations such as retrieval of the nth element is
order 1 in the array’s size. Arrays also always allow null elements,
and provide the ability to automatically establish a specified
number of new null elements.

os_Dictionary and os_rDictionary

Like bags, ObjectStore dictionaries are unordered collections that
allow duplicates. Unlike bags, however, dictionaries associate a
key with each element. The key can be a value of any C++
fundamental type, a user-defined type, or a pointer type. When
you insert an element into a dictionary, you specify the key along
with the element. You can retrieve an element with a given key, or
retrieve those elements whose keys fall within a given range.

Dictionaries are somewhat different from other ObjectStore
collection classes in their use of keys. See Dictionaries on page 139
for additional information on how dictionaries differ from other
kinds of ObjectStore collections.

Using a Decision Tree to Select a Collection Type

Here is a simple decision tree to help you choose a collection type
to suit particular behavioral requirements.
110 ObjectStore C++ API User Guide

Chapter 5: Collections
yes no

os_Collection

os_Array os_List os_Dictionary

Change between ordered and unordered, or between
unordered with duplicates and unordered, no duplicates?

Maintain insertion order?

yes no

os_Bag os_Set

Associate a key with
each element?

Automatic addition of a specified
number of null elements?

yes no yes no

Allow duplicates?

yes no
Release 5.1 111

Collection Characteristics and Behaviors
Collection Characteristics and Behaviors

Collections Store Pointers to Objects

ObjectStore collection classes store pointers to objects, not the
objects themselves. Thus, elements exist independently from
membership in a collection, and a single element can, in fact, be a
member of many collections.

Collections Can Be Transient or Persistent

Like all types in ObjectStore, collections can be used in transient
memory (program memory) or persistent memory. Transient
collections are used to represent transient, changeable groupings;
the current list of cars in the parking garage, for example.
Persistent collections contain more permanent associations, such
as the list of people on a board of directors or the founding states
of the European community.

Parameterized and Nonparameterized Collections

Every ObjectStore collection class (except os_Dictionary) is
provided in both a templated (parameterized) and a
nontemplated (nonparameterized) form. See Templated and
Nontemplated Collections on page 116.

Templated classes use uppercase letters in their class names (os_
Set), whereas nontemplated classes use lowercase letters in their
class names (os_set).

Class Hierarchy Diagram

The following diagram shows the hierarchical relationship among
all the ObjectStore collection classes. Note that E is actually a
pointer value: the element type parameter used by the templated
collection classes to specify the types of values allowable as
elements. See Using Collections with the Element Type Parameter
on page 116 for more information.
112 ObjectStore C++ API User Guide

Chapter 5: Collections
Collection Behaviors

The ObjectStore collection classes vary according to what
behaviors and characteristics are permitted, prohibited, or
permitted under some circumstances. The table below identifies
default settings and behavior; however, you can customize many
of these settings. You can, for example, change the default size of
a collection and, in some cases, you can specify whether or not
null elements can be inserted into the collection. See Chapter 4,
Advanced Collections, of the ObjectStore Advanced C++ API User
Guide for more information on customizing your ObjectStore
collections.

Note that os_Dictionary differs substantially from other
collections classes in its behaviors. Dictionary behaviors are

os_set

os_bag

os_list

os_array

os_Set<E>

os_Bag<E>

os_Collection<E>

os_collection

os_List<E>

os_Dictionary<K,E>

os_Array<E>

Collections
Class

Maintain
Element Order

Allow
Duplicates

Signal
Duplicates

Allow Nulls

os_Set Forbidden Forbidden Off by default Off by default

os_Bag Forbidden Required Forbidden Off by default

os_List Required On by default Off by default Off by default

os_Collection Off by default Off by default Off by default Off by default

os_Array Required On by default Off by default Required

os_Dictionary Forbidden Required Forbidden Required
Release 5.1 113

Collection Characteristics and Behaviors
related to the key of an element rather than to an element itself. See
Dictionaries on page 139 for information on how ObjectStore
dictionaries differ from other ObjectStore collection classes. See
also Creating Dictionaries on page 121.

Expected Collection Size

By default, all collection classes are presized with a representation
suitable for a size of less than 20. The expected_size argument for
the collection create() functions lets you supply a different default
size. For more information, see Specifying Expected Size in
Chapter 4 of the ObjectStore Advanced C++ API User Guide.

Performing pick() on an Empty Set

For all collection classes, performing pick() on an empty collection
or on an empty result of a query of a list or collection raises an err_
coll_empty error.

Collection Representations

The default representation policies for ObjectStore collections
differ depending on whether the collection is created with the
create() function or is embedded within another object.

Collections created
by create()

The representation types listed in the following table are
described in detail in Chapter 4, Advanced Collections, of the
ObjectStore Advanced C++ API User Guide.

Representations for
embedded
collections

The representation types listed in the following table are
described in detail in Chapter 4, Advanced Collections, of the
ObjectStore Advanced C++ API User Guide.

Collections Class Size 0 to 20 Greater Than 20

os_Set os_chained_list os_dyn_hash

os_Bag os_chained_list os_dyn_bag

os_List os_chained_list os_packed_list

os_Collection os_chained_list os_dyn_hash

os_Array os_chained_list os_packed_list
114 ObjectStore C++ API User Guide

Chapter 5: Collections
Note that expected_size determines the collection’s initial
representation. So, for example, if you set the expected_size for an
os_Set to 21, os_dyn_hash is used for an os_Set ’s collection’s
entire lifetime. (This can, however, be customized; see
Customizing Collection Representation in Chapter 4 of the
ObjectStore Advanced C++ API User Guide).

Representations used for os_Dictionary are discussed separately
in Dictionary Representation on page 141.

Collections
Class

Size 0 to 20 Greater Than 20
(Do Not Maintain
Cursors)

Greater Than 20
(Maintain
Cursors)

os_Set os_chained_list os_dyn_hash Not applicable

os_Bag os_chained_list os_dyn_bag Not applicable

os_List os_chained_list os_packed_list os_packed_list

os_Collection os_chained_list os_dyn_hash os_packed_list

os_Array os_chained_list os_packed_list os_packed_list
Release 5.1 115

Templated and Nontemplated Collections
Templated and Nontemplated Collections

ObjectStore collection classes are provided in both templated
(parameterized) and nontemplated (nonparameterized) versions.

Using Collections with the Element Type Parameter

The parameterized ObjectStore collection classes — os_Set , os_
Bag , os_List , os_Collection , os_Dictionary , and os_Array — are
actually class templates. Each class has a parameter, the element
type parameter, that specifies the type of value allowable as
elements. This type must be a pointer type. For example:

os_Set<part*> &a_part_set = os_Set<part*>::create(db1) ;

Defines a variable whose value is a reference to a set of pointers to
part objects. The name of the element type, part* , appears in angle
brackets when the collection type is mentioned. (Note that the
element type parameter is represented as <E> in function
signatures.)

Example: os_Set The example below uses an instance of os_Set , one of the classes
supplied by the collection facility. This class defines a part that
includes the part number and the responsible engineer.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>

class part {

public:

int part_number;
os_Set<part*> &children;
employee *responsible_engineer;

part (int n) :
children(os_Set<part*>::create(db1)){

part_number = n;
responsible_engineer = 0;

}

};
116 ObjectStore C++ API User Guide

Chapter 5: Collections
Using Collections Without Parameterization

You can choose to use the following nonparameterized collection
classes.

Notice that the names of the parameterized classes have an
uppercase letter following the os_ , while the nonparameterized
classes have a lowercase letter following the os_ . Notice, as well,
that there is no nonparameterized version of os_Dictionary .

Difference between
parameterized and
nonparameterized
interfaces

The difference between the parameterized and nonparameterized
interfaces is that with the parameterized interface you can inform
the compiler of the type of element a collection is to have, allowing
the compiler to provide an extra measure of type safety. With the
nonparameterized interface, elements are always typed as void*
pointers.

Most of the examples in this manual use the parameterized
interface, but if you are not using parameterization, just drop any
construct of the form

<element-type-name>

and use the nonparameterized collection type names (beginning
with os_ followed by a lowercase letter). The os_Set class
definition example in Using Collections with the Element Type
Parameter on page 116 would look like this:

Example: os_set() class employee ;
extern os_database *db1 ;

class part {

public:

int part_number ;
os_set &children ;
employee *responsible_engineer ;

part (int n) :
children(os_set::create(db1)){

part_number = n;

os_collection

os_listos_bag os_arrayos_set os_Dictionary
Release 5.1 117

Templated and Nontemplated Collections
responsible_engineer = 0 ;
}

};

The <part*> is left out after each occurrence of os_Set , and os_Set
is changed to os_set .

Nonparameterized
collections are typed
void*

When you use nonparameterized collections, elements are typed
void* . This means you must cast the result of retrieving a
collection element, for example when using pick() or traversing a
collection using a cursor.
118 ObjectStore C++ API User Guide

Chapter 5: Collections
Creating Collections

This section presents information on creating collections. The os_
Array , os_Bag , os_Collection , os_List , and os_Set classes are
discussed together in the first subsection. os_Dictionary is
discussed separately in the following subsection.

General Guidelines

You can create collections for each collections class with the
following functions:

The create method is a wrapper for constructors. For example:

static os_Collection<E> & os_Collection<E*>::create(
os_database *db,
os_unsigned_int32 behavior = 0,
os_int32 expected_size = 0

)

These wrappers return a reference to a new, empty collection.

Do not use new to create collections.

Generally, it is preferable to use the create() function for each type
of collection, as it results in better performance and better locality
of reference because of its underlying optimization for mutation.

Each collection class has a destroy() function that deletes a
specified collection. See Destroying Collections on page 123 for
more information. You can also call delete() to destroy a collection
created with ::create() .

Use a constructor only for stack-based collections or collections
embedded directly within another class. However, avoid
embedding collections directly. Instead, embed collections as
pointers or references, and call the create() function in a
constructor initialization list.

Collection Type Create Function Constructor Function

Array os_Array::create() os_Array::os_Array()

Bag os_Bag::create() os_Bag::os_Bag()

Collection os_Collection::create() os_Collection::os_Collection()

List os_List::create() os_List::os_List()

Set os_Set::create() os_Set::os_Set()
Release 5.1 119

Creating Collections
create() functions Each collection function has four overloadings, as described in the
ObjectStore Collections C++ API Reference. The first argument,
which specifies where to allocate the new collection, is the only
required argument. Depending on the overloading, create()
functions for collection types specify a database, segment, object
cluster, or proximity to another object.

All other arguments are optional, because they are declared with
default values.

Constructor functions The overloadings of constructor functions are listed in the
ObjectStore Collections C++ API Reference. For each constructor, the
first two overloadings create an empty set. The second
overloading lets you specify the expected collection size (see
Expected Collection Size on page 114). The last two overloadings
are copy constructors, creating a collection with the same
membership as another specified collection.

Customizing
collections

Many of the characteristics and behaviors of various types of
collections can be modified. For general information about each
class, see the following sections in the ObjectStore Collections C++
API Reference.

To find out how to

• Modify the size of the set, see Specifying Expected Size in
Chapter 4 of the ObjectStore Advanced C++ API User Guide.

• Modify the behavior of the set, see Customizing Collection
Behavior in Chapter 4 of the ObjectStore Advanced C++ API User
Guide.

• Modify a set’s representation, see Customizing Collection
Representation in Chapter 4 of the ObjectStore Advanced C++
API User Guide.

Collection Type Parameterized Class Nonparameterized Class

Array os_Array os_array

Bag os_Bag os_bag

Collection os_Collection os_collection

List os_List os_list

Set os_Set os_set
120 ObjectStore C++ API User Guide

Chapter 5: Collections
Creating Dictionaries

Dictionaries are unordered collections that allow duplicates.
Unlike other collections, dictionaries associate a key with each
element in the collection. The key can be a value of any C++
fundamental type, user-defined type, or pointer type. When you
insert an element into a dictionary, you specify the key along with
the element. You can retrieve an element with a given key, or
retrieve those elements whose keys fall within a given range.

You can create dictionaries with os_Dictionary::create() or an os_
Dictionary constructor. Use the constructor only for stack-based
arrays, or arrays embedded directly within another object. If you
want to use a reference-based dictionary, use the os_rDictionary
functions.

os_Dictionary::
create()

There are four overloadings of os_Dictionary::create() , as
described in the ObjectStore Collections C++ API Reference. The first
argument, which specifies where to allocate the new collection, is
the only argument required for os_Dictionary::create() .
Depending on the overloading, it specifies a database, segment, or
object cluster. All other arguments are optional, since they are
declared with default values.

The os_Dictionary::create() overloadings require not only the
element type parameter but the key type parameter as well. See Using
Collections with the Element Type Parameter on page 116 for
information about the element type parameter, and “Key type
parameter”, below, for information about the key type parameter.

os_Dictionary::
os_Dictionary()

The os_Dictionary::os_Dictionary() constructor is described in the
ObjectStore Collections C++ API Reference. Use the dictionary
constructor only to create stack-based dictionaries, or dictionaries
embedded within other objects. As an alternative to embedded
dictionaries, consider using a reference or pointer, which allow
you to use os_Dictionary::create .

In general, it is preferable to use os_Dictionary::create() , as it
results in higher performance and better locality of reference
because of its underlying optimization for mutation.

Key type parameter Dictionaries can have different types of keys as the key type
parameters.

Integer keys For integer keys, specify one of the following as key type:
Release 5.1 121

Creating Collections
• os_int32 (a signed 32-bit integer)

• os_unsigned_int32 (an unsigned 32-bit integer)

• os_int16 (a signed 16-bit integer)

• os_unsigned_int16 (an unsigned 16-bit integer)

Class keys For class keys, the class must have a destructor that zeroes any
pointers it contains, a no-arg constructor, and operator= .

void* keys Use the type void* for pointer keys other than char* keys.

char* keys For char[] keys, use the parameterized type os_char_array<S> ,
where the actual parameter is an integer literal indicating the size
of the array in bytes.

If a dictionary’s key type is char* , the dictionary makes its own
copies of the character array upon insert. If the dictionary does not
allow duplicate keys, you can significantly improve performance
by using the type os_char_star_nocopy as the key type. With this
key type the dictionary copies the pointer to the array and not the
array itself. You can freely pass char s to this type.

Note that you should not use os_char_star_nocopy with
dictionaries that allow duplicate keys.

char[] , char* , and os_char_star_nocopy all use strcmp for
comparison.
122 ObjectStore C++ API User Guide

Chapter 5: Collections
Destroying Collections

Each collection class has a static member for deleting a specified
collection.

static void os_Collection::destroy(os_Collection<E>&) ;

static void os_Set::destroy(os_Set<E>&) ;

static void os_Bag::destroy(os_Bag<E>&) ;

static void os_List::destroy(os_List<E>&) ;

static void os_Array::destroy(os_Array<E>&) ;

static void os_Dictionary::destroy(os_Dictionary<K, E>&) ;

Destroying a collection class does not destroy the elements in the
class; it deletes the specified collection itself and deallocates its
associated storage. You can either call destroy() or simply delete
the collection with the delete pointer.

All the collection class destroy() functions are described in
Chapter 2, Collection, Query, and Index Classes, of the ObjectStore
Collections C++ API Reference.
Release 5.1 123

Inserting Collection Elements
Inserting Collection Elements

You update collections by inserting and removing elements, or by
using the assignment operators (see Copying, Combining, and
Comparing Collections on page 137). The insert operations for os_
Collection and its subtypes are declared this way:

void insert(const E) ;

For more information
on behavioral
enumerators

Refer to Customizing Collection Behavior in Chapter 4 of the
ObjectStore Advanced C++ API User Guide for descriptions of the
behavior enumerators (such as signal_dup_keys , allow_duplicates ,
and signal_duplicates) that are mentioned in this section.

Inserting Dictionary Elements

For dictionaries, you specify an entry, that is, a key, along with the
element to be inserted. So os_Dictionary::insert() is declared this
way:

void insert(const K &key, const E element) ;

void insert(const K *key_ptr, const E element) ;

These two overloadings are provided for convenience, so you can
pass either the key or a pointer to the key.

Caution For dictionaries with signal_dup_keys behavior, if an attempt is
made to insert something with the same key as an element already
present, err_am_dup_key is signaled.

Duplicate Insertions

For collections without allow_duplicates and signal_duplicates
behavior, inserting something that is already an element of the
collection leaves the collection unchanged.

os_database *db1 ;
message *a_msg ;
os_Set<message*> &temp_set =

os_Set<message*>::create(db1) ;
. . .
temp_set.insert(a_msg) ;
temp_set.insert(a_msg) ; /* set is unchanged */

For collections with signal_duplicates behavior, inserting a
duplicate raises err_coll_duplicate_insertion.
124 ObjectStore C++ API User Guide

Chapter 5: Collections
For collections with allow_duplicates behavior, each insertion
increases the collection’s size by one and increases by one the
count (or number of occurrences) of the inserted element in the
collection. You can retrieve the count of a given element with
count() . Iteration with an unrestricted cursor visits each
occurrence of each element.

Null Insertions

If you insert a null pointer (0) into a collection without allow_nulls
behavior, the exception err_coll_nulls is signaled.

Ordered Collections

Inserting into a collection with maintain_order behavior adds the
element to the end of the collection. See also Accessing Collection
Elements with a Cursor or Numerical Index on page 132.

Duplicate Keys

For dictionaries with signal_dup_keys behavior, if an attempt is
made to insert something with the same key as an element already
present, err_index_duplicate_key is signaled.

Changing a Collection’s Behavior

You can change many of a collection’s behavioral characteristics.
See Customizing Collection Behavior in Chapter 4 of the
ObjectStore Advanced C++ API User Guide.

Changing a Collection’s Representation Policy

You can change a collection’s representation policy at any time,
but keep in mind that changing a representation essentially
reallocates a new object and copies the elements from the old
representation to the new representation. See Customizing
Collection Representation in Chapter 4 of the ObjectStore Advanced
C++ API User Guide.
Release 5.1 125

Removing Collection Elements with remove()
Removing Collection Elements with remove()

The remove operations for os_Collection and its subtypes are
declared this way:

os_int32 remove(E) ;

If you remove an element from a collection, the cardinality
decreases by one, and the count of the element in the collection
decreases by one. If you remove something that is not an element,
the collection is unchanged.

os_database *db1 ;
message *a_msg; . . .
os_Set<message*> &temp_set =

os_Set<message*>::create(db1) ;
. . .
temp_set.remove(a_msg) ;
temp_set.remove(a_msg) ; /* set is unchanged */

Ordered Collections

For collections with maintain_order behavior, remove() removes
the specified element from the end of the collection. There are also
overloadings of remove() that allow you to remove at a numerical
index value in the collection or remove at the position of the
cursor.

Removing Dictionary Elements

For dictionaries, you can also remove the entry with a specified
key and element with remove_value() . This function is faster than
remove() , so if you can specify the key, use remove_value() instead
of remove() . There are two overloadings that differ only in that
you pass a pointer to the key in one overloading and you pass a
reference to the key in the other overloading.

void remove(const K &key, const E element) ;

void remove(const K *key_ptr, const E element) ;

If there is no entry with the specified key and element, the
collection is unchanged. As with remove() , if you remove an entry
from a dictionary, the cardinality decreases by one, and the count
of the element in the collection decreases by one.

With dictionaries, you can also remove a specified number of
entries with a specified key with these functions:
126 ObjectStore C++ API User Guide

Chapter 5: Collections
E remove_value(const K &key, os_unsigned_int32 n = 1) ;

E remove_value(const K *key_ptr, os_unsigned_int32 n = 1) ;

If there are fewer than n entries with the specified key, all entries
in the dictionary with that key are removed. If there is no such
entry, the dictionary remains unchanged.

Caution regarding
duplicate insertions

For dictionaries with signal_dup_keys behavior, if an attempt is
made to insert something with the same key as an element already
present, err_am_dup_key is signaled. Refer to Customizing
Collection Behavior in Chapter 4 of the ObjectStore Advanced C++
API User Guide for information about signal_dup_keys .
Release 5.1 127

Testing Collection Membership with contains()
Testing Collection Membership with contains()

To see if a given pointer is an element of a collection, use

os_int32 contains(E) const ;

This function returns nonzero if the specified E is an element of
the specified collection, and 0 otherwise.

Dictionaries

For dictionaries, you can determine if there is an entry with a
given key and element.

os_boolean contains(
const K const &key_ref,
const E element

) const ;

os_boolean contains(
const K *key_ptr,
const E element

) const ;

With the first function you pass a reference to the key and with the
second you pass a pointer to the key. Other than that, these two
functions are equivalent. If there is no entry with the specified key
and element, 0 (false) is returned.
128 ObjectStore C++ API User Guide

Chapter 5: Collections
Finding the Count of an Element with count()

To find the count of a given element in a collection, use

os_int32 count(E e) ;

If e is not an element of the collection, 0 is returned.

Dictionaries

For dictionaries, you can determine the number of entries with a
specified key with one of these functions:

os_unsigned_int32 count_values(const K const &key_ref) const ;

os_boolean contains(const K *key_ptr) const ;

With the first function you pass a reference to the key and with the
second you pass a pointer to the key. Other than that, these two
functions are equivalent.
Release 5.1 129

Finding the Size of a Collection with cardinality()
Finding the Size of a Collection with cardinality()

You can determine the number of elements in a collection with the
member function os_collection::cardinality() .

os_unsigned_int32 cardinality() const ;

The cardinality of a collection that does not allow duplicates is the
number of elements it contains. The cardinality of a collection that
does allow duplicates is the sum of the number of occurrences of
each of its elements.

Checking for an Empty Collection with empty()

You can test to see if a collection is empty with the member
function empty() .

os_int32 empty() ;

This function returns true (a nonzero 32-bit integer) if it is empty,
and false (0) otherwise.
130 ObjectStore C++ API User Guide

Chapter 5: Collections
Using Cursors for Navigation

The ObjectStore collection facility provides a number of classes
that help you navigate within a collection. The os_Cursor class,
the os_index_path class, and the os_coll_range class all help you
insert and remove elements, as well as retrieve particular
elements or sequences of elements.

