
DEVELOPING JAVA
APPLICATIONS THAT

ACCESS C++
RELEASE 3.0

October 1998

ObjectStore Developing Java Applications That Access C++

ObjectStore Java Interface Release 3.0, October 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Contents

Preface . ix

Chapter 1 Introduction to Developing ObjectStore Java
Applications That Access C++ . 1

What Is Interoperability? . 2

How Does Interoperability Work?. 3

What Are Primary Objects? . 3

What Are Peer Objects?. 3

What Are Peer Classes? . 6

What Is the Interface Between Primary and Peer Objects? . . . 7

How Are Peer Classes Defined? . 8

What Is the Procedure for Using C++/Java
Interoperability? . 9

Example of Accessing C++ Classes. 10

C++ Code . 10

Java Code and C++ Code Generated by Tool 11

Java Code That Uses Generated Code 16

Chapter 2 Generating Peer Classes. 17

Description of Inputs to the Tool . 18

About the Mapping Schema Database 18

Generating the Mapping Schema Database. 18

Specifying Classes for Which to Generate Peer
Class Definitions . 19

Running the Peer Generator Tool . 20

Description of Command Line Format . 20
Release 3.0 iii

Contents
Description of Additional Options . 21

Example of Running the Peer Generator Tool 24

Overview of Tool Output . 26

About Java Peer Class Definitions . 27

About Java Peer Pointer and Unsafe Class Definitions 27

About C++ Output . 28

How Classes and Structs Are Mapped. 29

Generated Names . 29

Methods in Java Peer Classes . 30

Unsafe Peer Classes . 31

Inheritance in Classes and Structs. 32

Handling of C++ Data Members . 33

Handling of C++ Function Members. 33

Handling of Operators . 34

Rules for Template Name Flattening. 35

How Enums Are Mapped. 36

How Primitive Types Are Mapped . 38

How Pointers to Nonclass Types Are Mapped. 39

Pointers to Primitives . 39

Pointers to Pointer Types. 40

Representation of char* Types . 41

Converting Strings . 42

How Reference Types Are Mapped . 43

How Embedded Class Type Return Values Are Mapped . 44

Restrictions . 45

Code for Which Peer Classes Cannot Be Generated 45

Overloaded Functions . 45

Chapter 3 Writing the Application . 47

Behavior of Peer Objects . 48

Peer Objects Can Become Stale . 48

What a Peer Object Can Represent . 49

Initializing ObjectStore/Starting a Session 50

Creating C++ Objects. 51
iv Developing ObjectStore Java Applications That Access C++

Contents
Deleting C++ Objects . 52

Using the CPlusPlus.delete() Method . 52

Using the ObjectStore.destroy() Method 53

Invoking Peer Methods . 54

Synchronizing Calls to Peer Methods . 54

Allowable Arguments To and Return Values From
Peer Methods. 54

Handling Return Values from Peer Methods 55

Creating References to Peer Objects 56

References from Java Primary Objects 56

References from ObjectStore Collections 56

References from C++ Pointers . 57

Summary of Cross-Segment and Cross-Database Rules 57

Handling Exceptions . 58

Initializing Peer Pointers . 59

Using the charP Class. 60

Specifying Peer Objects in Notifications 61

Restrictions When Using Peer Classes . 62

Capability of C++ Functions. 62

Inheritance from Java Peer Classes . 62

Use of SegmentObjectEnumeration Objects 62

Destruction of Segments . 63

C++ Pointers . 63

Performing deepFetch() on a Peer Object 63

Retaining Collections . 63

Calling Java From C++ . 64

Chapter 4 Building the Application . 65

Description of Files . 66

C++ Files . 66

Java Files . 66

Steps for Building the Application . 68

Step 1: Generate the Mapping Schema Database for
Your C++ Application . 68

Step 2: Generate Java Peer Classes and C++ Glue Code . . . 71
Release 3.0 v

Contents
Step 3: Write Java Classes . 71

Step 4: Compile Java Peer Classes and Java Files. 71

Step 5: Generate C Header File . 72

Step 6: Compile C++ Glue Code . 73

Step 7: Generate the Application Schema Database for
Your Library . 73

Step 8: Create the Library . 76

Running the Postprocessor. 77

UNIX: Using Additional Native Libraries with the Java
Interface to ObjectStore . 78

Chapter 5 Using ObjectStore Peer Collections. 79

Introduction to ObjectStore Java Interface
Peer Collections . 80

Creating New Peer Collections . 82

Which Objects Can Be Inserted in Peer Collections? 84

Choosing a Peer Collection Interface 85

Description of Peer Collection Behaviors 87

Default Behaviors for Each Kind of Peer Collection. 88

Decision Tree for Choosing a Peer Collection Type. 89

Navigating Peer Collections with Cursors 90

Creating Cursors . 90

Performing Collection Updates During Traversal. 91

Example of Using a Cursor . 93

Restriction on Cursors . 93

Introduction to Using Peer Queries and Indexes. 94

Performing Navigational Queries . 95

Using Path Strings. 96

Querying a Peer Collection. 97

Allowing Duplicates . 97

Obtaining One Element . 98

Do Any Elements Exist? . 98

String Comparison. 98

Peer Query Example. 99

Description of Peer Query Syntax . 103
vi Developing ObjectStore Java Applications That Access C++

Contents
Relative Values of String Fields. 104

Using Bound Queries . 105

About Free Variables . 105

Description of Query and BoundQuery classes 105

Advantages of Bound Queries . 106

Example of Using a Bound Query . 106

Creating Peer Query Objects . 107

Creating BoundQuery Objects . 107

Running a Bound Query . 107

Querying on Object References . 108

Using Indexes on Peer Collections. 109

Performance . 109

Making Fields Indexable . 110

Adding Indexes . 110

Example of Using an Index . 112

Performing a Query on Multiple Fields 112

Types of Indexes . 113

Restrictions . 113

Index. 115
Release 3.0 vii

Contents
viii Developing ObjectStore Java Applications That Access C++

Preface

Purpose Developing ObjectStore Java Applications That Access C++ provides
information needed to develop an ObjectStore Java application
that accesses code written in C++.

Audience This book is for ObjectStore programmers who want to develop
an application in Java that uses classes written in C++. The
information in this book assumes that you are knowledgeable
about Java and that you are an experienced user of the C++
interface to ObjectStore. You also need the information in the
ObjectStore Java API User Guide.

Scope This book does not provide general information about the Java
interface to ObjectStore (OSJI). For that information, see the
ObjectStore Java API User Guide.

This book supports Release 3.0 of the Java interface to ObjectStore.
See the README.htm file in the OSJI installation directory for
specific ObjectStore release numbers.

How This Book Is Organized

Chapter 1, Introduction to Developing ObjectStore Java
Applications That Access C++, describes interoperability and
peer classes, and summarizes the procedure for developing your
application.

Chapter 2, Generating Peer Classes, provides information and
instructions for using the tool that maps C++ classes to Java to
create peer classes. It also describes how the tool maps some
types.

Chapter 3, Writing the Application, discusses how to use peer
objects in your application.
Release 3.0 ix

Preface
Chapter 4, Building the Application, shows how to link your
application components for execution.

Chapter 5, Using ObjectStore Peer Collections provides
information about storing both primary and peer objects in
collections.You can also use queries and indexes with peer
collections.

Notation Conventions

This document uses the following conventions:

Convention Meaning

Bold Bold typeface indicates user input, code
fragments, method signatures, file names,
and object, field, and method names.

Sans serif Sans serif typeface is used for system
output and system output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can
specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.
x Developing ObjectStore Java Applications That Access C++

Preface
Internet Sources of More Information

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name objectdesignftp and the
password obtained from patch-info. This password also changes
monthly, but you can automatically receive the updated
password by subscribing to patch-info. After you log in, see the
README file for guidelines for using this connection. The FAQs
are in the FAQ subdirectory. This directory contains a group of
subdirectories organized by topic. The FAQ/FAQ.tar.Z file is a
compressed tar version of this hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page), you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info <your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design sales administrator for your site ID information.

Email discussion list There is a majordomo discussion list called osji-discussion. The
purpose of this list is to facilitate discussion about the Java
interface to ObjectStore. For subscription information, see
ObjectStore Java Interface Release Notes, Description of Discussion
List.

Support

Object Design’s support organization provides a number of
information resources and services. Their home page is at
http://support.objectdesign.com/WWW/Welcome.html. From the
support home page, you can learn about support policies, product
discussion groups, and the different ways Object Design can keep
you informed about the latest release information — including the
Web, ftp, and email services.For subscription information, .
Release 3.0 xi

Preface
Training

You can obtain information about training courses from the
Object Design Web site (http://www.objectdesign.com). From the
home page, select Services and then Education.

If you are in North America, for information about Object
Design’s educational offerings, call 781.674.5000, Monday
through Friday from 8:30 AM to 5:30 PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send feedback to support@objectdesign.com. To
expedite your message, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
xii Developing ObjectStore Java Applications That Access C++

Chapter 1
Introduction to Developing
ObjectStore Java
Applications That Access
C++

Interoperability between C++ and the Java interface to
ObjectStore allows an application to access C++ classes from Java.
To use the ObjectStore features that allow you do do this, you
need an understanding of how ObjectStore maps C++ objects to
Java.

Contents This chapter discusses the following topics:

What Is Interoperability? 2

How Does Interoperability Work? 3

How Are Peer Classes Defined? 8

What Is the Procedure for Using C++/Java Interoperability? 9

Example of Accessing C++ Classes 10
Release 3.0 1

What Is Interoperability?
What Is Interoperability?

ObjectStore provides interoperability between C++ and the Java
interface to ObjectStore. Interoperability allows you to write an
ObjectStore Java application that can

• Create, populate, and update C++ databases

• Store Java and C++ objects in the same database

• Access ObjectStore C++ collections

• Use ObjectStore ObjectForms

In your application, the Java and C++ code must be executing in a
single process.
2 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
How Does Interoperability Work?

In an ObjectStore Java application that accesses C++ code, there
are two kinds of Java objects, called primary objects and peer
objects.

What Are Primary Objects?

A primary object is a persistence-capable Java object. A
persistence-capable object is an object that can be stored in an
ObjectStore database. You can use primary objects just as if they
were ordinary Java objects. The database correctly records their
identity, class, and field values.

ObjectStore can store a primary object in a database in these ways:

• ObjectStore commits a transaction. If a transient primary object
is reachable from a persistent object, ObjectStore migrates the
transient object to the database.

• Your application calls the ObjectStore.migrate() method. This
explicitly stores a specified primary object.

• Your application assigns the object as the value of a database
root. ObjectStore immediately migrates the object to the
database.

What Are Peer Objects?

Peer objects provide a way for Java applications to use C++
objects. A peer object acts as a proxy for a particular C++ object. It
has no data fields and so it does not hold any state that is
represented by the data members of the corresponding C++
object. A peer object provides object identity, which allows you to
invoke a method on the corresponding C++ object. You can think
of a peer object as a handle to a C++ object.

Each peer object identifies exactly one C++ object. Multiple peer
objects can represent the same C++ object. The same C++ object
has multiple Java peers only when the peers refer to members or
base classes of the C++ object. A peer object is an instance of a Java
peer class.

Peer objects can act as proxies for transient C++ objects or
persistent C++ objects. In the case of persistent C++ objects, the
Release 3.0 3

How Does Interoperability Work?
C++ code must be written to allocate objects in the usual way. For
example, it must create new objects with calls to constructors that
use ObjectStore’s persistent new. As always, you must specify a
location in which to allocate the new object. Unlike primary
objects, peer objects are not subject to persistence through
reachability.

Allocation and construction of new Java peer objects result in
corresponding allocation and construction of C++ objects. If you
call the destroy() method on a Java peer object, it causes the
deletion of the corresponding C++ object. The typical way to
access peer objects is the same as the way to access primary
objects:

1 Open a database.

2 Obtain a database root.

3 Invoke methods on the root to traverse references to other
objects.

To update the C++ object identified by a Java peer object, use the
Java peer object methods. This propagates the changes to the
corresponding C++ object.

Peer objects can become stale in the same way that primary objects
can become stale. As you would expect, you cannot access stale
peer objects.

You cannot extend Java peer classes. If you try to do so, the
postprocessor displays an error such as the following:

Error: Class COM.odi.omji.osmm.osmmSimpleType extends
COM.odi.jcpp.CPlusPlus but Java peer classes may not be
postprocessed or manually extended.
4 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
Peer pointer objects A peer pointer object is a special kind of peer object. A peer pointer
object is a Java object that encapsulates a location that is associated
with a C++ object in a database. In other words, it is a pointer to a
C++ object in a database.

The primary purpose of a peer pointer object is to transmit an
address across the Java/C++ interface. Peer pointer classes extend
COM.odi.jcpp.PeerPointer. ObjectStore also uses peer pointer
classes to represent pointers to, references to, and arrays of
nonclass objects.

Peer pointer classes do not have public methods. You cannot test
instances of peer pointer classes for identity with the == operator.
Use the Object.equals() method.

Peer pointers do not maintain identity. Multiple peer pointers can
refer to the same address.

Using peer pointers A peer pointer object never refers to data in the Java heap. It only
refers to data in the C++ heap or in a C++ database. For example,
an object of class intP represents a C++ object of type int*. Pointers
are not a part of Java, so the int* value typically originates in C++.
When you have a C++ function that returns an object of type int*,
the Java peer method for that function returns an object of class
intP.

Chapter 3, Writing the Application, on page 47 provides
information about initializing peer pointer objects.
Release 3.0 5

How Does Interoperability Work?
What Are Peer Classes?

A peer class has no state and no Java fields (instance variables) of
its own.

The methods in a peer class are referred to as peer methods. Each
method of a peer class is a stub method that corresponds to a C++
function member in the underlying C++ class. Peer methods
provide the application-visible API for the peer class.

What peer objects do is sometimes called method shipping (or
function shipping). When your application calls a peer method,
the peer method

1 Converts its arguments from the Java to the C++ representation

2 Calls the corresponding C++ function member or accesses the
C++ data member

3 Converts the result (if any) from the C++ representation to the
Java representation

4 Returns the result, if there is one

For an object to be transmitted across the peer method boundary
as an argument or return value, the object must be one of the
following:

• Peer object

• Peer pointer object

• Persistent primary object

ObjectStore uses the ClassInfo class to maintain information about
peer classes just as it maintains information about primary classes.
6 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
What Is the Interface Between Primary and Peer Objects?

You can store a reference to a peer object in a field of a primary
object. If the primary object is persistent, or becomes persistent at
the end of the transaction, it is your responsibility to ensure that
the C++ object that the peer object identifies is persistent.
Otherwise, the consequences are the same as storing a transient
reference in an ObjectStore persistent object. If check_illegal_
pointers is true, ObjectStore throws an exception.

You can pass a persistent primary object as an argument to a peer
method. Persistent primary objects have a C++ representation
that ObjectStore automatically generates. If you pass a transient
primary object as an argument to a peer method, ObjectStore
throws an exception as soon as the method is called. This is
because a transient primary object has no underlying C++
representation, so it is impossible to translate it into a C++ pointer.

Identity When the result of a method invocation is a C++ object,
ObjectStore constructs a Java peer object (if the corresponding
peer object does not already exist) and returns it. ObjectStore
automatically handles object identity. If the same C++ object is
returned to the Java run time more than once, ObjectStore detects
that it has already handled this C++ object so it returns the same
Java peer object. However, this does not apply to peer pointer
objects.
Release 3.0 7

How Are Peer Classes Defined?
How Are Peer Classes Defined?

ObjectStore provides a peer generator tool (osjcgen) to
automatically write Java peer class definitions for specified C++
classes. The input to the tool includes an ObjectStore schema
generated by the ObjectStore Schema Generator (ossg). For each
class that you specify when you run the tool, the tool generates the
items in the list that follows. The tool also generates these items
for classes that are not explicitly specified if they are reachable
from public data members, public function members, or public
constructors of classes that are explicitly specified.

• Peer class definition.

• Unsafe peer class definition. An unsafe peer class provides
static methods for operation on the corresponding peer class.

• ClassInfo subclass definition.

• C++ glue code that provides the interface between Java and
C++ for the peer class.

• C++ glue code that provides the interface between Java and
C++ for the unsafe peer class.

