
WINDOWS VAR KIT

RELEASE 5

September 1997

ObjectStore Release 5 Windows VAR Kit

ObjectStore Release 5, September 1997

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1997 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Contents
Contents

Chapter 1 Introduction . 7

ObjectStore Installation Components. 7

InstallShield Version Information. 8

Chapter 2 ObjectStore Windows Installation System 9

Installation . 10

Setup. 14

Installation System Files . 16

Components of Installation and Setup. 17

Uninstall . 19

Chapter 3 API Reference. 21

OS_BuildUnzipList . 21

OS_CheckLogFile . 22

OS_CheckRAWFS . 22

OS_CheckServerStartup . 22

OS_DecompressZipFile . 22

OS_DeleteUninstRegKey. 23

OS_GetDefaultSrvrLogFile . 23

OS_GetDiskRequirement . 24

OS_GetInstallFlags . 24

OS_GetNextUnzip . 25

OS_GetRegistration . 25

OS_GetServerParameter . 26

OS_GetZipFile . 26

OS_InitDLL . 27

OS_InitLog . 27

OS_IsUserAdmin . 27

OS_NeedCheckpoint . 28

OS_OStoreInstalled . 28

OS_OStoreRunning . 29

OS_rename_dir . 29
ObjectStore Release 5 iii

Contents
OS_RenameToLongFiles . 29

OS_SetInstallDirectories . 30

OS_SetRegistration . 30

OS_SetServerParameter . 30

OS_SetServerParams . 31

OS_SetupRawfs . 31

OS_ShutdownOStore . 31

OS_status_update_bar_num . 31

OS_TermDLL . 32

OS_Uninstall . 32

OS_update_environment. 32

OS_UpdateStartup . 33

OS_UnzipOneFile . 33

OS_ZipLogFiles . 34

Chapter 4 SETUP.RUL Routines . 35

Overview of SETUP.50 (SETUP.RUL) . 36

Main Program . 36

Unzipping Files and Updating the Progress Display. 37

SETUP.RUL Descriptions . 39

function CheckOStoreRunning () . 39

function CheckUpgrade () . 39

function Components (). 39

function ConfirmInstall () . 39

function CopyFiles (szInstallFrom). 39

function CopyOneFile (szFile, nFileSize) 39

function CreateOSProgramFolder (). 39

function CreateRegAndDirs () . 40

function DecompressFiles (szInstallFrom) 40

function DeleteFiles () . 40

function DeleteProgramFolderItem (szItemName) 40

function DeleteOSFolder () . 40

function DirExistsOptions (szExistingDir) 40

function DisplayCopyFile (szFileStr, nPercent) 40

function DisplayUnzipFile (szDestLower, szTargetStr, nPer-
cent) . 40
iv ObjectStore Release 5 Windows VAR Kit

Contents
function FixDisplayPath (szPathStr, szFixedStr) 40

function GetOSLibDir (WhichButton) 41

function GetRenamePathname (oldpath, newPath, szSe-
qNum) . 41

function HandleUnzipError (nErrorCode, szFileName) . . . 41

function Initialize () . 41

function InitializeAutoStart () . 41

function InitializeInstall () . 42

function InitializeLog () . 42

function InstallationOptions () . 42

function InstallFiles () . 42

function LicenseOptions (). 42

function OSFinish () . 42

function OSSetup (bAllowBack). 42

function OSUninstall (). 43

function ProcessInstall () . 43

function ProcessSpecialFiles (szBinDir) 43

function ProgramFolder (WhichButton) 43

function QueryShutdownServices () 43

function RecheckInitializeLog () . 43

function Registration () . 43

function RunInstall () . 43

function RunSetupOptions () . 44

function SetServerParams () . 44

function SetupRawfs () . 44

function SourcePath () . 44

function Terminate () . 44

function UninstallSpecialFiles () . 44

function UpdateMSVCRT (szInstallFrom, szFileName) . . . 45

Index . 47
ObjectStore Release 5 v

Contents
vi ObjectStore Release 5 Windows VAR Kit

Chapter 1
Introduction

Purpose The purpose of this document is to provide value-added resellers
(VARs) with the information needed to either customize or
replace the standard Windows ObjectStore 5 install , setup , and
uninstall system when packaging an application with ObjectStore.

Audience VARs who are deploying one or more ObjectStore applications.

ObjectStore Installation Components

The installation consists of two logically distinct sections:

• The user interface and flow of control elements are written as
an InstallShield application.

• Most of the ObjectStore-specific elements of the system are
provided in a DLL that is invoked from InstallShield.

Benefits The two-part structure lets you generate installation applications
that use a relatively stable set of ObjectStore-related APIs
supplied in the DLL. This design shields you from underlying
changes that might be made from one release to another. It also
leaves you in control of the look and feel of your application
installation.

Object Design encourages your feedback on the implementation
and the capabilities provided by the DLL.

VAR kit files The Windows ObjectStore 5 VAR kit includes a variety of files.
The InstallShield script file (SETUP.RUL) and an associated header
file (OS_SETUP.H) are provided in source form and can be
modified to create a customized installation, or used as a reference
when you develop completely new installation systems. This
October 1997 7

release also provides two related files, SETUP.50 and
OS_SETUP.50. These files represent the state of the installation
system as of Release 5 and are described in Overview of SETUP.50
(SETUP.RUL).

In future, you can compare the more recent files (SETUP.RUL and
OS_SETUP.H) and the Release 5 versions to pinpoint changes that
might have taken place since this document was completed.

The VAR kit also includes any other ObjectStore-supplied support
files (such as bitmaps) and a makefile. If you have the appropriate
tools (an appropriate version of InstallShield and the necessary
Microsoft VC++ 5.0 tools) you should be able to recreate the
standard ObjectStore installation system with the files supplied.

The README.TXT file included with the VAR kit contains late
changes and other useful information. Be sure to check this file
before beginning work on a custom installation system.

InstallShield Version Information

The ObjectStore 5 InstallShield application was built using the
International East edition of InstallShield, Version 3.107. The
specific component information, supplied by the InstallShield
Version Checker, is as follows:

Component Version Date

InstallShield 3.00.107 November 4, 1996

compile.exe 3.00.077 February 20, 1997

icomp.exe 3.00.062 January 15, 1996

split.exe 3.00.060 January 15, 1996

packlist.exe 3.00.060 January 15, 1996

isverw.exe 3.00.052 September 12, 1995

isdbg.dll 3.00.052 October 2, 1995

unInstallShield 2.20.920 November 5, 1996
8 book name here

Chapter 2
ObjectStore Windows
Installation System

The ObjectStore Windows installation and setup system is
responsible for creating and maintaining the environment
ObjectStore requires in order to operate properly. If you want to
replace the standard tool, you must maintain the proper
environment.
October 1997 9

Installation
Installation

Installation requires that various directories and files be created or
copied to the user’s system, that the system environment be
modified to point to the files, and that various entries (most
described in more detail in Setup in this chapter) be established in
the registry or in system services databases. Also, installations
that include a Server generally require that the Server be
initialized. This is also described in Setup.