• The os_index_path class is described in Using Paths in
Navigation in Chapter 4 of the ObjectStore Advanced C++ API
User Guide. See also os_index_path in the ObjectStore Collections
C++ API Reference.

• The os_coll_range class is described in Using Ranges in
Navigation in Chapter 4 of the ObjectStore Advanced C++ API
User Guide. See also os_coll_range in the ObjectStore Collections
C++ API Reference.

The os_Cursor class is discussed here and in the immediately
following sections of this chapter. See also os_Cursor in the
ObjectStore Collections C++ API Reference.

Cursors

A cursor, an instance of os_Cursor , is used to designate a position
within a collection. You can use cursors to traverse collections, as
well as to retrieve, insert, remove, and replace elements.

When you create a vanilla cursor with no index path or collection
range, you specify its associated collection, and the cursor is
positioned at the collection’s first element. With members of os_
Cursor , you can reposition the cursor, as well as retrieve the
element at which the cursor is currently positioned. See
Traversing Collections with Default Cursors on page 134.

Some members of the collection classes take cursor arguments.
These functions support insertion, removal, and replacement of
elements. See Accessing Collection Elements with a Cursor or
Numerical Index on page 132.
Release 5.1 131

Accessing Collection Elements with a Cursor or Numerical Index
Accessing Collection Elements with a Cursor or
Numerical Index

Getting positional
access within a
collection

You can gain access to a specific place in a collection by means of
a numerical index or a cursor as arguments to the following
functions:

void os_Collection::insert_after(const E, const os_Cursor<E>&)
void os_Collection::insert_after(const E, os_unsigned_int32)
void os_Collection::insert_before(const E,

const os_Cursor<E>&)
void os_Collection::insert_before(const E, os_unsigned_int32)
void os_Collection::remove_at(const os_Cursor<E>&)
void os_Collection::remove_at(os_unsigned_int32)
E os_Collection::replace_at(const E, const os_Cursor<E>&)
E os_Collection::replace_at(const E, os_unsigned_int32)
E os_Collection::retrieve(const os_Cursor<E>&) const
E os_Collection::retrieve(os_unsigned_int32) const

The cursor-based overloadings must use a default vanilla cursor.
The cursor-based overloadings of remove_at() , replace_at() , and
retrieve() can also be used for unordered collections. (See
Traversing Collections with Default Cursors on page 134 for
additional information.)

Manipulating first and
last elements in a
collection

There are also functions for inserting, removing, and retrieving
elements from the beginning and the end of an ordered collection.
These are declared as follows:

void os_Collection::insert_first(const E)
void os_Collection::insert_last(const E)
os_int32 os_Collection::remove_first(const E&)
E os_Collection::remove_first()
os_int32 os_Collection::remove_last(const E&)
E os_Collection::remove_last()

The integer-valued remove() and retrieve() functions return 0 if the
collection had no elements to remove or retrieve (that is, was
empty). Otherwise, they return a nonzero integer, and modify
their arguments to indicate the removed or retrieved element.

If you perform any of these functions on an unordered collection
created with the supertypes interface, the exception err_coll_not_
supported is signaled. These operations will cause a compile-time
error if performed on an unordered collection created with the
132 ObjectStore C++ API User Guide

Chapter 5: Collections
subtypes interface. (Compile-time detection is possible because
the unordered subtypes define the ordered operations as private .)
Release 5.1 133

Traversing Collections with Default Cursors
Traversing Collections with Default Cursors

The ObjectStore collection facility allows you to program loops
that process the elements of a collection one at a time. When you
use it, you do not need to know how many elements are in the
collection; each time through the loop you can, in effect, test
whether more elements remain to be visited. So you do not need
to worry about loop bounds.

To traverse a collection, you create a cursor, an instance of the
parameterized class os_Cursor , associated with the collection you
want to traverse. The cursor records the state of an iteration by
pointing to the element currently being visited. Each time through
the loop, you advance the cursor to the next element and retrieve
that element. Here is an example:

Example: iterating
through a collection
with os_Cursor

os_database *db1 ;
. . .
os_Collection<person*> &people

= os_Collection<person*>::create(db1) ;

. . . /* insertions into people */

os_Collection<person*> &teenagers
= os_Collection<person*>::create(db1);

person* p;

os_Cursor<person*> c(people);

for (p = c.first(); c.more() ; p = c.next())
if (p–>age >=13 && p–>age <= 19)

teenagers.insert(p);

The for loop in this example retrieves each element of the
collection people and adds those between the ages of 13 and 19 to
the collection teenagers .

Creating Default Cursors

The class os_Cursor is a parameterized class supplied by the
ObjectStore class library.

os_Cursor(const os_Collection<E> &) ;

Its constructor takes a Collection& (people in the example above)
as argument. This is the collection to be traversed. The traversal
proceeds in an arbitrary order for unordered collections and, for
ordered collections, in the order in which the elements were
134 ObjectStore C++ API User Guide

Chapter 5: Collections
inserted. See also Controlling Traversal Order, Performing
Collection Updates During Traversal, and Restricting the
Elements Visited in a Traversal in Chapter 4 of the ObjectStore
Advanced C++ API User Guide

Note that traversal of a collection with duplicates visits each
element once for each time it occurs in the collection. For example,
an element that occurs three times in a collection will be visited
three times during a traversal of the collection.

os_Cursor ’s parameter (person* in the example) indicates the type
of elements in the collection being traversed. So the cursor’s
parameter must be the element type (see Using Collections with
the Element Type Parameter on page 116) of the collection passed
as the constructor argument.

os_Cursor::first()

The program then has a for loop. The traversal is performed with
a for loop. The initialization part of the loop header is an
assignment involving a call to the member function os_
Cursor::first() :

p = c.first()

This positions the cursor at the collection’s first element, and
returns that element. If there is no first element, because the
collection is empty, first() makes the cursor null and returns 0.

os_Cursor::next()

The incrementation part of the for loop header is an assignment
involving a call to the member function os_Cursor::next() :

p = c.next()

This positions the cursor at the collection’s next element, and
returns that element. If there is no next element, next() makes the
cursor null and returns 0.

os_Cursor::more()

The loop’s condition is a call to the member function os_
Cursor::more() :

c.more()
Release 5.1 135

Traversing Collections with Default Cursors
This function returns a nonzero 32-bit integer (true) when the
cursor is still positioned at some element of the collection, and 0
(false) when it is null.

After next() is applied to the collection’s last element, the cursor
becomes null, and more() then returns false , terminating the loop.

Alternative to using
more()

For collections that do not allow null elements, you can take
advantage of the fact that first() and next() return null pointers
when there is no first or next element. This means you can use the
values returned by these functions (in this case p) as the loop
condition (as long as the collection contains no null pointers — see
Customizing Collection Behavior in Chapter 4 of the ObjectStore
Advanced C++ API User Guide).

os_database *db1 ;
. . .
os_Collection<person*> &people

= os_Collection<person*>::create(db1) ;

. . . /* inserts to people */

os_Collection<person*> &teenagers
= os_Collection<person*>::create(db1) ;

person* p ;
os_Cursor<person*> c(people) ;

for (p = c.first() ; p ; p = c.next())
if (p–>age >=13 && p–>age <= 19)

teenagers.insert(p) ;

Rebinding Cursors to Another Collection

You can change a cursor’s associated collection with the following
members of os_Cursor :

void rebind(const os_Collection<E>&) ;

void rebind(const os_Collection<E>&, _Rank_fcn) ;

Once rebound, the cursor is positioned at the specified collection’s
first element.

This last overloading is for rebinding cursors whose order is
specified by a rank function. See Path-Based Traversal in Chapter
4 of the ObjectStore Advanced C++ API User Guide.
136 ObjectStore C++ API User Guide

Chapter 5: Collections
Copying, Combining, and Comparing Collections

The class os_Collection defines several operators for assignment
and comparison. Some of the assignment operators are related to
the familiar set-theory operators union, intersection, and
difference. In addition, some of the comparison operators are
analogous to set-theory comparisons such as subset and superset.
The collection operators are listed below. (LHS, below, stands for
the operand on the left-hand side, and RHS stands for the right-
hand side operand.)

Collection
comparison operators

• operator =() replaces the contents of LHS with the contents of
RHS.

• operator |=() adds the contents of RHS to LHS.

• operator -=() removes the contents of RHS from LHS.

• operator &=() replaces the contents of LHS with the intersection
of LHS and RHS.

• operator <() (like proper subset)

• operator >() (like proper superset)

• operator <=() (like subset)

• operator >=() (like superset)

• operator ==() (checks if elements are the same)

• operator !=() (checks if any elements are different)

Dual Purpose of the Operators

All these operators have a dual purpose. They can be used on two
collections, or they can be used on a collection (as left-hand
operand) and an instance of that collection’s element type (as
right-hand operand). For example, they can be used on a set of
parts and a part. In that case, the instance of the collection’s
element type is treated as a collection whose one and only element
is that instance. Performance varies by representation.

So, for example, you can use the union equals operator, |=, as a
convenient way of performing inserts:

os_Collection<message*> &a_set
= os_Collection<message*>::create(db1) ;

message *a_msg ;
. . .
Release 5.1 137

Copying, Combining, and Comparing Collections
a_set |= a_msg ;

And you can use -= to remove elements:

a_set -= a_msg ;

Ordered Collections and Collections with Duplicates

When you use the update operators, such as |=, on ordered
collections or collections that allow duplicates, the result can be
understood in terms of performing an iteration on one or more of
the operands. So, for example:

big_list |= little_list ;

is equivalent to iterating through little_list in the default order,
performing an insert into big_list for each occurrence of each
element of little_list . Assignment of one collection to another,

the_copy = the_original;

is equivalent to first removing all the_copy ’s elements, and then
iterating through the_original in default order, performing an
insert into the_copy for each occurrence of each element of the_
original .

In general, the update operators (=, |=, -=, &=) bundle together a
sequence of inserts or removes of elements of one or more
operands in the order in which those elements appear in the operands,
the default iteration order for the operands. This describes only
the behavior of the operators. The implementations might be
different.

For example, to add all of a part’s children to a given set, you
might do

os_database *db1 ;
. . .
os_List<part*> &a_list = os_List<part*>::create(db1) ;
part *a_part ;
. . .
a_list |= a_part->children ;

This is behaviorally equivalent to

part *p ;
os_Cursor<part*> c(a_part->children) ;
for (p = c.first() ; p ; p = c.next())

a_list.insert(p) ;
138 ObjectStore C++ API User Guide

Chapter 5: Collections
Dictionaries

Dictionaries are unordered collections that allow duplicates.
Unlike other collections, dictionaries associate a key with each
element. The key can be a value of any C++ fundamental type or
pointer type. When you insert an element into a dictionary, you
specify the key along with the element. You can retrieve an
element with a given key, or retrieve those elements whose keys
fall within a given range.

Required include files To use ObjectStore’s dictionary facility, you must include the files
<ostore/ostore.hh> , <ostore/coll.hh> , and <ostore/coll/dict_pt.cc>
in this order. You must include dict_pt.cc when instantiating the
template because it contains the bodies of the functions declared
in ostore/coll/dict_pt.hh ; however, users of the template can just
include dict_pt.hh .

Marking Persistent Dictionaries

The OS_MARK_
DICTIONARY() macro

If you use persistent dictionaries, you must call the macro OS_
MARK_DICTIONARY() for each key-type/element-type pair that
you use. Calls to this macro have the form

OS_MARK_DICTIONARY(key-type, element-type)

Put these calls in the schema source file. For example:

Example: schema file /* schema.cc */

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/dict_pt.hh>
#include <ostore/manschem.hh>
#include "dnary.hh"

OS_MARK_DICTIONARY(void*,Course*) ;
OS_MARK_DICTIONARY(int,Employee**) ;
OS_MARK_DICTIONARY(int,Course*) ;
OS_MARK_SCHEMA_TYPE(Course) ;
OS_MARK_SCHEMA_TYPE(Employee) ;
OS_MARK_SCHEMA_TYPE(Department) ;

For pointer keys, use void* as the key-type.

The OS_MARK_DICTIONARY() macro is described in ObjectStore
Collections C++ API Reference.
Release 5.1 139

Dictionaries
Marking Transient Dictionaries

The OS_TRANSIENT_
DICTIONARY() macro

If you use only transient dictionaries, you must call the macro OS_
TRANSIENT_DICTIONARY() for each key-type/element-type pair
that you use. If you use a particular instantiation of an os_
Dictionary template both transiently and persistently, you should
use the OS_MARK_DICTIONARY() macro only. The arguments for
OS_TRANSIENT_DICTIONARY() are the same as for OS_MARK_
DICTIONARY(), but you call OS_TRANSIENT_DICTIONARY() at file
scope in an application source file, rather than in a schema source
file.

However, using OS_TRANSIENT_DICTIONARY() more than once
with the same key type will result in a complication error. For
example, the following will not compile correctly:

OS_TRANSIENT_DICTIONARY(int,void*);
OS _TRANSIENT_DICTIONARY(int,foo*);

The problem is that both invocations of OS_TRANSIENT_
DICTIONARY() will cause a stub routine to be defined for the key
type int . Instead, you should only invoke OS_TRANSIENT_
DICTIONARY() once for each key type, and use the macro OS_
TRANSIENT_DICTIONARY_NOKEY() for each consecutive
dictionary with the same key type. The correct use, given the
example above, would be

OS_TRANSIENT_DICTIONARY(int,void*);
OS _TRANSIENT_DICTIONARY_NOKEY(int,foo*);

For related information on these macros, se the ObjectStore
Collections C++ API Reference.

Dictionary Behavior

Every dictionary has the following properties:

• Its entries have no intrinsic order.

• Duplicate elements are allowed.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element
inserted or removed during a traversal of its elements will be
visited later in that same traversal.

By default a new dictionary also has the following properties:
140 ObjectStore C++ API User Guide

Chapter 5: Collections
• Performing pick() on an empty dictionary raises err_coll_empty.

• Duplicate keys are allowed; that is, two or more elements can
have the same key.

• Range lookups are not supported; that is, key order is not
maintained.

You can customize the behavior of new dictionaries with regard
to these last three properties. For large dictionaries that maintain
key order, there is also an option for reducing contention. See
Customizing Collection Behavior in Chapter 4 of the ObjectStore
Advanced C++ API User Guide.

Dictionary Representation

Unlike the create operations for other collection classes, there are
no arguments relating to representation. This is because you
cannot directly control the representation for dictionaries. You
can, however, use the class os_rDictionary instead of os_
Dictionary . os_rDictionary is just like os_Dictionary , except that it
records its elements using references (as do os_vdyn_hash and
os_vdyn_bag), which eliminates address space reservation and
can reduce relocation overhead.

In addition to the key type and element type parameters, the class
os_rDictionary also has a reference type parameter, whose actuals are
ObjectStore reference types. Specify either os_reference or os_
reference_version .

The os_rDictionary class is described in the ObjectStore Collections
C++ API Reference.

Visiting the Elements with Specified Keys

For dictionaries, you can specify a restriction that is satisfied by
elements whose key satisfies a specified range.

os_Cursor<E> (
const os_dictionary & coll,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

) ;

An element satisfies this cursor’s restriction if its key satisfies
range . If the dictionary’s key type is a class, you must supply rank
and hash functions for the class. To do this, the dictionary must be
Release 5.1 141

Dictionaries
created with the behavior maintain_key_order . See Customizing
Collection Behavior in Chapter 4 of the ObjectStore Advanced C++
API User Guide.

Picking the Element with a Specified Key

For dictionaries, you can retrieve an element with the specified
key with one of the following two functions:

E pick(const K const &key_ref) const ;

E pick(const K *key_ptr) const ;

These two differ only in that with one you supply a reference to
the key, and with the other you supply a pointer to the key. Again,
if there is more than one element with the key, an arbitrary one is
picked and returned. If there is no such element and the
dictionary has pick_from_empty_returns_null behavior, 0 is
returned. If there is no such element and the dictionary does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.

Retrieving ranges of
elements

For dictionaries, you can also retrieve an element whose key
satisfies a specified collection range (see Specifying Collection
Ranges in Chapter 4 of the ObjectStore Advanced C++ API User
Guide) with

E pick(const os_coll_range&) const ;

For example:

a_dictionary.pick(os_coll_range(GE, 100))

returns an element of a_dictionary whose key is greater than or
equal to 100. The dictionary must have the behavior os_
dictionary::maintain_key_order for a pick() using an os_coll_range .

As with the other pick() overloadings, if there is more than one
such element, an arbitrary one is picked and returned. If there is
no such element and the collection has pick_from_empty_returns_
null behavior, 0 is returned. If there is no such element and the
dictionary does not have pick_from_empty_returns_null behavior,
err_coll_empty is signaled.

Retrieving elements
when the key type is a
class

If the dictionary’s key type is a class, you must supply rank and
hash functions for the class. See Supplying Rank and Hash
Functions in Chapter 4 of the ObjectStore Advanced C++ API User
Guide.
142 ObjectStore C++ API User Guide

Chapter 5: Collections
The key types char* , char[] , and os_char_star_nocopy are each
treated as a class whose rank and hash functions are defined in
terms of strcmp() . For example, for char* :

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string “Smith”
(that is, whose key, k, is such that strcmp(k, "Smith") is 0).
Release 5.1 143

Writing Destructors for Dictionaries
Writing Destructors for Dictionaries

There are circumstances in which a slot in an ObjectStore
dictionary can be reused. A slot is used for the first time when the
first item is hashed to that slot during an insert. A removal of that
item will cause the slot to be emptied and marked as previously
occupied. A subsequent insert of a key that hashes to that slot can
result in the reuse of that slot to hold this new key.

When a key is removed, the destructor for the object of type K is
run. Because the slot can then be reused, it is necessary for the
destructor for the object of type K to null out any pointers to
memory that get freed in the destructor.

Here is an example where type K is class myString :

class myString
{

private:
char* theString;
int len;

}
RMString::RMString(char* theChars)
{

if (theChars == 0)
len = 0;

else
len = strlen(theChars);

theString = new(os_segment::of(this),
os_typespec::get_ char(),len + 1)

char[len+1];
if (theChars == 0)

theString[0] = ‘\0’;
else

strcpy(theString, theChars);
}

RMString::~RMString()
{

delete[] theString;
/**

The following line solves the multiple delete problem
**/

theString = 0;

}

Failure to include the line theString = 0; results in the following
error if a slot is reused:
144 ObjectStore C++ API User Guide

Chapter 5: Collections
Invalid argument to operator delete

<err-0025-0608>Delete failed. Cannot locate a persistent object at
address 0x5780114 (err_invalid_deletion)
Release 5.1 145

Example: Using Dictionaries
Example: Using Dictionaries

A ternary relationship is a relationship among three objects, like
“student x got grade y in course z”. Dictionaries are often useful
in representing ternary relationships. This section contains an
example involving the classes Student , Grade , and Course , which
allow you to store and retrieve information about who got what
grade in what course.

Each Student object contains two dictionaries that serve to
associate a course with the grade the student got in the course.
One dictionary supports lookup of the grade given the course,
and the other supports lookup of the courses with a given grade.

Note that the dnary.cc example includes <ostore/coll/dict_pt.cc>
instead of dict_pt.hh , and is needed since it contains the bodies of
the functions declared in dict_pt.hh . You do not need to also
include dict_pt.hh because it is included in dict_pt.cc. Finally,
there is the file schema.cc , a schema source file.

Below is the file dnary.hh , which contains the class definitions.
After that is the file dnary.cc , which contains the member function
implementations.

Header file: dnary.hh /* dnary.hh */

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/dict_pt.hh>
#include <iostream.h>
#include <stdlib.h>

class Student ;
class Grade ;
class Course ;
class Student {

public:
int get_id() const ;
const os_Collection<Course*> &get_courses() const ;
int add_course(Course*, Grade* = 0) ;
void remove_course(Course*) ;
Grade *get_grade_for_course(const Course*) const ;
void set_grade_for_course(Course*, Grade*) ;
os_Collection<Course*> &get_courses_with_grade(

const Grade*) const ;
float get_gpa() const ;
static os_typespec *get_os_typespec() ;
146 ObjectStore C++ API User Guide

Chapter 5: Collections
Student(int id, os_segment*);
~Student() ;

private:
int id ;
os_Collection<Course*> & courses ;
os_Dictionary<const void*, Grade* & course_grade ;
os_Dictionary<void*, Course* & grade_course ;

} ;

class Grade {

public:
const char *get_name() const ;
float get_value() const ;
static os_typespec *get_os_typespec() ;
Grade(const char *name, float value, os_segment*) ;
~Grade() ;

private:
char *name ;
float value ;

} ;

class Course {

public:
int get_id() const ;
void set_id(int) ;
static os_typespec *get_os_typespec() ;

private:
int id ;

} ;

Main program:
dnary.cc

/* dnary.cc */

#include <ostore/coll/dict_pt.cc>

typedef os_Dictionary<void*,Course*> grade_course_dnary ;
typedef os_Dictionary<void*,Grade*> course_grade_dnary ;

/* Student member function implementations */

int Student::get_id() const {
return id ;

}

const os_Collection<Course*> &Student::get_courses() const {
return courses ;

}

int Student::add_course(Course *c, Grade *g) {
if (courses.contains(c))

return 0 ;
Release 5.1 147

Example: Using Dictionaries
courses.insert(c) ;

if (g) {
grade_course.insert(g, c) ;
course_grade.insert(c, g) ;

} /* end if */
return 1 ;

}

void Student::remove_course(Course *c) {
courses.remove(c) ;
grade_course.remove(course_grade.pick(c), c) ;
course_grade.remove_value(c) ;

}

Grade *Student::get_grade_for_course(const Course *c) const {
return course_grade.pick(c) ;

}

void Student::set_grade_for_course(Course *c, Grade *g) {
grade_course.remove(course_grade.pick(c), c) ;
course_grade.remove_value(c) ;
grade_course.insert(g, c) ;
course_grade.insert(c, g) ;

}

os_Collection<Course*> &
Student::get_courses_with_grade(const Grade *g) const {

os_Collection<Course*> &the_courses =
os_Collection<Course*>::create(
os_database::get_transient_database()) ;

os_cursor cur(grade_course, os_coll_range(
os_collection::EQ, g)) ;

for (Course *c = (Course*) cur.first() ; c ; c = (Course*) cur.next())
the_courses.insert(c) ;

return the_courses ;
}

float Student::get_gpa() const {
float sum = 0.0 ;
os_cursor c(course_grade) ;
for (Grade *g = (Grade*) c.first(); g; g = (Grade*) c.next())

sum = sum + g->get_value() ;
return sum / course_grade.size() ;

}

Student::Student(int i, os_segment *seg) :
courses(os_Collection<Course*>::create(seg)),
course_grade(

os_Dictionary<const void*, Grade*>::create(seg,
10,os_collection::pick_from_empty_returns_null)),

grade_course(os_Dictionary<void*, Course*>::create(seg)) {
id = i;

}

148 ObjectStore C++ API User Guide

Chapter 5: Collections
Student::~Student() {
os_Collection<Course*> *courses_ptr = &courses ;
os_Dictionary<const void*, Grade*> *course_grade_ptr =

&course_grade ;
os_Dictionary<void*, Course*> *grade_course_ptr =

&grade_course ;
delete courses_ptr ;
delete course_grade_ptr ;
delete grade_course_ptr ;

}

/* Grade member function implementations */

const char *Grade::get_name() const {
return name ;

}

float Grade::get_value() const {
return value ;

}

Grade::Grade(const char *n, float v, os_segment *seg) {
name = new(seg, os_typespec::get_char(), strlen(n)+1)
char[strlen(n)+1] ;
strcpy(name, n) ;
value = v ;

}

Grade::~Grade() {
delete name ;

}

/* Course member function implementations */

int Course::get_id() const {
return id ;

}

void Course::set_id(int i) {
id = i ;

}

Schema file:
schema.cc

/* schema.cc */

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/dict_pt.hh>
#include <ostore/manschem.hh>

#include "dnary.hh"

void dummy () {
OS_MARK_DICTIONARY(void*,Course*) ;
OS_MARK_DICTIONARY(void*,Grade*) ;
OS_MARK_SCHEMA_TYPE(Course) ;
OS_MARK_SCHEMA_TYPE(Student) ;
Release 5.1 149

Example: Using Dictionaries
OS_MARK_SCHEMA_TYPE(Grade) ;
}

The example
explained...