• Peer pointer class definition for each pointer type in the
specified classes. For each peer pointer class that the tool
defines, it also defines a corresponding unsafe peer pointer
class and C++ glue code.

The tool defines all peer classes to extend the
COM.odi.jcpp.CPlusPlus class itself or a class that directly or
indirectly extends COM.odi.jcpp.CPlusPlus.

A peer class has the same inheritance structure as the
corresponding C++ class.
8 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
What Is the Procedure for Using C++/Java
Interoperability?

To use the C++ interoperability facility, follow the steps outlined
below. Chapter 4, Building the Application, on page 65, describes
these steps in more detail.

1 Define C++ classes.

2 Create an ObjectStore mapping schema database that contains
the C++ classes. You create this schema with the ObjectStore
Schema Generator (ossg) by specifying two special options.
These options cause ossg to generate method interface
information. See Generating the Mapping Schema Database on
page 18.

3 Run the peer generator tool (osjcgen). The tool reads the
mapping schema. Input to the tool and output from the tool are
described in Chapter 2, Generating Peer Classes, on page 17.

4 Define Java classes that use the peer classes.

5 Run the Java compiler on your Java source files and the .java
files generated by the tool. You should compile them all
together to ensure that they are consistent with one another.

6 Run the javah tool on the compiled Java peer classes to generate
headers.

7 Run the C++ compiler on the glue code generated by the peer
generator tool.

8 Create the application schema database for the library used by
your application.

9 Create the library that contains the application code, the glue
code.

10 Postprocess the batch of .class files that result from compiling
your Java source files in step 5. You do not need to postprocess
the .class files for the generated peer classes. However, when
you run the postprocessor on your Java application classes, be
sure that the compiled peer classes are in your class path in a
directory other than the postprocessor destination directory.
Release 3.0 9

Example of Accessing C++ Classes
Example of Accessing C++ Classes

Here is an example of an application that stores information about
professional golfers. The example shows three pieces of code:

• C++ code from which an ObjectStore schema can be generated

• Java code that is generated by the peer generator tool from the
C++ code

• Java code that uses the tool-generated Java code

C++ Code

Here is the initial C++ code used to generate an ObjectStore
schema.

class ProGolfer {
private:

char* name;
int age;
int earnings;
Agent* agent;

public:
ProGolfer(char* n, int a, int e, Agent* ag);
const char* getName() { return name; }
void setName(char* _name);
int getAge() { return age; }
void setAge(int _age);
int getEarnings() { return earnings; }
void setEarnings(int _earnings);
const Agent *getAgent() { return agent; }
void setAgent(Agent *_agent);

}

class Agent {
private:

char* name;
int commission;

public:
Agent(char* n, int c);
const char* getName() { return name; }
void setName(char* _name);
int getCommission() { return commission; }
void setCommission(int _commission);

}

10 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
Java Code and C++ Code Generated by Tool

The peer generator tool generates ten files when it generates peer
classes for the Agent and ProGolfer classes. These files are
described in Overview of Tool Output on page 26.

• Agent.java

• AgentClassInfo.java

• AgentU.java

• Agent.cc

• AgentU.cc

• ProGolfer.java

• ProGolferClassInfo.java

• ProGolferU.java

• ProGolfer.cc

• ProGolferU.cc

Agent.java Here is the code in Agent.java:
package MyPkg;
public class Agent extends COM.odi.jcpp.CPlusPlus{
 /* required constructor for subtype constructors
 and unsafe makeArray methods */
 public Agent() {}

 /**
 * member function Agent::getName char const*() declared at
"Agent.hh":10
 */
 public COM.odi.jcpp.charP getName() {
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue(this);
 synchronized(retValue.om) {
 ntv_getName(retValue, retValue.thisRef);
 byte[] tmp_ref = retValue.getLinearObjectReference();
 if (COM.odi.jcpp.Utilities.isNullRef(tmp_ref))
 return null;
 tmp_ref = (byte[]) tmp_ref.clone();
 return new COM.odi.jcpp.charP(tmp_ref);
 }
 }
 final private static native void ntv_getName(
 COM.odi.jcpp.PeerReturnValue retValue,
 byte[] thisRef);

 /**
Release 3.0 11

Example of Accessing C++ Classes
 * member function Agent::setName void(char*) declared at
"Agent.hh":11
 */
 public void setName(COM.odi.jcpp.charP arg0) {
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue(this);
 synchronized(retValue.om) {
 byte[] arg0Ref = COM.odi.jcpp.Utilities.getLinearRef(arg0);
 ntv_setName(retValue, retValue.thisRef, arg0Ref);
 COM.odi.jcpp.Utilities.recycle(arg0Ref);
 retValue.getVoid();
 }
 }
 final private static native void ntv_setName(
 COM.odi.jcpp.PeerReturnValue retValue,
 byte[] thisRef,
 byte[] arg0Ref);

 /**
 * member function Agent::getCommision int() declared at
"Agent.hh":12
 */
 public int getCommision() {
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue(this);
 synchronized(retValue.om) {
 ntv_getCommision(retValue, retValue.thisRef);
 return retValue.getInt();
 }
 }
 final private static native void ntv_getCommision(
 COM.odi.jcpp.PeerReturnValue retValue,
 byte[] thisRef);

 /**
 * member function Agent::setCommision void(int) declared at
"Agent.hh":13
 */
 public void setCommision(int arg0) {
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue(this);
 synchronized(retValue.om) {
 ntv_setCommision(retValue, retValue.thisRef, arg0);
 retValue.getVoid();
 }
 }
 final private static native void ntv_setCommision(
 COM.odi.jcpp.PeerReturnValue retValue,
 byte[] thisRef,
 int arg0);
12 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
 /**
 * static member function Agent::Agent Agent(char*,int) declared
at "Agent.hh":9
 */
 public Agent(COM.odi.Segment segId, COM.odi.jcpp.charP arg0,
int arg1) {
 super();
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue();
 synchronized(retValue.om) {
 byte[] arg0Ref = COM.odi.jcpp.Utilities.getLinearRef(arg0);
 ntv_Agent(retValue, (segId == null) ? -4
:((COM.odi.imp.Segment)segId).getSegmentId(), (segId == null) ? -4
:((COM.odi.imp.Database)(segId.getDatabase())).getDatabaseId(),
arg0Ref, arg1);
 COM.odi.jcpp.Utilities.recycle(arg0Ref);
 retValue.noteAsPersistent(this);
 }
 }
 final private static native void ntv_Agent(
 COM.odi.jcpp.PeerReturnValue retValue,
 int segId,
 int dbId,
 byte[] arg0Ref,
 int arg1);

 /**
 * required delete method
 */
 public void delete() {
 COM.odi.jcpp.PeerReturnValue retValue =
 COM.odi.jcpp.PeerReturnValue.getPeerReturnValue(this);
 synchronized(retValue.om) {
 ntv_delete(retValue, retValue.thisRef);
 COM.odi.imp.ObjectManager.destroyPeer(this);
 }
 }
 final private static native void ntv_delete(
 COM.odi.jcpp.PeerReturnValue retValue,
 byte[] thisRef);
 static {
 /* create a classinfo and register it */
 COM.odi.ClassInfo.register(new AgentClassInfo());

COM.odi.jcpp.CPlusPlus.noteJavaCppClassAssociation("MyPkg.A
gent", "Agent");
 }
}

Agent.cc Here is the code in Agent.cc:
Release 3.0 13

Example of Accessing C++ Classes
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1getName(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jbyteArray thisRef)
{
 EXCEPTION_HANDLERS_START {
 Agent* thisP = (Agent*)
 JCPlusPlus::getNonNullPointer(_jni_env, thisRef);
 JCPlusPlus::setLinearObjectReference(_jni_env, retValue, thisP-
>getName());
 } EXCEPTION_HANDLERS_END;
}
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1setName(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jbyteArray thisRef,
 jbyteArray arg0)
{
 EXCEPTION_HANDLERS_START {
 Agent* thisP = (Agent*)
 JCPlusPlus::getNonNullPointer(_jni_env, thisRef);
 char* arg0Ptr = (char*)JCPlusPlus::getPointer(_jni_env, arg0);
 thisP->setName(arg0Ptr);
 JCPlusPlus::setVoid(_jni_env, retValue);
 } EXCEPTION_HANDLERS_END;
}
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1getCommision(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jbyteArray thisRef)
{
 EXCEPTION_HANDLERS_START {
 Agent* thisP = (Agent*)
 JCPlusPlus::getNonNullPointer(_jni_env, thisRef);
 JCPlusPlus::setInt(_jni_env, retValue, thisP->getCommision());
 } EXCEPTION_HANDLERS_END;
}
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1setCommision(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jbyteArray thisRef,
 jint arg0)
{
 EXCEPTION_HANDLERS_START {
 Agent* thisP = (Agent*)
 JCPlusPlus::getNonNullPointer(_jni_env, thisRef);
 thisP->setCommision((int)arg0);
 JCPlusPlus::setVoid(_jni_env, retValue);
 } EXCEPTION_HANDLERS_END;
}

14 Developing ObjectStore Java Applications That Access C++

Chapter 1: Introduction to Developing ObjectStore Java Applications That Access C++
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1Agent(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jint segId,
 jint dbId,
 jbyteArray arg0,
 jint arg1)
{
 EXCEPTION_HANDLERS_START {
 os_segment* segIdPtr = JCPlusPlus::getSegment(dbId,segId);
 char* arg0Ptr = (char*)JCPlusPlus::getPointer(_jni_env, arg0);
 os_typespec tmp_tspec("Agent");
 Agent* tmp_this = ::new(JCPlusPlus::getSegment(dbId, segId),
&tmp_tspec) Agent(arg0Ptr, (int)arg1);
 JCPlusPlus::setObject(_jni_env, retValue, tmp_this, "Agent");
 } EXCEPTION_HANDLERS_END;
}
JNIEXPORT void JNICALL Java_MyPkg_Agent_ntv_
1delete(JNIEnv* _jni_env, jclass,
 jobject retValue,
 jbyteArray thisRef)
{
 EXCEPTION_HANDLERS_START {
 Agent* thisP = (Agent*)
 JCPlusPlus::getPointer(_jni_env, thisRef);
 delete thisP;
 JCPlusPlus::setVoid(_jni_env, retValue);
 } EXCEPTION_HANDLERS_END;
}
_DMA_ClassBind MyPkg_Agent_class_bind("MyPkg.Agent",
"Agent");
Release 3.0 15

Example of Accessing C++ Classes
Java Code That Uses Generated Code

Here is Java code that uses the code generated by the tool:

public
class Example2 {

public static void main() {
ObjectStore.initialize(null, null);
Database db = Database.create("PGA.odb",

ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);

Transaction tr = Transaction.begin(ObjectStore.UPDATE);

// Create instances of Agent and ProGolfer (and corresponding
// C++ objects). Note: the Java peers are transient,
// but the corresponding C++ objects are allocated in the
// specified segment.
Segment seg = db.getDefaultSegment();
Agent pat = new Agent(seg, "Pat", 15);
ProGolfer tiger = new ProGolfer(seg, "Tiger", 20, 1000000, pat);

// Create a root that points to the C++ object corresponding to
// tiger
db.createRoot("Tiger", tiger);

// End the transaction. This stores the C++ objects
// in the database.
tr.commit();
db.close();

}
}

16 Developing ObjectStore Java Applications That Access C++

Chapter 2
Generating Peer Classes

The peer generator tool takes an ObjectStore C++ mapping
schema database as input and defines peer classes that represent
C++ classes. This chapter provides information and instructions
for running the peer generator tool. It also provides information
about how the tool defines Java peer classes.

Contents This chapter discusses the following topics:

Description of Inputs to the Tool 18

Running the Peer Generator Tool 20

Overview of Tool Output 26

How Classes and Structs Are Mapped 29

How Enums Are Mapped 36

How Primitive Types Are Mapped 38

How Pointers to Nonclass Types Are Mapped 39

How Reference Types Are Mapped 43

How Embedded Class Type Return Values Are Mapped 44

Restrictions 45
Release 3.0 17

Description of Inputs to the Tool
Description of Inputs to the Tool

The peer generator tool uses an ObjectStore C++ mapping schema
database to define the Java peer classes.

About the Mapping Schema Database

A mapping schema database is a C++ application schema
database that contains additional information that is needed to
define peer methods. A mapping schema database

• Represents all member functions in the schema

• Uses name reachability to represent all classes that are
reachable

Generating the Mapping Schema Database

To generate the mapping schema database, specify the following
two options when you run ossg.

• -store_member_functions or -smf

• -store_function_parameters or -sfp

Specify these options in addition to any options you normally
specify. These options were new in ObjectStore Release 5.0.
Complete information for using the schema generator is in
ObjectStore Building C++ Interface Applications.

The mapping schema database is not the application schema
database that the C++ portion of your code uses. The mapping
schema database contains a lot of information that the C++
portion does not need. The recommended procedure is to run
ossg twice:

• Once to generate the mapping schema database for the
generation of peer classes. After you run the peer generator
tool, you no longer need this version of the schema. You can
delete it.

• Once to generate the application schema database for the
library you create for your Java application that accesses C++.
This is the application schema database that you link into your
executable. You need this version of the schema for as long as
you need your application to run.
18 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Details for running ossg are in Chapter 4, Building the
Application.

Specifying Classes for Which to Generate Peer Class Definitions

When you invoke the peer generator tool, you specify the classes
for which you want the tool to define peer classes. Specify the core
set of C++ classes that must be mapped. The peer generator tool
maps the classes in this set. It also maps classes not explicitly in the
set if they are reachable from public data members, public
function members, or public constructors of classes in the root set.
Release 3.0 19

Running the Peer Generator Tool
Running the Peer Generator Tool

To map C++ classes to Java peer classes, run the peer generator
tool (osjcgen).

Description of Command Line Format

The command line format appears below. It shows the different
components in the command line on different lines only for
clarity.

osjcgen -package destination_package
-native_interface interface_type
-schema mapping_schema_database
-classdir target_dir -libdir target_dir [options] class_list

-package
destination_package

Identifies the package in which the peer generator creates peer
classes. Required.

-native_interface
native_interface

Specifies the virtual machine interface for which the tool should
generate C++ glue code. Specify jni for the Sun VM or ms_raw
for the Microsoft VM.

-schema
mapping_schema_database

Identifies the mapping schema database from which the tool
extracts type definitions. Required.

You must have specified the -store_member_functions (-smf) and
-store_function_parameters (-sfp) options when you ran ossg to
create this schema. If you did not, the tool cannot define peer
methods. These options cause additional information to be
stored in the schema database. osjcgen needs this information to
correctly process member functions.

The mapping schema database you specify is not the application
schema database that the application uses.

If the C++ code for which you want to define peer classes does
not define methods, you need not specify the -smf and -sfp
options when you run ossg.

-classdir target_dir Specifies the directory relative to which the tool writes the peer
classes and other generated Java files. For example, if the
specified destination_package is MyPkg and the specified target_dir
is MyDir, the tool creates the peer classes in MyDir/MyPkg. The
directory you specify must exist. If the directory you specify
does not contain a subdirectory with the name of the package,
the tool creates this subdirectory. Required.
20 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Description of Additional Options

Here are descriptions of the additional options you can specify
on the osjcgen command line. These options can precede, follow,
or be interspersed with the required osjcgen options.

-libdir target_dir Specifies the directory in which the tool creates the C++ files. In
the directory you specify, the tool creates a directory that has the
name you specify for destination_package. The tool places the
C++ files in this package subdirectory of the directory you
specify with the -libdir option. The directory you specify must
exist. Required.

options Any of the options described in Description of Additional
Options on page 21. Optional.

class_list Lists the names of the classes and structs for which you want the
tool to generate peer classes. The tool places each peer class in
the specified destination package. You can intersperse class
name specifications with the options described in Description of
Additional Options on page 21. Required.

Do not specify enums. If a peer method accepts or returns an
enum, the tool automatically generates the peer class for the
enum.

-boolean typedef_name Indicates that the specified typedef name identifies a boolean
data type. You can specify this option multiple times.

-full Turns off the -leaf option. The tool generates complete peer
classes for types specified subsequently. The -full option is in
effect by default.

@input_file You can use the @input_file option to specify a file that contains
arguments for the peer generator tool. The tool inserts the
contents of the specified file in the command line before it begins
to execute the command line. You can specify this option multiple
times. An input file cannot itself include the @input_file option. If
it does, the tool treats it as the name of a class, which is not found.