Licensing options The standard ObjectStore installation system has eight licensing
options. Depending on the option selected, the installation system
determines whether or not to install

• ObjectStore client files

• ObjectStore Server files

• ObjectStore development support files

These three license types are represented by flags presented to the
entry OS_GetInstallFlags . The flags are described in Chapter 3,
API Reference. These flags serve as a basis for the routines that
decompress ObjectStore zip files. That is, the files installed are
copied from the zip files to the appropriate place in the user’s
system. These flags determine which files are actually installed.

Optional components In addition to variations based on licensing options, the
installation system allows the following components to be
installed or omitted:

• DBMS — The ObjectStore client-Server system

• ObjectStore/Single — The single machine standalone system

• Examples — For developers

• HTML documentation — Browsable ObjectStore
documentation

• PostScript documentation — Documentation in PostScript or
PDF format suitable for printing

Each component option is also represented by a flag presented to
the entry OS_GetInstallFlags , described in Chapter 3, API
Reference, which serves as a basis for the routines that
decompress ObjectStore zip files.
10 book name here

Chapter 2: ObjectStore Windows Installation System
Directories Though some of the entries described in Chapter 3, API Reference,
appear to allow a variety of target directories to be used for
elements of an ObjectStore installation, in practice everything
should be installed in various directories under a single OS_
ROOTDIR. The directory structure should be as follows:

OS_ROOTDIR \
bin
binsngl
doc \

pscript
etc
examples
include
lib

While the contents of most of the directories are self-evident, the
etc and binsngl directories need some explanation.

etc directory The etc directory contains ObjectStore catalog files that are used
to tailor messages for specific languages. If the installation
includes development modules, the etc directory includes a
desktop.mak file.

binsngl directory Note that the binsngl directory is self-contained. Applications that
run on a single machine can copy these files to any directory (most
likely in the user’s PATH) and need establish no other settings.

Environment settings ObjectStore relies on a variety of environment variables. (There
are minimal requirements for ObjectStore/Single, as noted
previously.) You need the following environment variables,
under some circumstances, for the full client-Server version:

OS_ROOTDIR Required. This is the parent directory of the bin , lib , and such
directories.

OS_TMPDIR Recommended when you are running a Server or Cache
Manager service. This is the directory where these processes
store their text history files, osserver.txt and oscmgr.txt . If no
value is found, the files are stored in the root directory of the
boot drive.

PATH The PATH environment variable should include the ObjectStore
bin directory.

INCLUDE If this is a development machine, the INCLUDE variable should
specify the ObjectStore include directory.
October 1997 11

Installation
The OS_ROOTDIR and OS_TMPDIR values need to be set in the
system environment section on Windows NT, to ensure that they
are available for the Server and Cache Manager when they run as
services.

The environment values are stored in the registry on Windows
NT, but they are set through AUTOEXEC.BAT on Windows 95.
This can cause some problems on dual-boot machines, so the
standard ObjectStore installation creates an OS_AUTO.BAT , which
is called from AUTOEXEC.BAT . This construct sets the values for
Windows 95, but skips them when Windows NT processes
AUTOEXEC.

Registration data in
the registry

The standard ObjectStore installation sets a variety of values in
the registry concerning product registration. These values are
used by the install and setup system and might not be needed for
a VAR installation. Most values are stored in

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Registration

but one is stored in

HKEY_CURRENT_USER\Software\Object Design Inc.\ObjectStore.4.0\Registration

Note that ObjectStore.4.0 refers to the server generation, not to the
current ObjectStore release number, and is used for both Release
4.x and 5.x.

Values stored in HKEY_LOCAL_MACHINE include

• Company

• Install From

• License Type

• ObjectStore Install Directory

• ObjectStore/Single Directory

• ObjectStore Examples Directory

• ObjectStore HTML Documentation Directory

• ObjectStore PostScript Documentation Directory

• Program Folder Name

The value stored in HKEY_CURRENT_USER is User Name.

LIB If this is a development machine, the LIB variable should include
the ObjectStore lib directory.
12 book name here

Chapter 2: ObjectStore Windows Installation System
See OS_GetRegistration and OS_SetRegistration in Chapter 3, API
Reference, for information about using these functions to retrieve
and set these values.
October 1997 13

Setup
Setup

Setup operations are typically performed on a preexisting (or just
created) ObjectStore installation. Setup operations generally
involve

• Setting ObjectStore Server parameter values

• Creating or modifying RAWFS partition information

• Initializing or reinitializing the Server and Server log file

• Setting up the Server and Cache Manager as system services,
and, optionally, starting them immediately

Setting ObjectStore
Server parameter
values

ObjectStore Management contains descriptions of specific Server
parameters in Chapter 2, Server Parameters. For Windows
systems, values are stored in the registry under the key

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

Individual parameters are stored using value names that
correspond to the parameter name (for example, “Authentication
Required”). All values are stored as strings (REG_SZ).

Note that you can use the OS_GetServerParameter and
OS_SetServerParameter entries, described in Chapter 3, API
Reference, to get and set individual parameters. You can also use
the OS_SetServerParams entry to run the Server Parameters
dialog and update the registry appropriately.

Creating or modifying
RAWFS partition
information

Partition information is also stored in the registry, under the same
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

The RAWFS might contain multiple components, named
Partition0, Partition1, ..., PartitionN. Partitions must start from
number 0 and no gaps are allowed in the sequence. Each partition
descriptor has the following format:

<type> <path> <expandability>

where

<type> is either FILE (Windows NT or 95) or PARTITION (Windows
NT only).
14 book name here

Chapter 2: ObjectStore Windows Installation System
<path> is the name of a file system file (for FILE) or a partition
name in the form

\\.\A:

or a physical drive name in the form

\\.\PhysicalDrive1

<expandability> is either EXPANDABLE or NONEXPANDABLE . Only
file system files can be EXPANDABLE . Partitions and physical
drives are always NONEXPANDABLE .

If you specify a file system file, the installation must create the file.
The Server overwrites the contents of the file during initialization,
but it does not create the file if it does not exist. If a file system file
is designated NONEXPANDABLE , the installation must also
presize the file before initializing the Server.

Note that you can use the OS_SetupRawfs entry, described in
Chapter 3, API Reference, to run the standard RAWFS setup
dialog and update the registry.

Note also that most changes in RAWFS configurations require
you to reinitialize the Server. The only exception is when you add
a new component (file, partition, or disk) to an existing RAWFS.
You can do this without reinitializing.

Initializing or
reinitializing the Server
and Server log file

You must reinitialize the ObjectStore Server following an
installation or following most changes to a RAWFS configuration.
You can use the entry OS_InitLog , described in Chapter 3, API
Reference, to initialize the Server. Note that there are several
entries in the registry that are relevant to Server initialization
under the key

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

They are

Log File Pathname of the Server log file, or a null
string if the log is being maintained in the
RAWFS

Log Version 300

LogInPartition 0 to indicate that the log is in the RAWFS, 1
to indicate that it is in a file

Server Initialized 1 after the Server has been initialized
October 1997 15

Setup
Use the entry OS_InitLog , described in Chapter 3, API Reference,
to initialize the Server and set the relevant values in the registry.

Setting up the Server
and Cache Manager
as system services

You can use the entry OS_UpdateStartup , described in Chapter 3,
API Reference, to set up system services. This task requires two
steps. First, you must update the system services databases. Then
set the Auto Start Server value in the registry under

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

Note that system service updating follows different rules on
Windows NT, which supports substantive system services, and
Windows 95, which does not.