The data member Student::courses contains a reference to a
collection of pointers to the courses the student has taken.

The data member Student::course_grade contains a reference to a
dictionary that maps each course to the grade the student got for
that course. This dictionary supports lookup of the grade given
the course.

The data member Person::grade_course contains a reference to a
dictionary that maps each grade to the courses for which the
student got that grade. This dictionary supports lookup of the
courses given the grade.

The function Student::add_course() first checks to see if the
specified course has already been added. If it has, 0 (indicating
failure) is returned. If it has not, the function inserts the specified
course into the collection referred to by Student::courses . Then, if
a grade is specified, entries are inserted into the dictionaries
referred to by Student::course_grade and Student::grade_course .
Finally, 1 (indicating success) is returned.

The function Student::remove_course() removes the specified
course from Student::courses . If the course is not an element of
courses , the call to remove() has no effect.

Then, using pick() on course_grade , remove_course() determines
the grade for the given course. The grade and the course are then
passed to os_Dictionary::remove() to remove from Student::grade_
course the entry whose value is the given course. The function
add_course() ensures that there is at most one.

If the course is not an element of the dictionary, pick() returns 0,
and the call to remove() has no effect. Note that pick() returns 0 in
this case instead of raising an exception because the dictionary
(course_grade) was created with pick_from_empty_returns_null
behavior.

Finally, using os_Dictionary::remove_value() , remove_course()
removes from Student::Course_grade the entry whose key is the
given course. Again, add_course() ensures there is at most one. If
the dictionary has no entry whose key is that course, the call to
remove_value() has no effect.
150 ObjectStore C++ API User Guide

Chapter 5: Collections
Student::get_grade_for_course() uses os_Dictionary::pick() to
retrieve from Student::course_grade the element whose key is the
given course.

Student::set_grade_for_course() first takes precautions in case the
specified course already has been assigned a grade. It removes
from Student::course_grade and Student::grade_course any
entries with the given course. It does this as follows.

First, the function performs remove() on grade_course , passing in
the grade for the given course (determined by performing pick()
on course_grade), and also passing in the given course itself. If no
grade has been set for the course, pick() returns 0, and the call to
remove() has no effect. Then the function uses remove_value() to
remove from course_grade the entry, if there is one, whose key is
the given course.

Next, Student::set_grade_for_course() inserts into grade_course
an entry whose key is the specified grade and whose value is the
specified course. Finally, it inserts into course_grade an entry
whose key is the specified course and whose value is the specified
grade.

The function Student::get_courses_with_grade() returns a
reference to a collection of the courses for which the student got
the specified grade. It creates a collection on the transient heap,
and then uses a restricted cursor to visit each element of grade_
course whose key is the specified grade. As each qualifying
element is visited, it is inserted into the newly created collection.
Finally, a reference to the collection is returned.

The function Student::get_gpa() returns the student’s grade point
average. It visits each element of the dictionary course_grade ,
summing the result of performing get_value() on each element
along the way. When the traversal is complete, the sum is divided
by the dictionary’s size to get the average, which is returned.

The Student constructor allocates an os_Collection and two
instances of os_Dictionary in the specified segment. Note that the
dictionary course_grade is created with pick_from_empty_
returns_null behavior.
Release 5.1 151

Example: Using Dictionaries
152 ObjectStore C++ API User Guide

Chapter 6
Data Integrity

The information about data integrity considerations is organized
in the following manner:

Data Integrity Considerations 154

Inverse Data Members 155

Inverse Member End-User Interface 156

Defining Relationships 158

Relationship Examples 160

Duplicates and Many-Valued Inverse Relationships 166

Use of Parameterized Types 169

Deletion Propagation and Required Relationships 170

Indexable Inverse Members 171

Detecting Illegal Pointers 172

Controlling Illegal Pointer Checking 173

Controlling the Consequences of Illegal Pointer Detection 175

Illegal Pointer Modes Are Process Local 177
Release 5.1 153

Data Integrity Considerations
Data Integrity Considerations

Many design applications create and manipulate large amounts of
complex persistent data. Frequently, this data is jointly accessed
by a set of cooperative applications, each of which carries the data
through some well-defined transformation. Because the data is
shared, and because it is more permanent and more valuable than
any particular run of an application, maintaining the data’s
integrity becomes a major concern, and requires special database
support.

ObjectStore provides facilities to help deal with two of the most
common integrity maintenance problems.

Inverse Members

One integrity control problem concerns pairs of data members
that are used to model binary relationships. ObjectStore allows
you to declare two data members as inverses of one another, so
they stay in sync with each other according to the semantics of
binary relationships. This works for pairs of data members that
represent one-to-one, one-to-many, and many-to-many
relationships. See Inverse Data Members on page 155.

Illegal Pointers

Another integrity control problem concerns illegal pointers.
ObjectStore can detect two kinds of illegal pointers:

• Pointers from persistent memory to transient memory

• Cross-database pointers from a segment that is not in allow_
external_pointers mode

ObjectStore provides facilities that automatically detect such
pointers upon transaction commit. You can control the way
ObjectStore responds when illegal pointers are encountered;
ObjectStore can either raise an exception or change the illegal
pointers to 0 (null). See Detecting Illegal Pointers on page 172.
154 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Inverse Data Members

ObjectStore allows you to model binary relationships with
pointer-valued (or collection-of-pointer-valued) data members
that maintain the referential integrity of their inverse data
members. You implement this inverse maintenance by defining
an embedded relationship class, which encapsulates the pointer
(or collection-of-pointers) so that it can intercept updates to the
encapsulated value, and perform the necessary inverse
maintenance tasks.

The ObjectStore class library contains the necessary relationship
and collection classes, as well as a set of macros to simplify the use
of these classes. In general, when you use a class that has inverse
members, you can access these members as if they were simple
data members. The code that manipulates the instances need not
be aware of the inverse maintenance that is occurring, since this is
entirely hidden by the relationship class implementation.

To use ObjectStore’s relationship facility, you must include the
files <ostore/relat.hh> , along with <ostore/ostore.hh> , and
<ostore/coll.hh> . The include line must place <ostore/relat.hh>
after the other two, in the following order:

ostore/ostore.hh, ostore/coll.hh, ostore/relat.hh
Release 5.1 155

Inverse Member End-User Interface
Inverse Member End-User Interface

As a relationship definer (that is, the definer of the class that
contains relationships), you have a number of options for
presenting the relationship to that class’s users. Suppose, for
example, that the class part has a single-valued relationship
container that points to the part that contains this one. Then the
end user of the part class could be presented with any of the
following interfaces for getting and setting this relationship:

Getting relationships otherpart = somepart->container; /* simple data member */
otherpart = somepart->container.getvalue(); /* relationship *
otherpart = somepart->get_container(); /*functional interface */

Setting relationships somepart->container = otherpart; /* simple data member */
somepart->container.setvalue(otherpart); /* relationship */
somepart->set_container(otherpart); /* functional interface */

Simple data member
interface

The first style of interface is called simple data member because the
end user interacts with the relationship exactly as if it were a
simple data member of type part* . The end user need not be aware
that special inverse-update processing is occurring. Note, however,
that this style of interface is only available in the C++ library
interface, not the C library interface, because it relies on the C++
capability to define coercion operators and to overload
operator=() .

Relationship interface The second style of interface is called relationship because it treats
the container data member as an object in its own right (that is, a
relationship object). In other words, if somepart refers to a part,
then somepart->container refers to a relationship instance, and
somepart->container.getvalue() returns the value of the
relationship.

Functional interface The third style of interface is called functional because it
encapsulates all access to the relationship inside functions defined
on the class part .

Note that it is completely up to the class definer to decide which
of these interfaces to export to the class’s end users. The
underlying ObjectStore library interface to relationships supports
all of them and, in fact, a class definer could choose to export more
than one (for example, so that the end user could do either

p->set_container(q)
156 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
or

p->container.setvalue(q))

Similarly, for the many-valued relationship contents , which lists a
part’s subparts, any of the following interfaces could be presented
to the end user:

Getting contents os_collection* subparts;
subparts = somepart->contents; /* simple data member */
subparts = somepart->contents.getvalue(); /* relationship */
subparts = somepart->get_contents(); /* functional interface */

Setting contents somepart->contents.insert(otherpart); /* simple data member */
somepart->contents.getvalue().insert(otherpart); /* relationship */
somepart->insert_contents(otherpart); /* functional interface */

Again, deciding which of these interfaces to export to the end user
is under the control of the class definer. The ObjectStore library
interface to relationships supports all three.

About m side of
relationships

The size of an os_relationship m data member is eight bytes, four
bytes for the pointer to the os_collection and four bytes for the
vtbl.

The collection for an m side of an os_relationship data member is
created upon the first insertion into the collection.

You control the size and placement of the collection by calling os_
relationship::create_coll() in the constructor of the class that
contains the os_relationship m data member.

Presizing the collection yields the best performance in terms of
eliminating mutations as the collection grows, and in terms of
clustering.
Release 5.1 157

Defining Relationships
Defining Relationships

To define a class that has relationships, you define a data member
using the appropriate relationship macro. This relationship macro
defines the appropriate access functions for getting and setting
the relationship. You then instantiate the bodies of these functions
using another macro. Because most of the access functions have
inline implementations, they incur negligible run-time overhead.

The relationship macros wrap a class around the data member;
this adds no additional storage to the data member. The wrapper
simply implements the functions to perform the inverse
operations. The m side of a relationship is an embedded collection
that is eight bytes. It automatically mutates to an out-of-line
representation upon the insertion of the first element.

Relationship Macros

There are four relationship member macros to choose from:

• os_relationship_1_1() — for one-to-one relationships

• os_relationship_1_m() — for one-to-many relationships

• os_relationship_m_1() — for many-to-one relationships

• os_relationship_m_m() — for many-to-many relationships

The corresponding function body macros are

• os_rel_1_1_body() — for one-to-one relationships

• os_rel_1_m_body() — for one-to-many relationships

• os_rel_m_1_body() — for many-to-one relationships

• os_rel_m_m_body() — for many-to-many relationships

Descriptions of all of these macros can be found in Chapter 4,
System-Supplied Macros, of the ObjectStore C++ API Reference.

Note that these macros always come in fours. Each use of a
member macro to define one side of a relationship must be paired
with another member macro to define the other side of the
relationship, and each member macro must have a corresponding
body macro to provide the implementations for the relationship’s
accessor functions. This means that a one-to-many relationship
member must also have a one-to-many relationship body, as well
158 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
as a many-to-one inverse member, which itself must have a many-
to-one relationship body.

Macro Arguments

The member macros always have five arguments:

• Name of the class defining the member

• Name of the member

• Name of the class defining the inverse member

• Name of the inverse member

• Type signature of the member’s value

Note that by scanning just the last argument and the member
name, you can quickly grasp the externally visible interface to the
data member. For example:

os_relationship_1_m (person,employer,company,employees,
company*) employer;

defines a company* employer data member, which is part of a
relationship.

The function body macros have just four arguments. For each
function body macro, the arguments are exactly the same as those
of the corresponding member macro, but without the last
argument, as illustrated in the examples that follow.

Compiler caution The first four macro arguments are used (among other things) to
concatenate unique names for the embedded relationship class
and its accessor functions. The details of macro preprocessing
differ from compiler to compiler, and in some cases it is necessary
to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly. There should be
no white space in the argument list between the opening
parenthesis and the comma separating the fourth and fifth
arguments. All the examples given below follow this important
convention, and should therefore work with any C++ compiler.
Release 5.1 159

Relationship Examples
Relationship Examples

Example: Single-Valued Relationships

Consider an example in which a class node is defined that has
single-valued inverse relationship members next and previous (as
in a node in a list structure). This uses the os_relationship_1_1 and
os_rel_1_1_body macros. Note that both the simple data member
and relationship style interfaces are automatically supported.

See Chapter 4, System-Supplied Macros, of the ObjectStore C++
API Reference for descriptions of the os_relationship_1_1() and os_
rel_1_1_body() macros.

Example:
os_relationship_1_1
and os_rel_1_1_body
macros

/* C++ Note Program - Header File */

#include <fstream.h>
#include <string.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class author;

/* A simple class which records a note entered by the user. */
class note {

public:

/* Public Member functions */
note(const char*, int);
~note();
void display(ostream& = cout);
static os_typespec* get_os_typespec();

/* Public Data members */
os_backptr bkptr;
char* user_text;
os_indexable_member(note,priority,int) priority;
os_relationship_1_m(

note,the_author,author,notes,author*)
the_author;

};

#include <ostore/relat.hh>

class node {

public:

os_relationship_1_1(node,next,node,previous,node*) next;
os_relationship_1_1(node,previous,node,next,

node*) previous;
160 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
node() {};
};

os_rel_1_1_body(node,next,node,previous);
os_rel_1_1_body(node,previous,node,next);

main() {
/* show the end users use of these relationships */

objectstore::initialize();
os_collection::initialize();

node* n1 = new node();
node* n2 = new node();

n1->next = n2;

/* this also automatically updates n2->previous */
printf("n1 (%x) --> (%x)\n",

n1, n1->next.getvalue());

printf("n2 (%x) --> (%x)\n",
n2, n2->previous.getvalue());

}

Compiler caution While the simple data member style of access normally allows you
to treat a single-valued relationship as a normal pointer-valued
data member in most situations, this capability depends upon the
operator=() (to set the value) and coercion operators (to get the
value). Thus, the following simple assignment,

n1->next = n2->next;

actually is interpreted by the C++ compiler as

n1->next.operator=(n2->next.operator node* ());

Example: incorrect
use of the coercion
operator

The coercion operator operator node* () is used to get the value of
the relationship in the right-hand-side expression, and the
assignment operator operator=() is used to set the value of the
relationship in the left-hand-side expression. Be aware that the
compiler will only apply the coercion operator if it knows that the
desired type of the expression is a node* pointer. The following
will not work correctly:

printf("The value of the relationship is %x \n", n1->next);

because printf() does not have prototype information for its
arguments, so the compiler does not know to apply a coercion. In
this case, either of the following would be a suitable alternative:
Release 5.1 161

Relationship Examples
Example: avoiding
coercion errors

printf("The value of the relationship is %x \n",
n1->next.getvalue());

printf("The value of the relationship is %x \n",
(node*)n1->next);

Example: private
declarations of
relationships

The next example defines a class node just as above, but presents
to the end user a functional style interface. This is done exactly as
above, except that the relationships themselves are declared
private, so that the user cannot directly access them via the simple
data member or relationship-style interfaces; and the class-definer
writes simple inline member functions to extend a functional-
style interface instead. Note that in this example the two
relationship members are defined by the same class, node . This
would not have to be the case. Even if they were defined by
different classes, say node and arc , they could still be made
private, because the relationship macros define the relationship
implementation classes as friends.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {
private:

os_relationship_1_1(node,next,node,previous,
node*) next;

os_relationship_1_1(node,previous,node,next,
node*) previous;

public:
node* get_next() {return next.getvalue();};
void set_next(node* val) {next.setvalue(val);};

node* get_previous() {
return previous.getvalue();};
void set_previous(node* val) {
previous.setvalue(val);};
node() {};

};

os_rel_1_1_body(node,next,node,previous);
os_rel_1_1_body(node,previous,node,next);

main() {

/* show the end users use of these relationships */

objectstore::initialize();
os_collection::initialize();
node* n1 = new node();
node* n2 = new node();
162 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
n1->set_next(n2);
/* this automatically also updates n2->prev */

printf("n1 (%x) --> (%x)\n",n1, n1->get_next());
printf("n2 (%x) --> (%x)\n",n2, n2->get_prev());

}

Example: Many-Valued Relationships

The os_rel_m_m_body and os_rel_m_1_body macros should not
be used in include files that are included in more than one source
file used in a given application. This is because these macros
define the bodies for virtual functions. Using these macros in a
header file that is included in more than one place can result in
redundant definitions of the virtual table that is generated by the
compiler to implement virtual function calling.

See Chapter 4, System-Supplied Macros, of the ObjectStore C++
API Reference for descriptions of the os_rel_m_m_body() , os_rel_
m_1_body() , and os_relationship_m_m() macros.

Example:
os_relationship_m_m
and
os_rel_m_m_body
macros

Here is an example in which a class node is defined with a pair of
many-to-many relationships, ancestors and descendents (as in a
node in a graph structure).

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {
public:

os_relationship_m_m(node,ancestors,node,descendents,
os_collection) ancestors;

os_relationship_m_m(node,descendents,node,ancestors,
os_collection) descendents;

node() {};
};

os_rel_m_m_body(node,ancestors,node,descendents);
os_rel_m_m_body(node,descendents,node,ancestors);

main() {

/* show the end users use of these relationships */
objectstore::initialize(); os_collection::initialize();
node* n1 = new node(); node* n2 = new node();

n1->ancestors.insert(n2);
/* this also updates n2->descendents */

node* n;

printf("n1 (%x)\n",n1);
Release 5.1 163

Relationship Examples
printf(" has %d descendents: ", n1->descendents->size ()); {
os_cursor c(n1->descendents);
for (n = (node*) c.first(); n; n = (node*) c.next())

printf("(%x) ",n);
printf("\n");

}

printf(" and %d ancestors: ", n1->ancestors->size ()) {
os_cursor c(n1->ancestors);
for (n = (node*) c.first(); n; n = (node*) c.next())

printf("(%x) ", n);
printf("\n");

}

printf("n2 (%x)\n",n2);
printf(" has %d descendents: ",

n2->descendents->size ()); {
os_cursor c(n2->descendents);
for (n = (node*) c.first(); n; n = (node*) c.next())

printf("(%x) ", n);
printf("\n");

}

printf(" and %d ancestors: ",
n2->ancestors->size ()); {
os_cursor c(n2->ancestors);
for (n = (node*) c.first(); n; n = (node*) c.next())

printf("(%x) ", n);
printf("\n");

}

}

Example: One-to-Many and Many-to-One Relationships

Below is an example in which a class node is defined that has a
one-to-many relationship, children , and a many-to-one inverse,
parent (as in a node in a tree structure).

See Chapter 4, System-Supplied Macros, of the ObjectStore C++
API Reference for descriptions of the os_relationship_1_m() , os_
relationship_m_1() , os_rel_1_m_body() , and os_rel_m_1_body()
macros.
164 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Example:
os_relationship_1_m,
os_relationship_m_1,
os_rel_1_m_body, and
os_rel_m_1_body
macros

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {

public:
os_relationship_1_m(node,parent,node,children,

node*) parent;
os_relationship_m_1(node,children,node,parent,

os_collection) children;
node() {};

};

os_rel_1_m_body(node,parent,node,children);
os_rel_m_1_body(node,children,node,parent);

main() {

/* show the end users use of these relationships */

objectstore::initialize();
os_collection::initialize();

node* n1 = new node();
node* n2 = new node();

n1->children.insert(n2);
/* this also updates n2->parent */
/* NOTE: "n2->parent = n1;" would have had */
/* identical effect */

/* etc */
}

Example: one-to-
many with different
classes

Here is an example that illustrates a one-to-many relationship
involving two different classes.

#include <ostore/relat.hh>

class person {
public:

os_relationship_1_m(person,employer,company,
employees, company*) employer;

char* name;
};

class company {
public:

os_relationship_m_1(company,employees,person,
employer, os_collection) employees;

int gross_revenue;
};

os_rel_1_m_body(person,employer,company,employees);
os_rel_m_1_body(company,employees,person,employer);
Release 5.1 165

Duplicates and Many-Valued Inverse Relationships
Duplicates and Many-Valued Inverse Relationships

For most kinds of ObjectStore relationships, an update to one side
of the relationship always triggers a corresponding update to the
other side. This is true for the following kinds of relationships:

• One-to-one relationships

• One-to-many relationships, where the collection involved does
not allow duplicates

• Many-to-many relationships, where the collections involved
either both allow duplicates or both disallow duplicates

For other relationships, an update to one side does not always
trigger an update to the other side.