-leaf Instructs the tool to generate a minimal definition for the peer
classes of types specified after this option and before any -full
option. When the tool generates a leaf peer class, the application
cannot access C++ data or function members or any C++ base
classes. The tool defines the Java peer class to inherit directly
from CPlusPlus. It does not copy the inheritance structure from
the C++ class. This option is useful when you want to prune a
type graph to reduce the size of the interface code.
Release 3.0 21

Running the Peer Generator Tool
-map C++_name
Java_peer_name

Allows you to specify the name of the Java peer class that you
want to identify a particular C++ class. When you specify this
option, you need not rely on the default name mapping rules.
This option is particularly useful for naming template classes.
You can specify the -map option as many times as you need to.
Follow each specification with

1 The name of a C++ class. You must also specify the name of the
C++ class in the list of classes for which you want to generate
peer classes.

2 The name of the Java peer class that you want to represent the
C++ class. This can be a fully qualified class name or an
unqualified class name. If it is unqualified, the peer generator
tool places the Java peer class in the package you specify on the
command line.

-map_existing
C++_name
Java_peer_name

Allows you to specify the name of an existing Java peer class that
you want to identify a particular C++ class. This option is the
same as the -map option, except that the Java peer class already
exists or will exist. Consequently, the peer generator does not
generate any code for the specified Java peer class. In a separate
run of the peer generator, or manually, you must create the Java
peer type. See the description of -map for more details.

-nosynchronize Turns off automatic synchronization of peer methods. If you
specify this option, your application is responsible for ensuring
that only one thread at a time per session is accessing
ObjectStore. Failure to prevent concurrent access to the Java
interface to ObjectStore and peer method entry points can cause
the Java interface to ObjectStore to fail.

-oldtemplates Causes the peer generator to map some C++ characters to Java
equivalents used in previous releases of ObjectStore. Rules for
Template Name Flattening on page 35 shows which C++
characters are invalid in Java and which Java equivalents they
are mapped to.

-synchronize Turns on automatic synchronization of peer methods. This is the
default.
22 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
-suppress
package.class.method

Suppresses generation of the specified peer method. You should
not need to specify this option frequently. However, if generated
code for a particular method causes a problem for the compiler,
this option allows you to prevent generation of that code.

You must specify the package name, the class name, and the
method name.

It is expected that you would use this option in the following
manner:

1 Run osjcgen without specifying this option.

2 Try to compile the generated code. A particular peer method
causes a problem.

3 Run osjcgen again and specify the same classes, but suppress
generation of the peer method that causes the problem.

4 Determine how to work around the lack of the suppressed peer
method.

If it is not possible to work around the method that is causing the
problem, you must redefine the C++ method into a form that does
not cause a problem when it is mapped to a peer method.
Release 3.0 23

Running the Peer Generator Tool
Example of Running the Peer Generator Tool

The following example generates a Java peer class for the CPerson
class. If it does not already exist, the tool creates the MyPkg
subdirectory in the MyDir directory. The tool puts the Java peer
class in the MyPkg package/subdirectory. The mapping schema
database that the tool uses to generate the peer class is
CPerson.jadb. The tool places the generated C++ files (and the
generated Java files) in the MyDir/MyPkg directory.

osjcgen -package MyPkg
-native_interface jni
-schema CPerson.jadb
-classdir MyDir
-libdir MyDir

CPerson

If you specify -libdir SomeOtherDir, the tool places the generated
Java files in MyDir/MyPkg and the generated C++ files in
SomeOtherDir/MyPkg.

Caution If the tool generates files that have the same pathnames as your
C++ source files, the tool overwrites the C++ source files without
warning you. This can happen if you create your C++ source files
in the package and directory that you specify with the -package,
-classdir, and/or -libdir options to osjcgen.

For example, suppose you have the CPerson.cc C++ file in the
/MyDir/MyPkg directory. When you run osjcgen, you specify the
following on one line:

osjcgen -package MyPkg
-native_inteface jni
 -schema CPerson.jadb
 -classdir MyDir
 -libdir MyDir
CPerson
The peer generator tool generates these files:

/MyDir/MyPkg/CPerson.java
/MyDir/MyPkg/CPersonU.java
/MyDir/MyPkg/CPersonClassInfo.java
/MyDir/MyPkg/CPerson.cc
/MyDir/MyPkg/CPersonU.cc

An explanation of these files appears in Overview of Tool Output
26. But as you can see, the tool would overwrite your CPerson.cc
source file. On Solaris, you can work around this by specifying
24 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
.CC instead of .cc in the C++ file name. On Windows, you can
work around this by specifying .cpp instead of .cc in the C++ file
name. Alternatively, you can either specify different directories
for -classdir and/or -libdir, or you must not create C++ source files
in the Java package subdirectory.
Release 3.0 25

Overview of Tool Output
Overview of Tool Output

For each class specified in the osjcgen command line, the tool
generates a Java peer class in the destination package. The tool
also generates Java peer classes for classes not explicitly specified
if they are reachable from public data members, public function
members, or public constructors of classes that are explicitly
specified.

For each Java peer class, the tool creates these files:

• A .java file that contains the standard Java peer class definition.

• Another .java file that contains the corresponding unsafe peer
class definition. If the class being defined is a leaf class, the tool
does not generate this file.

• A third .java file that contains the definition of the ClassInfo
subclass for the peer class. This allows ObjectStore to manage
instances of the peer class in the same way that it manages
instances of primary objects. If the class being defined is a leaf
class, the tool does not generate this file.

• A .cc file that contains the C++ glue code that ObjectStore uses
as the interface between the Java peer methods in the safe class
and the corresponding C++ methods. This is the C++ side of
the peer class. Code in this file calls the C++ member functions.

• A .cc file that contains the C++ glue code that ObjectStore uses
as the interface between the Java peer methods in the unsafe
class and the corresponding C++ methods.

• If there are any pointer types in the specified class, the tool
creates files for peer pointer classes. For each peer pointer class,
the tool generates a

- .java file that contains the peer pointer class definition

- .java file that contains the peer pointer unsafe class definition

- .cc file that contains the C++ glue code

For each enumeration, the tool creates only the .java file that
contains the peer class definition that represents the enum. There
is no C++ glue code for enumerations. See How Enums Are
Mapped on page 36.
26 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
About Java Peer Class Definitions

When the peer generator tool generates a peer class, the definition
includes

• A peer method for each public member function defined in the
C++ class.

• Accessor functions that obtain and set each public data member
in the C++ class. For array data members and for const data
members, the set accessor is not generated.

• A constructor for each public constructor in the C++ class.

• A definition of a constructor with no arguments.

About Java Peer Pointer and Unsafe Class Definitions

The peer generator tool produces peer pointer classes and unsafe
classes for classes you specify.

The pointer classes for the primitive types are part of the jcpp
package. Multiple Java peer libraries can use the peer pointer
classes. The peer pointer classes also have unsafe versions but
they do not have corresponding ClassInfo subclasses.

The tool automatically generates an unsafe class for any peer class
it defines. An unsafe class is an abstract class that is associated
with a particular peer class. An unsafe class contains static
methods for unsafe operations on instances of the associated peer
class. Unsafe operations include array access and casting. The
peer generator names the unsafe class by appending a U to the
peer class name.

The peer generator tool defines a new overloading of the static
method makeArray() in each unsafe peer class definition. This new
overloading adds an argument to the makeArray() method
signature. The additional argument is a clustering argument. For
example, for the Foo class, the corresponding FooU unsafe class
would contain the following array creation method:

public static Foo makeArray(COM.odi.Segment s, int n);
Release 3.0 27

Overview of Tool Output
About C++ Output

The C++ output consists of the definition of the C++ side of the
peer method. These are the .cc files that the tool generates. There
is one .cc file for each of the following:

• Safe class definition

• Unsafe class definition

• Peer pointer class definition

• Peer pointer unsafe class definition

The .cc file contains C++ glue functions. The C++ glue function is
the function that invokes the application’s C++ member function
corresponding to the peer method that was called. The typical call
chain is as follows:

1 The Java application contains a call to a Java peer method.

2 The Java peer method calls the corresponding C++ glue
function.

3 The glue function calls the corresponding C++ function
member.

You must include (#include) the glue functions in one or more
C++ source files that contain appropriate header file inclusion and
class ordering.
28 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
How Classes and Structs Are Mapped

The peer generator tool generates Java peer classes for C++ classes
and structs. The tool defines the generated peer class to inherit
from COM.odi.jcpp.CPlusPlus either directly or indirectly.

Generated Names

The name of the generated Java peer class is the same as the C++
class name. However, for template class names, the tool must
perform some conversions. See Rules for Template Name
Flattening on page 35. Also, you can specify the -map option when
you run the peer generator tool. This option allows you to specify
a particular Java peer class name for a particular C++ class.

If a type X is defined in the scope of a class or namespace Y, the
package in which the tool places the Java peer class for X has an
additional name level. The package name for X is the destination
package specified on the osjcgen command line with an
additional package element equal to the name of the enclosing
class or namespace followed by _Pkg..

When the peer generator tool generates a peer class for a nested
type, it usually also generates a peer class for the enclosing type.
In this case, the tool appends an underscore to the enclosing type
name when it defines the Java peer name of the nested type.

Here are some examples of generated names when the value of
destination_package is MyPkg.

C++ Name Java Name

struct A MyPkg.A

class B MyPkg.B

class A::D MyPkg.A_Pkg.D
Release 3.0 29

How Classes and Structs Are Mapped
Methods in Java Peer Classes

The Java peer method is the method that your ObjectStore
application actually calls.

Minimum methods
defined

The minimum methods provided in each Java peer class include

• Public constructors if the class is not an abstract class. The tool
modifies each constructor’s argument list by adding a segment
specification as the first argument.

• A default constructor without arguments for use by subclass
constructors. ObjectStore invokes this constructor from peer
subclasses to ensure the initialization of superclasses. The tool
does not generate this constructor if this peer class is a final
class.

• Accessor methods that obtain and set each public data member
in the corresponding C++ class. For example, for a field X of
type int, the accessor methods would be

- int X()

- void X(int)

• Peer methods that correspond to public C++ functions. There
might be fewer peer methods than C++ member functions if
there are function overloadings.

Public constructors The tool generates public constructors for the public C++
constructors in the C++ classes. In addition, nonabstract classes
have constructors defined for instantiation purposes. In each Java
public contructor that it generates, the tool inserts a new first
parameter. This parameter takes COM.odi.Segment as an
argument.

Private native peer
methods

For each Java public peer method that the tool defines, it also
defines a private native peer method.

The name of the private native peer method is the name of the
public peer method with a prefix of ntv_. These private methods
are for use only by the public peer methods.
30 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Examples Here is a peer method with a primitive return value:

int getId() {
PeerReturnValue result =

PeerReturnValue.getPeerReturnValue(this);
ntv_getId(result);
return result.getInt();

}

Here is an example of a peer method with a primitive argument:

void setId(int id) {
PeerReturnValue result =

PeerReturnValue.getPeerReturnValue(this);
ntv_setId(result, id);
result.getVoid();

}

Unsafe Peer Classes

Your application never instantiates unsafe peer classes. These
classes provide static methods for operating on safe peer classes.
In each unsafe peer class, the following public methods might be
generated by the tool, where X is the name of the class.

• static X makeArray(Segment, int); // create array of X

The tool generates this peer method if the corresponding safe
peer class is not abstract and has a public constructor that takes
no arguments.

• static void deleteArray(X); // delete array of X

The tool generates this peer method if the corresponding safe
peer class is not abstract and has a public destructor.

• static X ref(X, int); // index into array of X

The tool generates this peer method if the corresponding safe
peer class is not abstract.

• static void set(X, int, X); // assign to an element of an X array

The tool generates this peer method if the class can be assigned
to.

• static X cast(COM.odi.jcpp.CPlusPlus);

The tool always generates this peer method.

The tool defines these methods in unsafe peer classes in addition
to the methods described in the previous section.
Release 3.0 31

How Classes and Structs Are Mapped
Inheritance in Classes and Structs

Suppose a C++ class or struct (X) directly inherits from a single
nonvirtual base class (Y). The tool defines the Java peer class for X
so it inherits directly from the Java peer class for Y.

If a C++ class or struct does not inherit from any class, the
corresponding Java peer class inherits directly from
COM.odi.jcpp.CPlusPlus.

Multiple inheritance Suppose a C++ class or struct (X) directly inherits from multiple
base classes (Y and Z) either virtually or nonvirtually. The tool
defines the Java peer class for X so it

• Inherits directly from COM.odi.jcpp.CPlusPlus

• Implements the interfaces YI and ZI

The YI and ZI interfaces provide the ability to convert between an
X instance and its equivalent Y or Z instance, respectively.

Single virtual base
class

Now, suppose a C++ class or struct (X) directly inherits from a
single virtual base class (Y). The tool defines the Java peer class for
X so it directly inherits fromCOM.odi.jcpp.CPlusPlus and
implements the YI interface.

Single and multiple
inheritance

It is possible for a class (A) to be the only inherited class for one
class and to also be one of several inherited classes for some other
class. For example, you might have these classes:

class A { int a; };
class B { int b; };
class C : A { };
class D : A, B { };

For these classes, the tool defines the following peer classes:

class A extends CPlusPlus {}
class B extends CPlusPlus {}
class C extends A {}
class D extends CPlusPlus implements AI, BI {

A toA() {...} B toB() {...} }
interface AI { A toA(); }
interface BI { B toB(); }

The implementation of D.toA() returns a reference to the direct A
superclass. D.toB() returns a B instance, which can be trivially cast
to A to get the A superclass of B.

Unions Unions are not supported in this release.
32 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Handling of C++ Data Members

• For each public data member defined in a C++ type, the tool
defines two Java peer methods. For a data member named M,
the tool defines

• M() —This method obtains the value of the C++ data member.

• M(type_of_M) —This method sets the value of the C++ data
member.

If a C++ data member is static, the tool defines these methods as
static methods.

Handling of C++ Function Members

For some C++ function members, the tool does not define a
corresponding Java peer method. This typically happens when
the tool determines that another C++ function member of the
same name is more desirable. The tool uses the algorithm below
to pick the C++ function member for which to define a Java peer
method.

1 A const method has precedence over a non-const method.

2 Formal parameters of type X* have precedence over X& and X.

3 Formal parameters of type X& have precedence over X.

4 const parameters have precedence over non-const parameters.

5 If no method is selected as most desirable based on the criteria
above, the peer generator tool selects the method that appears
earliest in the class declaration.

In the Java peer method definition, the tool inserts a comment that
states which C++ function member corresponds to the peer
method.
Release 3.0 33

How Classes and Structs Are Mapped
Handling of Operators

Normally, the name of the Java peer method is the same as the
name of the corresponding C++ function member. For user-
defined operators, the peer generator tool uses a standard
translation process to convert the C++ operator name to a Java
operator name. The following table shows the standard
translations.

Variable argument
lists

Variable argument lists are not supported.

C++ Operator Java Operator C++ Operator Java Operator

= set |= orEq

+ plus << out

- minus >> in

* (binary) times <<= shiftLeftEq

* (unary) get >>= shiftRightEq

/ divide == equals

% modulo != notEquals

^ xor < isLess

++ next > isGreater

-- prev <= isLessEq

& and >= isGreaterEq

| or && logAnd

~ not || logOr

+= plusEq ! logNot

-= minusEq () call

*= timesEq [] ref

/= divideEq -> deref

%= moduloEq , comma

^= xorEq delete opDelete

&= andEq new opNew
34 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Rules for Template Name Flattening

There are characters that are not valid in Java, for example, some
characters in C++ template class names. When a class name
contains such characters, you can specify the -map option when
you run the peer generator tool. This option allows you to
explicitly map the name of a C++ class to a Java class name that
you define.

If you do not use the -map option, the tool converts characters that
are invalid in Java as shown in the following table.

For example, suppose you have

foo<A::B*, int>

The tool maps this name to

foo_A__BP_int_

In previous releases, some C++ characters were mapped to
different Java equivalents. If you want to use the old values,
specify -oldtemplates when you run the peer generator.

To specify a template class when you run osjcgen, specify the
template name with white space removed. If the template name
requires white space, you must enclose it in quotation marks
when you specify it on the command line. For example, suppose
the name of the template class is foo<const char*>. Specify it as
"foo<const char*>".