The following paragraphs characterize the components and
sequence of an ObjectStore installation and setup.

Installation System Files

The ObjectStore installation and setup for Windows is an
InstallShield application delivered in a number of different files.
For ObjectStore Release 5, the files are as follows:

client.zip
debug.zip
devo.zip

Compressed forms of the ObjectStore product files.

examples.zip ObjectStore example files.

runtime.zip
server.zip

single.zip ObjectStore/Single files.

doc.zip ObjectStore HTML documentation files.

pscript.zip ObjectStore PostScript or PDF format documentation.

msvcrt.dll Redistributed Microsoft C run-time DLL.

install.bat Batch file replacing install.exe (executes the command setup -
install).

readme.ico
uninst.ico

Program manager icons for README.txt and for uninstall (which
executes setup -uninstall).

readme.txt

setup.bmp
setup16.bmp

Bitmaps of the installation splash screen
(setup is 256 color, setup16 is 16 color).

setup.exe
inst32i.ex
_setup.dll

InstallShield-supplied executables.
16 book name here

Chapter 2: ObjectStore Windows Installation System
_setup.lib
components

Components of Installation and Setup

The major ObjectStore-supplied components for the installation
and setup are SETUP.INS, OS_SETUP.DLL , and OSCP437.DLL .
SETUP.INS is the main InstallShield application program. OS_
SETUP.DLL provides a wide variety of ObjectStore-specific
support routines, and OSCP437.DLL is a resource DLL supplying
English-language resources used by OS_SETUP.DLL . OS_
SETUP.DLL and OSCP437.DLL are supplied in object form.
SETUP.INS is derived from the source files SETUP.RUL and
OS_SETUP.H that are supplied with this VAR kit.

OS_SETUP.DLL and
OSCP437.DLL

Chapter 3, API Reference, describes the available entries in
OS_SETUP.DLL . You should use these entries when modifying the
ObjectStore installation or when creating your own installation
and setup. The VAR kit might contain a text file with updates for
the API documentation included in Chapter 3, API Reference.

The OSCP437.DLL is used internally by OS_SETUP.DLL and
should not need to be changed unless the installation is to be
performed in a language other than English. Contact Object
Design Technical Support for assistance if a non-English system is
required.

setup.ini InstallShield startup initialization file.

setup.ins Compiled ObjectStore InstallShield application.

_setup.lib InstallShield support library, including both InstallShield-
supplied components and Object Design-supplied components.
The components are listed in the next table.

CTL3D32.DLL
CTL3D32S.DLL
_isres.dll
corecomp.ini
uninst.exe

InstallShield-supplied components

odi.bmp Object Design logo bitmap

ostore.bmp ObjectStore logo bitmap

oscp437.dll Resource DLL used by os_setup.dll

os_setup.dll Support DLL called from ObjectStore
InstallShield application
October 1997 17

Setup
SETUP.INS:
SETUP.RUL and OS_
SETUP.H

SETUP.INS is the control program for ObjectStore install , setup ,
and uninstall . It was generated by the InstallShield compiler from
the source files SETUP.RUL (that contains code) and OS_SETUP.H
(that contains definitions for the various strings displayed by
InstallShield) and for a variety of constants used by SETUP.RUL.

The VAR kit includes SETUP.RUL and OS_SETUP.H in source
form. The descriptions of these files are based on the initial
versions used with ObjectStore Release 5. Since changes might
occur in subsequent versions, Object Design has included two
files:

• SETUP.50

• OS_SETUP.50

Compare these files to SETUP.RUL and OS_SETUP.H, respectively,
to see if any changes have occurred since ObjectStore Release 5.

See Chapter 4, SETUP.RUL Routines, for specific information
about how these routines work.
18 book name here

Chapter 2: ObjectStore Windows Installation System
Uninstall

Using uninstall results in the removal of all the various pieces of
the ObjectStore installation from the system. This typically means
the removal of

• %OS_ROOTDIR% and all its contents

• All ObjectStore-related entries from the registry

• On Windows 95, any ObjectStore-specific entries in
AUTOEXEC.BAT

ObjectStore might also have installed updated Microsoft C++ run-
time DLLs, but there is seldom a reason to remove these during
uninstall .
October 1997 19

Uninstall
20 book name here

Chapter 3
API Reference

The API descriptions that follow are based on the ObjectStore
Release 5 version of OS_SETUP.DLL . The descriptions are
organized alphabetically. Check the README.TXT file supplied
with the VAR kit for the latest information about these APIs.

OS_BuildUnzipList

EXPORT BOOL OS_BuildUnzipList (char *InstallDir, char *InstallFrom,
BOOL Upgrading, long Flags, char *ZipFileName,
int iZipFile, long Mask)

Creates an internal list of files to be extracted from a given zip file.

You must call this entry before attempting to extract files from a
given zip file.

InstallDir Pathname of the target directory.

InstallFrom Pathname of the directory containing zip files.

Upgrading TRUE if upgrading an existing installation (the
InstallShield script always sets this to FALSE).

Flags Flags corresponding to the options being
installed (as returned by OS_GetInstallFlags).

ZipFileName Name of the zip file being unzipped.

iZipFile Index of the zip file being unzipped (not
currently used).

Mask Mask associated with files in the zip file (as
returned by OS_GetZipFile).

Return TRUE if there are files to be extracted from this
zip file, FALSE otherwise.
October 1997 21

OS_CheckLogFile

EXPORT int OS_CheckLogFile (CHAR *FileName, int FileNameSize)

Attempts to determine if the Server log file has been initialized.

OS_CheckRAWFS

EXPORT int OS_CheckRAWFS ()

Determines if any RAWFS partitions exist.

OS_CheckServerStartup

EXPORT int OS_CheckServerStartup ()

Determines if the ObjectStore Server is currently set for
autostartup.

OS_DecompressZipFile

EXPORT BOOL OS_DecompressZipFile (char *InstallDir, char *InstallFrom,
 BOOL Upgrading, long Flags, char *ZipFileName,
 int iZipFile, long Mask)

Decompresses an entire zip file. Not currently used for the
InstallShield installation.This entry is obsolete.

FileName Pointer to a buffer to hold the Server log file
pathname.

FileNameSize Size of the Server log file pathname buffer.

Return 0 if a log file is not found.

1 if the log file is found in a file system file.

2 if the log is being maintained in the RAWFS
partition.

Return TRUE if a RAWFS partition is found in the registry,
FALSE otherwise.

Return TRUE if the Server is in autostart mode, FALSE
otherwise.

InstallDir Pathname of a target directory.

InstallFrom Pathname of the directory containing zip files.

Upgrading TRUE if upgrading an existing installation (the
InstallShield script always sets this to FALSE).
22 book name here

Chapter 3: API Reference
OS_DeleteUninstRegKey

EXPORT BOOL OS_DeleteUninstRegKey (CHAR *szKeyPath, CHAR * szKey)

InstallShield adds an item to the list of uninstallable applications in
the registry as one activity in the InstallShield ObjectStore
installation process. However, ObjectStore cannot be uninstalled
in the standard InstallShield mechanism, so Object Design deletes
the key to avoid confusing the user. For this purpose, szKeyPath is

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

and szKey is ObjectStore .