Example: one-to-
many relationship
when duplicates are
allowed

The following example shows how ObjectStore handles one-to-
many relationships where the collection at the many end of the
relationship allows duplicates. It also shows how ObjectStore
handles many-to-many relationships where one of the collections
involved allows duplicates and the other does not.

Suppose a complex part keeps track of the primitive parts it uses,
as well as how many times each primitive part is used. (For
example, a wheel might be a primitive part, and be used four
times in a complex part like a car.) Suppose also that each
primitive part is used in only one complex part. This can be
modeled with the following classes:

Class definitions class complex_part {
os_relationship_m_1(

complex_part,
components,
primitive_part,
used_by,
os_Bag<primitive_part*>) components ;

}

class primitive_part {
os_relationship_1_m(

primitive_part,
used_by,
complex_part,
components,
complex_part*) used_by ;

}

166 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Suppose that a certain primitive_part , a_wheel , is used by a
particular complex_part , the_car . If you do

a_wheel->used_by = 0;

ObjectStore removes all occurrences of a_wheel from the_car ’s
components, since setting used_by to 0 implies that the wheel is
not used by the car at all.

Suppose you do

the_car->components.remove(a_wheel)

If the car uses four wheels at first, afterward it uses three wheels.
a_wheel->used_by still points to the car, since the car still uses the
wheel at least once.

Now suppose each primitive part can be used by multiple
complex parts.

class complex_part {
os_relationship_m_1(

complex_part,
components,
primitive_part,
used_by,
os_Bag<primitive_part*>

) components ;
}

class primitive_part {
os_relationship_1_m(

primitive_part,
used_by,
complex_part,
components,
os_Set<complex_part*>

) used_by ;
}

And suppose you do

a_wheel->used_by.remove(the_car);

This causes all occurrences of a_wheel to be removed from the_
car ’s components, since it implies that the wheel is not used by the
car at all.

If you do

the_car->components.remove(a_wheel);
Release 5.1 167

Duplicates and Many-Valued Inverse Relationships
ObjectStore removes the_car from the wheel’s used_by set only if
it removes the last occurrence of the wheel from the car’s
components, that is, only if the car no longer uses the wheel at all.
168 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Use of Parameterized Types

Relationships can be used either with or without a compiler that
supports parameterized types. All the previous examples were
written without the use of parameterization. In the case of many-
valued relationships, a greater degree of type safety can be
obtained by using a parameterized collection type. This is
accomplished by changing the last parameter to the relationship
member macro (recall that the last parameter always indicates the
type of the value). For example:

class node {
public:

os_relationship_m_m(node,ancestors,node,descendents,
os_Collection<node*>) ancestors;

os_relationship_m_m(
node,descendents,node,ancestors,
os_Collection<node*>) descendents;
node() {};

};

os_rel_m_m_body(node,ancestors,node,descendents);
os_rel_m_m_body(node,descendents,node,ancestors);

In this case, the functions that perform a get-value (that is,
getvalue()), and the coercion operator will return an os_
Collection<node*>& rather than just an os_collection& .
Release 5.1 169

Deletion Propagation and Required Relationships
Deletion Propagation and Required Relationships

By default, deleting an object that participates in a relationship
automatically updates the other side of the relationship so that
there are no dangling pointers to the deleted object. In some cases,
however, the desired behavior is actually to delete the object on
the other side of the relationship (for example, for subsidiary
component objects). You can obtain this behavior by using the
relationship body macros:

• os_rel_1_1_body_options()

• os_rel_1_m_body_options()

• os_rel_m_1_body_options()

• os_rel_m_m_body_options()

(Descriptions of all of these macros can be found in Chapter 4,
System-Supplied Macros, of the ObjectStore C++ API Reference.)

These macros are like the body macros already discussed, except
that they have three extra arguments, used for specifying various
options. The fifth argument (the first extra argument) can be either
os_rel_propagate_delete or os_rel_dont_propagate_delete , as in

Example os_rel_m_1_body_options(part,subparts,part,container,
os_rel_propagate_delete, os_auto_index, os_no_index)

The last two arguments are used to indicate whether the current
member and its inverse are indexable. These are described in the
next section.
170 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Indexable Inverse Members

If you want automatic index maintenance enabled for an inverse
data member, you must use one of the options body macros:

• os_rel_1_1_body_options()

• os_rel_1_m_body_options()

• os_rel_m_1_body_options()

• os_rel_m_m_body_options()

(Descriptions of all these macros can be found in Chapter 4,
System-Supplied Macros, of the ObjectStore C++ API Reference.)

These macros are like the body macros discussed earlier, except
that they have three extra arguments, used for specifying various
options.

The sixth and seventh arguments (the second and third extra
arguments) are used to specify whether the current member and
its inverse are indexable, respectively. For nonindexable
members, use os_no_index . For indexable members, use a call to
the macro os_index(), indicating the name of the defining class’s
os_backptr member. Such macro calls have the form

Form of the call os_index(class,member)

where class is the name of the class defining the indexable
member, and member is the name of the os_backptr -valued data
member appearing before indexable members of the class. Here is
an example:

Example os_rel_m_1_body_options(part,subparts,part,container,
os_propagate_delete,
os_auto_index, os_index(part,b))

Many-valued members that have an inverse do not need to be
indexable to be used in a path. For an indexable many-valued
relationship, specify os_auto_index .
Release 5.1 171

Detecting Illegal Pointers
Detecting Illegal Pointers

At the end of each transaction, all persistently allocated data is
written to database memory. Pointers written to the database that
point to transient memory are illegal pointers. In addition, cross-
database pointers from a segment that is not in allow_external_
pointers mode are also illegal (see Referring Across Databases and
Transactions on page 61). If you subsequently retrieve and
dereference an illegal pointer, you most likely will get an
exception.

By default, ObjectStore sometimes checks for illegal pointers, but
other times the checking is optimized out. However, you can
instruct ObjectStore always to check for illegal pointers in a given
segment or database on transaction commit. Keep in mind that
this can be expensive and should really be done for development
and stress testing, but not in production. You can also direct
ObjectStore never to check. See Controlling Illegal Pointer
Checking on page 173.

You can also control the action taken when ObjectStore detects an
illegal pointer, as described in Controlling the Consequences of
Illegal Pointer Detection on page 175.

Note that these functions concern checking for pointers to
transient memory and cross-database pointers. There are other
kinds of database pointers that can cause database integrity
problems. Prominent among these is the dangling reference, the
pointer to a deleted object, as well as the incorrectly typed pointer.
The integrity functions described in the following sections do not
involve checking for such pointers. However the inverse member
and schema evolution facilities do provide integrity control
support in these areas.
172 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Controlling Illegal Pointer Checking

You control whether ObjectStore always detects illegal pointers
with the following member of os_segment :

void set_check_illegal_pointers(os_boolean) ;

Setting behavior for
checking for illegal
pointers

If you pass 1 (true) to set_check_illegal_pointers() , check_illegal_
pointers mode is enabled for the specified segment. Upon commit
of each transaction, for each segment in check_illegal_pointers
mode, ObjectStore always checks each page used in the
transaction. You can specify the default behavior by passing 0
(false) to set_check_illegal_pointers() . The function’s formal
parameter is os_boolean , which is defined as int or long ,
whichever is 32 bits on your platform.

The results of using this function do not remain in effect after the
current process ends, and are invisible to other processes. See
Illegal Pointer Modes Are Process Local on page 177.

Finding illegal pointers
in a given segment

You can use the following member of os_segment to determine
the current mode of a given segment:

 os_boolean get_check_illegal_pointers();

If the segment is in check_illegal_pointers mode, the function
returns 1; otherwise, it returns 0.

Creating new
segments with
checking enabled

For a given database, you can direct ObjectStore to create new
segments in check_illegal_pointers mode by passing 1 to the
following member of os_database :

void set_default_check_illegal_pointers(os_boolean) ;

Finding current mode
of a database

You can determine if a database is in default_check_illegal_
pointers mode with the following member of os_database :

os_boolean get_default_check_illegal_pointers() ;

Enabling pointer
checking by segment
or database

For a given database, you can enable default_check_illegal_
pointers mode and enable check_illegal_pointers mode for each
segment in the database by passing 1 to the following member of
os_database :

void set_check_illegal_pointers(os_boolean) ;
Release 5.1 173

Controlling Illegal Pointer Checking
Passing 0 disables default_check_illegal_pointers mode for the
database and disables check_illegal_pointers mode for each
segment in the database.

Making pointer
checking default
behavior for new
databases

You can direct ObjectStore to create new databases in default_
check_illegal_pointers mode by passing 1 to the following
member of the class objectstore :

static void set_check_illegal_pointers(os_boolean) ;

This also enables check_illegal_pointers mode for each database
currently retrieved by the current process.

Finding default
behavior of current
process

You can determine if the current process enables default_check_
illegal_pointers for newly created databases with the following
member of the class objectstore :

static os_boolean get_check_illegal_pointers() ;

Prevent checking for
illegal pointers

You can direct ObjectStore never to check for illegal pointers with
the following member of the class objectstore :

static void always_ignore_illegal_pointers(os_boolean) ;

Supplying a nonzero value specifies that illegal pointers should
always be ignored by ObjectStore during the current process,
provided the process is not in always_null_illegal_pointers mode.
This includes illegal pointers detected during database reads as
well as database writes.

Determining which
class object is
triggering an error

If you are getting an exception about an illegal pointer during
transaction commit and it is unclear which class object the
exception is being signaled for, you might force the illegal pointer
to be written to the database by ignoring illegal pointers. Then a
subsequent osverifydb operation of the database should tell you
which class/data member has the illegal pointer. With this
information you can inspect your code for all functions that set
this data member, to see if an application error is present.
174 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Controlling the Consequences of Illegal Pointer
Detection

You control what happens when ObjectStore finds an illegal
pointer with the following member of os_segment :

void set_null_illegal_pointers(os_boolean) ;

Default error signaling
for illegal pointers

By default, ObjectStore signals a run-time error when it detects an
illegal pointer. If you pass 1 (true) to this function, then, for
segments in check_illegal_pointers mode, ObjectStore changes the
illegal pointer to 0 (null). You can specify the default behavior by
passing 0 (false) to this function.

The results of using this function do not remain in effect after the
current process ends, and they are invisible to other processes. See
Illegal Pointer Modes Are Process Local on page 177.

Find the current signal
mode of a given
segment

You can use the following member of os_segment to determine
the current mode of a given segment:

 os_boolean get_null_illegal_pointers() ;

If the segment is in null_illegal_pointers mode, the function
returns nonzero; otherwise, it returns 0.

Making illegal pointers
null the default
behavior

For a given database, you can direct ObjectStore to create new
segments in null_illegal_pointers mode by passing 1 to the
following member of os_database :

void set_default_null_illegal_pointers(os_boolean) ;

Finding default
behavior of current
database

You can determine if a database is in default_null_illegal_pointers
mode with the following member of os_database :

os_boolean get_default_null_illegal_pointers() ;

Making illegal pointers
null for a specific
database

For a given database, you can enable default_null_illegal_pointers
mode, and enable null_illegal_pointers mode for each segment in
the database, by passing 1 to the following member of os_
database :

void set_null_illegal_pointers(os_boolean) ;

Passing 0 disables default_null_illegal_pointers mode for the
database and disables null_illegal_pointers mode for each segment
in the database.
Release 5.1 175

Controlling the Consequences of Illegal Pointer Detection
Making nullification of
illegal pointers the
default behavior for
new databases

You can direct ObjectStore to create new databases in default_null_
illegal_pointers mode by passing 1 to the following member of the
class objectstore :

static void set_null_illegal_pointers(os_boolean) ;

This also enables null_illegal_pointers mode for each database
currently retrieved by the current process.

Finding default
behavior of current
process

You can determine if the current process enables default_null_
illegal_pointers for newly created databases with the following
member of the class objectstore :

static os_boolean get_null_illegal_pointers() ;

Setting behavior to
ignore illegal pointers

You can direct ObjectStore to ignore illegal pointers whenever
detected, instead of signaling an exception, by using the following
member of the class objectstore :

static void set_always_ignore_illegal_pointers(os_boolean) ;

Supplying a nonzero value specifies that illegal pointers should
always be ignored by ObjectStore during the current process,
provided the process is not in always_null_illegal_pointers mode.
This includes illegal pointers detected during database reads as
well as database writes.

static void set_always_null_illegal_pointers(os_boolean) ;

Supplying a nonzero value specifies that illegal pointers should
always be set to 0 when detected by ObjectStore during the current
process. This includes illegal pointers detected during database
reads as well as database writes.
176 ObjectStore C++ API User Guide

Chapter 6: Data Integrity
Illegal Pointer Modes Are Process Local

The modes relating to illegal pointers are all process local. The
results of using the functions described here do not remain in
effect after the current process terminates, and the results are
invisible to other processes.

For example, if one process enables null_illegal_pointers mode for
a given segment, another concurrent process can disable null_
illegal_pointers mode for that same segment. The first process will
change illegal pointers to 0, and the second process will signal an
error when it finds an illegal pointer. Moreover, the modes are
transient; they remain in effect only until the process terminates.
So these modes actually determine the nature of illegal pointer
checking and handling for the current process.
Release 5.1 177

Illegal Pointer Modes Are Process Local
178 ObjectStore C++ API User Guide

Chapter 7
Database Access Control

ObjectStore offers a choice of methods for controlling who can
access a database. The information describing techniques you can
use is organized in the following manner:

Access Control Methods 180

Categories of Users 181

Permissions 182

Permission Checks 183

Segment-Level Permissions API 185

Segment-Level Permissions and Locking 190

Permissions and Related Segments 191

Schema Keys 192

Key Mismatch 193

Schema Key API 194

Schema Key Environment Variables 197
Release 5.1 179

Access Control Methods
Access Control Methods

ObjectStore provides two general approaches to database access
control. With one approach, you can set read and write
permissions for various categories of users, at various
granularities. With the other approach, you can require that
applications supply a key in order to access a particular database.

ObjectStore also supports Server authentication services. See
Chapter 2, Server Parameters, of ObjectStore Management for more
information about access control methods.

Setting User Category Permissions

For rawfs databases, you can specify a combination of types of
access to a given directory, database, or segment for a given
category of users.

To specify access restrictions on a rawfs database or directory, use
os_dbutil::chmod() or the utility oschmod . To specify access
restrictions on a segment in a rawfs database, use os_
segment::set_access_control() . See Chapter 2, Class Library, of
the ObjectStore C++ API Reference, as well as Chapter 4, Utilities,
of ObjectStore Management.

For file databases, you can specify a combination of types of access
to a given directory or database for a given category of users. To
do this, use commands of the native operating system. With file
databases, a segment always has the same protections as the
database that contains it; see the discussions beginning with
Categories of Users on page 181.

Restricting Database Access Using Schema Keys

If you want to restrict access to a database’s data and metadata, use
ObjectStore’s schema protection facility. This facility allows you
to associate a schema key (a pair of integers) with a database. Once
a database has been given a schema key, an application must
supply the key in order to access data in the database. See the
discussions beginning with Schema Keys on page 192.
180 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Categories of Users

For a given directory, database, or segment there are three
categories of users:

• Its owner

• Users in its primary group

• Those in its default group, that is, everyone else

Owner of a Directory, Database, or Segment

For file databases and the directories they occupy, the owner is
determined by the native operating system and its commands. For
rawfs databases and the directories they occupy, the owner is
initially the creator, and is subsequently determined by os_
dbutil::chown() and the utility oschown . The owner of a segment is
the owner of the database that contains it.

Only the owner of a segment can modify its protections with os_
segment::set_access_control() .

Group of a Directory, Database, or Segment

For file databases, the primary group of a directory or database is
determined by the native operating system and its commands. For
rawfs databases, the primary group of a directory or database is
initially the owner’s group, and is subsequently determined by
os_dbutil::chgrp() and the utility oschgrp . The primary group of a
segment is initially the group of the containing database, and is
subsequently determined by os_segment::set_access_control() .

Group of a User

A user’s group membership is determined by the native operating
system and its commands.
Release 5.1 181

Permissions
Permissions

For rawfs databases, you can specify access permissions at three
levels of granularity: directory, database, and segment.

For file databases, you can specify access permissions at two
levels of granularity: directory and database.

Directory Permissions

At any time, each user has zero or more of the following two types
of access to a given directory:

• Write: allows the user to create and delete databases and
directories contained in it. For file databases, necessary for the
user to update databases it contains.

• Read: allows the user to list its content. For file databases,
necessary for the user to read databases it contains. Note that
rawfs directories do not follow the UNIX convention in
distinguishing read and execute access.

Database Permissions

At any time, each user has zero or more of the following two types
of access to a given database:

• Write: necessary for the user to open the database for update,
and, for file databases, to create and modify its data and
metadata

• Read: necessary for the user to open the database for read, and,
for file databases, to read the data and metadata it contains

Segment Permissions

For a given segment in a rawfs database, each user has zero or
more of the following two types of access to the segment:

• Write: necessary for the user to update the data it contains

• Read: necessary for the user to read the data it contains

Each new rawfs segment grants both read and write permissions
to all three categories of users.
182 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Permission Checks

Directory-Level Access

To create or delete databases in a given directory, you must have
write access to the directory. To list the contents of a directory,
you must have read access to the directory.

Database-Level Access

For an application to open a database for update, the user that
launched the application must have write permission for the
database. For file databases, the user must also have write
permission for the directory containing the database.

For an application to open a database for read, the user must have
read permission for the database. For file databases, the user must
also have read permission for the directory containing the
database.

If a user does not have the appropriate permissions when opening
a database for read or update, ObjectStore signals err_permission_
denied.

Segment-Level Access

Consider a segment in a rawfs database. In each transaction, the
first time an application attempts to lock (for read or write) data
in the segment, ObjectStore checks the access permissions granted
to the user that launched the application.

For the application to perform write access on the segment, the
user must have write permission for the segment. For file
databases, the user must also have write permission for the
directory containing the database that contains the segment, as
well as write permission for the database.

For the application to perform read access on the segment, the
user must have read permission for the segment. For file
databases, the user must also have read permission for the
directory containing the database that contains the segment, as
well as read permission for the database.
Release 5.1 183

Permission Checks
If a user does not have the appropriate permissions when
attempting initial read or write access to a segment, ObjectStore
signals err_permission_denied.
184 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Segment-Level Permissions API

The programming interface for rawfs database segment-level
permissions is provided by the following functions:

• Members of the class os_segment

• os_segment::set_access_control()

• os_segment::get_access_control()

• os_database::get_all_segments_and_permissions()

These and other ObjectStore functions are described in detail in
Chapter 2, Class Library, of ObjectStore Management.

Establishing Access Permissions with os_segment_access

Instances of the class os_segment_access serve to associate zero
or more access types with a group of a specified name, as well as
with the default group (see Categories of Users on page 181).

By associating an os_segment_access with a segment (using os_
segment::set_access_control()), you specify the segment’s
associated primary group and the segment’s permissions.

The owner of a segment always has both read and write access to
it.

Access type
enumerators

The possible combinations of access types are represented by the
following enumerators:

• os_segment_access::no_access

• os_segment_access::read_access

• os_segment_access::read_write_access

Note that write access without read access cannot be specified.

These enumerators are used as arguments to some of the members
of os_segment_access .

You must be the owner of a database to set the permissions on its
segments.

For more information, see os_segment_access in Chapter 2 of the
ObjectStore C++ API Reference.
Release 5.1 185

Segment-Level Permissions API
os_segment_access::set_primary_group()

There are two overloadings of this function. The first is declared
as follows:

void set_primary_group(
const char* group_name,
os_int32 access_type

) ;

This function associates a specified combination of access types
with a group of a specified name. group_name is the name of the
group. access_type is os_segment_access::no_access , os_
segment_access::read_access , or os_segment_access::read_
write_access .

The second overloading is declared as follows:

void set_primary_group(
os_int32 access_type
);

This function associates a specified combination of access types
with a group of an unspecified name. access_type is os_segment_
access::no_access , os_segment_access::read_access , or os_
segment_access::read_write_access .

For more information, see os_segment_access::set_primary_
group() in Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::get_primary_group()

This function is declared as follows:

os_int32 get_primary_group(
const char** group_name = 0

) const ;

It returns the types of access associated with the primary group of
the os_segment_access . The function sets group_name , if
supplied, to point to the name of that group.

For more information, see os_segment_access::get_primary_
group() in Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::set_default()

This function is declared as follows:

void set_default(
186 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
os_int32 access_type
);

This function associates a specified combination of access types
with the default group. access_type is os_segment_access::no_
access , os_segment_access::read_access , or os_segment_
access::read_write_access .

For more information, see os_segment_access::set_default() in
Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::get_default()

This function is declared as follows:

os_int32 get_default() const ;

It returns the types of access associated with the default group for
the os_segment_access .

For more information, see os_segment_access::get_default() in
Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::os_segment_access()

This function has three overloadings. The first is declared as
follows:

os_segment_access() ;

This creates an os_segment_access that associates no_access
with both the default group and the group named group_name .

The second overloading is declared as follows:

os_segment_access(
 const char* primary_group,
 os_int32 primary_group_access_type,
 os_int32 default_access_type

) ;

This creates an instance of os_segment_access that associates
primary_group_access_type with the group named primary_
group , and associates default_access_type with the default group.
primary_group_access_type and default_access_type are each os_
segment_access::no_access , os_segment_access::read_access ,
or os_segment_access::read_write_access .

The third overloading is declared as follows:
Release 5.1 187

Segment-Level Permissions API
os_segment_access(
 const os_segment_access& source

) ;

This creates a copy of source ; that is, it creates an os_segment_
access that stores the same group name, and associates the same
combinations of access types with the same groups.

For more information, see os_segment_access::os_segment_
access() in Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::operator =()

This function is declared as follows:

os_segment_access& operator= (
const os_segment_access& source

) ;

This function modifies the os_segment_access pointed to by this
so that it is a copy of source , that is, so that it stores the same group
name as source , and associates the same combinations of access
types with the same groups. It returns a reference to the modified
os_segment_access .