C++ Character Java Equivalent

< _

> _

: _

, _

* P

& R

A blank space Nothing
Release 3.0 35

How Enums Are Mapped
How Enums Are Mapped

The peer generator tool translates enum types to Java peer classes
that have a public static field for each enumerator in the
enumeration. For example, here is some C++ code:

enum osmmResultEnum { OSMM_SUCCESS = 0,
OSMM_FAILURE = 1};

The tool translates this to the following:

import java.util.Hashtable;
public class osmmResultEnum {

private static Hashtable enumerators = new Hashtable();
private int myValue;
private osmmResultEnum(int value, boolean register) {

myValue = value;
if (register)

enumerators.put(new Integer(value), this);
}
public static osmmResultEnum OSMM_SUCCESS =

new osmmResultEnum(0, true);
public static osmmResultEnum OSMM_FAILURE =

new osmmResultEnum(1, true);
public int intValue() {

return myValue;
}
public static osmmResultEnum cast(int value) {

osmmResultEnum e = (osmmResultEnum)
enumerators.get(new Integer(value));

if (e == null) e = new osmmResultEnum(value, false);
return e;

}
}

Here is an example of how to use the peer class:

osmmResultEnum myres1 = getData();
if(myres1 == osmmResultEnum.OSMM_SUCCESS)

{
.
.
.

You could also use the peer class this way:

if(myres1.intValue() > 0)
return;
36 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
This representation of enums diverges from the TwinPeaks model
in that the tool does not generate any C++ glue code to support the
representation. The enumeration peer classes

• Do not inherit from COM.odi.jcpp.CPlusPlus. They inherit from
Object.

• Do not have unsafe peer classes.

• Do not have methods by which instances can be allocated in
C++.
Release 3.0 37

How Primitive Types Are Mapped
How Primitive Types Are Mapped

The peer generator tool maps C++ primitive types to Java types as
described in the following table.

The C++ primitive type long long is not yet supported.

C++ Primitive Type Java Primitive Type

void void

bool boolean

user boolean boolean

char char

signed char byte

unsigned_char byte

wchar_t char

short short

unsigned short short

int int

unsigned int int

long int (except on Digital UNIX)
unsigned long int (except on Digital UNIX)
long long (Digital UNIX only)
unsigned long long (Digital UNIX only)
unsigned long long long (Solaris only)
__int64 long (Windows NT only)
unsigned__int64 long (Windows NT only)
float float

double double

long double double
38 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
How Pointers to Nonclass Types Are Mapped

The peer generator tool maps a pointer to class X in C++ to a
reference to the corresponding Java peer class X. Pointers to other
types of data in C++ do not have such useful representations in
Java.

When the tool generates representations of pointers to nonclass
types, it defines a class and an associated unsafe class, which can
be used for many of the purposes that C++ pointers can be used
for.

Pointers to Primitives

When the tool recognizes a C++ pointer to a primitive type, it
maps the type to a Java peer class, as shown in the following table.

Along with each of these COM.odi.jcpp pointer classes is a
corresponding unsafe class.

C++ Pointer Java Mapping

void* COM.odi.jcpp.voidP

char* COM.odi.jcpp.charP

signed char* COM.odi.jcpp.signed_charP

unsigned char* COM.odi.jcpp.unsigned_charP

short* COM.odi.jcpp.shortP

unsigned short* COM.odi.jcpp.unsigned_shortP

int* COM.odi.jcpp.intP

unsigned* COM.odi.jcpp.unsigned_intP

long* COM.odi.jcpp.longP

unsigned long* COM.odi.jcpp.unsigned_longP

float* COM.odi.jcpp.floatP

double* COM.odi.jcpp.doubleP
Release 3.0 39

How Pointers to Nonclass Types Are Mapped
Pointers to other
primitive types

For pointers to primitive types other than those listed above, the
tool uses the COM.odi.jcpp.voidP class. This includes

• long double*

• long long*

• unsigned long long*

• wchar_t*

• __int64*

• unsigned__int64*

• bool*

Pointers to Pointer Types

For pointers to a pointer type, such as foo** and int***, the peer
generator tool creates a Java peer class as usual. The tool
constructs the name of this peer class as follows:

• The first part of the name is the name of the Java peer class that
represents the type of the ultimate target of the pointer.

• The tool appends a P to that name for each level of indirection.

For example, the Java peer class for int*** would be intPPP.

For a C++ class type foo, there can be the foo and fooPP (and
fooPPP and so on) Java peer classes. The tool never generates a
fooP peer pointer class.

These Java peer classes define only a single constructor, which
constructs a pointer from a linear object reference. A linear object
reference is always a byte array that contains the information that
describes the location and type of some object in C++.

For each pointer-to-pointer Java peer class, the tool generates a
corresponding unsafe class. For example, the tool might generate
fooPP and fooPPU.
40 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Representation of char* Types

Although the C++ char* data type and the Java String data type
both represent character string data in their respective languages,
their characteristics are too dissimilar to treat them as being
equivalent. For example, the Java String data type

• Is not null terminated

• Uses the unicode character set

The C++ char* data type represents a character string that

• Is null terminated

• Might use a multibyte encoding for non-ASCII characters

In addition, the C++ char* data type is sometimes used for
nonstring uses when the data that is referred to might not be a
null-terminated sequence of characters.

By defatult, char* is represented as COM.odi.jcpp.charP. However,
it is possible to have the peer generator tool perform conversion
automatically for each of the following:

• String -> char*

• char* -> String

When used as the type of a C++ function parameter, the char*
string is allocated transiently on the heap.

There are several typedefs defined in JCPlusPlus.hh that the peer
generator tool interprets in a special way. They are

• typedef char* OS_EUCJIS_STR;

• typedef char* OS_EUCJIS_TMPSTR;

• typedef char* OS_EUCJISP;

• typedef char* OS_SJIS_STR;

• typedef char* OS_SJIS_TMPSTR;

• typedef char* OS_SJISP;

• typedef char* OS_STR;

• typedef char* OS_TMP_STR;
Release 3.0 41

How Pointers to Nonclass Types Are Mapped
For each of the TMP versions, the char* pointer is automatically
deleted after return from the C++ function. For the non-TMP
versions, the char* is not deleted, leaving the responsibility for
deallocating to the called code. When used as the return type of a
C++ function, the TMP versions automatically delete the char*
after the conversion to String is completed, whereas the non-TMP
versions assume that the char* string should not be deleted.

When OS_STR appears in a C++ definition, the tool defines the
Java peer methods that manipulate the data to use String instead
of COM.odi.jcpp.charP. The interpretation of the char* data will be
determined by the current default String converter. See Using the
charP Class on page 60.

When OS_EUCJIS_STR or OS_SJIS_STR is in a C++ definition, the
peer generator defines the Java peer method that manipulates the
data to use String instead of COM.odi.jcpp.charP. The implied
character encoding is EUCJIS or SJIS, respectively.

Converting Strings

The abstract class, COM.odi.jcpp.CharConverter, defines the
protocol for converting Java strings to and from C++ byte arrays.
You can define subclasses of this class as needed. ObjectStore
includes the following subclasses:

• COM.odi.jcpp.StdCharConverter uses the character conversion
capabilities of the JDK java.io package.

• COM.odi.jcpp.CppCharConverter uses the Object Design native
C++ Japanese string conversion library.

• COM.odi.jcpp.UTF8CharConverter uses the Java variant of
UTF-8 character encoding.
42 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
How Reference Types Are Mapped

For a C++ reference type, the tool generates a Java peer class in the
same way it would if it were for a C++ pointer type. Just as the tool
maps foo* to foo, so it maps foo& to foo. The reason for this is that
in Java, foo implies a pointer to an instance of foo. So foo* in C++
is semantically equivalent to foo in Java. For example, this is
certainly true when foo* provides the type of a field. Here are
examples of mapping reference types to peer classes:

C++ Reference Type Java Peer Class Name

foo& foo

int& intP

char*& charPP
Release 3.0 43

How Embedded Class Type Return Values Are Mapped
How Embedded Class Type Return Values Are
Mapped

When a C++ function member is defined to return a struct or class
on the stack, the generated glue code transiently allocates an
instance of the type and initializes it with the return value of the
function. The Java peer method returns a reference to that
transiently allocated instance and it is the responsibility of the
caller to delete the storage when done with it. The tool inserts a
comment in the generated Java code to this effect.
44 Developing ObjectStore Java Applications That Access C++

Chapter 2: Generating Peer Classes
Restrictions

There are some restrictions with regard to peer classes.

Code for Which Peer Classes Cannot Be Generated

The peer generator tool cannot generate peer classes for C++ code
that includes

• Friend functions

• Global functions and variables

• Function pointers

• Pointers to members

• Unions

Overloaded Functions

The peer generator tool might not be able to generate peer
methods for all overloaded C++ functions. If a class has multiple
functions of the same name that are candidates for peer method
generation, and two or more of these generated peer methods
would have the same method arguments, the tool generates only
one of the peer methods that would have duplicate arguments.
The criteria for how ObjectStore selects the functions for which to
provide peer methods are in Handling of C++ Function Members
on page 33.

For example, the following table shows how the tool would map
some C++ functions to Java peer methods.

The first overload, foo(double), is distinguishable from the other
two, so the tool generates the corresponding peer method. The
other two functions map to identical Java method signatures.
ObjectStore determines that each of the corresponding C++
functions is equally desirable according to the function selection
criteria. Consequently, the tool maps the function whose
definition appears first in the class definition.

C++ Function Potential Java Peer Method

void foo(double) void foo(double)

void foo(int) void foo(int)

void foo(long) void foo(int)
Release 3.0 45

Restrictions
46 Developing ObjectStore Java Applications That Access C++

Chapter 3
Writing the Application

After you run the peer generator tool, you can use the defined
peer classes in your Java application. This chapter provides
information about how to use peer classes in your application.

Contents This chapter discusses the following topics:

Behavior of Peer Objects 48

Initializing ObjectStore/Starting a Session 50

Creating C++ Objects 51

Deleting C++ Objects 52

Invoking Peer Methods 54

Creating References to Peer Objects 56

Handling Exceptions 58

Initializing Peer Pointers 59

Using the charP Class 60

Specifying Peer Objects in Notifications 61

Restrictions When Using Peer Classes 62

Calling Java From C++ 64
Release 3.0 47

Behavior of Peer Objects
Behavior of Peer Objects

A peer object identifies the associated C++ persistent or transient
object. Peer objects exist in the Java VM as the result of one of these
actions:

• Invocation of methods that return references to C++ objects

• Explicit creation of peer objects

Peer Objects Can Become Stale

A peer object that identifies a persistent C++ object can become
stale when the application commits a transaction. Whether it
becomes stale depends on whether or not the application retains
any values after the transaction commits.

A peer object always becomes stale when the application

• Explicitly deletes it

• Evicts it without retaining anything

• Aborts a transaction in which the peer object identified a C++
object that was transiently allocated

As always, an application cannot use a stale object. An attempt to
do so throws ObjectException.

If a peer object identifies a transient C++ object, the peer object
does not become stale when the transaction commits.
48 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
What a Peer Object Can Represent

Each peer object represents one of the following:

• A top-level C++ object, that is, a C++ object that was explicitly
allocated. This includes an object that was allocated in the
transient segment.

• A base class of a derived class that uses multiple inheritance or
virtual inheritance.

• An embedded data member object of some class type. (The data
member is an instance of some other class. It is not a primitive
type or a pointer type.)

• An element of an array of C++ objects of some class type. Each
element of the array is represented by a distinct Java peer
object. The array itself can be indexed by the index methods on
the unsafe class instances for the class.

The last three possibilities in the previous list can introduce object
aliases, which are multiple peer objects that correspond to a single
C++ object allocation. If your application creates object aliases,
you must be careful about trying to access peer objects that might
have been deleted.

For example, suppose you have two peer objects named A and B.
The C++ object identified by B is a data member of the C++ object
identified by A. Both A and B identify the same C++ object. You
call delete() on A. This effectively deletes B because the C++ object
it corresponds to has been deleted. You cannot manipulate B in
any meaningful way.

If you delete a peer object that is an array, ObjectStore deletes all
peer objects that represent the elements of the array. However, the
C++/Java run-time system does not track subobject relationships.
It is the responsibility of the application to ensure that this
situation does not cause problems.
Release 3.0 49

Initializing ObjectStore/Starting a Session
Initializing ObjectStore/Starting a Session

In calls that start a session, you must set the value of the
COM.odi.ObjectStoreLibrary property to the name of the library
you plan to create for your application. If you fail to specify this,
you receive error messages at run time that claim that you did not
mark types or that you have multiple schemas.

The calls that start a session are

• Session.create()

• Session.createGlobal()

• ObjectStore.initialize()
50 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Creating C++ Objects

To create a C++ object, specify a Java new expression with a
constructor from the definition of the corresponding peer object.

When the peer generator tool defines a peer class, it adds an
argument as the first argument in each constructor. This
additional argument takes a specification of COM.odi.Segment.
This argument is followed by the Java arguments that correspond
to the arguments specified in the C++ class definition.

You use the constructors in Java new expressions to create
persistent C++ objects. The new expression causes both the Java
peer object and the persistent C++ object to exist. The location of
the C++ persistent object is determined by the value specified for
that first argument (COM.odi.Segment).

The value of the first argument in the constructor also determines
whether the new object is transient or persistent. The C++ object
remains transient or persistent until it is deleted. Peer objects are
the same regardless of whether they identify persistent or
transient objects.

It is possible to create peer objects that identify transient C++
objects. To do so, specify the transient segment as the location. To
specify the transient segment, use the return value from
COM.odi.jcpp.CPlusPlus.getTransientSegment(). For example:

charP charp = new charP(name, CPlusPlus.getTransientSegment());

This example creates

• A transient C++ char*[] object

• A peer pointer object that is an instance of the
COM.odi.jcpp.charP class

When a transaction commits or aborts, there might be Java peer
objects that identify transient C++ objects. ObjectStore retains
these peer objects as well as the C++ objects they identify.
Release 3.0 51

Deleting C++ Objects
Deleting C++ Objects

To delete C++ objects, you can use CPlusPlus.delete() or
ObjectStore.destroy().

Using the CPlusPlus.delete() Method

When the peer generator tool defines a class, it always makes the
class inherit from COM.odi.jcpp.CPlusPlus, either directly or
indirectly. The COM.odi.jcpp.CPlusPlus class specifies a delete()
method. Call this method to delete a C++ object.

Deleting a C++ object makes the corresponding peer object stale.
Subsequent attempts to invoke methods on the deleted object in
the same transaction throw ObjectException.

When you delete a C++ object, ensure that there are no objects
with pointers or references to the deleted object. If an application
tries to dereference a pointer or reference to a deleted C++ object,
the results are unpredictable.

Also, you must not invoke delete() on an object that is not a top-
level heap-allocated object. If you delete an embedded object, it
can have unpredictable results.
52 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Using the ObjectStore.destroy() Method

An alternative way to delete a C++ object is to call the
COM.odi.ObjectStore.destroy() method on the corresponding peer
object. The peer class implements a destroy() method so that the
destructor for the object is invoked in C++. As a result, storage is
reclaimed by the C++ destroy operation only after a Java garbage
collection.

When you invoke ObjectStore.destroy() on a primary Java object,
ObjectStore leaves a tombstone. If any objects try to access the
destroyed object, the tombstone causes ObjectStore to throw
COM.odi.ObjectNotFoundException. However, there is a bug that
prevents ObjectStore from leaving a tombstone when you destroy
a Java peer object. This will be fixed in a future release. For now,
you must be careful that you do not destroy a Java peer object that
is still referred to by another object and then try to use that
reference. While doing so is always a mistake, in the current
product there is no tombstone to flag the mistake for Java peer
objects.

You can destroy Java peer objects that identify transient C++
objects when you are in a read transaction and when you are
outside a transaction, as well as when you are in an update
transaction.