OS_DeleteUninstRegKey attempts to delete the key from
HKEY_LOCAL_MACHINE .

ObjectStore uses the InstallShield VerUpdateFile routine to install
C++ run-time files. VerUpdateFile determines whether a reboot is
required to complete installation. However, VerUpdateFile
requires that the deinstall system be initialized (creating the
Uninstall key) that OS_DeleteUninstRegKey later deletes.

OS_GetDefaultSrvrLogFile

EXPORT BOOL OS_GetDefaultSrvrLogFile(CHAR *pSvrLogFile)

Constructs a default pathname for the Server log file.

Flags Flags corresponding to the options being installed
(as returned by OS_GetInstallFlags).

ZipFileName Name of the zip file being unzipped.

iZipFile Index of the zip file being unzipped (not currently
used).

Mask Mask associated with files in the zip file (as
returned by OS_GetZipFile).

Return 1 if files are extracted, –1 otherwise.

Return TRUE if the deletion succeeded, FALSE otherwise.

pSvrLogFile Pointer to a 512-character buffer to hold the
pathname. The pathname is based on the
operating system (Win95 or WinNT), and on
either the drive letter of the installation directory
or the boot drive letter.
October 1997 23

OS_GetDiskRequirement

EXPORT long OS_GetDiskRequirement (unsigned long Flags, char *InstallDir)

Returns an estimate of the amount of disk space required to install
ObjectStore, based on the options represented by the Flags word.

OS_GetInstallFlags

XPORT long OS_GetInstallFlags (BOOL bLcClient, BOOL bLcServer, BOOL bLcDevo,
 BOOL bCompDBMS, BOOL bCompSingle, BOOL bCompExamples,
 BOOL bCompHTML, BOOL bCompPScript)

The entries that determine disk space requirements and lists of
files to be installed use a flag, long , whose bits indicate which
installation components should be copied, based on the various
Boolean values passed in.

Flags As returned by OS_GetInstallFlags .

InstallDir Pointer to a string containing the proposed
installation directory.

Return Estimated disk space requirements, in bytes.

bLcClient TRUE if a client is being installed, FALSE
otherwise.

bLcServer TRUE if a Server is being installed, FALSE
otherwise.

bLcDevo TRUE if this is a development installation,
FALSE otherwise.

bCompDBMS TRUE if ObjectStore itself is being installed,
FALSE otherwise.

bCompSingle TRUE if ObjectStore/Single is being installed,
FALSE otherwise.

bCompExamples TRUE if examples are being installed, FALSE
otherwise.

bCompHTML TRUE if HTML documentation is being
installed, FALSE otherwise.

bCompPScript TRUE if PostScript documentation is being
installed, FALSE otherwise.

Return Flag word with bits set as appropriate for files
being installed.
24 book name here

Chapter 3: API Reference
OS_GetNextUnzip

EXPORT int OS_GetNextUnzip (char *UnzipName)

Gets the name of the next file to be unzipped.

OS_GetRegistration

EXPORT int OS_GetRegistration (CHAR *pRegisterType, CHAR *pRegEntry, int RegEntrySize, int
LocalMachBool)

Returns ObjectStore registration registry information.

Values are retrieved from

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Registration

or

HKEY_CURRENT_USER\Software\Object Design Inc.\ObjectStore.4.0\Registration

Values stored in HKEY_LOCAL_MACHINE include all of these that
are literal strings:

• Company

• Install From

• License Type

• ObjectStore Install Directory

• ObjectStore/Single Directory

UnzipName Gets the name (relative to OS_ROOTDIR) of
the next file to be extracted from the zip file.
Back-slash characters are returned as forward
slashes.

Return 0 if there are no more files to be unzipped
from this zip file, otherwise, the number of
bytes of disk space required for this file.

pRegisterType Specific key value to be retrieved (see below).

pRegEntry Pointer to a buffer to hold the value.

RegEntrySize Size of the value buffer.

LocalMachBool If 1, the value is retrieved from
HKEY_LOCAL_MACHINE ; otherwise, the value
is retrieved from HKEY_CURRENT_USER.

Return Always returns 1.
October 1997 25

• ObjectStore Examples Directory

• ObjectStore HTML Documentation Directory

• ObjectStore PostScript Documentation Directory

• Program Folder Name

Values stored in HKEY_CURRENT_USER consist only of

• User Name

OS_GetServerParameter

EXPORT int OS_GetServerParameter (const CHAR *Key, CHAR *Value)

Gets the current value of an ObjectStore Server parameter.

Server parameters are stored under the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

Note that a parameter can be known but have a null value. In this
case, the OS_GetServerParameter returns 0 but the value buffer
will contain a null string.

OS_GetZipFile

EXPORT int OS_GetZipFile(char *ArchiveName, int Which, long *Mask)

Gets the name of the next zip file and a mask, corresponding to the
flags (see OS_ZipLogFiles) associated with the files in the zip file.

Key Points to the parameter name.

Value Points to a 512-character buffer to receive the
value.

Return 0 if the parameter is known, –1 otherwise.

ArchiveName Pointer to a 256-character buffer to hold the
name of the zip file.

Which Should start at zero and be incremented
after each call to OS_GetZipFile .

Mask Pointer to a long , which is set to the flags of
the files stored in this zip file.

Return >= 0 if an archive corresponding to Which
exists, –1 otherwise.
26 book name here

Chapter 3: API Reference
OS_InitDLL

EXPORT int OS_InitDLL (HWND hWnd, CHAR *pAppPath)

OS_InitLog

EXPORT int OS_InitLog (CHAR *Logfile, BOOL bSilent)

Initializes the ObjectStore Server and the Server log file.

OS_IsUserAdmin

EXPORT BOOL OS_IsUserAdmin ()

Attempts to determine if the current user is an administrator for
this system. For InstallShield users, Object Design recommends
that you use the InstallShield IS (USER_ADMINISTRATOR) call
instead. Some installation processes, especially those involving

Initialize DLL for
execution

The first DLL entry called.

hWnd Main installation window
InstallShieldGetWindowHandle
(HWND_INSTALL): used when displaying
installation, setup, and error dialogs.

pAppPath Directory containing OSCP437.DLL (or
equivalent). The OSCPxxx.DLL should
correspond to the OEM code page of the
system running setup .

Return Always returns 0.

Logfile Pathname of the log file. This is ignored unless
bSilent is TRUE, in which case it must be a file
system path. It is not currently possible to
silently initialize the Server if the Server log file
is stored in the RAWFS.

 bSilent Set to TRUE to initialize the log without
interacting with the user (used for a Typical
installation).

Return TRUE if the log file was initialized, FALSE if the
user canceled from dialog or if initialization
failed. Note that an error dialog is displayed by
OS_InitLog if the initialization fails.
October 1997 27

the registry, might not be possible if the user is not running as
administrator.

OS_NeedCheckpoint

EXPORT int OS_NeedCheckpoint ()

Determines if a Server log file or a RAWFS partition exists on the
system. If they do, the user should be queried to see if they need
to run checkpoint before proceeding.

OS_NeedCheckpoint examines the registry under

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

and looks for either a Log File entry or a Partition0 entry. It does not
check to see if either of these entries corresponds to actual data on
the system.