For more information, see os_segment_access::operator =() in
Chapter 2 of the ObjectStore C++ API Reference.

os_segment_access::~os_segment_access()

The destructor frees memory associated with the deleted instance
of os_segment_access .

For more information, see os_segment_access::~os_segment_
access() in Chapter 2 of the ObjectStore C++ API Reference.

os_segment::set_access_control()

This function is declared as follows:

void set_access_control(const os_segment_access
*new_access) ;

This associates the specified os_segment_access with the
specified segment. The os_segment_access determines the
primary group and permissions for the os_segment . You must be
the owner of a database to set the permissions on its segments.
188 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
If you are not the owner of a database but nevertheless have write
access to it, you have the ability to create a segment in the database
but not to modify its permissions. Since newly created segments
allow all types of access to all categories of users, segments
created by nonowners necessarily have a period of vulnerability
between creation time and the time at which the owner restricts
access with os_segment::set_access_control() .

For more information, see os_segment::set_access_control() in
Chapter 2 of the ObjectStore C++ API Reference.

os_segment::get_access_control()

This function is declared as follows:

os_segment_access *get_access_control() const ;

It returns a pointer to the segment’s associated os_segment_
access , which indicates the segment’s primary group and
permissions.

For more information, see os_segment::get_access_control() in
Chapter 2 of the ObjectStore C++ API Reference.

os_database::get_all_segments_and_permissions()

This member of os_database is declared as follows:

void get_all_segments_and_permissions(
os_int32 max_to_return,
os_segment** segs,
os_segment_access** controls,
os_int32 &n_returned

) ;

Provides access to all the segments in the specified database,
together with each segment’s associated os_segment_access . The
nth element of controls points to the os_segment_access
associated with the segment pointed to by the nth element of segs .
The arrays controls and segs must be allocated by the user. max_
to_return is specified by the user.

For more information, see os_database::get_all_segments_and_
permissions() in Chapter 2 of the ObjectStore C++ API Reference.
Release 5.1 189

Segment-Level Permissions and Locking
Segment-Level Permissions and Locking

When you change a segment’s permissions, ObjectStore locks the
entire segment for write. This means that permission changes at
the segment level are transaction consistent (database-level
changes are not transaction consistent). But this can also adversely
affect the performance of the application performing the change,
as well as of concurrent applications, if there is a lot of contention
for the segment’s pages.
190 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Permissions and Related Segments

Remember to set the permissions on related segments in a
compatible way. That is, if an operation on one segment triggers
access to another segment, do not forget that both segments must
have the appropriate permissions.

For example, consider a collection in one segment that has an
index in another segment. If you perform a query on the collection
that uses the index, do not forget that both segments must be
accessible for read.

Similarly, given a configuration that spans segments, unexpected
permission failures can occur if all the configuration’s segments
do not have the same protections.
Release 5.1 191

Schema Keys
Schema Keys

If you want to restrict access to a database’s data and metadata, use
ObjectStore’s schema protection facility. This facility allows you
to associate a schema key (a pair of integers) with a database. Once
a database has been given a schema key, an application must
supply the key in order to access data in the database.

Database Schema Keys

At any time a database can have a schema key that consists of a
pair of four-byte unsigned integers. By default, a database has no
schema key. You specify a key for a database with os_
database::change_schema_key() . You can also freeze the schema
key of a given database, preventing any change to the key, even
by applications with a matching key. You do this with os_
database::freeze_schema_key() . See Schema Key API on page 194.

If a database has a schema key, it can only be accessed by an
application that supplies a matching schema key. See Application
Schema Keys on page 192 as well as Key Mismatch on page 193.

Application Schema Keys

As is the case with ObjectStore databases, ObjectStore
applications can have a schema key that consists of a pair of four-
byte unsigned integers. By default, an application has no current
schema key. You specify a key for an application with
objectstore::set_current_schema_key() . See Schema Key API on
page 194. For ObjectStore tools and for ObjectStore utilities
executed from the command line, you specify the schema key
with environment variables. See Schema Key Environment
Variables on page 197.
192 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Key Mismatch

When an application first attempts to access the data or metadata
of a protected database (one with a schema key), an err_schema_
key is signaled if the application has no key or has a different key
from the database. ObjectStore issues an error message like the
following:

Error using schema keys
<err-0025-0151>The schema is protected and the key, if provided,
did not match the one in the schema of database db1.
(err_schema_key)

If the database’s open count goes to 0 and then is increased to 1
again, the schema protection key is checked again at the first
attempted access. In general, the schema protection key is checked
at the first attempted access after each database open that
increments the open count from 0 to 1.

If an application is linked with a version of ObjectStore that does
not support schema protection, and the application tries to access
a database with a schema key, err_uninitialized is signaled.
ObjectStore issues an error message like the following:

The database is uninitialized.
<err-0025-0508>The database db1 is corrupted or uninitialized.
Possibly the transaction that created this database aborted.
Use osrm to remove the database, and try again. (err_uninitialized)

Permissible operations
on a protected
database

You can perform certain operations on a database that are not
considered to access the database, since they do not require use of
the database’s schema. These operations include opening and
copying a database. You can perform these operations on a
protected database without knowing its key.

Caution when using
the oscp utility

In the case of the oscp utility , however, specifying the correct key
can nevertheless affect the operation’s result. If you specify the
correct key, the copy has a different db_id from the original;
otherwise, the copy has the same db_id as the original. In either
case, the copy has the same key as the original, and the copy’s key
is frozen if and only if the original’s is. For more information on
the oscp utility, see oscp: Copying Databases in Chapter 4 of
ObjectStore Management.
Release 5.1 193

Schema Key API
Schema Key API

The programming interface for schema protection is provided by
the following functions:

• os_database::change_schema_key()

• objectstore::set_current_schema_key()

• os_database::freeze_schema_key()

Setting a Database Schema Key with change_schema_key()

You set the schema key of a database with os_database::change_
schema_key() . This function is declared as follows:

void change_schema_key(
os_unsigned_int32 old_key_low,
os_unsigned_int32 old_key_high,
os_unsigned_int32 new_key_low,
os_unsigned_int32 new_key_high

) ;

Call this function from within an update transaction. The
specified database must be opened for update, otherwise
ObjectStore signals err_opened_read_only, and issues an error
message like the following:

<err-0025-0155> Attempt to change the schema key of database
db1, but it is opened for read only.

If the database has had its key frozen, err_schema_key is signaled,
and ObjectStore issues an error message like the following:

err_schema_key
<err-0025-0152> The schema key of database db1 is frozen
and may not be changed.

old_key_low and old_
key_high

If the database already has a schema key at the time of the call,
old_key_low must be the first component of the key and old_key_
high must be the second component, or err_schema_key is
signaled, and ObjectStore issues an error message like the
following:

Error using schema keys
<err-0025-0158>Unable to change schema key of database db1.
The schema is already protected and the key provided did not match
the old key in the schema. (err_schema_key)
194 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
If the database has no schema key, old_key_low and old_key_high
are ignored.

new_key_low and
new_key_high

new_key_low specifies the first component of the database’s new
schema key, and new_key_high specifies the second component. If
both these arguments are 0, calling this function causes the
database to have no schema key.

For more information, see os_database::change_schema_key() in
Chapter 2 of the ObjectStore C++ API Reference.

Setting Application Schema Keys with set_current_schema_key()

The function objectstore::set_current_schema_key() can be used
to set or unset the schema key of the current application. This
function is declared as follows:

void objectstore::set_current_schema_key(
os_unsigned_int32 key_low,
os_unsigned_int32 key_high

) ;

Call this function only after calling objectstore::initialize() ,
otherwise err_schema_key is signaled and ObjectStore issues an
error message like the following:

<err-0025-0153> The schema key may not be set until after
objectstore::initialize has been called.

key_low and key_high key_low specifies the first component of the schema key, and key_
high specifies the second component. If both these arguments are
0, calling this function causes the application’s schema key to be
determined as for an application that has not called this function.

If an application has not called this function, its key is determined
by the values of OS_SCHEMA_KEY_HIGH and OS_SCHEMA_KEY_
LOW (see Schema Key Environment Variables on page 197). If
neither variable is set, the application has no current schema key.

For more information, see objectstore::set_current_schema_key()
in Chapter 2 of the ObjectStore C++ API Reference.

Freezing a Database Key with freeze_schema_key()

Use os_database::freeze_schema_key() to freeze a database’s key,
preventing any change to the key, even by applications with a
matching key. This function is declared as follows:
Release 5.1 195

Schema Key API
void os_database::freeze_schema_key(
os_unsigned_int32 key_low,
os_unsigned_int32 key_high

) ;

Call this function from within an update transaction. The
specified database must be opened for update, otherwise
ObjectStore signals err_opened_read_only, and issues an error
message like the following:

<err-0025-0156> Attempt to freeze the schema key of database db1,
but it is opened for read only.

If the database is schema protected and has not been accessed
since the last time its open count was incremented from 0 to 1, the
application’s schema key must match the database’s schema key.
If it does not, err_schema_key is signaled, and ObjectStore issues an
error message like the following:

<err-0025-0159>Unable to freeze the schema key of database db1.
The schema is protected and the key provided did not match the key
in the schema.

key_low and key_high key_low and key_high must also match the database’s schema key,
or else err_schema_key is signaled.

If the database’s schema key is already frozen, and you specify the
correct key, the call has no effect.

For more information, see os_database::freeze_schema_key() in
Chapter 2 of the ObjectStore C++ API Reference.
196 ObjectStore C++ API User Guide

Chapter 7: Database Access Control
Schema Key Environment Variables

If you run certain ObjectStore tools and utilities on schema-
protected databases, set the ObjectStore client environment
variables OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH to
specify the schema key of the databases to be accessed.

Normally, you specify a key for an application with
objectstore::set_current_schema_key() . These environment
variables are provided since it is not possible for you to set the
schema key of a tool or utility programmatically. ObjectStore
environment variables are described in Chapter 3, Environment
Variables, of ObjectStore Management.

The tools and utilities for which these variables must be set
include the following:

 Utility Function Refer to Chapter 4, Utilities, in
ObjectStore Management

oscompact Removes deleted space in
specified databases or segments.

oscompact: Compacting
Databases

osexschm Lists the names of all classes in
the schema referenced by the
specified database.

osexschm: Displaying Class
Names in a Schema

ossevol Modifies a database and its
schema so that it matches a
revised application schema.

ossevol: Evolving Schemas
(also Schema Evolution with
ossevol on page 204 of this
publication)

ossg ObjectStore schema generator. ossg: Generating Schemas

ossize Displays the size of the specified
database and the sizes of its
segments.

ossize: Displaying Database Size

osverifydb Verifies all pointers and
references in a database.

osverifydb: Verifying Pointers
and References in a Database
(also Using osverifydb to Verify
Pointers and References on
page 206 of this publication)
Release 5.1 197

Schema Key Environment Variables
These environment variables determine an application's schema
key when an ObjectStore application attempts to access data in a
schema-protected database, and either one of the following is
true:

• The application did not set the schema key using
objectstore::set_current_schema_key() .

• The application's most recent call to object-store::set_current_
schema_key() specified 0 for both arguments.

Keep in mind that when the environment variables determine an
application's schema key, all schema-protected databases that the
application accesses must have the same schema key.

By default, neither OS_SCHEMA_KEY_LOW nor OS_SCHEMA_
KEY_HIGH is set.

Building applications
that allow utility use on
protected databases

To allow your customers to use an ObjectStore utility on a
database that you have protected, build an application that calls
the member of the class os_dbutil that corresponds to the utility.
This application can specify the schema key with objectstore::set_
current_schema_key() (see Chapter 2 in ObjectStore C++ API
Reference).

Some ObjectStore tools (such as the ossg utility) cannot be
invoked from the ObjectStore API. To allow your customers to
use such a tool on a database that you have protected, build an
application that spawns the tool as a child process, and specify the
key of the child process by setting the environment variables from
within the application.
198 ObjectStore C++ API User Guide

Chapter 8
Schema Evolution

This chapter provides an introduction to ObjectStore schema
evolution. Schema evolution is a complex facility; only the most
basic schema evolution operations are discussed in this chapter.
Detailed coverage of this topic is found in Chapter 9, Advanced
Schema Evolution, in the ObjectStore Advanced C++ API User
Guide.

The material is organized in the following manner:

What Is Schema Evolution? 200

Making Use of Schema Evolution 201

Schema Evolution with ossevol 204

Designing a Schema Evolution Application 207

Implementing Schema Evolution 208

Deploying Schema Evolution 210
Release 5.1 199

What Is Schema Evolution?
What Is Schema Evolution?

The term schema evolution refers to the changes undergone by a
database’s schema during the course of the database’s existence.
It refers especially to schema changes that potentially require
changing the representations of objects already stored in the
database.

ObjectStore provides some basic utilities to use in uncomplicated
circumstances, as well as a schema evolution interface that lets
you write a specialized schema evolution application. With these
tools, you can redefine the classes in a database’s schema to
accommodate changes. ObjectStore can modify the schema and
change the representations of any existing instances in the
database to conform to the new class definitions.

Without the the schema evolution facility, you can only change a
database schema by adding new classes to it. You cannot redefine
a class already contained in the schema, except in ways that do not
affect the layout that the class defines for its instances. For
example, adding a nonstatic data member changes instance
layout, but adding a nonvirtual member function does not.
200 ObjectStore C++ API User Guide

Chapter 8: Schema Evolution
Making Use of Schema Evolution

It is difficult to predict exactly when you might need to redefine a
class or classes in a database. Schema evolution is a complex
operation. If it requires that you write a special schema evolution
application, the process must be planned and executed very
methodically with many checkpoints along the way. Schema
evolution is a very powerful tool. It allows you to change the
semantics of the objects in your database. As such, it poses the
very real danger of user-introduced data corruption.

Planning Your Schema Evolution

As you develop and implement your schema evolution plan, you
must ensure that

• No unanticipated results affected the data.

• The evolution was complete.

When planning your schema evolution, it is essential to anticipate
all your requirements for the evolution, and to plan your
application carefully around the desired outcome. A good rule of
thumb is to try your schema evolution application on small
databases to investigate the process, determine what works, and
locate anything that might introduce complications.

Planning in the development phase of schema evolution is critical,
but of equal importance are careful testing and validation of your
implementation using a variety of methods. A conservative
approach is best, so plan for the stages of your schema evolution
project in the following sequence.

Restriction note When planning a schema evolution, be aware that if the database
is greater than n% of OS_AS_SIZE (the environment variable
establishing the size of the client’s persistent storage space),
schema evolution does not work. The value of n% varies greatly
depending on the specifics of the applications involved. Consult
Object Design Technical Support for advice about the amount of
persistent storage space required by schema evolution for your
particular configuration.

Regardless of the method used to perform schema evolution,
before evolution starts, use the osverifydb -all utility to check for
Release 5.1 201

Making Use of Schema Evolution
database errors. (See Using osverifydb to Verify Pointers and
References on page 206.)

Sequence of Planning Your Schema Evolution

1 Determine if you can use the ossevol utility to update a
database’s schema, or if you must design a special schema
evolution application. You cannot, for example, use ossevol to
update a database if the database contains instances of os_
Dictionary or os_rDictionary . (See Schema Evolution with
ossevol on page 204 for more information).

2 Plan the schema evolution model in cases where you require a
special application.

3 Implement your design.

4 Test your implementation and troubleshoot.

5 If the facility is to be used to upgrade databases currently in
use, obtain some active databases for predeployment
validation.

6 Limit your initial deployment to validated customers, followed
by general deployment to all customers.
202 ObjectStore C++ API User Guide

Chapter 8: Schema Evolution
Schema evolution
decision tree

no

yes

yes

no

• Select early deployment DBs to further
validate

• If successful, deploy generally

Use ossevol ?

Design Evolution Process

Implement Evolution
Process Model

Test Implementation
(small DB)

Contact Technical Support for

troubleshooting assistanceErrors?
Release 5.1 203

Schema Evolution with ossevol
Schema Evolution with ossevol

The ossevol utility modifies a database and its schema so that it
matches a revised application schema. It handles many common
cases of schema evolution. Running the ossevol utility changes
the physical structure of your database, so the importance of
backing up your database before running this utility is critical.

Use this utility when you are performing simple operations such
as adding or deleting data members that do not require a special
evolving application.

Evolving schemas that
contain dictionaries

To evolve the schema of a database that contains instances of os_
Dictionary or os_rDictionary , you cannot use the ossevol utility;
you must create a schema evolution application. See
Implementing Schema Evolution on page 208.

ossevol Options

The ossevol options are described in the following table, and
further information is available in ObjectStore Management,
Chapter 4, Utilities. Object Design recommends that you use the
-task_list option to make sure you understand the steps that the
evolution will be taking before actually performing the schema
evolution.

-task_list filename Specifies that the ossevol utility should produce a
task list and place it in the file specified by filename.
Use - (hyphen) for stdout . When you specify this
option, ObjectStore does not perform schema
evolution.

The task list consists of pseudofunction definitions
that indicate how the migrated instances of each
modified class would be initialized. This allows you
to verify the results of a schema change before you
migrate the data.

-classes_to_be_removed class-name(s) Specifies the names of the classes to be removed.

-classes_to_be_recycled class-name(s) Specifies the names of the classes whose storage
space can be reused. By default, the storage
associated with all classes is recycled.
204 ObjectStore C++ API User Guide

Chapter 8: Schema Evolution
Once you have completed the schema evolution process, you can
use osscheq (see Using osscheq to Verify Schema Changes on
page 206) and osverifydb (see Using osverifydb to Verify Pointers
and References on page 206) to compare the old and new
schemas, and to verify that the pointers and references are sound.

-drop_obsolete_indexes { yes | no } Specifies whether or not obsolete indexes
encountered in the course of the evolution should be
dropped. The default is no , which means that they
are not dropped.

-local_references_are_db_relative Specifies that all local references are relative to the
database in which they are encountered. The default
is no .

-resolve_ambiguous_void_pointers Resolves ambiguous void pointers to the outermost
enclosing collocated object. The default is no .

-upgrade_vector_headers Upgrades the representation of vector objects in the
evolved database to a format that allows them to be
accessed by clients built by different types of
compilers.

You do not need to convert vector objects if the
database will be accessed only by applications that
were compiled with the same type of compiler. This
option is for databases being used in an
environment that includes multiple types of
compilers. It is also useful if you are switching from
OSCC (the ObjectStore C++ compiler) to a native
compiler that uses vector headers, such as SGI C++.

Use this option only with databases that meet at
least one of these conditions:

• Created before ObjectStore Release 5.1

• Built by applications compiled with a cfront or
cfront-derived compiler

You do not need to use this option if you only intend
to access the schema from applications that were
compiled with cfront, since cfront does not need
vector headers.

-explanation_level n A number from 1 to 3; primarily an internal
debugging aid.
Release 5.1 205

Schema Evolution with ossevol
Using osscheq to Verify Schema Changes

The osscheq utility is useful in detecting whether a change to a
schema causes it to be incompatible with the other schemas in an
application. Check for any incompatibilities immediately
following schema evolution. When schemas are not compatible,
execution of the application fails because of a schema validation
error.

Invoke the osscheq utility as follows:

osscheq test1 test2

Comparison
technique

The comparison technique depends on the types of schemas being
compared. When comparing compilation or application schemas,
ObjectStore uses the technique used by the schema generator
when building compilation or application schemas. When one of
the schemas being compared is a database schema, the
comparison technique is the same as that used to validate an
application when it accesses a database.

This form of checking is the minimal checking required to ensure
that the application and the database use the same layout for all
shared classes.

A complete description of osscheq and other ObjectStore utilities
can be found in Chapter 4, Utilities, of ObjectStore Management.

Using osverifydb to Verify Pointers and References

This utility verifies all pointers and references in a database. Using
this utility prior to attempting schema evolution and again after
schema evolution establishes that the database pointers and
references are sound. The options available for this utility and
additional information are available in ObjectStore Management,
Chapter 4, Utilities.

Also run any application-specific verification tools available. This
is particularly important because osverifydb can only detect
problems at a fairly low semantic level.
206 ObjectStore C++ API User Guide

Chapter 8: Schema Evolution
Designing a Schema Evolution Application

The most important factor in planning schema evolution is the
time and attention you apply to the details involved in your
particular application. Plan the schema evolution of your
application with the utmost care. What are the specific objectives
your schema evolution application must accomplish?

Determine, for example, if you must write an evolution
application or if you can accomplish your objective using the
ObjectStore utility ossevol . For the most part, if you are adding or
deleting a data member, you might make use of this utility. This
depends on the kind of data member, however. A data member
that requires a nondefault value (nonzero), or the need to add a
C++ reference, would require that you write a special schema
evolution application.

Example Using ossevol for Schema Evolution

Changing a class
value

As a simple illustration, suppose that a customer database uses
address objects that have a field for a five-digit ZIP code. With the
schema evolution facility, you can change the definition of the
class address so that the value type of the data member
address::zip_code is char[9] instead of char[5] — or, better yet, you
can use a new or existing class, string or zip_code , to serve as the
new value type in place of char[5] .

If you invoke schema evolution on the database, using the new
class definitions, ossevol modifies the database’s schema and
changes each address object to use the new type of object for its
address::zip_code (adjusting the size of the address::zip_code
field, if necessary).

The value contained in the new field can either be determined by
a user-defined routine that has access to the unevolved data, or it
can be set automatically. When set automatically, the new value is
set by assignment from the old value, if possible, and otherwise it
is set to a default value (such as 0 or the result of executing a
constructor that initializes each member to 0).
Release 5.1 207

Implementing Schema Evolution
Implementing Schema Evolution

If you have determined that you cannot achieve your objectives
using the ObjectStore utility ossevol , you must then plan the
specific steps required for your application’s schema evolution.
Be sure to include all the phases of preparation and testing
described in this section.

Because of the potential complexity of the schema evolution
process, it is important to incorporate as many safeguards as
possible into your schema evolution application, to test it
thoroughly using small databases, and to validate that the schema
evolution has been successful. This chapter provides basic
guidelines, examples, and validation techniques.