If you invoke ObjectStore.destroy() on a Java peer pointer object,
the method returns without destroying the object. Use the
deleteArray() method of the appropriate unsafe peer pointer class
if the peer pointer refers to a top-level allocation.
Release 3.0 53

Invoking Peer Methods
Invoking Peer Methods

When you write your application, you must

• Ensure that ObjectStore or your application synchronizes calls
to peer methods

• Be aware of allowable arguments to and return values from
peer methods

• Be aware of how ObjectStore handles return values from peer
methods

Synchronizing Calls to Peer Methods

ObjectStore synchronizes calls from different threads to both peer
and nonpeer methods. This ensures that only one thread at a time
per session is accessing ObjectStore. If you want to, you can
specify the -nosynchronize option when you run osjcgen. When
you specify this option, ObjectStore does not perform this
synchronization. However, failure to prevent concurrent access to
the Java interface to ObjectStore and peer method entry points can
cause ObjectStore to fail. If you do specify the -nosynchronize
option, your application must synchronize calls to peer methods.

Allowable Arguments To and Return Values From Peer Methods

Objects of most types can be passed directly to and returned from
a peer method. However, a primary Java object that is not
persistent cannot be passed.
54 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Handling Return Values from Peer Methods

When peer methods return values that are primitive values or
pointers to class types, your application can handle the return
values in the usual way.

When peer methods return values that are pointers to nonclass
types, the values are instances of the appropriate pointer classes.
For example, a return type of int* is represented as an instance of
the intP class. A return value of foo** is specified by fooPP.

When peer methods return nonprimitive values, there are two
issues of importance to consider:

• The identity (==) of Java peer objects

• Determination of the correct subclass for the instance of the
Java peer object

Identity of peer
objects

When a peer method returns an object, ObjectStore determines
whether or not there is already an instance of the peer object that
identifies the returned object. If there is such an instance,
ObjectStore reuses it. If there is not such an instance, ObjectStore
creates one and associates it with the returned persistent C++
object.

Identity is not maintained for peer pointers.

Determining the
correct subclass for a
peer object

When ObjectStore materializes an instance of a peer object, the
peer object has the run-time type that corresponds to the run-time
type of the C++ object that the peer object represents. For
persistent C++ objects, this is a straightforward operation.
ObjectStore always uses the stored type information associated
with the persistent C++ type to determine the run-time type.

Return type of
transient C++ objects

For transient C++ objects, however, ObjectStore must use the
statically declared return type. This causes the caller to be unable
to cast to a derived type.
Release 3.0 55

Creating References to Peer Objects
Creating References to Peer Objects

There are different rules for cross-segment and cross-database
references to Java peer objects and to ObjectStore collections
(instances of COM.odi.coll.Collection), which are special kinds of
Java peer objects. The reason for these rules is the benefit of
keeping segments separate. The benefit is that ObjectStore
administrative tools can operate on one segment without
disturbing or delaying access to another segment.

References from Java Primary Objects

A Java primary object in one segment can refer to an ObjectStore
collection object in another segment only if the collection object is
exported. If you try to refer to an unexported collection object in
another segment, ObjectStore throws
ObjectNotExportedException. ObjectStore throws this exception
when you try to commit the transaction or try to evict the object
that contains the reference to the unexported object.

Except for instances of ObjectStore collections, you cannot export
Java peer objects. If you try to, ObjectStore throws ObjectException.
Consequently, you cannot create a reference from a Java primary
object in one segment to a noncollection Java peer object in
another segment. If you try to, ObjectStore throws
ObjectNotExportedException.

References from ObjectStore Collections

Although you cannot export a Java peer object (except an
ObjectStore collection), an ObjectStore collection in one segment
can include a Java peer object that is in another segment.

An ObjectStore collection can also contain Java primary objects in
other segments and ObjectStore collections in other segments.
Such primary objects or collections must be exported. If they are
not, ObjectStore throws ObjectNotExportedException when an
attempt is made to insert them.
56 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
References from C++ Pointers

A C++ pointer in one segment can refer to a Java peer object,
which might be an ObjectStore collection object, in another
segment. If the object is a collection object and the collection object
is not exported, you should specify during garbage collection that
the collection object is a root. (Note that the C++ pointer is really
pointing to a C++ object.)

A C++ pointer cannot refer to a Java primary object. This is always
the rule. It does not matter whether or not the C++ pointer and the
Java primary object are in the same segment. It is the
responsibility of the application to enforce this restriction. If it is
not enforced, the result might be database corruption when
existing objects are exported or when the garbage collector or
compactor is run.

If you use C++ to store a Java object in a segment, that Java object
cannot be referred to by an object in another segment.

Summary of Cross-Segment and Cross-Database Rules

The following table reiterates the cross-segment and cross-
database rules for references to Java peer objects. In this table, the
reference source is in one segment and the reference target is in
another segment.

Reference Source Java Primary
Object Target

Collection Object
Target (COM.odi.coll)

Java Peer
Object Target

Java primary object Allowed. Must
export target.

Allowed. Must
export target.

Forbidden.

Collection element
(COM.odi.coll)

Allowed. Must
export target.

Allowed. Must
export target.

Allowed.

C++ pointer Forbidden. Allowed. Allowed.
Release 3.0 57

Handling Exceptions
Handling Exceptions

A function call might terminate because of an ObjectStore TIX
exception or a C++ exception. When this happens, ObjectStore
throws the corresponding Java exception. In all cases, ObjectStore
tries to intercept TIX and C++ exceptions and throw an
ObjectStore Java exception that does not cause the Java VM to exit.

For ObjectStore TIX exceptions, there is a clear mapping to
ObjectStore Java exceptions.

For user-defined TIX exceptions, you can write handler functions.
If invocation of a C++ member function by means of a Java peer
method results in an unhandled TIX exception, ObjectStore
intercepts it and invokes your handler function, or a default
handler if you do not create your own.

When you write a handler function, it must map the TIX exception
to a string that identifies the Java exception that ObjectStore
should throw.

For user-defined C++ exceptions, it is not possible at run time to
query the object thrown by C++ for its type. Consequently,
ObjectStore throws a general Java exception that informs you that
some C++ exception was thrown.
58 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Initializing Peer Pointers

To initialize a peer pointer, you must obtain its value from the
result of some other peer method call. For example, suppose you
have a C++ class defined like this:

class data_block {
private:

int* my_storage;
public:

int* get_data_storage() { return my_storage; }
...

};

The Java peer class would contain a corresponding method:

public class data_block extends CPlusPlus {
public intP get_data_storage() { ... }
...

}

A call to data_block.get_data_storage() returns a peer pointer
object that contains the C++ address referred to by the data_
block.my_storage field in the C++ class.
Release 3.0 59

Using the charP Class
Using the charP Class

You must understand the conversion between C++ char* and Java
String types. Unless you use the macros that perform conversions
for you, it is your responsibility to convert these types.

To convert a Java String to a C++ char array, use the charP(String,
Segment) constructor.

To convert a charP to a Java String, use charP.toString().

The peer generator tool provides charP customizations for the
following typedefs:

typedef char* OS_EUCJISP;
typedef char* OS_SJISP;

When the OS_EUCJISP typedef appears in a C++ definition, the
Java peer method that manipulates the data is declared to use
COM.odi.jcpp.EUCJIScharP instead of COM.odi.jcpp.charP.

When the OS_SJISP typedef appears in a C++ definition, the Java
peer method that manipulates the data is declared to use
COM.odi.jcpp.SJIScharP instead of COM.odi.jcpp.charP.
60 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Specifying Peer Objects in Notifications

The object you specify when you construct a Notification object can
be a Java peer object. When you specify a peer object, the peer
object must identify a persisent C++ object. The C++ object cannot
be in the transient segment or database.

When a session receives a notification for a Java peer object, the
Java type of the peer object is based on the type of the outermost
collocated peer object. This might not be the same as the Java type
in the original notification. The received type and the original type
can differ in situations where the original object is nested within a
larger containing object, and collocated with the containing object.

For information about notifications, see the ObjectStore Java API
User Guide, Chapter 11, Using the Notification Facility.
Release 3.0 61

Restrictions When Using Peer Classes
Restrictions When Using Peer Classes

When you are using Java peer classes, you must be aware of
restrictions in the following areas.

• Capability of C++ Functions on page 62

• Inheritance from Java Peer Classes on page 62

• Use of SegmentObjectEnumeration Objects on page 62

• Destruction of Segments on page 63

• C++ Pointers on page 63

• Performing deepFetch() on a Peer Object on page 63

• Retaining Collections on page 63

Capability of C++ Functions

In your application, you cannot invoke Java peer methods that
would ultimately call C++ functions that would

• Open or close a database

• Start or end a transaction

You must use the Java API to ObjectStore to perform these actions.

Inheritance from Java Peer Classes

You should not try to write new persistence-capable classes in
Java that extend Java peer classes. Peer classes do not behave
correctly when you try to make a persistent instance. This
restriction stems from the following:

• All Java peer classes inherit from COM.odi.jcpp.CPlusPlus.
Therefore, all classes that extend peer classes are by definition
also peer classes.

• The postprocessor does not annotate peer classes.

• Peer classes cannot contain state.

• Peer classes cannot be made persistent by reachability.

Use of SegmentObjectEnumeration Objects

When your application invokes Segment.getObjects(), the
returned enumeration includes ObjectStore collection objects, but
it does not include any other Java peer objects.
62 Developing ObjectStore Java Applications That Access C++

Chapter 3: Writing the Application
Destruction of Segments

You should use a Java entry point to destroy a segment. Doing so
ensures that you do not access objects in destroyed segments. For
example, you might create an enumeration of the objects in a
segment. If you then use a C++ entry point to destroy the segment,
invocation of the SegmentObjectEnumeration.nextElement() or
SegmentObjectEnumeration.hasMoreElements() method continues
to return objects. After a while, ObjectStore stops returning objects
and throws the correct SegmentNotFoundException. If you try to
read or update the contents of the returned objects, ObjectStore
throws ObjectNotFoundException.

C++ Pointers

C++ pointers to Java primary objects are not allowed. It does not
matter whether the Java primary object is in the same segment as
the C++ pointer or in a different segment.

Performing deepFetch() on a Peer Object

When you call ObjectStore.deepFetch() on a Java peer object,
ObjectStore does not retrieve anything, since a peer object has no
contents.

Retaining Collections

Peer objects, and therefore ObjectStore collection objects, have no
data members and so, in Java, peer objects do not appear to be
connected to other objects. Even if you explicitly iterate through
the elements in a collection and then commit the transaction with
ObjectStore.RETAIN_READONLY, you cannot access the collection
outside a transaction. However, if the collection elements are not
themselves peer objects or collections, you can manipulate them
outside a transaction, but you cannot use the collection to access
them. You must explicitly read them in the transaction, retain
them, and then access them directly or through another nonpeer
object.
Release 3.0 63

Calling Java From C++
Calling Java From C++

When accessing C++ from Java, a program might need to call back
into Java from C++. When running on a platform that uses JNI, the
C++ code must get the correct JNIEnv* value to pass to JNI calls.
Calling getJNIEnv() returns the JNIEnv* that was passed to the C++
code from Java. This method is defined only on platforms that use
the JNI interface. The signature is

static JNIEnv* JCPlusPlus::getJNIEnv()
64 Developing ObjectStore Java Applications That Access C++

Chapter 4
Building the Application

This chapter provides information and instructions for building
an ObjectStore Java application that accesses C++ classes. See
COM.odi.demo.jcpp for an example of building an application.

Contents This chapter discusses the following topics:

Description of Files 66

Steps for Building the Application 68

UNIX: Using Additional Native Libraries with the Java Interface
to ObjectStore 78
Release 3.0 65

Description of Files
Description of Files

When you build an ObjectStore Java application that accesses C++
classes, you must include certain C++ files and Java files.

C++ Files

The C++ portion of your application includes the following files:

• One or more header files that declare your C++ classes. For
example, the jcpp demo contains cprsn.hh.

• One or more files that define methods for your classes. For
example, the jcpp demo contains cprsn.cc.

• A schema source file that marks classes that you want to be
persistent and/or one or more library schema databases. For
example, in the jcpp demo, schema.cc marks the CPerson class.

When you compile these files, special options might be needed.
This information is in Step 6: Compile C++ Glue Code on page 73.

A Java application that accesses C++ classes does not require the
file that contains the main program for your C++ application.

Java Files

The Java portion of your application that is required for access to
C++ includes several files.

Java source files Create the files that define the Java classes that use the peer classes
that represent your C++ classes. For example, the jcpp demo uses
the CPerson Java peer class in the Main.java file.

In the call that starts a session, you must set the value of the
COM.odi.ObjectStoreLibrary property to the name of the library
you plan to create. You must specify a name that is acceptable to
SystemLoadLibrary() and not an explicit path. The name should
follow platform conventions for library names. If you fail to
specify this, you receive error messages at run time that state that
you did not mark types or that you have multiple schemas.

On Solaris, if the shared library is named, for example,
libCPerson.so, set the property to "CPerson". Also, ensure that the
shared library is available in the LD_LIBRARY_PATH variable.
66 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
On Windows, if the DLL is named, for example, CPerson.dll, set
the property to "CPerson". Ensure that the DLL is available in the
PATH variable.

For debuggable DLLs (used by java_g and jdb), the DLL should be
named libCPerson_g.so on Solaris and CPerson_g.dll on
Windows.

Glue file Create one or more files that include the C++ glue code files that
the peer generator tool creates. For example, the jcpp demo
defines the CPerson_glue.cc file.

In the glue file, specify #include for the following files:

• C++ header files that declare the C++ classes. In the jcpp demo,
this is cprsn.hh.

• A file that declares ObjectStore entry points for using Java and
C++. This is <ostore/dma/JCPlusPlus.hh>.

• Java VM glue header files that declare native Java method for
use by the Java VM to call native methods. Generate these files
by compiling the Java class definition that the peer generator
tool generates and then running the javah tool on the resulting
classes. In the jcpp demo, CPerson_stubs.h is the Java VM glue
header file.

• C++ files generated by the peer generator tool. These files
contain definitions of the native C++ methods for the classes.
These are the C++ glue code files that ObjectStore uses as the
interface between the Java peer methods and the
corresponding C++ methods. The tool stores these files in a
directory determined by your specifications for the -libdir and
-package options. In the jcpp demo, this file is CPerson.cc.

For example, in the jcpp demo, the contents of the CPerson_
glue.cc file are

#include "cprsn.hh"
#include <ostore/dma/JCPlusPlus.hh>
#include "CPerson_stubs.h"
#include "CPerson.cc"

If your application uses the unsafe version of a peer class, you
might also have, for example, CPersonU_glue.cc, or you might
place #include statements for the unsafe class in the same file with
the statement for the corresponding safe class. The glue file can
contain #include statements for any number of classes.
Release 3.0 67

Steps for Building the Application
Steps for Building the Application

When your C++ source files are ready, follow these steps to build
an ObjectStore Java application:

1 Generate the mapping schema database for your C++
application.

2 Generate the Java peer classes and C++ glue code.

3 Write the Java classes that use the generated peer classes.

4 Compile the Java peer classes and Java source files.

5 Generate the C header.

6 Compile the C++ glue code.

7 Generate the application schema database for the library for
your ObjectStore Java application.

8 Create the library. On Windows, you create a DLL. On Solaris,
create a shared library.

Step 1: Generate the Mapping Schema Database for Your C++
Application

Run the schema generator (ossg) to create a mapping schema
database. A mapping schema database is a special application
schema database for the C++ classes you want to access. When
you run ossg to generate a mapping schema database, you must
specify two special options:

• -store_member_functions or -smf

• -store_function_parameters or -sfp

These options add information that is required by the peer
generator tool. It is this additional information that makes the
schema database a mapping schema database.

As input to the schema generator, specify a schema source file
and/or one or more library schema databases.
68 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
Schema source file as
input

If you specify a schema source file, pass the -store_member_
functions and -store_function_parameters options to ossg.

If the input is a schema source file, the include options must
specify the

• ObjectStore C++ include directory

• ObjectStore Java include directory

• Java include directory

• Java system-specific include directory

Library schema
databases as input

If you specify one or more library schema databases, you must
have specified the -store_member_functions and -store_function_
parameters options to ossg when you created the library schemas.
If you did not, the peer generator tool cannot correctly generate
peer methods for classes in the library schemas. The tool might
generate C++ glue code for nonleaf classes, which cannot be
compiled.