OS_OStoreInstalled

EXPORT int OS_OStoreInstalled (CHAR *pOSRootDir, CHAR *pSingleDir, CHAR *pExamplesDir,
 CHAR *pHTMLDir, CHAR *pPScriptDir)

Attempts to determine if ObjectStore is currently installed on the
system. If it is, it attempts to determine pathnames for directories
being used. This entry should be called very early in the setup
process. All the directories involved are obtained from the
corresponding registry entries found in pOSRootDir , which points
to a 512-byte buffer that holds the current OS_ROOTDIR.

Return TRUE if the user is administrator, FALSE otherwise.

Return TRUE if a checkpoint might be needed, FALSE
otherwise.

pSingleDir Points to a 512-byte buffer that holds the current single directory
(the directory binsngl).

pExamplesDir Points to a 512-byte buffer that holds the current examples
directory (the directory above examples).

pHTMLDir Points to a 512-byte buffer that holds the current HTML
documentation directory (the directory above doc).

pPScriptDir Points to a 512-byte buffer that holds the current PostScript
documentation directory (the directory above doc\pscript).
28 book name here

Chapter 3: API Reference
Each of the return values depends on the corresponding
directory’s being named in the registry data and on the existence
of the named directory in the system.

An internal default installation directory pathname might be set
based on what directories are found. At any given time, only one
installation directory is permitted; therefore, if multiple
directories are encountered, the internal setting corresponding to
the lower return value (that is, OS_ROOTDIR is preferred) is used.

OS_OStoreRunning

EXPORT BOOL OS_OStoreRunning ()

Attempts to determine if ObjectStore is currently running. Looks
for any services (Server or Cache Manager) that might be running
and for ObjectStore DLLs that might be active.

OS_rename_dir

EXPORT BOOL OS_rename_dir (char *Path, char *NewPath)

Renames a directory (or file).

OS_RenameToLongFiles

EXPORT BOOL OS_RenameToLongFiles (char *InstallDir)

Renames files to their correct long (non-8.3) names.

Return Additive combinations of

1: If the OS_ROOTDIR directory is found

2: If the Single directory is found

4: If the Examples directory is found

8: If the HTML documentation directory is found

16: If the PostScript documentation directory is found

Return TRUE if it appears that ObjectStore is running, FALSE
otherwise.

Path Original name of file or directory.

NewPath New name.

Return TRUE if the rename succeeds, FALSE otherwise.

InstallDir OS_ROOTDIR of where files have been installed.
October 1997 29

OS_SetInstallDirectories

EXPORT int OS_SetInstallDirectories (CHAR *pOSRootDir, CHAR *pSingleDir,
CHAR *pExamplesDir, CHAR *pHTMLDir,
CHAR *pPScriptDir)

Sets registry values corresponding to the directory names passed
in. All names passed in should be the same, but directories
corresponding to components that have not been installed should
be set to "" . Do not pass in NULL pointers.

OS_SetRegistration

EXPORT int OS_SetRegistration (CHAR *pRegisterType, CHAR *pRegEntry, int LocalMachBool)

Sets the ObjectStore registration registry information.

See OS_GetRegistration for details of registration keys used by
ObjectStore.

OS_SetServerParameter

EXPORT int OS_SetServerParameter (const CHAR *Key, CHAR *Value)

Sets an ObjectStore Server parameter value.

Return Always returns TRUE.

pOSRootDir Points to OS_ROOTDIR value.

pSingleDir Points to path of parent of binsngl directory.

pExamplesDir Points to path of parent of examples directory.

pHTMLDir Points to path of parent of doc directory.

pPScriptDir Points to path of parent of doc\pscript directory.

Return Always returns 0.

pRegisterType Specific key value to be set.

pRegEntry Pointer value string.

LocalMachBool If 1, the value is set in HKEY_LOCAL_
MACHINE; otherwise, the value is set in
HKEY_CURRENT_USER.

Return Always returns 1.

Key Points to the parameter name.

Value Points to the new value.
30 book name here

Chapter 3: API Reference
Server parameters are stored under the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore.4.0\Server

OS_SetServerParams

EXPORT int OS_SetServerParams ()

Runs the ObjectStore Server Parameters dialog and sets any
parameters selected by the user.

OS_SetupRawfs

EXPORT int OS_SetupRawfs (int *bPartChanged)

Runs the ObjectStore RAWFS partition dialogs and sets registry
values appropriately.

OS_ShutdownOStore

EXPORT int OS_ShutdownOStore ()

Attempts to shut down any running ObjectStore services (Server
or Cache Manager).

OS_status_update_bar_num

EXPORT int OS_status_update_bar_num (char *CurrFile)

Gets the total disk space used by files installed to this point.

Return 0 if the parameter is known, –1 otherwise.

Return 0 if the user selected Cancel , 1 if the user selected
OK.

bPartChanged When the dialog returns, the installation checks
to see if the partitions have changed. If so, the
utility ORs a changed bit into the int pointed to
by this argument.

Return 0 if the user selected Cancel , 1 if the user
selected OK.

Return TRUE if all processes appear to have been stopped,
FALSE otherwise.

CurrFile OS_ROOTDIR-relative name of the next file to be
installed.
October 1997 31

OS_TermDLL

EXPORT int OS_TermDLL ()

OS_Uninstall

EXPORT int OS_Uninstall (char *OSRootDir, BOOL bUninstallRAWFS)

Removes ObjectStore from the system; attempts to remove all
vestiges of ObjectStore.

OS_update_environment

EXPORT BOOL OS_update_environment (char *OSRootDir, BOOL bRuntimeOnly, char
*OSSchemaDir)

Sets various environment values.

Environment values that can be set or modified by this call
include

Return Number of bytes installed before curr_file .

Terminate DLL Frees resources after execution. The last DLL
entry called.

Return Always returns 0.

OSRootDir Current OS_ROOTDIR value.

bUninstallRAWFS TRUE to remove RAWFS files in addition to
ObjectStore executables.

Return Always returns TRUE.

OSRootDir Pointer to OS_ROOTDIR value.

bRuntimeOnly TRUE if this installation does not include
development support.

OSSchemaDir Pointer to a schema directory, if this is a client-
only development installation.

Return TRUE if the environment was modified, FALSE
otherwise.

OS_ROOTDIR Always set.

OS_LIBDIR Set if OSSchemaDir is nonnull.

OS_TMPDIR Always set.

PATH Always set.
32 book name here

Chapter 3: API Reference
For Windows NT, settings are made in the registry. For Windows
95, settings are made in OS_AUTO.BAT , which is called from
AUTOEXEC.BAT .

OS_UpdateStartup

EXPORT int OS_UpdateStartup (BOOL StartServer, CHAR *InstallDir, BOOL StartNow)

Updates Server autostartup values in the registry and in system
services databases.

OS_UnzipOneFile

EXPORT INT OS_UnzipOneFile (char *UnzipName)

Unzips one file.

Unzip error codes are defined in os_setup.h , with names
beginning with PK_ and values ranging from 1 to 51.

INCLUDE Set if bRuntimeOnly is FALSE

LIB Set if bRuntimeOnly is FALSE

StartServer TRUE to have Server start automatically,
FALSE otherwise.