For explanations and examples of more complex schema
evolution issues, see Chapter 9, Advanced Schema Evolution, in
the ObjectStore Advanced C++ API User Guide.

The Schema Evolving Application

What to include Regardless of the evolution you intend to perform, make sure you
plan to include the following in your evolution application:

• Before evolution starts, use osverifydb -all to make sure the
database returns a 0 result code indicating no errors (that is,
you are starting with a clean, error-free database).

• Tag any databases with a state block in which the states are, for
example, operational, evolving, or validating.

• Tag any databases that have version information that is only
updated after an evolution has been deemed successful
(osverifydb -all returned 0).

• In your application, include an instantiation for each os_
Dictionary or os_rDictionary instantiation in the database being
evolved.

• Ensure that an application tests the version information and the
state information before resuming normal operations.

What to avoid Delete os_cursor objects before schema evolution (schema
evolution cannot handle os_cursor objects).

Unions require a very complicated custom schema evolution
application.
208 ObjectStore C++ API User Guide

Chapter 8: Schema Evolution
Validation Activities

The following is a checklist of validation tasks you should
perform to confirm that the schema evolution actually
accomplished your objectives and did not make unexpected
alterations to the database.

• The first part of the validation stage should rerun osverifydb -all
and again return a 0 result code indicating no errors.

• Inspect the database in light of the the semantics of the data
stored there (as much data as possible should be validated).

• If the database is very large, do some statistical probing of the
data.

Testing

Some additional testing you can perform to ensure that the
database is as you expect includes

• Write a test harness to exercise the database completely.

Troubleshooting

If you encounter difficulties when performing or testing the
results of any schema evolution operation, you must debug
carefully with the assistance of Object Design Technical Support.
You must supply support with the

• Preevolution database

• Your schema evolution application

• Stack trace of the time of failure
Release 5.1 209

Deploying Schema Evolution
Deploying Schema Evolution

Once you are satisfied that the schema evolution application you
have designed and tested is accomplishing your objectives
successfully, you can begin deployment. It is advisable to do this
in phases as well.

First get some of your customers’ databases and initiate schema
evolution on those databases. Validate the results.

General deployment
tip

Be sure to deploy in stages by validating that your schema
evolution application works on several small customer databases
before you make it generally available.
210 ObjectStore C++ API User Guide

Chapter 9
Using Asian Language
String Encodings

There are many standards for encoding Asian characters. In
Japan, for example, five encodings are in broad use: JIS, SJIS, EUC,
Unicode, and UTF-8.

Usually an application uses one encoding for all strings to be
stored inside a database. The encoding chosen is most often the
one used in the operating system of the ObjectStore client.

However, if the application has heterogeneous clients using a
variety of encodings, conversion from one encoding to another is
necessary at some point. The clients could be traditional
ObjectStore client processes or thin-client browsers that emit data
in different encodings.

The Class Library: os_str_conv

This class library provides conversion facilities for various
Japanese language text encoding methods: EUC, JIS, SJIS,
Unicode, and UTF8.

The library provides a facility to detect the encoding of a given
string. This is useful for applications in which a client might send
strings in an unknown format, a common problem for Internet
applications.

The most common application of this class is conversion between
EUC and SJIS to provide sharing of data from UNIX <-> Windows
applications. JIS is commonly used for email. Applications
normally store data in a homogeneous format inside a database,
Release 5.1 211

and incoming strings are converted as required before they are
persistently allocated. Outgoing strings can also be converted to
the client’s native encoding. For Web applications this outgoing
conversion is usually not necessary since internationally aware
browsers (Netscape 2.0 and above, for example) can automatically
detect and convert various incoming formats themselves.

The class library currently consists of a single class, os_str_conv ,
instantiated once for each conversion path required:

os_str_conv(encode_type dst, encode_type src=automatic);

Where

enum encode_type { /* string encode type ------------------- */
UNKNOWN=0, /* convert or automatic detect fail */
AUTOMATIC, /* detect automatically */
AUTOMATIC_ALLOW_KANA,

 /* detect automatically, allow half-width-kana */
ASCII, /* ASCII */
SJIS, /* Shift-JIS */
EUC, /* EUC */
UNICODE, /* Unicode (can’t automatic detect) */
JIS, /* JIS */
UTF8 /* UTF-8 (can’t automatic detect) */
/* add new encode type here ! */
};

Here is an example. Given an instance of os_str_conv , such as

os_str_conv *sjis_to_euc = new os_str_conv(os_str_conv::EUC,
os_str_conv::SJIS);

A conversion can be done on char* sjis_src :

char *euc_dest = new char[sjis_to_euc->get_converted_size(
sjis_src)];

sjis_to_euc->convert(euc_dest, sjis_src);

The call to get_converted_size() is not strictly required; it is
provided for the convenience of the user to allocate buffers of
appropriate size. Because it requires examination of the entire
source string, time to complete it is proportional to the source
string length.

Automatic Detection of a Source String Encoding

Sometimes, it is not possible for an application to know the
encoding of a given source string. os_str_conv provides methods
212 ObjectStore C++ API Reference

Chapter 9: Using Asian Language String Encodings
that can analyze a given string and determine its encoding. For
example:

os_str_conv *to_euc = new os_str_conv(
os_str_conv::AUTOMATIC); len =

 to_euc->get_converted_size(unknown_src);
if (len)
{
char *euc_dest =

new char[to_euc->get_converted_size(unknown_src)];
to_euc->convert(euc_dest, sjis_src);
 }
else
{

// couldn’t convert -- application needs to handle this!
}

Important Note: The autodetector is not guaranteed to work in all
cases.

If it fails inside get_converted_size , get_converted_size returns 0
to indicate the failure. Be careful not to allocate strings based on
its return value without checking for failure!

Unfortunately, no automatic detection algorithm can correctly
distinguish EUC from SJIS in all cases because of overlap in their
assignment ranges. Clever algorithms exploit patterns typical of
real text. This implementation is reasonably straightforward. The
most difficult problem (distinguishing between SJIS half-width
kana and EUC) is avoided by asking the user to choose between
the two possible interpretations. In nearly all cases, os_str_
conv::AUTOMATIC is the appropriate setting.

In practice, the problems of ambiguity are not likely to affect
applications, since usually incoming text is all in the single
encoding defined by the operating system used when generating
it. Autodetect can be used at the beginning of a session only, and
it can be reasonable to assume that it will not change.

As mentioned earlier, there are areas in the EUC and SJIS
encodings that overlap, and so a given string might be valid in
either encoding. This makes autodetection ambiguous.

There are two ambiguous cases:

• The half-width kana of SJIS. It is possible for a string consisting
entirely of bytes in this range to be either SJIS or EUC. This is
the most troublesome case.
Release 5.1 213

• An obscure range of SJIS and EUC that overlaps. The characters
represented by this range are rarely used, so it is highly
unlikely that a string would consist entirely of such characters.

Detection is handled according to these rules:

1 The algorithm examines each character of the string in
sequence until the encoding is determined. Therefore, a string
beginning with an unambiguous substring followed by an
ambiguous substring is detected according to the first
substring.

2 Strings consisting entirely of the second ambiguous type are
handled as unknown. As mentioned, this case is very unlikely.

3 All SJIS half-width kana are single-byte encodings. Therefore,
a string consisting entirely of an odd number of bytes in the
SJIS half-width kana range is considered SJIS.

4 A string beginning with an even number of bytes in the SJIS
half-width kana range is ambiguous until the following
characters are examined according to normal detection rules.

5 A string beginning with an odd number of bytes in the SJIS
half-width kana range requires special examination of the last
character. If this is an EUC first-byte code, and it is followed by
a valid EUC second-byte code, then the string is EUC.
However, if the following code is not a valid EUC second-byte
(it might be ordinary ASCII), then the final character is
interpreted as SJIS half-width kana and the string is interpreted
as SJIS.

6 A string consisting entirely of an even number of bytes in the
SJIS half-width kana range is ambiguous. It is quite possible for
such a string to appear in real applications. The os_str_
conv::automatic setting causes the autodetector to interpret this
case as SJIS. However, if os_str_conv::automatic_allow_kana ,
this case is interpreted as unknown. Ojbect Design believes that
the SJIS interpretation is correct for most cases.

Japanese developers are aware of the problems handling the half-
width SJIS kana, and so they try to avoid them by using full-width
SJIS kana instead.

Unlike EUC and SJIS, JIS is a modal encoding that uses <Esc> to
enter and exit from multibyte mode. Detecting JIS strings is
accomplished by searching for these <Esc> characters.
214 ObjectStore C++ API Reference

Chapter 9: Using Asian Language String Encodings
How to Instantiate the Converter

The class os_conv_str must be instantiated once for each
conversion path required for your application.

Guidelines for Extensions to os_str_conv

Users can extend this class by inheriting from it. This could be
useful for developers who want to override the existing
autodetector.

Additional encodings can be appended to the existing
enumeration. Note that os_str_conv depends on the ordering of
the existing encodings, so if you extend os_str_conv , additional
encodings must appear after the ones already provided.

What Are the Different Modes and Their Meanings?

Notes on encodings For most purposes, there is a one-to-one mapping for characters
to and from each of these encodings, so no semantic information
is lost during conversion. There are four exceptions to this rule:

• EUC and Unicode are a superset of SJIS and so roundtrip
EUC/Unicode<->SJIS is not possible for all EUC/Unicode
Japanese characters.

• There are a handful of cases of pairs of SJIS characters that map
to a single character in Unicode.

The second class of exceptions is considered extremely minor
in practice, and is the result of different editions (1983 and 1990)
of the JIS as the basis of SJIS and Unicode.

• Third, SJIS contains some special characters that are printable
on Windows. Although mappings are defined for EUC,
attempts to view them on X-windows, at least, fail because the
fonts in use do not provide glyphs for those codes. There are no
encodings for these characters in Unicode.

• Lastly, JIS defines multiple ways to express a character (the
base semantic unit), so a conversion from JIS to another
encoding and back to JIS is not guaranteed to return an
identical binary string. However, the meaning of the string (in
the sense of the way it would appear if printed on a screen) is
the same.
Release 5.1 215

Variations Among Standard Character Mappings

The Unicode Consortium has published a general mapping from
Shift-JIS to Unicode. However, actual implementations of the
standard mapping differ slightly by platform and vendor. The os_
str_conv class is implemented with a default mapping according
to the Unicode Consortium standard, and also provides a means
by which any mapping entry can be overridden at run time by a
client application.

The deviations in mapping tend to be quite small. For example,
here is a table that shows the incompatibility of the Unicode
Consortium standard and the maps that Microsoft uses in
Windows NT:

Instructions on Overriding Particular Mappings

How to modify
standard encodings

To allow an application to modify the standard encoding on the
fly, there is the following interface:

class os_str_conv {
public:
...

struct mapping {
os_unsigned_int32 dest; /* destination code */
os_unsigned_int32 src; /* source code */

 };
int change_mapping(mapping table[],size_t table_sz);

...

SJIS Code Unicode Consortium Mapping Microsoft Mapping

\ 5C 00A5 YEN SIGN 005C REVERSE SOLIDUS(*)

~ 7E 203E OVERLINE 007E TILDE

^[$B!@(B 81,5F 005C Reverse solidus FF3C FULLWIDTH REVERSE
SOLIDUS

^[$B!A(B 81,60 301C WAVE DASH FF5E FULLWIDTH TILDE

^[$B!B(B 81,61 2016 DOUBLE VERTICAL LINE 2225 PARALLEL TO

^[$B!](B 81,7C 2212 MINUS SIGN FF0D FULLWIDTH HYPHEN-
MINUS

^[$B!q(B 81,91 00A2 CENT SIGN FFE0 FULLWIDTH CENT
SIGN

^[$B!r(B 81,92 00A3 POUND SIGN FFE1 FULLWIDTH POUND
SIGN

^[$B”L^(B 81,CA 00AC NOT SIGN FFE2 FULLWIDTH NOT SIGN
216 ObjectStore C++ API Reference

Chapter 9: Using Asian Language String Encodings
};

You can modify an existing instance of os_str_conv (whether
heap- or stack-allocated) by calling os_str_conv::change_
mapping() . Actually, internal mapping tables, shared by all
instances of os_str_conv , are never modified. The additional
mapping table information is stored to provide override
information for future conversion services associated with that
instance.

The override mapping information applies to whatever explicit
mapping has been established for the given os_str_conv instance.
Mappings of os_str_conv instances cannot be overridden by
instances using autodetect. Attempts to do so return -1 from
change_mapping() to indicate this error condition.

The change_mapping() method takes the following two
parameters:

• os_str_conv::mapping_table[]

This is an array of mapping code pairs that can be allocated
locally, globally, or on the heap. If the array is heap-allocated,
the user must delete it after calling change_mapping() .

Internally, change_mapping() makes a sorted copy of mapping_
table[] . The sorting provides quick lookup at run time. The
internal copy is freed when the os_str_conv destructor is
eventually called.

Note that the mapping pairs are unsigned 32-bit quantities. The
LSB is on the right, so, for example, the single-byte character
0x5C is represented as 0x0000005C, and the two-byte code
0x81,0x54 is 0x0000815F.

• size_t table_sz

This is the number of elements in the mapping_table . The user
should take care that this is not the number of bytes in the
array.

Example

Here is an example of a Microsoft SJIS->Unicode mapping.

os_str_conv::mapping mapping[] = {
{0x0000005C,0x0000005C},
{0x0000007E,0x0000007E},
Release 5.1 217

{0x0000815F,0x0000FF3C},
{0x00008160,0x0000FF5E},
{0x00008161,0x00002225},
{0x0000817C,0x0000FF0D},
{0x00008191,0x0000FFE0},
{0x00008192,0x0000FFE1},
{0x000081CA,0x0000FFE2},

};

void func(char* input,char* output) {
...

os_str_conv sjis_uni(os_str_conv::SJIS,os_str_conv::UNICODE);
sjis_uni.change_mapping(mapping,sizeof(

mapping)/sizeof(mapping[0]));
sjis_uni.convert(output,input);

...
}

In this example, mapping[] is a global, but a stack allocation would
work as well.

Byte Order

Since Unicode is a 16-bit quantity, byte order depends on platform
architecture. On little-endian systems, such as Intel, the low-order
byte comes first. On big-endian systems (Sparc, HP, and Mips, for
example) the high-order byte is first. There are three overloadings
to the os_str_conv::convert() method to provide flexibility for
dealing with this:

encode_type convert(char* dest, const char* src);

encode_type convert(os_unsigned_int16* dest, const char* src);

encode_type convert(char* dest, const os_unsigned_int16*

If a parameter is of char* type, all 16-bit quantities are considered
big-endian, regardless of platform. However, if the type is os_
unsigned_int16* , the values assigned or read are handled
according to the platform architecture.

Overhead

Using overrides to the string conversion function incurs the
following overhead:

• Some memory is consumed by the sorted override map.

• Some time is consumed when sorting the map at change_
mapping time.
218 ObjectStore C++ API Reference

Chapter 9: Using Asian Language String Encodings
• Some time is consumed when converting characters because of
the additional lookup.

Restrictions

Not all conversion combinations are possible. For example, it is
impossible to convert Unicode to ASCII. This implementation
guards against nonsensical requests, but developers who extend
it should take care for such cases. Of course, Japanese to ASCII
conversion is only possible on the ASCII subset of characters in
the Japanese encodings. Attempts to convert Japanese strings to
ASCII result in the return of an error condition.

Autodetect only detects SJIS, JIS, and EUC. Do not feed the
autodetector Unicode or UTF-8 strings.

The EUC<->Unicode converter only works for characters in the
SJIS set. While this might sound perverse, it is reasonable for
actual applications, since characters outside the SJIS set are
extremely rare.

Users should be aware that the 0 to 127 range of single-byte SJIS
characters is not ASCII, even though the characters look like
ASCII. This range is known as JIS-Roman. Specifically, the
characters {’\’, ’~’ , ’|’} have different meanings. The practical
significance is that the map of characters [0 to 127] from ASCII-
>Unicode->SJIS is not an identity.

Performance Notes

EUC and SJIS are very closely related since they both are based on
the JIS ordering. Therefore, conversion between these requires no
table lookup.

JIS conversion requires simple parsing for <Esc> characters. Once
stripped of <Esc> characters, you can convert the multibyte
sequences to EUC by setting the highest bit.
Release 5.1 219

220 ObjectStore C++ API Reference

Chapter 10
Support for the XA
Standard for Transaction
Processing

ObjectStore supports X/Open's transaction demarcation protocol
(known as XA).

Distributed
Transaction
Processing model

XA is a set of services that is part of the X/Open Distributed
Transaction Processing (DTP) model. The model consists of three
components: an application, a transaction manager, and a
resource manager.

Transaction manager In the DTP model, transaction demarcation is controlled by a
transaction manager (TM).

The transaction manager can coordinate distributed transactions
in multiple database systems so that, for example, one transaction
can involve one or more processes and update one or more
databases. The databases could be multiple ObjectStore databases

Resource Manager

Application

Transaction Manager

XA interface

RM APITX API
Release 5.1 221

or they could be incompatible databases, such as ObjectStore and
Sybase.

Two-phase commit Transactions under the control of a transaction manager are made
through a two-phase commit process. In the first phase,
transactions are prepared to commit; in the second, the
transaction is either fully committed or rolled back.

Resource manager An ObjectStore client acts as a resource manager (RM). Resource
managers must be registered with the transaction manager.
222 ObjectStore C++ API User Guide

Chapter 10: Support for the XA Standard for Transaction Processing
Interface for
applications

Applications are written using the transaction manager’s API. XA
is the interface between the transaction manager and the resource
manager and is not visible to application programmers.

Transactions in the DTP Model

A global transaction is a metatransaction managed by a transaction
manager and possibly involving multiple resource managers.
Such transactions have globally unique identifiers generated by
the transaction manager. Note that DTP global transactions are
distinct from ObjectStore global transactions.

A transaction branch is a transaction from a resource manager's
point of view.

A global transaction can consist of many transaction branches in a
mix of resource managers. Multiple branches belonging to the
same global transaction can exist on a single resource manager.

XA transactions are identified by XIDs (universally unique
identifiers for global transactions). A branch has a globally unique
ID composed of the global transaction ID and a branch ID.

XA transactions are always of the type update.

XA is also integrated into the OMG Object Transaction Service
(OTS), which is based on DTP. The examples given show the use
of Iona’s OrbixOTS implementation of OTS.

An application that uses a transaction manager must use the TM's
interface, for example, the OMG Object Transaction Service (OTS),
to begin and end transactions. Other database operations can be
done using the database systems' proprietary APIs. When
recovery is required, the TM manages the process, using the XA
interfaces to roll back or commit transactions that were in
progress.
Release 5.1 223

ObjectStore clients

ObjectStore and RDBMS database

txn

control

A
pp

lic
at

io
n

A
pp

lic
at

io
n

txn

control

ObjectStore

ObjectStore

Storage

Storage

Resource

txn

control

txn

control

data

Resource
Manager

data

Manager

T
ra

ns
ac

tio
n

M
an

ag
er

A
pp

lic
at

io
n

txn

control

txn

control
Transaction
 Manager

ObjectStore

Resource
Manager

Storage

RDBMS

data

data

txn

control

txn

control
224 ObjectStore C++ API User Guide

Chapter 10: Support for the XA Standard for Transaction Processing
Registering ObjectStore as a Resource Manager

You must register ObjectStore as a resource manager with your
transaction manager.

Registering a resource manager provides basic identification
information used in initialization and in processing transactions.

The information you must provide to register ObjectStore as a
resource manager is packaged in a global data structure of type
xa_switch_t . This data structure is defined in libos with the name
ObjectStore_xa_switch .

In addition, for each ObjectStore resource manager, you must
identify the hosts that will run ObjectStore Servers for
applications that use the transaction manager.

There are several ways to register a resource manager. See your
individual vendor documentation for specific information.

The Encina::Server::
RegisterResource
function

The next example uses the OrbixOTS as the transaction manager
and describes how to register a resource manager by passing a set
of arguments to the Encina::Server::RegisterResource function.

Information for the following parameters is required::

Intialization Example The following example illustrates sample initialization code.

extern struct xa_switch_t ObjectStore_xa_switch;

// XA_OSTORE_SERVERS should be a space-delimited

xaSwitchP A pointer to a data structure of type xa_switch_t .
Specify the symbol ObjectStore_xa_switch for
ObjectStore resource managers.

openString A string specific to the resource manager. For
ObjectStore, this is a space-separated list of hosts
running ObjectStore Servers that might be
contacted by the ObjectStore client that is the
resource manager. This list of Servers is queried
during recovery operations.

An attempt to contact a Server not in the list is
considered an error.

closeInfo Empty string.
isThreadAware Specifies the type of thread support. For

ObjectStore resource managers, use the value
False.
Release 5.1 225

// list of ObjectStore Server host names. For example,
// "host.domain.com host2.domain.com ..."

char *openStringP = getenv("XA_OSTORE_SERVERS");

Encina::Server server;

// Register the database as a resource manager

server.RegisterResource(
&ObjectStore_xa_switch, openStringP, "");

Using the Transaction Manager

Once you have registered ObjectStore as a resource manager, you
can use the transaction manager's interface to start and commit
transactions.

Nested transactions All transactions controlled by the transaction manager must be
the top-level transaction. Nested DTP transactions are not
allowed. Nested ObjectStore transactions are allowed within an
XA transaction. These can be started and committed using the
native ObjectStore interfaces.

If your program tries to start a transaction through the transaction
manager when another transaction is already in progress, the
transaction manager receives an error.

If your programs attempt to use the regular ObjectStore interface
to commit or abort a transaction that was started by a transaction
manager, one of the exceptions err_commit_xa or err_abort_xa is
generated.
226 ObjectStore C++ API User Guide

Chapter 10: Support for the XA Standard for Transaction Processing
Concurrency modes When ObjectStore is in use, the concurrency mode must be
SERIALIZE_TRPCS_AND_TRANSACTIONS . ObjectStore can run
only one transaction at a time, and this concurrency mode
prevents the transaction manager from trying to start multiple
concurrent transactions. Attempts to use other concurrency
modes can result in the transaction manager’s getting a deadlock
error at the XA interface when starting a transaction.