Solaris example For example, the jcpp demo uses this command line on a Solaris
machine:

ossg -I/opt/ODI/ostore/include
-I/opt/ODI/osji/include
-I/usr/local/jdk11/include
-I/usr/local/jdk11/include/solaris
-I.
-store_member_functions -store_function_parameters
-assf jcgen_schema.cc
-asdb CPerson.jcgen_adb
schema.cc

Windows using the Sun
JDK example

On a Windows machine, the command line would look like this:

ossg -Ic:\ODI\OSTORE\include
-Ic:\ODI\OSJI\include
-Ic:\jdk11\include
-Ic:\jdk11\include\win32
-I. \
-store_member_functions -store_function_parameters
-asof jcgen_schema.obj
-asdb CPerson.jcgen_adb
schema.cc

Windows using the
Microsoft VM example

If you are building your application on a Windows machine for
the Microsoft VM, you need to add -DMicrosoft_VM, as shown in
the following example:
Release 3.0 69

Steps for Building the Application
ossg -Ic:\ODI\OSTORE\include
-Ic:\ODI\OSJI\include
-Ic:\jdk11\include
-Ic:\jdk11\include\win32
-I. \
-DMicrosoft_VM
-store_member_functions -store_function_parameters
-asof jcgen_schema.obj
-asdb CPerson.jcgen_adb
schema.cc

Digital UNIX example On a Windows machine, the command line would look like this:
ossg -xtaso_short -vptr_size_short

-I/usr/opt/ODI/OSTORE/include
-I/usr/opt/ODI/OSJI/include
-I/usr/include/java
-I/usr/include/java/alpha
-I.
-store_member_functions -store_function_parameters
-assf jcgen_schema.cc
--asdb CPerson.jcgen_adb
schema.cc
70 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
Step 2: Generate Java Peer Classes and C++ Glue Code

Run the osjcgen tool to create the Java peer class files and the C++
glue code.

Solaris example For the jcpp demo, the command line looks like this on Solaris:

osjcgen -package COM.odi.demo.jcpp
-libdir /opt/ODI/osji
-classdir /opt/ODI/osji
-schema CPerson.jcgen_adb
-native_interface jni
CPerson

Windows using the Sun
JDK example

On Windows, the command line would look like this:

osjcgen -package COM.odi.demo.jcpp
-libdir c:\ODI\OSJI
-classdir c:\ODI\OSJI
-schema CPerson.jcgen_adb
-native_interface jni
CPerson

Windows using the
Microsoft VM example

osjcgen -package COM.odi.demo.jcpp
-libdir c:\ODI\OSJI
-classdir c:\ODI\OSJI
-schema CPerson.jcgen_adb
-native_interface ms_raw
CPerson

Digital UNIX example For the jcpp demo, the command looks like this on Digital UNIX:

osjcgen -package COM.odi.demo.jcpp
-libdir /usr/opt/ODI/OSJI
-classdir /usr/opt/ODI/OSJI
-schema CPerson.jcgen_adb
-native_interface jni
CPerson

Step 3: Write Java Classes

After you run the peer generator tool, you can write Java classes
that use the generated peer classes.

Step 4: Compile Java Peer Classes and Java Files

Compile your Java source files and your Java peer classes. Be sure
to compile all files together to assure consistency. For example, in
the jcpp demo, these files are compiled together:

javac Main.java CPerson.java
Release 3.0 71

Steps for Building the Application
This command line also compiles CPersonClassInfo.java. The
ClassInfo subclass for a peer class is automatically compiled when
you compile the peer class.

Step 5: Generate C Header File

Run the javah tool to generate the C header file for the generated
and compiled Java peer classes. For example, in the jcpp demo, the
commands look like this:

javah -o CPerson_stubs.h COM.odi.demo.jcpp.CPerson
72 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
Step 6: Compile C++ Glue Code

Run the C++ compiler on the C++ glue code.

Be sure to specify the correct include directories.

Solaris On Solaris, compile the files with the -PIC (C++) option. This is
required for the object files to be included in a shared library to be
loaded by the Java run time.

Here are sample command lines for the jcpp demo:

Solaris C++ compile CC -c -PIC -vdelx
-I.
-I/opt/ODI/ostore/include
-I/opt/ODI/osji/include
-I/usr/local/jdk11/include
-I/usr/local/jdk11/include/solaris
CPerson_glue.cc

Windows C++ compile
using the Sun JDK

CC /c /GX /MD /Tp
/Ic:\ODI\OSTORE\include
/Ic:\ODI\OSJI\include
/Ic:\jdk11\include
/Ic:\jdk11\include\win32
CPerson_glue.cc

Windows C++ compile
using the Microsoft VM

CC /c /GX /MD /Tp
/Ic:\ODI\OSTORE\include
/Ic:\ODI\OSJI\include
/Ic:\jdk11\include
/Ic:\jdk11\include\win32
/DMicrosoft_VM
CPerson_glue.cc

Digital UNIX C++
compile

cxx -c -xtaso_short -vptr_size_short
-I.
-I/usr/opt/ODI/OSTORE/include
-I/usr/opt/ODI/OSJI/include
-I/usr/include/java
-I/usr/include/java/alpha
CPerson_glue.cc

Step 7: Generate the Application Schema Database for Your Library

Generate the application schema database for the library for your
Java application. As input to the schema generator, specify a
schema source file and/or one or more library schema databases.
The ossg command line is the same as when you generated the
mapping schema database, except that you
Release 3.0 73

Steps for Building the Application
• Do not specify the -store_member_functions and -store_
function_parameters options

• Must specify at least two ObjectStore library schemas

Required library
schemas

You must specify the ObjectStore Java interface library schema
database and the ObjectStore collections library schema database.
The library schema database for collections is required even if
your application does not use ObjectStore collections.

On Solaris, the ObjectStore Java interface library schema database
is libosji.ldb. The collections library schema is liboscol.ldb.

On Windows, the ObjectStore Java interface library schema
database is osji.ldb. The collections library schema is os_coll.ldb.

On Digital UNIX, the ObjectStore Java interface library schema
database is libosji.ldb. The collections library schema is
liboscol.ldb and the schema evolution library schema is
libosse.ldb.

Schema source file as
input

If the input is a schema source file, the include options must
specify the

• ObjectStore C++ include directory

• ObjectStore Java include directory

• Java include directory

• Java system-specific include directory

Solaris example For example, the jcpp demo uses this command line on a Solaris
machine:

ossg -I/opt/ODI/ostore/include
-I/opt/ODI/osji/include
-I/usr/local/jdk11/include
-I/usr/local/jdk11/include/solaris
-I. \
-assf jcpp_schema.cc
-asdb CPerson.jcpp_adb
schema.cc \
/opt/ODI/osji/lib/libosji.ldb
/opt/ODI/ostore/lib/liboscol.ldb

Windows using the Sun
JDK example

On a Windows machine, the command line would look like this:

ossg -Ic:\ODI\OSTORE\include
-Ic:\ODI\OSJI\include
-Ic:\jdk11\include
-Ic:\jdk11\include\win32
74 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
-I.
-asof jcpp_schema.obj
-asdb CPerson.jcpp_adb
schema.cc
c:\ODI\OSJI\lib\osji.ldb
c:\ODI\OSTORE\lib\os_coll.ldb

Windows using the
Microsoft VM example

On a Windows machine for the Microsoft VM, the command line
would look like this:

ossg -Ic:\ODI\OSTORE\include
-Ic:\ODI\OSJI\include
-Ic:\jdk11\include
-Ic:\jdk11\include\win32
-I.
-DMicrosoft_VM
-asof jcpp_schema.obj
-asdb CPerson.jcpp_adb
schema.cc
c:\ODI\OSJI\lib\osji.ldb
c:\ODI\OSTORE\lib\os_coll.ldb

Digital UNIX example On a Digital UNIX machine, the command line would look like
this:

ossg -xtaso_short -vptr_size_short
-I/usr/opt/ODI/OSTORE/include
-I/usr/opt/ODI/OSJI/include
-I/usr/include/java
-I/usr/include/java/alpha
-I.
-assf jcpp_schema.cc
-asdb CPerson.jcpp_adb
schema.cc
/usr/opt/ODI/OSJI/lib/libosji.ldb
/usr/opt/ODI/OS5.0.sp3/lib/liboscol.ldb
/usr/opt/ODI/OS5.0.sp3/lib/libosse.ldb
Release 3.0 75

Steps for Building the Application
Step 8: Create the Library

Create a library that contains object files for all C++ code in your
application. On Solaris, you create a shared library. On Windows,
you create a DLL. You must include

• C++ methods. In the jcpp demo, this is cperson.o.

• osjcgen glue code. In the jcpp demo, this is CPerson_glue.o.

• Schema object file. In the jcpp demo, this is jcpp_schema.o.

• ObjectStore Java interface library that does not include schema
(osji).

• On Solaris, you must also include the ObjectStore C++,
collections, query, and thread libraries. For the threads library,
be sure to include libosths and not libosthr.

Here are sample commands for creating the library.

Solaris CC -G -o libCPerson.so
cprsn.o CPerson_glue.o
jcpp_schema.o -losji -los -loscol -losqry -losths

Windows using the Sun
JDK

link /subsystem:console /DLL -out:CPerson.dll
cprsn.obj CPerson_glue.obj
jcpp_schema.obj c:\ODI\OSJI\lib\osji_jdk.lib

Windows using the
Microsoft VM

link /subsystem:console /DLL -out:CPerson.dll
cprsn.obj CPerson_glue.obj
jcpp_schema.obj c:\ODI\OSJI\lib\osji_ms.lib

Digital UNIX cxx -shared -taso -o libCPerson.so
cprsn.o CPerson_glue.o jcpp_schema.o
-losji -losdmadmut -losdmajcpp -los -loscol
-losqry -losthr
76 Developing ObjectStore Java Applications That Access C++

Chapter 4: Building the Application
Running the Postprocessor

You do not need to postprocess peer classes. However, you do
need to postprocess Java classes that are not peer classes and that
you want to be persistence-capable. If you have such classes, run
the postprocessor on them and specify peer classes that you are
generating and their ClassInfo implementations with the
-copyclass option. This copies the peer classes to the
postprocessor destination directory but does not modify the peer
classes. Alternatively, ensure that these peer classes are in your
CLASSPATH when you run your application.

You can run the postprocessor any time after you compile your
Java source files.

For example, if you wanted a Java class called Group to be
persistence-capable, you would specify something like the
following:

osjcfp -dest osjcfpout Group.class -copyclass CPerson.class

When you run the postprocessor on your Java application classes,
be sure that the compiled peer classes are in your class path in a
directory other than the postprocessor destination directory.
Complete information about the postprocessor is in the
ObjectStore Java API User Guide, Chapter 8, Automatically
Generating Persistence-Capable Classes.
Release 3.0 77

UNIX: Using Additional Native Libraries with the Java Interface to ObjectStore
UNIX: Using Additional Native Libraries with the
Java Interface to ObjectStore

If your application has only one native library and you follow the
instructions in this chapter, you should not encounter the problem
described in this section.

On Solaris and Digital UNIX platforms, if your application loads
additional native libraries, you might receive an error like the
following:

Run-time error, libC:
‘delete[]’ does not correspond to any ‘new[]’

SIGABRT 6* abort (generated by abort(3) routine)
si_signo [6]: SIGABRT 6* abort (generated by abort(3) routine)
si_errno [0]: Error 0
si_code [0]: SI_USER [pid: 12891, uid: 161]

stackbase=EFFFEE00, stackpointer=EFFFCD60

The cause of this is that ObjectStore applications expect to find the
ObjectStore library, libos, in the library search path before the C++
run-time library. To resolve this problem, do one of the following:

• Create an ObjectStore session and then load your additional
native library.

• Relink the additional native library to link against libos,
libosths, and libthread. Make sure that libos appears before the
C++ run-time library in the link line.

• Create a new native library that links libos, libosths, libthread,
and libC. Use System.loadLibrary() to load the new library
before your additional native library.

If you have an application that uses fork to execute your
ObjectStore application, the ObjectStore application automatically
receives copies of the forking process’s shared libraries. If the
forking process uses the C++ run-time library, this causes a
problem. To resolve the problem, use the middle option listed
above or explicitly load the ObjectStore library.
78 Developing ObjectStore Java Applications That Access C++

Chapter 5
Using ObjectStore Peer
Collections

ObjectStore peer collections can contain both primary objects and
peer objects. Peer collections are designed for storing large lists,
arrays, and other aggregation data structures. To achieve the best
possible performance, these collections are implemented in a
combination of C++ and Java. The more performance-critical
aspects are implemented entirely in C++.

Contents This chapter discusses the following topics:

Introduction to ObjectStore Java Interface Peer Collections 80

Creating New Peer Collections 82

Which Objects Can Be Inserted in Peer Collections? 84

Choosing a Peer Collection Interface 85

Description of Peer Collection Behaviors 87

Default Behaviors for Each Kind of Peer Collection 88

Decision Tree for Choosing a Peer Collection Type 89

Navigating Peer Collections with Cursors 90

Introduction to Using Peer Queries and Indexes 94

Querying a Peer Collection 97

Using Bound Queries 105

Using Indexes on Peer Collections 109

For information about pure Java collections, see ObjectStore Java
API User Guide, Chapter 7, Working with Collections.
Release 3.0 79

Introduction to ObjectStore Java Interface Peer Collections
Introduction to ObjectStore Java Interface Peer
Collections

A collection is an object that serves to group together other objects.
It provides a convenient means of storing and manipulating
groups of objects, and supports operations for inserting,
removing, and retrieving elements. ObjectStore Java interface
peer collections also support set-theory operations, such as
intersection, and set-theory comparisons, such as subset.

Collections form the basis of the ObjectStore peer query facility,
which allows you to select those elements of a collection that
satisfy a specified condition.

The ObjectStore peer collections facility allows you to create either
ordered or unordered collections, and collections that either do or
do not allow duplicates.

Collections are commonly used to model many-valued attributes,
and they can also be used as class extents, which hold all instances
of a particular class. Collections of one type, dictionaries, associate
a key with each element or group of elements, and can be used to
model binary associations or mappings.

Here is a simple example to help you understand how and when
to use ObjectStore peer collections. First, here is an example of a
program that does not use an peer collection. It is followed by
code that does use a collection.
80 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
import java.util.Vector;
public class PartCatalog {

Vector parts = new Vector();
void insert(Part part) {

parts.addElement(part);
}

}
class Part {

int partNumber;
Employee responsibleEngineer;
Part (int partNumber,

Employee responsibleEngineer,
PartCatalog catalog) {

this.partNumber = partNumber;
this.responsibleEngineer = responsibleEngineer;
catalog.insert(this);

}
}
class Employee {

String name;
}

The following class uses an instance of COM.odi.coll.Set, one of the
interfaces supplied by the peer collections facility. The definitions
for the Part and Employee classes are the same as before.

import COM.odi.*;
import COM.odi.coll.*;
public class PartCatalog {

Set parts;
PartCatalog (Placement placement) {

parts = NewCollection.createSet(placement, options);
}
void insert (Part part) {

parts.insert(part);
}

}
class Part {

int partNumber;
Employee responsibleEngineer;
Part (int partNumber,

Employee responsibleEngineer,
PartCatalog catalog) {

this.partNumber = partNumber;
this.responsibleEngineer = responsibleEngineer;
catalog.insert(this);

}
}
class Employee {

String name;
}

Release 3.0 81

Creating New Peer Collections
Creating New Peer Collections

Use the static methods defined in the NewCollection class to create
new peer collections. These methods create Java peer objects that
identify persistent C++ collections; you cannot use them to create
transient collections.

Each kind of peer collection has default behavior. If you do not
want the default behavior, pass a CollectionOptions object to the
NewCollection method that you invoke to create your collection.
You can reuse a CollectionOptions object as many times as you
want. You can alter it between uses. The collection creation
operation checks the content of the CollectionOptions object, but
does not store any references to the CollectionOptions object.

You can invoke the Database.createRoot() method to create a root
for a collection. If the object you assign to the root is the object that
represents the collection, a call to the Database.getRoot() method
returns a reference to the Java peer object that represents the
collection. The getRoot() call does not return all objects in the
collection.

Retaining collections
not allowed

Peer objects, and therefore peer collection objects, have no data
members and so, in Java, peer objects do not appear to be
connected to other objects. Even if you explicitly iterate through
the elements in a collection and then commit the transaction with
RETAIN_READONLY, you cannot access the collection outside a
transaction. However, if the collection elements are not
themselves peer objects or collections, you can manipulate them
outside a transaction but you cannot use the collection to access
them. You must explicitly read them in the transaction, retain
them, and then access them directly or through another nonpeer
object.