InstallDir Pointer to OS_ROOTDIR string.

StartNow TRUE if user should be queried about starting
the Server immediately (assuming that
StartServer is also TRUE), FALSE to skip the
query and delay starting the Server.

It might be appropriate to delay startup if
some elements of the installation (notably
MSVCRT.DLL) are not to be installed until
after the system reboots.

Return Always returns 0.

UnzipName Name of the file to be extracted from the current
zip file.

Return Return 0 if no errors are encountered, nonzero
otherwise.
October 1997 33

OS_ZipLogFiles

EXPORT BOOL OS_ZipLogFiles (char *InstallDir)

Opens log files OSUNZIP.LOG and OSUNZIP.ERR in InstallDir and
redirects stdout and stderr to those files. You can use this entry to
direct unzip output to these files, but the InstallShield installation
does not currently do this.

InstallDir Directory into which the log files will be placed.

Return Currently always returns 1.
34 book name here

Chapter 4
SETUP.RUL Routines

This chapter provides overview and detailed information about
the SETUP.RUL routines.
October 1997 35

Overview of SETUP.50 (SETUP.RUL)
Overview of SETUP.50 (SETUP.RUL)

The paragraphs that follow describe each of the routines supplied
in SETUP.50.

Two areas of that code (the main program, and the code that
unzips files and updates the progress display) are complex. They
are documented here in detail.

Main Program

The main program starts at the label start: following the keyword
program . The code in the main program is somewhat complex
because of the interactions between install and setup , and because
it is serving as the main program for three different applications:
install , setup , and uninstall .

The main program starts out with a call to the Initialize routine.
Initialize performs a number of functions, such as loading DLLs,
displaying bitmaps, and checking for a previous installation of
ObjectStore. It also checks the command line arguments -install
and -uninstall , which force those behaviors. After dealing with the
possibility that ObjectStore might be running, the main program
sets a RunningInstall flag, which is set to TRUE if no previous
ObjectStore installation was detected or if the SETUP.EXE
program was invoked with the -install command line argument.

Execution of the code starting at the Reinstall: is controlled by a
number of Boolean variables:

• RunningInstall

• RunningSetup

• AutoSetup

If RunningInstall is set, execution proceeds directly to the
installation welcome screen (the call to SdWelcome) and continues
with the call to RunInstall . RunInstall returns a value indicating
whether setup needs to be run, if the user selected Custom install .
If the user selected Typical install , the AutoSetup flag is set if the
DBMS server was installed and needs to be set up automatically.

The next block of code, starting with if (RunningSetup) then , takes
different paths depending on the flag settings. The settings and
their results are as follows:
36 book name here

Chapter 4: SETUP.RUL Routines
After this block of code, and after the Terminate routine has been
invoked, the code checks the BATCH_INSTALL flag that is set if a
conflict was encountered when attempting to install Microsoft
C++ run-time files. If so, the user can choose to reboot
immediately or to reboot later.

Unzipping Files and Updating the Progress Display

The second complex section of code in SETUP.50 occurs in the
routine DecompressFiles . This routine manages both
decompressing (unzipping) files and updating the progress bar
with percent complete and the name of the current file being
decompressed.

DecompressFiles calls OS_GetInstallFlags , which returns a bit
mask corresponding to the various types of files to be extracted. It
then enters the outer loop and calls OS_GetZipFile , which returns
the name of each available zip file, along with another mask
corresponding to the types of files contained in that zip file. If
there is a match between the two masks, DecompressFiles then
calls OS_BuildUnzipList to initialize the list of files to be extracted
from the current zip file, and enters an inner loop.

The inner loop processes one file at a time. It calls OS_
GetNextUnzip to get the name and size of the next file to be
decompressed. It then updates the progress display with the
name of the file being unzipped. Note that the progress bar is not
updated until the next time through the loop. This means that, at
any given time, the display includes the name of the file being
decompressed and the percent complete up to, but not including,

RunningSetup RunningInstall AutoSetup Action

TRUE FALSE Don’t Care Run SetupOptions to see
what to do next, then restart
at the Reinstall: label.

TRUE TRUE Don’t Care Run OSSetup , OSFinish , and
then done.

FALSE TRUE TRUE Reinitialize the log, if
necessary.

FALSE TRUE FALSE Run OSFinish , and then
done.

FALSE FALSE Don’t Care Should not happen.
October 1997 37

Overview of SETUP.50 (SETUP.RUL)
that file. After the display is updated, the size of the current file is
added to TotalCopied and the file is decompressed.

(TotalCopied * 100) / TotalSpace

TotalSpace is calculated in the Components routine and is based
on the licensing and installation options.
38 book name here

Chapter 4: SETUP.RUL Routines
SETUP.RUL Descriptions

The paragraphs that follow describe the SETUP.RUL routines.

function CheckOStoreRunning ()

Returns TRUE if it appears thatObjectStore is currently running,
FALSE otherwise.

function CheckUpgrade ()

Determines if the installation is an upgrade and, if so, queries the
user about checkpointing the Server. Returns TRUE if the
installation should continue, FALSE if the installation should be
terminated.

function Components ()

Builds and displays the component options dialog and sets flags,
and space requirements, based on results. Note that the
component options dialog is more complex than most since the
options presented to the user depend on the licensing option
selected.

function ConfirmInstall ()

Generates and displays the installation confirmation dialog,
customized by all the user’s selections. Returns either NEXT or
BACK depending on the user’s button selection.

function CopyFiles (szInstallFrom)

Calls various routines to copy individual files. Supplies estimated
file size for each file being copied. This function deals with files
(such as those used by the installation) that are distributed outside
the zip files.

function CopyOneFile (szFile, nFileSize)

Copies a single nonzipped file while updating the progress
display.

function CreateOSProgramFolder ()

Creates and/or updates a program manager folder for
ObjectStore.
October 1997 39

SETUP.RUL Descriptions
function CreateRegAndDirs ()

Updates registry information under the registration key. See
“Registration data in the registry”, Chapter 2, ObjectStore
Windows Installation System, for details.

function DecompressFiles (szInstallFrom)

Main routine for decompressing zip files.

function DeleteFiles ()

Called if the user selected the delete before installing option. It
deletes all subdirectories under the selected OS_ROOTDIR. (It does
not delete any files that might reside in the OS_ROOTDIR itself.)

function DeleteProgramFolderItem (szItemName)

Deletes a single item from a program manager folder.

function DeleteOSFolder ()

Deletes various ObjectStore items from a program manager folder
and then attempts to delete the folder itself. This code is not
completely effective as there is a conflict between InstallShield
and Windows NT 4.0 (and, perhaps, Windows 95).

function DirExistsOptions (szExistingDir)

Displays a dialog asking the user what to do about a previously
existing OS_ROOTDIR (overwrite, rename, or delete). Returns
either NEXT or BACK , depending on the user’s button selection.

function DisplayCopyFile (szFileStr, nPercent)

Updates the progress display status window for files being
copied.

function DisplayUnzipFile (szDestLower, szTargetStr, nPercent)

Updates the progress display status window for files being
unzipped.

function FixDisplayPath (szPathStr, szFixedStr)

Utility routine used when updating the progress display. This
routine converts forward slashes to back slashes and, if necessary,
40 book name here

Chapter 4: SETUP.RUL Routines
shortens the string being displayed so it will fit in the space
available.

function GetOSLibDir (WhichButton)

Displays a dialog querying the user for an OS_LIBDIR . This
function is used when you are installing a client-only
development system because the various ObjectStore databases
needed during development are not available on the local system.
Returns either NEXT or BACK , depending on the user’s button
selection.

function GetRenamePathname (oldpath, newPath, szSeqNum)

Constructs a pathname used in the DirExistsOptions routine as the
target if the user chooses to rename an existing OS_ROOTDIR.

function HandleUnzipError (nErrorCode, szFileName)

Displays error messages for problems encountered during unzip
operations, and allows the user to do one of the following:

• Ignore this error

• Ignore all unzip errors

• Abandon the installation attempt

function Initialize ()

Performs common initialization tasks.