Here is an example of using SERIALIZE_TRPCS_AND_
TRANSACTIONS :

server.Listen(Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS);

Two-Phase Commit and Recovery

The ObjectStore client refers to XA transactions by XID. The XID
is saved in the Server's transaction log so that the Server, when
queried after a crash, can provide a list of the XIDs of transactions
that were prepared (phase 1 commit) but not committed (phase 2
commit).

Recovery is through the transaction manager and occurs during
the initialization process for a DTP application.

Restrictions

There are some restrictions on the use of ObjectStore’s native
transaction interfaces when used with distributed transaction
processing. Other ObjectStore interfaces can be used as usual.

• DTP global transactions can have multiple transaction
branches in separate processes that access the same resource
manager. ObjectStore supports loosely coupled global
transactions, in which the different transaction branches of a
global transaction are regarded as distinct transactions, and are
therefore subject to deadlock with one another if they attempt
to access the same data.

• Multi-Server backup does not synchronize with XA
transactions. With solely ObjectStore transactions, a
transaction-consistent backup of multiple Servers can be taken
even while two-phase transactions are in progress. This is not
true for XA transactions.

• You cannot use checkpoint/refresh
(os_transaction::checkpoint()) within a DTP transaction
Release 5.1 227

because top-level transactions must be handled using
transaction manager calls.
228 ObjectStore C++ API User Guide

Chapter 11
Component Schemas

Component schemas allow you to incorporate one or more DLLs
in an ObjectStore application.

A component schema is a schema describing class types for a
particular DLL. A DLL schema is to a DLL as an application
schema is to an ObjectStore application.

Like a DLL, a DLL schema can be loaded and unloaded
dynamically at run time.

This chapter introduces two new terms: program schema and
complete program schema.
Release 5.1 229

Component Schema and Application Schema
Component Schema and Application Schema

A component schema, also referred to here as a DLL schema, is a
schema that is contained within a DLL. It plays the same role for
the DLL as an application schema plays for an application. Like a
DLL, a DLL schema can be loaded and unloaded dynamically at
run time. Unlike an application schema, multiple DLL schemas
can be in effect at the same time in a single program.

Differences between an application schema and a component schema

A component (DLL) schema is a type of application schema with
some additional properties. The file name extension .adb is used
for both application schemas and DLL schemas. DLL schemas are
generated by ossg just as application schemas are.

A program schema is an application or DLL schema. A complete
program schema is all the loaded program schemas for an
application.

When a type name is defined by more than one program schema,
all definitions of the type must be the same.

Component schemas differ from application schemas in these
ways:

• A DLL schema can be loaded and unloaded dynamically at run
time.

• Multiple DLL schemas can be in effect at the same time in a
single program.

• DLL schema can be installed only in incremental mode.

Generation of DLL schemas is fundamentally the same as for
application schemas. See Generating an Application or
Component Schema in ObjectStore Building C++ Interface
Applications for further information.

All ObjectStore utilities that can be used on application schemas
can be used for component schemas.

Uses for Component Schemas

Some typical uses of DLL schemas are as follows:
230 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
• A class library or object manager for a particular kind of
persistent objects is often packaged as a DLL. Packaging the
associated schema (the classes implemented by the library and
all classes reachable from them) as a DLL schema allows the
DLL/DLL schema pair to serve as a stand-alone unit. Although
an application statically linked to the DLL will have the
externally visible classes of the DLL in its application schema,
there might be additional internal classes that are only in the
DLL schema. Also, applications like the ObjectStore Inspector,
that provide generic database operations without having
specific persistent classes built into them, can automatically
load the DLL and its schema when operating on a database that
contains persistent instances of the classes implemented by the
DLL.

• A program can switch on the fly between two different
implementations of a persistent class by unloading one DLL
that implements the class and loading a different DLL that
implements a class with the same name. The corresponding
changes to the program schema happen by loading and
unloading DLL schemas. For this to work, the class being
changed must not be in the application schema and the two
implementations of the class must have identical run-time
layouts.

• A component-based system, such as a web server that loads
plug-ins or extensions, can load ObjectStore-based components
packaged as DLLs. In this case, the application is completely
unaware of ObjectStore and there is no application schema. The
DLL schema of the component serves the traditional role of an
application schema. This scenario is more likely than the first
two to involve unloading of DLLs and DLL schemas when
components are no longer active.
Release 5.1 231

How to Use Component Schemas
How to Use Component Schemas

An example of four ways to use component schemas is given in
the ObjectStore examples directory. The example can be found in
these locations:

• On Windows platforms: \packages\examples\flights

• On Solaris platforms: $OS_ROOTDIR/examples/flights

The example illustrates four ways to use DLLs with ObjectStore.

The first example, flights , uses a standard application schema.

The second example, flights2 , uses a component schema
generated for the DLL flight_cs with the schema source file macro
OS_SCHEMA_DLL_ID() . The component schema is loaded and
unloaded automatically.

The third example, flights3 , also uses a component schema in the
same way as the previous example and additionally illustrates
how a DLL can be dynamically loaded with an application. This
example uses automatic load reporting, as shown in the following
excerpt:

...
const char *flight_cs_id = "DLL:flight_cs"; // DLL Identifer

...

...
const char *flight_cs_symname = "flight_db_component";
os_DLL_handle dll_handle = os_null_DLL_handle;
os_boolean caught_except = false;

// Load the flight_cs component.
TIX_HANDLE(err_DLL_not_loaded) {

// This is equivalent to calling ‘dlopen’ on Solaris2 or
// ‘LoadLibrary’ on WIN32 platforms. objectstore::load_DLL
// is provided as a convenience for application developers.

dll_handle = objectstore::load_DLL(flight_cs_id, true);
}
TIX_EXCEPTION {

caught_except = true;
}
TIX_END_HANDLE
if (caught_except || (dll_handle == os_null_DLL_handle)) {

cout << "Error: " << tix_handler::get_report() << ‘\n’;
cout << "Cannot load component: " << flight_cs_id << ‘\n’;
return 2;
232 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
}

// Look up the component’s entry point
caught_except = false;
TIX_HANDLE(err_DLL_symbol_not_found) {

// Same as calling ‘dlsym’ on Solaris2 or ‘GetProcAddress’ on
// WIN32 platforms. Provided as a convenience for application
// developers.

cfp = (int(*)(const char*))
objectstore::lookup_DLL_symbol(dll_handle,

flight_cs_symname);
}
TIX_EXCEPTION {

caught_except = true;
}
TIX_END_HANDLE
if (caught_except || !cfp) {

cout << "Error: " << tix_handler::get_report() << ‘\n’;
cout << Cannot locate symbol: " << flight_cs_symname <<‘\n’;

return 3;
 }

...

The fourth example, flights4 , has the features of the previous
example, but does not use automatic loading of the component
schema. Instead it shows how to manually control how
component schemas are loaded and unloaded. In the schema
source file you see

// Component schemas need a DLL identifier so we define
// one using this schema macro.
OS_SCHEMA_DLL_ID("DLL:flight2")

// Shut off automatic load/unload reporting.
OS_REPORT_DLL_LOAD_AND_UNLOAD(false)

// Tell ossg to use this variable name for the schema info.
OS_SCHEMA_INFO_NAME(flight_cs2_dll_schema_info)

main.cpp file And in the main.cpp file:

...
const char *flight_cs_id = "DLL:flight_cs2"; // DLL Identifier
os_DLL_schema_info *flight_cs2_sch_inf = NULL;
os_schema_handle *cs2_sh;

...

...
// Via a macro in the schema source file, we arranged for the
// schema generator to place a symbol name that we specified to
// be the name of the schema info structure
//(os_DLL_schema_info *).
Release 5.1 233

How to Use Component Schemas
// We simply look up the symbol in the DLL to get at it.
caught_except = false;
TIX_HANDLE(err_DLL_symbol_not_found) {

flight_cs2_sch_inf = (os_DLL_schema_info *)
objectstore::lookup_DLL_symbol(dll_handle,

"flight_cs2_dll_schema_info");
}
TIX_EXCEPTION {

caught_except = true;
}
TIX_END_HANDLE
if (caught_except || !flight_cs2_sch_inf) {

cout << "Error: " << tix_handler::get_report() << ‘\n’;
cout <<"Can’t locate symbol: flight_cs2_dll_schema_info\n";

return 4;
}

// Automatic load reporting has been disabled for this component
// schema(flight_cs2). Which means that the schema for this DLL
// does not automatically load when put in use. So we must
// manually set up the loading process here.

// Tell ObjectStore that this DLL has been loaded.
cs2_sh = &flight_cs2_sch_inf->DLL_loaded();

...

Unload the DLL After using the component, explicitly unload the DLL:

...
//
// Unload the component
//
// Tell ObjectStore that this DLL is about to be unloaded.
flight_cs2_sch_inf->DLL_unloaded();

objectstore::unload_DLL(dll_handle);
...

Building Component Schemas

Solaris On Solaris platforms, to build an application with static linking,
use a command of the following form:

CC foo.cpp foolib.cpp -ldl -o foo

To build an application with dynamic linking, use a command of
the following form:

CC -G foolib.cpp -o foolib.so
CC foo.cpp foolib.so -ldl -o foo
234 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
To build an application with run-time library loading, use a
command of the following form:

CC -G foolib.cpp -o foolib.so
CC foo.cpp -ldl -o foo

To build with dynamic linking and an explicit call to the library,

CC -G foolib.cpp -o foolib.so
CC foo.cpp foolib.so -ldl -o foo

DLL Loading and Unloading

Typically DLLs are loaded and unloaded by means of operating
system calls. ObjectStore provides two additional methods to load
and unload DLLs into ObjectStore applications.

A platform-independent interface:

• objectstore::load_DLL()

• objectstore::lookup_DLL_symbol()

• objectstore::unload_DLL()

An interface that enables ObjectStore to automatically load DLLs
when a database is put into use:

• objectstore::get_autoload_DLLs_function()

• objectstore::set_autoload_DLLs_function()

These check whether the DLL is loaded or queued to load. If not,
they call objectstore::load_DLL() , which checks each DLL ID and
loads it.

See the ObjectStore C++ API Reference for more information on
these interfaces.

DLL Load and Unload Reporting

When a DLL that has a DLL schema is loaded or unloaded, it must
report that fact to ObjectStore so ObjectStore can load or unload
the DLL schema. You do this reporting by calling the functions
described below. In general, the actual schema loading or
unloading is deferred until a later time.

In the simplest case, calls to these functions are automatically
generated by ossg and inserted into the DLL as initialization and
termination functions. The application developer does not have to
Release 5.1 235

How to Use Component Schemas
do anything to implement this reporting. If you want to explicitly
control this, specify in the schema source file that the automatic
calls should be disabled and then write code that makes the calls.
For example, you could set some ObjectStore parameters or the
pathname of the DLL schema database before calling DLL_
loaded() . This code could be in DLL initialization and termination
functions, or could be in entry points to the DLL that are called
according to the developer’s specific protocol. See the ObjectStore
C++ API Reference for further information on these functions:

• os_DLL_schema_info::DLL_loaded()

• os_DLL_schema_info::DLL_unloaded()

• os_DLL_schema_info::add_DLL_identifier()

DLL Identifiers

The DLLs that use component schemas must be assigned a DLL
identifier. A DLL identifier is a generic way of identifying a DLL or
catalog of DLLs. This identifier can be recognized by all platforms
sharing a database that depends on the DLL.

A DLL identifier is a string of the form prefix:suffix where the
prefix is a string that identifies the catalog of DLLs to be used and
the suffix is something meaningful to that catalog. A colon can
also appear in the suffix, but the first colon in an identifier is
always interpreted as a separator.

ObjectStore provides the following built-in DLL identifier
prefixes:

• DLL: followed by a platform-independent file name. It gets
converted into a platform-specific file name, when it is
assigned a suffix such as .dll or .so . These names are case
sensitive. The operating system's usual library search stays in
effect.

On Windows, the conversion appends .dll . On Solaris, the
conversion appends .so .

• file: followed by a platform-specific file name. It can be an
absolute or relative path name, or just a file name subject to the
usual search rules, on typical platforms. The case sensitivity of
these names is determined by the platform’s file system.

You can also create other DLL identifier prefixes if needed.
236 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
See the following for more information on uses of DLL identifiers:

• os_database::get_required_DLL_identifiers()

• os_database::insert_required_DLL_identifier()

• os_database::insert_required_DLL_identifiers()

• os_database::remove_required_DLL_identifier()
Release 5.1 237

Schema Generation Macros
Schema Generation Macros

OS_REPORT_DLL_LOAD_AND_UNLOAD

Default: true OS_REPORT_DLL_LOAD_AND_UNLOAD(os_boolean)

Reports that a DLL has been loaded or unloaded.

Component schema
source file macro

When os_boolean is true , automatic reporting of DLL loading and
unloading is enabled. To do this ossg generates code that calls os_
DLL_schema_info::DLL_loaded() and os_DLL_schema_info::DLL_
unloaded() from the DLL’s initialization and termination
functions.

OS_SCHEMA_DLL_ID

OS_SCHEMA_DLL_ID(string)

Component schema
source file macro

Optional. For use in generating component schema, specifies the
DLL identifier of the DLL. This macro can be used multiple times,
for example, to specify different platform-specific DLL identifiers
for different platforms. Do not conditionalize these calls on the
platform — you want all the DLL identifiers to be recorded in any
database that depends on this DLL.

You must call OS_SCHEMA_DLL_ID at least once in a DLL schema
source file to distinguish it from an application schema.

OS_SCHEMA_INFO_NAME

OS_SCHEMA_INFO_NAME(name)

Use with component
schema source file

Required for component schema. For use with component
schema, generates a variable extern os_DLL_schema_info name;
that is, the os_DLL_schema_info of this DLL. The default is to
generate the schema information with a static name. Call this if
you are going to call os_DLL_schema_info::DLL_loaded() yourself,
so you can get access to the os_DLL_schema_info .

Use with application
schema source file

This macro also works in an application schema, in which case the
type of the variable is os_application_schema_info instead of os_
DLL_schema_info .

Creating a DLL Identifier Prefix

In some circumstances you might need to create a DLL identifier
using a prefix other than the ObjectStore-supplied prefixes DLL:
238 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
and file: . Some examples of DLL catalogs for which there could be
prefixes are

• DLL file

• DLL file (secure search of system paths only...)

• Windows ProgID (symbolic name, mapped in registry)

• Symbolic JavaBean ID, and so on

To inform ObjectStore how to understand a DLL prefix, create an
instance of a subclass of os_DLL_finder and call its register_
function with the prefix string. Be sure to unregister the prefix
before deleting the instance. It is customary for each subclass of
os_DLL_finder to know the prefix that it implements and have a
constructor and destructor that call register_ and unregister
respectively.

You cannot register a DLL finder from a static constructor that
could be called before objectstore::initialize() has been called. You
must call objectstore::initialize() before doing anything with DLL
finders, even registering them.

The argument to the get() function is a DLL identifier, not a prefix.
The function finds the prefix by searching for a colon.

Each subclass of os_DLL_finder must provide an implementation
of load_DLL that interprets the suffix part of the DLL identifier
and calls the appropriate operating system API (or calls another
os_DLL_finder) to load the DLL.

Each subclass of os_DLL_finder must provide an implementation
of equal_DLL_identifiers_same_prefix that compares two DLL
identifiers that are both implemented by this finder and returns
true if they are equal.

To compare two DLL identifier strings, call the static function os_
DLL_finder::equal_DLL_identifiers() . It takes care of getting the
prefixes, looking up the finder, and calling equal_DLL_identifiers_
same_prefix . Looking up objects by DLL identifier calls os_DLL_
finder::equal_DLL_identifiers() to compare identifiers that have the
same prefix.

The objectstore::load_DLL() functions call os_DLL_finder::load_
DLL() for the finder that implements the prefix of the specified
DLL_identifier .
Release 5.1 239

Schema Generation Macros
See os_DLL_finder in the ObjectStore C++ API Reference for further
information.

Compiler Dope Damage

Compiler dope is additional information added to the run-time
layout of an object by the compiler, beyond the nonstatic data
members of the object. Compilers use compiler dope for several
purposes, most notably to point to a table of virtual function
implementations for the object’s class. When ObjectStore brings a
persistent object into memory from the database, it ensures that
the object contains the correct compiler dope for the current
program, for the compiler with which the program was compiled.
The correct compiler dope for an object can change as a result of
loading or unloading a DLL schema, for example, because the
compiler dope can point to a virtual function implementation
contained in a DLL that is being loaded or unloaded.

Transient dope is the portion of the compiler dope that contains
pointers to transient (nonpersistent) memory (that is, pointers to
virtual function tables), and thus must be regenerated each time a
persistent object is brought into the memory of a new program
instance.

Dope damage is said to occur when the compiler dope of a cached
persistent object becomes outdated as a result of loading or
unloading DLL schemas. ObjectStore automatically detects dope
damage when it occurs. You can select whether the response to
dope damage when loading a DLL schema is to throw an
exception or to repair the damage by regenerating compiler dope
in all cached user data pages of affected databases. Note that this
operation can take some time, so enable repair only when
necessary. Dope damage when unloading a DLL schema occurs if
there were any objects with virtual functions implemented in the
unloaded DLL, so ObjectStore always repairs this form of
damage.

Compiler dope can be damaged during the loading of a DLL
schema in the following cases:

• When a persistent object is brought into virtual memory before
the implementation of its class is loaded

• When a class implementation is redefined by loading a DLL at
a point in time that the class is in actual use
240 ObjectStore C++ API User Guide

Chapter 11: Component Schemas
You can choose whether ObjectStore throws an err_transient_dope_
damaged exception or automatically repairs the damage when
dope damage occurs. Repairing the damage incurs overhead. To
avoid this, enable the exception for programs that do not expect
dope damage to occur. If you expect programs that load and
unload DLLs dynamically to create dope damage, set the
requirement that dope damage be repaired with the function
objectstore::enable_damaged_dope_repair() .

See the following in Chapter 2 of ObjectStore C++ API Reference for
more information: objectstore::enable_damaged_dope_repair()
and objectstore::is_damaged_dope_repair_enabled() .

Note that dope damage always occurs when unloading a DLL
schema and it is always repaired, regardless of the setting of
objectstore::enable_damaged_dope_repair() .

Schema Evolution

The ossevol utility can be used to evolve DLL (component)
schemas.

Use the following keyword option:

ossevol <workdb> <schemadb> <evolvedb>+ [keyword_option]+

keyword_option ::= -dll_schema pthnames_of_component_schema

You can also use the following member functions of the class os_
schema_evolution :

os_schema_
evolution::augment_
dll_schema_db_
names

static void os_schema_evolution::augment_dll_schema_db_names
(const os_charp_collection& dll_schema_db_names);

 and

static void os_schema_evolution::augment_dll_schema_db_names
(const char* c);

These two functions add the specified component schema
database names to the list of component schema databases to be
used for the evolution.