Destroying collections When you invoke ObjectStore.destroy() on a peer collection object,
ObjectStore leaves a tombstone. If any objects try to access the
destroyed object, the tombstone causes ObjectStore to throw
COM.odi.ObjectNotFoundException.
82 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Exporting collections Peer collections are a special kind of Java peer object. While you
cannot export other kinds of Java peer objects, you can export peer
collection objects.

Calls to deepFetch() When you call ObjectStore.deepFetch() on a peer collection,
ObjectStore does not retrieve anything, since a peer object has no
contents.
Release 3.0 83

Which Objects Can Be Inserted in Peer Collections?
Which Objects Can Be Inserted in Peer Collections?

You can insert persistence-capable primary objects or null objects
into peer collections. You can insert Java peer objects in peer
collections if the peer objects represent persistent C++ objects. You
cannot query Java peer objects, because they have no data
members. You cannot insert into collections Java peer objects that
identify transient C++ objects. If you try to, ObjectStore throws
CollectionException.

If you insert a persistent object into a collection, at least one of the
following must be true:

• The collection and the object being inserted must be in the same
segment.

• The object being inserted must be exported.

If neither is true, ObjectStore throws ObjectNotExportedException.

When you insert a transient persistence-capable object,
ObjectStore immediately makes the object persistent. ObjectStore
places this object in the same segment as the collection and does
not make this object exported.

If your application inserts objects into peer collections during
construction of the objects being inserted, you must specify the -
noinitializeropt option when you run the postprocessor. Doing so
avoids errors in the handling of modifications to the newly
constructed objects.
84 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Choosing a Peer Collection Interface

The Collection interface provides most of the methods that you
can use to operate on peer collections. Three types of peer
collections inherit directly from Collection — bags, lists, and sets,
which are all interfaces. Bags and sets do not order elements,
while lists do. Bags allow duplicates, sets do not, and lists can
allow or not allow duplicates. There are two types of dictionaries
that inherit from Bag. The additional feature of the dictionaries is
that they maintain a key for each element. Finally, arrays inherit
from List. Arrays allow null elements and provide for constant
time retrieval based on an element’s position. The following
figure illustrates the peer collection hierarchy.

Along with the Collection interface hierarchy, ObjectStore
provides the NewCollection class, which provides static methods
for creating the various types of peer collections. ObjectStore also
provides the Cursor and ListCursor interfaces for iterating over
the elements in a collection.

This section contains a brief description of each type of peer
collection.

Sets Sets, as with familiar data structures like linked lists and arrays,
have elements. Elements are objects that the set groups together.
In contrast to lists and arrays, the elements of a set are unordered.
You can use sets to group objects together when you do not need
to record any particular order for the objects.

Besides lacking order, something that distinguishes sets from
some other types of peer collections is that they do not allow
multiple occurrences of the same element. This means that
inserting a value that is already an element of a set leaves the set
unchanged or throws a run-time exception (depending on the
behavior you have specified for the set). In either case, sets do not
allow duplicates.

Collection

Bag List Set

Dictionary_int Dictionary_String Array
Release 3.0 85

Choosing a Peer Collection Interface
Bags Bags are similar to sets, except that they allow duplicates. Bags are
collections that not only keep track of what their elements are, but
also of the number of occurrences of each element. The Bag
interface provides the methods available for sets, and also the
count() method. This method returns the number of occurrences
of a given element in a given collection.

Lists In addition to sets and bags, the peer collections facility supports
lists. Lists are collections that associate each element with a
numerical position based on insertion order. Lists can either allow
or disallow duplicates (by default they allow duplicates). In
addition to simple insert (insert into the beginning or end of the
collection) and simple remove (removal of the first occurrence of
a specified element), you can insert, remove, and retrieve
elements based on a specified numerical position, or based on a
specified cursor position.

Dictionaries Like bags, dictionaries are unordered collections that allow
duplicates. Unlike bags, however, dictionaries associate a key
with each element. The key can be either an integer or a string, as
represented by the interfaces Dictionary_int and Dictionary_String,
respectively. When you insert an element into a dictionary, you
specify the key along with the element. You can retrieve an
element with a given key.

Arrays Arrays are like lists, except that they always provide access to
collection elements in constant time. That is, for all allowable
representations of an Array, the time complexity of operations
such as retrieval of the nth element is order 1 in the array’s
cardinality. Arrays also always allow null elements, and provide
the ability to automatically establish a specified number of new
null elements.
86 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Description of Peer Collection Behaviors

Each type of peer collection functions according to the behavior
flags that are set for it. The following table describes the behavior
flags. Most of these constants are defined in
COM.odi.coll.Collection. The others are defined in
COM.odi.coll.Dictionary_int and Dictionary_String.

Behavior Description

Collection.ALLOW_NULLS Controls whether null is allowed as an element of
the collection. By default, sets, bags, and lists do
not allow null elements, while arrays do allow null
elements. If this flag is specified, the collection
allows null elements.

Dictionary_int.DONT_MAINTAIN_
CARDINALITY

Dictionary_String.DONT_MAINTAIN_
CARDINALITY

Indicate that the dictionary does not keep track of
its own cardinality (the number of elements in the
collection) by increasing and decreasing a counter
when elements are inserted and deleted.

Collection.MAINTAIN_CURSORS Required for a collection to have safe cursors. You
might use safe cursors when you want to update a
collection while you are iterating through it. A safe
cursor ensures that the iteration visits elements
added since the cursor was bound to the collection,
and does not visit elements removed since the
cursor was bound to the collection. Also, you can
reposition a safe cursor if it becomes invalid.

Collection.PICK_FROM_EMPTY_
RETURNS_NULL

Controls what happens when a pick() method is
invoked on an empty collection. If this flag is
specified, the pick() method returns null. If this flag
is not specified, NoSuchElementException is thrown.

Dictionary_int.SIGNAL_DUP_KEYS
Dictionary_String.SIGNAL_DUP_KEYS

Indicate that duplicate keys are not allowed in the
dictionary.

Collection.SIGNAL_DUPLICATES Controls what happens if there is an attempt to
insert a duplicate element into a set. This behavior
is allowed only for sets because the other kinds of
collections allow duplicates. If this flag is not
specified, the insertion does nothing. If it is
specified for the set, ObjectStore throws
DuplicateEntryException if there is an attempt to
insert a duplicate element.
Release 3.0 87

Default Behaviors for Each Kind of Peer Collection
Default Behaviors for Each Kind of Peer Collection

There are default behaviors for each kind of collection. Some
behaviors apply to only certain peer collections. Some behaviors
can be changed with the Collection.changeBehavior() method. The
following table shows which behaviors apply to which collection
interface.

Interface Default
Behavior

Possible Behaviors Can Change with
changeBehavior()

Array ALLOW_
NULLS

MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

Bag None ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

Dictionary None DONT_MAINTAIN_CARDINALITY
PICK_FROM_EMPTY_RETURNS_
NULL
SIGNAL_DUP_KEYS

Not allowed

List None ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL

Set None ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL
SIGNAL_DUPLICATES

ALLOW_NULLS
MAINTAIN_CURSORS
PICK_FROM_EMPTY_RETURNS_
NULL
SIGNAL_DUPLICATES
88 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Decision Tree for Choosing a Peer Collection Type

Here is a simple decision tree to help you choose a peer collection
type to suit particular behavioral requirements.

Array List Dictionary

Maintain insertion order?

yes no

Bag Set

Associate a key with
each element?

Constant time retrieval of arbitrary
elements?

yes no yes no

Allow duplicates?

yes no
Release 3.0 89

Navigating Peer Collections with Cursors
Navigating Peer Collections with Cursors

The Cursor and ListCursor interfaces help you navigate within a
peer collection. A cursor, an instance of the Cursor or ListCursor
interface, designates a position in a collection. You can use cursors
to traverse collections, as well as to retrieve, insert, remove, and
replace elements. This section discusses the following topics:

• Creating Cursors on page 90

• Performing Collection Updates During Traversal on page 91

• Example of Using a Cursor on page 93

• Restriction on Cursors on page 93

Creating Cursors

You create a cursor with the Collection.newCursor() or
List.newListCursor() method. ObjectStore associates the cursor
with this collection and creates it with the behaviors you specify.
The method signatures are

public Cursor newCursor (int flags)

public ListCursor newListCursor(int flags)

The flags can include Cursor.SAFE, Cursor.UPDATE_INSENSITIVE,
and Cursor.ORDER_BY_ADDRESS. You cannot specify ORDER_
BY_ADDRESS for a dictionary.

When you create a cursor, ObjectStore positions the cursor at the
collection’s first element. You can then use COM.odi.coll.Cursor
methods or COM.odi.coll.ListCursor methods to reposition the
cursor and retrieve the element at which it is positioned.

The ListCursor class extends the Cursor class. The additional
methods it provides allow you to insert and remove objects
relative to the current position of the cursor. This is useful for
ordered collections such as arrays and lists.

The Cursor class extends the standard Java Enumeration interface,
so you can use cursors like you use any other Enumeration object.
For example, you can use the hasMoreElements() and
nextElement() methods from the Enumeration interface. You can
pass a cursor to any Java method that accepts an Enumeration
argument.
90 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
If your intent is to use only the Enumeration interface of the Cursor
interface, consider using the Collection.elements() method instead
of creating a cursor. The elements() method returns an
implementation of Enumeration that is more efficient than the
Cursor interface for iterating over the elements of a collection.
However, elements() is more restrictive.

An application must destroy its cursors when it is done with
them. This releases the transient C++ peer objects that are
associated with the cursor. Not destroying a cursor causes a
memory leak in the C++ heap.

OSJI cursors work the same way as cursors in the C++ interface to
ObjectStore. For information that is not covered here, see the
ObjectStore C++ API User Guide, Chapter 5.

Performing Collection Updates During Traversal

If you want to be able to update a collection while traversing it
within the same session and transaction, you must use either an
update-insensitive cursor, or a safe cursor.

If you update a collection while traversing it without using an
update-insensitive or safe cursor, the results of the traversal are
undefined.

Update-insensitive
cursors

With an update-insensitive cursor, the traversal is based on a
snapshot of the collection elements at the time the cursor was
bound to the collection. None of the insertions and removals
performed on the collection are reflected in the traversal.

To traverse a collection with an update-insensitive cursor, you
must specify Cursor.UPDATE_INSENSITIVE when you create the
cursor.

When you are done with an update-insensitive cursor, you should
call ObjectStore.destroy() to destroy it before you commit the
transaction. Update-insensitive cursors have large, transient, C++
data structures associated with them. This space is freed only
when you destroy the cursor. If you do not destroy the cursor, you
do not receive an exception, but it is a good idea to destroy the
cursor to avoid performance problems.
Release 3.0 91

Navigating Peer Collections with Cursors
Safe cursors A safe cursor at a given point in a traversal visits any elements
inserted later in the traversal order, and does not visit any
elements that are later in the traversal order that are removed.

To traverse a collection with a safe cursor, you must specify
Collection.MAINTAIN_CURSORS when you create the collection,
and you must specify Cursor.SAFE when you create the cursor. If
you try to create a safe cursor on a collection that does not have
maintain cursors behavior, ObjectStore throws
COM.odi.coll.CollectionException.

When you create a safe cursor, ObjectStore modifies the database.
Consequently, the database must be open-for-update, there must
be an update transaction in progress, and you must have
permission to modify the database.

You must use the ObjectStore.destroy() method to explicitly delete
every safe cursor before you commit the transaction in which the
cursor was created. An attempt to commit a transaction in which
there are outstanding safe cursors throws CollectionException.
There is no finalizer for the Cursor class to do this. Since finalizers
have no guarantee of running, they are not helpful in this
circumstance.

You cannot create a safe cursor on any kind of dictionary. If you
try to, ObjectStore throws COM.odi.coll.CollectionException.

Disadvantages of safe
cursors

Safe cursors have some drawbacks that update-insensitive cursors
do not:

• Updates to peer collections with safe cursors are slower. For
each collection in a given segment that has MAINTAIN_
CURSORS behavior, there is an entry in a table that maps
collections to their safe cursors. This table is stored in the same
segment as the collections. An update to one of the collections
requires a lookup in the table. Each cursor associated with the
collection is checked and adjusted if necessary.

• Index maintenance for peer collections with safe cursors is
slower. Whenever index maintenance is performed on an
object in an indexed collection that has MAINTAIN_CURSORS
behavior, the safe cursor table also has to be visited (because
there might be safe ordered cursors that are pointing to the
indexes).
92 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Using safe cursors to
implement recursion

One advantage of safe cursors is that you can use them to
implement recursion without the use of recursive method calls.

Example of Using a Cursor

Here is a simple example that uses a cursor to visit each element
in a set and insert the element into a vector.

Vector v;
t = Transaction.begin(ObjectStore.UPDATE);
s = NewCollection.createSet(db);
s.insert("peter");
s.insert("paul");
s.insert("mary");
cur = s.newCursor(0);
v = new Vector();
while (cur.hasMore()) {

v.addElement(cur.retrieve());
cur.next();

}
ObjectStore.destroy(cur);
t.commit();

Restriction on Cursors

The Collection class has a number of methods that take a cursor as
an argument. For these methods to work correctly, the cursor
must be a safe cursor or a default cursor.

A default cursor is a cursor for which the flags argument equaled
0 when the cursor was created. In other words, peer collections
methods that take cursors as arguments do not work correctly
when ORDER_BY_ADDRESS or UPDATE_INSENSITIVE was
specified when the cursor was created.

When the cursor is not a safe cursor or a default cursor, a call to a
collections method that takes a cursor as an argument causes
ObjectStore to throw COM.odi.coll.CollectionException.
Release 3.0 93

Introduction to Using Peer Queries and Indexes
Introduction to Using Peer Queries and Indexes

The Java interface peer query facility is based on the existing
ObjectStore C++ query system. The peer query capability is a
subset of the full ObjectStore C++ query system.

You can use a simple declarative syntax to issue peer queries from
Java programs. The facility supports these comparison operators:

• >

• <

• ==

• !=

• >=

• <=

You can combine these comparison operators with the following
logical operators, as in C++ and Java:

• &&

• ||

• !

Queries and indexes can refer to paths where the type of the last
instance variable in the path is one of the following:

• int

• java.lang.String

• long - Queries on the long type must be bound queries.

• Object reference — Queries on object references must be bound
queries.
94 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Performing Navigational Queries

You can define peer queries that navigate through one or more
objects. For example, a query can have the following meaning:
“For this collection of employees, find all employees such that
employee.department.size > 20”. When you query a multistep
path, all steps except the last step must be object references. (The
last step can be an object reference, but it is not required.)

The peer query facility can define value-based indexes on objects
of type int, long, and java.lang.String, and on object references. You
can compare these values to a Java literal or a program variable.

You cannot call Java methods from queries.

The following sections discuss the APIs for the peer query facility.
These methods are defined in the Collection interface.
Release 3.0 95

Introduction to Using Peer Queries and Indexes
Using Path Strings

In a peer query, a path specifies an order in which a collection
should be traversed. ObjectStore uses the COM.odi.coll.Path class
to represent a path. Instances of this class are transient objects that
you define. Each Path object specifies

• The type of element in the collection to be traversed

• The name of a field of the element type

• A database that contains a description of the element type

A path string is one or more field names separated by periods. If
there is only one field, it must be of type int, long, or String, or an
object reference.

If there is more than one field in the path string, the first field must
be a field of the element type specified in the relevant Path object,
and it must be a class type. Call this class A. If the next field is the
last field (that is, there are two fields in the string), it must be a
field of class A that is of type int, long, or String, or an object
reference. If the next field is not the last field (that is, there are
more than two fields), it must be a class type. All fields in the
string, other than the last one, must be class types. For example:

Path.create("mypackage.Employee", "dept.city.pollution", db);

You can use this path to create an index that speeds up a query,
such as this one:

"dept.city.pollution > 3"

This query would find all employees where the employee’s
department’s city’s pollution level is greater than 3.