• Checks operating system type and version

• Checks whether user is a system administrator

• Loads OS_SETUP.DLL and initializes it

• Initializes main display window

• Checks for -install and -uninstall arguments

• Checks to see if ObjectStore is already installed

• Sets up various strings, dialog titles, and internal lists

function InitializeAutoStart ()

Displays a dialog asking if the user wants the Server to start
automatically. Note that this routine merely sets the DoStartup
flag, which is then used later in the OSFinish routine.
October 1997 41

SETUP.RUL Descriptions
function InitializeInstall ()

Performs basic initialization steps needed specifically for install .

function InitializeLog ()

Displays a dialog asking whether the user wants to initialize or
reinitialize the Server log. If so, invokes the OS_SETUP.DLL
routine to do the initialization. Returns either NEXT or BACK ,
depending on the user’s button selection.

function InstallationOptions ()

Displays the installation options (typical or custom) dialog.
Returns either NEXT or BACK , depending on the user’s button
selection.

function InstallFiles ()

Performs all file installations, which include

• Copying setup -related files to OS_ROOTDIR

• Decompressing appropriate zip files in OS_ROOTDIR
subdirectories

• Installing updated Microsoft C++ run-time files

• Installing the ObjectStore MFC Wizard file

function LicenseOptions ()

Displays the license options dialog and sets flags based on user
selection. Returns either NEXT or BACK , depending on the user’s
button selection.

function OSFinish ()

Checks to see whether to start the Server automatically (if the log
file is OK) and calls OS_UpdateStartup , which asks the user if the
Server should be started immediately. Also displays a dialog
allowing the user to choose to view the README.TXT file. Always
returns NEXT.

function OSSetup (bAllowBack)

Steps through the setup dialogs: Server Parameters , RAWFS Setup ,
Server Initialization , and AutoStart Initialization .
42 book name here

Chapter 4: SETUP.RUL Routines
function OSUninstall ()

Asks the user for uninstall confirmation and then performs the
sequence of steps needed to remove ObjectStore from the system.

function ProcessInstall ()

Calls other routines to perform the basic steps required to actually
install ObjectStore.

function ProcessSpecialFiles (szBinDir)

Attempts to install the ObjectStore MFC Wizard file in the
Microsoft MSDevDir hierarchy.

function ProgramFolder (WhichButton)

Displays a dialog allowing the user to select a program manager
folder name for ObjectStore use. Returns either NEXT or BACK ,
depending on the user’s button selection.

function QueryShutdownServices ()

Queries the user about shutting down currently running
ObjectStore services. Returns TRUE if services should be shut
down.

function RecheckInitializeLog ()

Checks to see if the Server log file needs to be initialized or
reinitialized. If so, queries the user and, if necessary, invokes OS_
SETUP.DLL to initialize the log.

function Registration ()

Displays the registration information dialog. Returns either NEXT
or BACK , depending on the user’s button selection.

function RunInstall ()

This is the main routine for install . Steps through the install -
specific dialogs (obtaining registration data, license options,
installation options, component options, and so on), displays a
confirmation dialog, invokes ProcessInstall to install files, and
updates environment settings.
October 1997 43

SETUP.RUL Descriptions
function RunSetupOptions ()

Displays the initial setup dialog, allowing the user to choose
between Install , Reinstall , Setup , and Uninstall . In case of Setup and
Uninstall , invokes the relevant routines immediately. Returns
TRUE if the user selects the Reinstall option, FALSE otherwise.

function SetServerParams ()

Displays a dialog asking whether the user wants to set Server
parameters. If so, invokes the OS_SETUP.DLL routine to display
the Server parameters dialog. Returns either NEXT or BACK ,
depending on the user’s button selection.

function SetupRawfs ()

Displays a dialog asking whether the user wants to set up or
modify the RAWFS configuration. If so, invokes the OS_
SETUP.DLL routine to display the RAWFS dialog. Returns either
NEXT or BACK , depending on the user’s button selection.

function SourcePath ()

Attempts to find a usable installation source directory. install is
usually invoked from a directory that contains the complete
ObjectStore installation environment. But the user can select
reinstall after invoking setup.exe in the OS_ROOTDIR. In this case
files such as the .zip files are not immediately available.
SourcePath looks in the registration data to see if there is an
original source path. If there is, it verifies that the Sourcepath
exists and contains .zip files.

function Terminate ()

Performs common termination tasks.

• Deletes extraneous registry key

• Calls OS_SETUP.DLL termination routine

• Unloads OS_SETUP.DLL and OSCP437.DLL

function UninstallSpecialFiles ()

Attempts to delete the ObjectStore MFC Wizard file, which might
have been installed in the Microsoft C++ hierarchy.
44 book name here

Chapter 4: SETUP.RUL Routines
function UpdateMSVCRT (szInstallFrom, szFileName)

Attempts to update MSVCRT.DLL and does so in such a way that
a failure to update can be corrected at a subsequent system reboot.
October 1997 45

SETUP.RUL Descriptions
46 book name here

October 1997
Index
B
binsngl directory 11

C
Cache Manager

running as service 12

D
directory structure

OS_ROOTDIR 11

E
environment variables

INCLUDE 11
LIB 12
OS_ROOTDIR 11
OS_TMPDIR 11
PATH 11

etc directory 11

F
function CheckOStoreRunning () 39
function CheckUpgrade () 39
function Components () 39
function ConfirmInstall () 39
function CopyFiles (szInstallFrom) 39

function CopyOneFile (szFile, nFileSize) 39
function CreateOSProgramFolder () 39
function CreateRegAndDirs () 40
function DecompressFiles (szInstallFrom)

40
function DeleteFiles () 40
function DeleteOSFolder () 40
function DeleteProgramFolderItem