Exceptions

See Component Schema Exceptions in Appendix B of the
ObjectStore C++ API Reference.
Release 5.1 241

Schema Generation Macros
242 ObjectStore C++ API User Guide

Release 5.1
Index
A
abort()

os_transaction , defined by 81
abort_only

os_transaction , defined by 74
abort_top_level()

os_transaction , defined by 81
aborting

the current transaction 81
a specified transaction 81
the top-level transaction 81
transaction 71

access control
group 181
and locking 190
owner 181
permission check 183
permissions 180
permissions API 185
primary group 181
schema key 192
schema key API 194
schema key mismatch 193
segment-level 185

address space
deferred assignment 7
immediate assignment 7

allow_external_pointers()
os_database , defined by 61
os_segment , defined by 61

always_ignore_illegal_pointers()
objectstore , defined by 174

application schema databases
defined 10

application schema source files 53
application schemas

defined 9
applications

building 10
arrays

description 109
Asian characters, detecting encoding 211
autodetection

ambiguous cases 213
automatic detection of source string

encoding 213

B
bags

description 109
iterating over 135

batch schema installation 55
begin()

os_transaction , defined by 76
243

C

binary relationships
See inverse data members

building ObjectStore applications
schema generation 10

C
Cache Manager

defined 3
cache, client

See client cache
cardinality()

os_collection , defined by 130
change_schema_key()

os_database , defined by 194
check_illegal_pointers mode 173
class, system-supplied

os_str_conv 211–219
-classes_to_be_recycled option to

ossevol 204
-classes_to_be_removed option to

ossevol 204
client cache

defined 3
close()

os_database , defined by 28
closing databases 27
clustering

advantages 16
basic 45

collections
array 109
bag 109
choosing a type 108
combining 137
comparing 137
copying 137
decision tree 110
defined 102
determining cardinality of 130
dictionary 110
element type parameter 116

initializing the collections facility 104
inserting elements into 124
iteration 134
list 109
parameterized and

nonparameterized 117
removing elements from 126
set 108
testing to see if empty 130
traversal 134

commit()
os_transaction , defined by 76

concurrency control
transactions 70

create()
os_Set , defined by 119

create_root()
os_database , defined by 48

create_segment()
os_database , defined by 60

creating databases 20
creating persistent objects 33
creating segments 60
cross-database pointers

and absolute directory 65
extending the validity of 61
performance considerations 61
and relative pathname 63
resolution 63

cursors
default 134

D
data integrity 154
database access control 180
database roots

additional type safety 51
clustering of 49
defined 17
deleting 52
and entry points 48
244 ObjectStore C++ API User Guide

Index
getting the value of 50
setting the value of 49

database schemas
using 9

databases
See also rawfs databases
closing 27
creating 20
destroying 23
determining open status 29
in ObjectStore 2
lookup 30
modes 21
nested opens 28
opening 25
read-only access 25
schema database 21
types of access 182

default cursor 134
delete , persistent

See persistent delete
deleting roots 52
destroy()

os_Array , defined by 123
os_Bag , defined by 123
os_Collection , defined by 123
os_database , defined by 23
os_Dictionary , defined by 123
os_List , defined by 123
os_Set , defined by 123

destroying databases 23
dictionaries

creating 121
definition 110
example 146
header files required 139
lookup 141
removing elements from 126

directories
and databases 31
rawfs 5

types of access 182
-drop_obsolete_indexes option to

ossevol 205
dynamic transactions

See also transactions

E
element type parameter 116
empty()

os_collection , defined by 130
encoding, Japanese 211
entry points

and data retrieval 47
defined 17
retrieving 50

environment variables
OS_SCHEMA_DLL_ID 238
OS_SCHEMA_INFO_NAME 238

err_coll_not_supported exception 132
err_database_exists exception 21
err_database_not_found exception 25, 26,

30
err_database_not_open exception 48
err_opened_read_only exception 26, 196
err_root_exists exception 48
err_schema_database exception 21
err_schema_key exception 194, 196
err_schema_validation_error exception

handling 58
err_type_mismatch exception 51
err_uninitialized exception 193
err_write_permission_denied exception 74,

76
errors, notification 98
<Esc> characters

detecting JIS strings 214
EUC 211
-explanation_level option to ossevol 205
Release 5.1 245

F

F
fault tolerance

transactions 70
file databases

access granularity 182
setting access 180

file systems
ObjectStore 2

find_root()
os_database , defined by 47, 50

first()
os_Cursor , defined by 135

freeze_schema_key()
os_database , defined by 195

G
generating schema

description 10
get_access_control()

os_segment , defined by 189
get_all_segments_and_permissions()

os_database , defined by 189
get_check_illegal_pointers()

objectstore , defined by 174
os_segment , defined by 173

get_current()
os_transaction , defined by 82

get_default()
os_segment_access , defined by 187

get_default_check_illegal_pointers()
os_database , defined by 173

get_default_null_illegal_pointers()
os_database , defined by 175

get_name()
os_database_root , defined by 48

get_null_illegal_pointers()
objectstore , defined by 176
os_segment , defined by 175

get_pathname()
os_database , defined by 30

get_primary_group()
os_segment_access , defined by 186

get_thread_locking()
objectstore , defined by 85

get_value()
os_database_root , defined by 50

global transaction 223
groups 181

H
header files

relat.hh 155
relationship 155

I
illegal pointers

check_illegal_pointers mode 173
defined 154
null_illegal_pointers mode 175

incremental schema installation 55
initialize()

objectstore , defined by 104
os_collection , defined by 104

insert()
os_Collection , defined by 124

installing schema incrementally 55
installing schema using batch 55
integrity control 154
invalid pointer 42
inverse data members

defined 154
function body macros 158
many-valued relationship 163
single-valued relationship 160

iteration
traversing a collection with cursor 134

J
JIS 211
246 ObjectStore C++ API User Guide

Index
K
key mismatch 193

L
lexical transactions 72
lists

description 109
-local_references_are_db_relative option to

ossevol 205
locking

for multiple threads 84
and segment-level permissions 190
timeouts 78
two-phase 77

M
macro, system-supplied

os_index() 171
os_rel_1_1_body() 158
os_rel_1_m_body() 158
os_rel_m_1_body() 158
os_rel_m_m_body() 158
os_relationship_1_1() 158
os_relationship_1_m() 158
os_relationship_m_1() 158
os_relationship_m_m() 158

make_reachable_classes_persistent 53
memory mapping architecture 6
more()

os_Cursor , defined by 135
multithreaded applications 84

N
nested database opens 28
new , persistent

See persistent new
next()

os_Cursor , defined by 135

no_access
os_segment_access , defined by 185

notification errors 98
notification retrieval

methods 93
null_illegal_pointers mode 175

O
ObjectStore

registering as resource manager 225
ObjectStore Cache Manager

See Cache Manager
ObjectStore databases

See databases
ObjectStore directory

See directories
ObjectStore file system

See file systems
ObjectStore memory mapping architecture

See memory mapping architecture
ObjectStore process

See processes
ObjectStore Server

See Servers
ObjectStore/Single

databases supported 5
description 3
process diagram 4

objectstore , the class
always_ignore_illegal_pointers() 174
get_check_illegal_pointers() 174
get_null_illegal_pointers() 176
get_thread_locking() 85
initialize() 104
set_always_ignore_illegal_pointers() 176
set_always_null_illegal_pointers() 176
set_check_illegal_pointers() 174
set_current_schema_key() 195
set_incremental_schema_

installation() 56
set_null_illegal_pointers() 176
Release 5.1 247

O

set_thread_locking() 85
ObjectStore_xa_switch data structure 225
OMG Object Transaction Service (OTS) 223
open()

os_database , defined by 22, 28
opening databases 25
operator !=()

os_Collection , defined by 137
operator &=()

os_Collection , defined by 137
operator <()

os_Collection , defined by 137
operator <=()

os_Collection , defined by 137
operator -=()

os_Collection , defined by 137
operator =()

os_Collection , defined by 137
os_segment_access , defined by 188

operator ==()
os_Collection , defined by 137

operator >()
os_Collection , defined by 137

operator >=()
os_Collection , defined by 137

operator |=()
os_Collection , defined by 137

operators
comparison and assignment

dual purpose of 137
options

ossevol 204
os_Array , the class 109

destroy() 123
os_Bag , the class 109

destroy() 123
os_Collection , the class 109

destroy() 123
insert() 124

os_collection , the class
cardinality() 130

empty() 130
initialize() 104

os_Cursor , the class 134
first() 135
more() 135
next() 135

os_database , the class
allow_external_pointers() 61
change_schema_key() 194
close() 28
create_root() 48
create_segment() 60
destroy() 23
find_root() 47, 50
freeze_schema_key() 195
get_all_segments_and_

permissions() 189
get_default_check_illegal_pointers() 173
get_default_null_illegal_pointers() 175
get_pathname() 30
open() 22, 28
set_check_illegal_pointers() 173
set_default_check_illegal_pointers() 173
set_default_null_illegal_pointers() 175
set_incremental_schema_

installation() 55
set_null_illegal_pointers() 175
set_relative_directory() 64

os_database_root , the class
get_name() 48
get_value() 50
set_value() 48

os_Dictionary , the class
destroy() 123

os_index() , the macro 171
os_List , the class 109

destroy() 123
OS_MARK_SCHEMA_TYPE() , the macro 53
os_rel_1_1_body() , the macro 158
os_rel_1_m_body() , the macro 158
os_rel_m_1_body() , the macro 158
248 ObjectStore C++ API User Guide

Index
os_rel_m_m_body() , the macro 158
os_relationship_1_1() , the macro 158
os_relationship_1_m() , the macro 158
os_relationship_m_1() , the macro 158
os_relationship_m_m() , the macro 158
OS_SCHEMA_DLL_ID environment variable

description 238
OS_SCHEMA_INFO_NAME environment

variable
description 238

os_segment , the class
allow_external_pointers() 61
get_access_control() 189
get_check_illegal_pointers() 173
get_null_illegal_pointers() 175
set_access_control() 188
set_check_illegal_pointers() 173
set_null_illegal_pointers() 175

~os_segment_access()
os_segment_access , defined by 188

os_segment_access()
os_segment_access , defined by 187

os_segment_access , the class 185
get_default() 187
get_primary_group() 186
no_access 185
operator =() 188
~os_segment_access() 188
os_segment_access() 187
read_access 185
read_write_access 185
set_default() 186
set_primary_group() 186

os_Set , the class 108
create() 119
destroy() 123

os_str_conv class library 211
os_str_conv , the class 211–219
os_transaction , the class

abort() 81
abort_top_level() 81

begin() 76
commit() 76
get_current() 82

os_typespec , the class 36
os_with_mapped()

example 66
<ostore/coll/dict_pt.hh> header file 139
<ostore/relat.hh> header file 155
outbound relocation

skipping 8
owners 181

P
pages

as units of transfer 2
parameterized classes

purpose 12
permission checks 183
permissions

setting access to databases 180
permissions API 185
persistence

creating persistent objects 33
retrieving persistent objects 47

persistence independent of type
advantages 8

persistent allocation
database roots 17

persistent data
defined 2
storing 13

persistent delete 23, 33
persistent new 23, 33
persistent objects

creating 33
retrieving 47

persistent relocation maps 7
persistent storage

logical organization 5
physical organization 2

placement 33
Release 5.1 249

R

pointers
validity 42

primary groups 181
PRM 7
process-local states 177
programming interfaces to ObjectStore 12
pseudoaddresses

definition 6

R
rawfs databases

access granularity 182
defined 31
setting access 180

rawfs directory
See directories

read_access
os_segment_access , defined by 185

read_only
os_transaction , defined by 74

read_write_access
os_segment_access , defined by 185

read-only database access 25
registering ObjectStore 225
relat.hh header file 155
relationship header files 155
relationship macros 158
relationships

defining 158
many-to-one 164
many-valued 163
one-to-many 164
and parameterized types 169
single-valued 160

relocation
outbound 7
PRM 7
skipping outbound 8
TRM 8

remote schemas 21

-resolve_ambiguous_void_pointers option
to ossevol 205

resource manager 222
retrieving entry points 50
retrieving persistent objects 47
roots

See also database roots
additional type safety 51
deleting 52
and entry points 48

S
schema databases 21
schema evolution

defined 200
designing 207
planning 202
validation tasks 209

schema information
generation of 10
where stored 9

schema key API 194
schema keys 192

mismatch 193
schema source files

marking classes 53
purpose 10

schema verification
See schemas, compatibility

schema, database
See database schemas

schemas
See also database schemas
batch installation 55
compatibility

schema validation 58
incremental installation 55

advantages 56
installation 55
remote 21
source files 53
250 ObjectStore C++ API User Guide

Index
segments
as units of transfer 60
compatible permissions 191
creating 60
definition 2
compared to pages 60
types of access 182

serializability 77
See also locking

Servers
defined 3

set_access_control()
os_segment , defined by 188

set_always_ignore_illegal_pointers()
objectstore , defined by 176

set_always_null_illegal_pointers()
objectstore , defined by 176

set_check_illegal_pointers()
objectstore , defined by 174
os_database , defined by 173
os_segment , defined by 173

set_current_schema_key()
objectstore , defined by 195

set_default()
os_segment_access , defined by 186

set_default_check_illegal_pointers()
os_database , defined by 173

set_default_null_illegal_pointers()
os_database , defined by 175

set_incremental_schema_installation()
objectstore , defined by 56
os_database , defined by 55

set_null_illegal_pointers()
objectstore , defined by 176
os_database , defined by 175
os_segment , defined by 175

set_primary_group()
os_segment_access , defined by 186

set_relative_directory()
os_database , defined by 64

set_thread_locking()
objectstore , defined by 85

set_value()
os_database_root , defined by 48

sets
description 108

SJIS 211
strict two-phase locking 77
system calls

ensuring data access 66

T
-task_list option to ossevol 204
thread locking

enabling and disabling 85
threads

disabling thread locking 18
how thread locking works 84

transaction branch 223
transaction manager 221
transactions

aborting 71
effect of aborting 16
choosing boundaries 72
effect of committing 16
and concurrency control 70
defined 70
dynamic

compared to lexical 72
using 76

and fault tolerance 70
global compared to local 85
grouping code into 79
lexical 72
and locking 77
and read-locking 77
and rolling back persistent state 81
using 72
using to access persistent data 16
why required 84
and write-locking 77
Release 5.1 251

U

transient allocation 45
transient relocation maps 8
transitive closure operation

generating schemas 10
traversing collections 134
TRM 8
two-phase commit 222
two-phase locking 77
typespecs 36

U
Unicode 211
update

os_transaction , defined by 74
-upgrade_vector_headers option to

ossevol 205
UTF-8 211

V
valid pointer 42

X
X/Open Distributed Transaction

Processing (DTP) model 221
XA 221
252 ObjectStore C++ API User Guide

	C++ A�P�I User Guide
	ObjectStore C++ A�P�I User Guide
	Preface
	ObjectStore Concepts
	Persistent Storage
	ObjectStore Processes
	Rawfs Databases
	ObjectStore Memory Mapping Architecture
	Memory Mapping and Schema Information
	Generating Schemas for ObjectStore Applications
	Input to Schema Generation
	Schema Generator Output

	Programming Interface

	Chapter 2
	Persistence
	Basic Behaviors
	Persistent new() and delete()
	Prerequisites to Persistent Access
	Databases
	Clustering
	Transactions
	Roots and Entry-Point Objects

	Requirements for ObjectStore Applications
	Initializing ObjectStore
	Single-Threaded Applications
	Fault Handler Macros for Multithreaded Application...

	Creating Databases
	Creating a Database with os_database::create()
	Database Pathnames
	Database Modes
	Automatic Overwrite
	Schema Databases
	Return Value
	Creating Databases with os_database::open()

	Destroying Databases with os_database::destroy()
	Opening Databases with os_database::open()
	Opening a Database with os_database::open()
	Database Pathnames
	Opening Read-Only
	Automatic Creation
	Schema Database
	Multiversion Concurrency Control (MVCC)

	Closing Databases with os_database::close()
	Nested Database Opens
	Nested Opens and Read-Only Access

	Determining Database Open Status
	Finding a Specified Database
	Pathname Lookup

	Rawfs Databases
	Rawfs Host Prefix
	Creating ObjectStore Directories
	Finding a Rawfs Pathname
	Aliases

	Persistent new and delete
	Creating Nonarrays with Operator new()
	Creating Arrays with Persistent new()
	Persistent Unions
	Pointers to and from Persistent Memory
	Clustering

	Using Typespecs
	Typespecs for Fundamental Types
	Typespecs for Classes
	The os_typespec Constructor
	Parameterized Typespecs

	Example: Linked List of Notes
	Pointer Validity
	Pointers to Persistent Memory
	Cross-Database Pointers
	Cross-Transaction Pointers
	Pointers to Transient Memory
	Pointer Validity Summary

	Basic Clustering
	Transient Allocation

	Database Entry Points and Data Retrieval
	When to Use Persistent Names

	Establishing Entry Points
	Creating Database Roots
	Setting the Value of a Root
	Clustering of Roots

	Retrieving Entry Points
	Type Safety for Database Roots
	Deleting Database Roots
	Application Schemas
	Including a Class in the Application Schema

	Database Schemas
	Batch Database Schema Installation
	Incremental Database Schema Installation
	Comparison Between Batch and Incremental Installat...
	Timing of Installation

	Schema Validation
	Specific Schema Verification Implementation
	Timing of Validation

	Creating Segments
	Referring Across Databases and Transactions
	Cross-Database Pointers and Relative Pathnames
	Default Relative Directory
	Specifying a Relative Directory
	Using Absolute Pathnames
	The oschangedbref Utility

	Ensuring Data Access During System Calls

	Chapter 3
	Transactions
	Transactions Overview
	Fault Tolerance
	Concurrency Control
	Transaction Commit and Abort

	Using Transactions
	Lexical and Dynamic Transactions
	Choosing Transaction Boundaries
	Multiversion Concurrency Control (MVCC)

	Using Lexical Transactions
	Using Dynamic Transactions
	Locking
	Waiting for Locks
	Database- Compared to Segment-Level Locks
	Read Locks and Write Locks
	Lock Timeouts
	Reducing Wait Time
	Lock Probes
	Explicit Lock Acquisition

	Organizing Transaction Code
	Hiding Intermediate Results
	Preventing Other Processes’ Changes

	Rolling Back to Persistent State
	Aborting the Current Transaction
	Aborting the Top-Level Transaction
	Aborting a Specified Transaction

	Threads and Thread Locking
	Thread Safety
	When You Need Thread Locking
	Disabling and Enabling Thread Locking
	Local and Global Transactions
	Costs and Benefits of Global Transactions
	Using Global Transactions
	Nesting and Global Transactions

	Notification
	Notification Overview
	Notification
	Range of Locations
	Subscription
	Notification Queuing
	Receiving Notifications

	Notification Retrieval Alternatives
	Thread-Based Notification Retrieval
	Polling-Based Notification Retrieval
	File-Descriptor-Based Notification Retrieval

	General Notification Behavior
	Subscribing and Unsubscribing
	Transactions
	Security
	Performance Considerations
	Notification Usage
	Network Service
	Notification Errors
	ObjectStore Utilities for Managing Notification

	Notifications Example

	Chapter 5
	Collections
	Collections Overview
	Collection Class Library
	Collection Query and Manipulation Features

	Requirements for Applications Using Collections
	Include Files
	Initializing the Collection Facility
	Linking
	Using Persistent Collections
	Using Persistent Dictionaries
	Thread Locking

	Introductory Collections Example
	Choosing a Collection Type
	os_Set and os_set
	os_Bag and os_bag
	os_List and os_list
	os_Collection and os_collection
	os_Array and os_array
	os_Dictionary and os_rDictionary
	Using a Decision Tree to Select a Collection Type

	Collection Characteristics and Behaviors
	Collections Store Pointers to Objects
	Collections Can Be Transient or Persistent
	Parameterized and Nonparameterized Collections
	Class Hierarchy Diagram
	Collection Behaviors
	Expected Collection Size
	Performing pick() on an Empty Set
	Collection Representations

	Templated and Nontemplated Collections
	Using Collections with the Element Type Parameter
	Using Collections Without Parameterization

	Creating Collections
	General Guidelines
	Creating Dictionaries

	Destroying Collections
	Inserting Collection Elements
	Inserting Dictionary Elements
	Duplicate Insertions
	Null Insertions
	Ordered Collections
	Duplicate Keys
	Changing a Collection’s Behavior
	Changing a Collection’s Representation Policy

	Removing Collection Elements with remove()
	Ordered Collections
	Removing Dictionary Elements

	Testing Collection Membership with contains()
	Dictionaries

	Finding the Count of an Element with count()
	Dictionaries

	Finding the Size of a Collection with cardinality(...
	Checking for an Empty Collection with empty()

	Using Cursors for Navigation
	Cursors

	Accessing Collection Elements with a Cursor or Num...
	Traversing Collections with Default Cursors
	Creating Default Cursors
	os_Cursor::first()
	os_Cursor::next()
	os_Cursor::more()
	Rebinding Cursors to Another Collection

	Copying, Combining, and Comparing Collections
	Dual Purpose of the Operators
	Ordered Collections and Collections with Duplicate...

	Dictionaries
	Marking Persistent Dictionaries
	Marking Transient Dictionaries
	Dictionary Behavior
	Dictionary Representation
	Visiting the Elements with Specified Keys
	Picking the Element with a Specified Key

	Writing Destructors for Dictionaries
	Example: Using Dictionaries

	Chapter 6
	Data Integrity
	Data Integrity Considerations
	Inverse Members
	Illegal Pointers

	Inverse Data Members
	Inverse Member End-User Interface
	Defining Relationships
	Relationship Macros
	Macro Arguments

	Relationship Examples
	Example: Single-Valued Relationships
	Example: Many-Valued Relationships
	Example: One-to-Many and Many-to-One Relationships...

	Duplicates and Many-Valued Inverse Relationships
	Use of Parameterized Types
	Deletion Propagation and Required Relationships
	Indexable Inverse Members
	Detecting Illegal Pointers
	Controlling Illegal Pointer Checking
	Controlling the Consequences of Illegal Pointer De...
	Illegal Pointer Modes Are Process Local

	Chapter 7
	Database Access Control
	Access Control Methods
	Setting User Category Permissions
	Restricting Database Access Using Schema Keys

	Categories of Users
	Owner of a Directory, Database, or Segment
	Group of a Directory, Database, or Segment
	Group of a User

	Permissions
	Directory Permissions
	Database Permissions
	Segment Permissions

	Permission Checks
	Directory-Level Access
	Database-Level Access
	Segment-Level Access

	Segment-Level Permissions A�P�I
	Establishing Access Permissions with os_segment_ac...
	os_segment_access::set_primary_group()
	os_segment_access::get_primary_group()
	os_segment_access::set_default()
	os_segment_access::get_default()
	os_segment_access::os_segment_access()
	os_segment_access::operator =()
	os_segment_access::~os_segment_access()
	os_segment::set_access_control()
	os_segment::get_access_control()
	os_database::get_all_segments_and_permissions()

	Segment-Level Permissions and Locking
	Permissions and Related Segments
	Schema Keys
	Database Schema Keys
	Application Schema Keys

	Key Mismatch
	Schema Key A�P�I
	Setting a Database Schema Key with change_schema_k...
	Setting Application Schema Keys with set_current_s...
	Freezing a Database Key with freeze_schema_key()

	Schema Key Environment Variables

	Chapter 8
	Schema Evolution
	What Is Schema Evolution?
	Making Use of Schema Evolution
	Planning Your Schema Evolution
	Sequence of Planning Your Schema Evolution

	Schema Evolution with ossevol
	ossevol Options
	Using osscheq to Verify Schema Changes
	Using osverifydb to Verify Pointers and References...

	Designing a Schema Evolution Application
	Example Using ossevol for Schema Evolution

	Implementing Schema Evolution
	The Schema Evolving Application
	Validation Activities
	Testing
	Troubleshooting

	Deploying Schema Evolution

	Using Asian Language String Encodings
	The Class Library: os_str_conv
	Automatic Detection of a Source String Encoding
	How to Instantiate the Converter
	Guidelines for Extensions to os_str_conv
	What Are the Different Modes and Their Meanings?
	Variations Among Standard Character Mappings
	Instructions on Overriding Particular Mappings
	Example
	Byte Order
	Overhead
	Restrictions
	Performance Notes

	Support for the XA Standard for Transaction Proces...
	Transactions in the DTP Model
	Registering ObjectStore as a Resource Manager
	Using the Transaction Manager
	Two-Phase Commit and Recovery
	Restrictions

	Component Schemas
	Component Schema and Application Schema
	Differences between an application schema and a co...
	Uses for Component Schemas

	How to Use Component Schemas
	Building Component Schemas
	DLL Loading and Unloading
	DLL Load and Unload Reporting
	DLL Identifiers

	Schema Generation Macros
	OS_REPORT_DLL_LOAD_AND_UNLOAD
	OS_SCHEMA_DLL_ID
	OS_SCHEMA_INFO_NAME
	Creating a DLL Identifier Prefix
	Compiler Dope Damage
	Schema Evolution
	Exceptions

	Index