(szItemName) 40
function DirExistsOptions (szExistingDir) 40
function DisplayCopyFile (szFileStr,

nPercent) 40
function DisplayUnzipFile (szDestLower,

szTargetStr, nPercent) 40
function FixDisplayPath (szPathStr,

szFixedStr) 40
function GetOSLibDir (WhichButton) 41
function GetRenamePathname (oldpath,

newPath, szSeqNum) 41
function HandleUnzipError (nErrorCode,

szFileName) 41
function Initialize () 41
function InitializeAutoStart () 41
function InitializeInstall () 42
function InitializeLog () 42
function InstallationOptions () 42
function InstallFiles () 42
function LicenseOptions () 42
function OSFinish () 42
47

function OSSetup (bAllowBack) 42
function OSUninstall () 43
function ProcessInstall () 43
function ProcessSpecialFiles (szBinDir) 43
function ProgramFolder (WhichButton) 43
function QueryShutdownServices () 43
function RecheckInitializeLog () 43
function Registration () 43
function RunInstall () 43
function RunSetupOptions () 44
function SetServerParams () 44
function SetupRawfs () 44
function SourcePath () 44
function Terminate () 44
function UninstallSpecialFiles () 44
function UpdateMSVCRT (szInstallFrom,

szFileName) 45

I
INCLUDE environment variable 11
InstallShield application progra 17
InstallShield version information 8

L
LIB environment variable 12

O
ObjectStore installation components 7
OS_BuildUnzipList 21
OS_CheckLogFile 22
OS_CheckRAWFS 22
OS_CheckServerStartup 22
OS_DecompressZipFile 22
OS_DeleteUninstRegKey 23
OS_GetDefaultSrvrLogFile 23
OS_GetDiskRequirement 24
OS_GetInstallFlags 24
OS_GetNextUnzip 25
OS_GetRegistration 25

OS_GetServerParameter 26
OS_GetZipFile 26
OS_InitDLL 27
OS_InitLog 27
OS_IsUserAdmin 27
OS_NeedCheckpoint 28
OS_OStoreInstalled 28
OS_OStoreRunning 29
OS_rename_dir 29
OS_RenameToLongFiles 29
OS_ROOTDIR environment variable 11
OS_SetInstallDirectories 30
OS_SetRegistration 30
OS_SetServerParameter 30
OS_SetServerParams 31
OS_SetupRawfs 31
OS_ShutdownOStore 31
OS_status_update_bar_num 31
OS_TermDLL 32
OS_TMPDIR environment variable 11
OS_Uninstall 32
OS_UnzipOneFile 33
OS_update_environment 32
OS_UpdateStartup 33
OS_ZipLogFiles 34
OSCP437.DLL resource DLL 17

P
PATH environment variable 11

R
routines

function CheckOStoreRunning () 39
function CheckUpgrade () 39
function Components () 39
function ConfirmInstall () 39
function CopyFiles (szInstallFrom) 39
function CopyOneFile (szFile, nFileSize)

39
function CreateOSProgramFolder () 39
48 book name here

Index
function CreateRegAndDirs () 40
function DecompressFiles (szInstallFrom)

40
function DeleteFiles () 40
function DeleteOSFolder () 40
function DeleteProgramFolderItem

(szItemName) 40
function DirExistsOptions (szExistingDir)

40
function DisplayCopyFile (szFileStr,

nPercent) 40
function DisplayUnzipFile (szDestLower,

szTargetStr, nPercent) 40
function FixDisplayPath (szPathStr,

szFixedStr) 40
function GetOSLibDir (WhichButton) 41
function GetRenamePathname (oldpath,

newPath, szSeqNum) 41
function HandleUnzipError (nErrorCode,

szFileName) 41
function Initialize () 41
function InitializeAutoStart () 41
function InitializeInstall () 42
function InitializeLog () 42
function InstallationOptions () 42
function InstallFiles () 42
function LicenseOptions () 42
function OSFinish () 42
function OSSetup (bAllowBack) 42
function OSUninstall () 43
function ProcessInstall () 43
function ProcessSpecialFiles (szBinDir)

43
function ProgramFolder (WhichButton) 43
function QueryShutdownServices () 43
function RecheckInitializeLog () 43
function Registration () 43
function RunInstall () 43
function RunSetupOptions () 44
function SetServerParams () 44
function SetupRawfs () 44

function SourcePath () 44
function Terminate () 44
function UninstallSpecialFiles () 44
function UpdateMSVCRT (szInstallFrom,

szFileName) 45

S
Server

running as service 12
when to reinitialize 15

SETUP.INS InstallShield application
program 17
October 1997 49

50 book name here

	Windows VAR Kit
	ObjectStore Release 5 Windows VAR Kit
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Introduction
	ObjectStore Installation Components
	InstallShield Version Information

	ObjectStore Windows Installation System
	Installation
	Setup
	Installation System Files
	Components of Installation and Setup

	Uninstall

	API Reference
	OS_BuildUnzipList
	OS_CheckLogFile
	OS_CheckRAWFS
	OS_CheckServerStartup
	OS_DecompressZipFile
	OS_DeleteUninstRegKey
	OS_GetDefaultSrvrLogFile
	OS_GetDiskRequirement
	OS_GetInstallFlags
	OS_GetNextUnzip
	OS_GetRegistration
	OS_GetServerParameter
	OS_GetZipFile
	OS_InitDLL
	OS_InitLog
	OS_IsUserAdmin
	OS_NeedCheckpoint
	OS_OStoreInstalled
	OS_OStoreRunning
	OS_rename_dir
	OS_RenameToLongFiles
	OS_SetInstallDirectories
	OS_SetRegistration
	OS_SetServerParameter
	OS_SetServerParams
	OS_SetupRawfs
	OS_ShutdownOStore
	OS_status_update_bar_num
	OS_TermDLL
	OS_Uninstall
	OS_update_environment
	OS_UpdateStartup
	OS_UnzipOneFile
	OS_ZipLogFiles

	SETUP.RUL Routines
	Overview of SETUP.50 (SETUP.RUL)
	Main Program
	Unzipping Files and Updating the Progress Display

	SETUP.RUL Descriptions
	function CheckOStoreRunning ()
	function CheckUpgrade ()
	function Components ()
	function ConfirmInstall ()
	function CopyFiles (szInstallFrom)
	function CopyOneFile (szFile, nFileSize)
	function CreateOSProgramFolder ()
	function CreateRegAndDirs ()
	function DecompressFiles (szInstallFrom)
	function DeleteFiles ()
	function DeleteProgramFolderItem (szItemName)
	function DeleteOSFolder ()
	function DirExistsOptions (szExistingDir)
	function DisplayCopyFile (szFileStr, nPercent)
	function DisplayUnzipFile (szDestLower, szTargetSt...
	function FixDisplayPath (szPathStr, szFixedStr)
	function GetOSLibDir (WhichButton)
	function GetRenamePathname (oldpath, newPath, szSe...
	function HandleUnzipError (nErrorCode, szFileName)...
	function Initialize ()
	function InitializeAutoStart ()
	function InitializeInstall ()
	function InitializeLog ()
	function InstallationOptions ()
	function InstallFiles ()
	function LicenseOptions ()
	function OSFinish ()
	function OSSetup (bAllowBack)
	function OSUninstall ()
	function ProcessInstall ()
	function ProcessSpecialFiles (szBinDir)
	function ProgramFolder (WhichButton)
	function QueryShutdownServices ()
	function RecheckInitializeLog ()
	function Registration ()
	function RunInstall ()
	function RunSetupOptions ()
	function SetServerParams ()
	function SetupRawfs ()
	function SourcePath ()
	function Terminate ()
	function UninstallSpecialFiles ()
	function UpdateMSVCRT (szInstallFrom, szFileName)

	Index
	B
	C
	D
	E
	F
	I
	L
	O
	P
	R
	S