A Path object is a transient Java peer object. When you are finished
with the Path object, call ObjectStore.destroy() on it to free the C++
transient storage. The application accesses the Path object through
a Java peer object, and the associated C++ object is not
automatically garbage collected. You must explicitly delete it.
96 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Querying a Peer Collection

Invoke Collection.query() to obtain a transient set of elements that
comply with a query string. The method signature is

public Collection query(String elementType,String query)

This method returns a newly created transient set that contains all
elements found. If the peer query finds an element more than
once, it inserts the element into the result collection only once. You
cannot modify a result set.

For elementType, specify a fully qualified Java class name. Every
element of this collection must be an instance of (in the sense of
instanceof) the named class.

For query, specify a query string.

When you are finished with the result set, call
ObjectStore.destroy() on it to free the C++ transient storage. The
application accesses this set through Java peer objects, and the
associated C++ objects are not automatically garbage collected.
You must explicitly delete them.

Here is an example of a peer query. Typically, this operation casts
the result to a set.

Set sleepyHeads = (Set)allPeople.query("COM.research.Person",
"sleepHours > 9");

Allowing Duplicates

To obtain a result set that includes duplicates, invoke the query()
method with a third argument. The method signature is

public Collection query(String elementType,
String query,
boolean duplicates)

The duplicates argument specifies what to do if some element is
found more than once by the peer query. If this is false, the
method inserts an element into the result collection no more than
once. If this is true, the method inserts each occurrence of the
element into the result collection.
Release 3.0 97

Querying a Peer Collection
Obtaining One Element

To obtain one element that matches a peer query, invoke the
queryPick() method on the collection. The method signature is

public Object queryPick(String elementType, String query)

If ObjectStore finds any elements, it arbitrarily returns one. If it
does not find any elements, it returns null.

Do Any Elements Exist?

To determine if there are any elements in a collection that match a
particular peer query, invoke the exists() method. The method
signature is

public boolean exists(String elementType, String query)

If ObjectStore finds any elements, it returns true.

String Comparison

When ObjectStore performs a string comparison in a peer query,
it uses the same ordering that is used by Java’s String.compareTo()
method. That is, ordering is based on the Unicode value of each
character in the strings being compared.
98 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Peer Query Example

The code in this section illustrates the use of the Java interface to
ObjectStore peer query facility. The following sample code stores
information about professional golfers. This sets up a framework
for performing a peer query.

package COM.odi.test;
import COM.odi.*;
import COM.odi.coll.*;
// The ProGolfer classes

class ProGolfer
{

String name;
int age;
int earnings;
Agent agent;

// Constructor:
public ProGolfer (String name, int age, int earnings,

 Agent agent)
{

this.name = name;
this.age = age;
this.earnings = earnings;
this.agent = agent;

}
}

class Agent
{

String name;
int commission;

// Constructor:
public Agent (String name, int commission)
{

this.name = name;
this.commission = commission;

}
}

Release 3.0 99

Querying a Peer Collection
// Here is a program that creates a golfer, an agent, and a set
// to hold all golfers.

public class Example1
{

 public static void main (String argv[])
{

Session.create(null, null).join();
Database db = Database.create (

"PGA.odb",
ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);

Transaction t = Transaction.begin(ObjectStore.UPDATE);
Segment seg = db.getDefaultSegment();
Agent pat = new Agent ("Pat", 15);
ProGolfer tiger = new ProGolfer ("Tiger", 20, 1000000, pat);
Set allGolfers = NewCollection.createSet (seg);
allGolfers.insert (tiger);
db.createRoot ("AllGolfers", allGolfers);
t.commit();
db.close();

}
}

What the code does In this example, the program does the following:

1 Initializes the ObjectStore software.

2 Creates and opens a database named "PGA.odb."

3 Starts an update transaction.

4 Obtains the default segment.

5 Creates a persistence-capable Agent object and a persistence-
capable ProGolfer object.

6 Creates a set to hold all golfers in the default segment.

7 Creates a database root with the name "AllGolfers" and assigns
the allGolfers set to the root.

8 Commits the transaction, which stores allGolfers, tiger, and pat
in PGA.odb.

The following code shows a peer query that retrieves all golfers
who make less than $150,000 per year.
100 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Adding a peer query package COM.odi.test;
import COM.odi.*;
import COM.odi.coll.*;

class ExampleQuery
{

public static void main(String argv[])
{

Session.create(null, null).join();
Database db = Database.open

("PGA.odb", ObjectStore.OPEN_UPDATE);
Transaction t = Transaction.begin(ObjectStore.READONLY);

Set golfers = (Set)db.getRoot("AllGolfers");
Set backToSchool = (Set)golfers.query

("COM.odi.test.ProGolfer", "earnings < 150000");
Cursor golfer = backToSchool.newCursor(0);
while (golfer.hasMoreElements())
{

ProGolfer g = (ProGolfer) golfer.nextElement();
System.out.println(g.name +

 " has to attend qualifying school with earnings "
 + g.earnings);

System.out.println(g.name +
 "s agent is " + g.agent.name);

}
t.commit();
db.close();

}
}

What the code does In the preceding example, the program does the following:

1 Opens the PGA.odb database and starts a transaction.

2 Retrieves a database root that contains a reference to the
allGolfers collection.

3 Searches members of the allGolfers collection to find the
elements that satisfy the query "salary < 150000".

4 Displays the names, earnings, and agents of the golfers found.
If no golfers in the database earn less than $150,000, the
program does not display anything.

5 Ends the transaction and closes the database.
Release 3.0 101

Querying a Peer Collection
Postprocessing the
classes

After you compile these four classes, you must run the
postprocessor on all four classes together.

• Make the ProGolfer and Agent classes persistence-capable.

• You can make the Example1 class persistence-aware, but it is
not required because it only accesses transient instances of the
classes.

• Make the ExampleQuery class persistence-aware. This is
required because the ProGolfer and Agent classes have no
accessor methods of their own. Although you never store an
instance of the ExampleQuery class in a database, the
ExampleQuery class does access persistenct instances of
ProGolfer and Agent and therefore ExampleQuery must be
persistence-aware.
102 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Description of Peer Query Syntax

The syntax for the Java interface peer query facility is a simple
declarative syntax. Every element of a collection must be an
instance of (in the sense of instanceof) the same class.

Every clause of a peer query consists of three tokens:

• Field name

• Comparison operator

• Constant (or free variable name for a bound query)

Aclause that compares two fields does not meet this requirement,
and is not allowed.

The legal tokens in a query string include

• Names of instance variables of type int, long, or String

• Constants of type int, long, or String. (Remember to delimit
String constants with quotation marks.)

• Comparison operators: <, >, ==, <=, >=, !=

• Parentheses

• Boolean operators: &&, ||, !

Examples Here are some sample queries:

• "age == 3"

• "3 == age"

• "!(age==3)"

• "name == \"Jones\" && age < 30"

• "(gender == \"male\") && (! (salary >= 40000))"

• "gender == \"male\" && (age==4 || age == 5)"

You can use variable values in queries by building the query
string at run time. For example:

string gName = "Jones";
String query = “name == \"" + gname + "\"";
Set s1 = (Set) golfers.query("COM.odi.test.ProGolfer", query);

Another way to do this is to use bound queries. A bound query
has less overhead when you plan to run the query with more than
one different value.
Release 3.0 103

Querying a Peer Collection
Not supported Queries that are not supported are

• Queries on types other than int, long, and String

• Nested queries (a query that contains a query)

Relative Values of String Fields

When performing a peer query, ObjectStore considers a null value
to be less than any string value. This has meaning in the following
situation:

• An application specifies an inequality query on a collection C,
which contains objects of type A.

• A has an instance variable B, which is of type String.

• There is an instance of A in C that has a string value for B.

• There is an instance of A in C that has a null value for B.

If you perform an inequality query on C, ObjectStore considers the
null value for B to be less than the string value for B.

For example, suppose you have a collection of three Person objects
whose name fields contain Scott, Zelda, and null. Then you specify
a query string like this:

"name <= \"Tolstoy\""

ObjectStore returns two Person objects: the ones with Scott and
null in the name field. If you do not want the null values returned,
you can rephrase your query as

"name <= \"Tolstoy\" && name != null"
104 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Using Bound Queries

A bound query is a peer query plus values for the query’s free
variables. To help you use bound queries, this section discusses

• About Free Variables on page 105

• Description of Query and BoundQuery classes on page 105

• Advantages of Bound Queries on page 106

• Example of Using a Bound Query on page 106

• Creating Peer Query Objects on page 107

• Creating BoundQuery Objects on page 107

• Running a Bound Query on page 107

• Querying on Object References on page 108

About Free Variables

A free variable is a variable that is not an accessible instance
variable of the class being queried. It is a new variable that you
invent as a placeholder for the purpose of a query. A free variable
differs from a regular variable in that you never explicitly declare
a free variable. You refer to a free variable in two places:

• The query string

• The argument to the BoundQuery.bind() method

In both places, you must use exactly the same identifier.

Description of Query and BoundQuery classes

ObjectStore uses two abstract Java peer classes to represent bound
queries.

• The Query class represents a query that can have zero or more
free variables.

• The BoundQuery class represents a bound query.

Instances of these classes are always peer objects that identify
transient C++ objects. Consequently, you can use them across
transaction boundaries regardless of the value of the retain
parameter. When you are done with instances of these classes,
you must explicitly destroy them to free the C++ transient space.
Release 3.0 105

Using Bound Queries
Advantages of Bound Queries

After you create a Query object, you can create many different
BoundQuery objects based on that Query object. Each BoundQuery
object can have different values for the free variables. The
advantage is that ObjectStore has to parse the query only once. For
example, suppose you want to know how many employees are in
their 20s, how many in their 30s, and how many in their 40s. It is
faster to create a Query object and then repeatedly use it with
different bound queries, than it is to perform the Collection.query()
method each time.

Example of Using a Bound Query

Here is an example. Suppose there is a set called "employees" that
contains objects of type COM.odi.demo.company.Employee. You
create a peer query that uses two free variables, "min" and "max".
The "salary" field is in the COM.odi.demo.company.Employee class.
After you create the peer query, you create a bound query that is
based on that query. Then you bind the free variables to their
values, run the query, and perform any required cleanup. Here is
the code:

package COM.odi.demo.company;
import COM.odi.coll.*;

class EmployeeDemo {
Collection test(Set employees) {
Query empSalRange =

Query.create(
"COM.odi.demo.company.Employee",
"salary > min && salary < max",
Database.of(employees));

BoundQuery mediumSalQuery =
BoundQuery.create(empSalRange);

mediumSalQuery.bind("min", 10);
mediumSalQuery.bind("max", 20);
Collection mediumEmps =

employees.query(mediumSalQuery);
ObjectStore.destroy(mediumSalQuery);
ObjectStore.destroy(empSalRange);
return mediumEmps;

}
}

106 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Creating Peer Query Objects

Use the static method Query.create(elementType, query, database)
to create a Query object. The elementType parameter is the name of
the class of the elements in the collection being queried. The query
argument specifies a query with free variables. The database
argument specifies the database that contains the objects to be
queried.

The syntax for the query argument is the same as for the
Collection.query() method, except, the syntax here can include free
variables. The name of a free variable must be a string that is

• Valid as a Java identifier

• Not the name of an accessible field in the elementType class

There are also Query.createPick() and Query.createExists()
methods, which are similar to Collection.pick() and
Collection.exists(). The Query methods allow you to specify free
variables.

Creating BoundQuery Objects

Use the static method BoundQuery.create() to create a bound
query object. Specify a Query object as an argument to this
method. After you create the bound query, call the
BoundQuery.bind() method once for each free variable in the
original Query object.

The first argument to bind() is the name of the free variable. The
second argument is the value to which it should be bound. This is
the value the free variable has when you run the query. There are
overloadings of bind() with different types for the second
argument.

Running a Bound Query

To run a bound query, call Collection.query(boundQuery). The
method returns a transient collection that contains the results of
the query. There are also overloadings of Collection.queryPick()
and Collection.exists() that take a bound query argument. The
query method must correspond to the kind of query you created.
For example, if you call Query.createPick() to create the query, you
must call Collection.pick() to run the query.
Release 3.0 107

Using Bound Queries
A bound query is considered to be fully bound after you specify it
in a call to Collection.query().

You can run a bound query over many different peer collections.
You can run the query on databases other than the one it was
originally created for. The query can extend across multiple
databases.

Remember that the element type in the collection must match the
type specified for the query. You can execute the same bound
query over the same collection at many different times.

Querying on Object References

You can query on object references if you use a bound query. For
example:

Department engineeringDept;
Set employees;

Query query = Query.create("COM.company.Employee",
"dept ==eng", db);

BoundQuery boundQuery = BoundQuery.create(query);
boundQuery.bind("eng", engineeringDept);
Set engineeringEmployees = (Set)set.query(boundQuery);

You can use the comparison operators == and !=. The comparison
operators that include > or < signs do not mean anything for
objects. If you try to use relational operators, ObjectStore throws
InvalidQueryStringException.

Bound queries search for actual object equality, like the ==
operator in Java. In other words, the object provided in the bind()
method and the object found through the path must be the same
persistent object. They cannot just be identical; they must be the
same object.

This works for any Java class. The String class, however, is a
special case. You can use all comparison operators on String
classes. ObjectStore uses the equals() method to check for equality
among String objects.

Wrapper classes (for example, Integer and Short) are another
special case. Since ObjectStore does not maintain object identity
for wrapper classes, do not specify them as object references in
bound queries.
108 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Using Indexes on Peer Collections

You can add one or more indexes to a peer collection to optimize
the performance of queries over that collection. There are two
steps to this process:

1 Flag a field in a persistence-capable class so that it is indexable.

2 Add an index to the collection.

Without indexing, ObjectStore performs a linear search to execute
a query. When you add an index, you instruct ObjectStore to
maintain an access method that allows efficient lookup. This
access method consists of hash tables and/or B-trees.

You can also use an index to ensure that a collection does not have
duplicate entries for a particular field. For example, you might
want to ensure that a collection of ProGolfer objects does not
contain any objects that have the same value for the name field. To
do this, you specify the Path.SIGNAL_DUPLICATES option when
you call Collection.addIndex().

This section discusses the following topics:

• Performance on page 109

• Making Fields Indexable on page 110

• Adding Indexes on page 110

• Example of Using an Index on page 112

• Performing a Query on Multiple Fields on page 112

• Types of Indexes on page 113

• Restrictions on page 113

Performance

The beneficial effects of indexes on searches become apparent
only when the collection being searched is relatively large. If you
are searching a collection with only a small number of elements,
indexes probably do not speed things up. In fact, they might make
performance slower than when not using indexes. A search of a
small collection is so fast that the time needed to determine that an
index exists and should be used is significant compared to the
total search time.
Release 3.0 109

Using Indexes on Peer Collections
In general, a few hundred elements constitute a small collection.
Tens of thousands of elements constitute a large collection. For
peer collections where the number of elements is somewhere in
the middle, whether or not an index improves performance
depends on the kind of collection, the data member the index is
on, how much main memory is available, and other details
peculiar to the collection.

Making Fields Indexable

To make a field indexable, specify -indexablefield for a particular
field when you run the class file postprocessor to make the class
persistence-capable. You must specify a fully-qualified field
name, for example, COM.odi.demo.people.name. You can make
one or more fields indexable.

Do not make a field indexable when you do not plan to add an
index on that field. There is a small amount of overhead in
execution time whenever you alter an object that has an indexable
field. The overhead is the reason that all fields are not
automatically indexable. There is also a fixed database storage
overhead when a class has any indexable fields.

Adding Indexes

To add an index, invoke the Collection.addIndex() method on the
collection to which you want to add the index. When you invoke
this method, you pass a Path object, which you must have
previously created. The Path object specifies

• The type of element the collection you are adding the index to
can contain.

• A path that identifies the field to which you are adding the
index. You must have previously made this field indexable.
The field must be of type int, long, or java.lang.String, or it can
be a Java object reference. If it is an object reference, the
reference can be for a class or an interface. If the field is not
indexable, or it is not a supported type, ObjectStore throws
COM.odi.coll.InvalidQueryStringException when you try to create
the Path object.

To add a multistep index, such as an index on
"employee.department.size", each specified field must be
indexable.
110 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
• A database whose schema describes the element type that the
collection contains. The Path object never specifies the transient
database.

A Path object is a Java peer object, so your application should
destroy it after using it.

When you add the index, there are overloadings of the addIndex()
method that allow you to specify

• Options that change the default behavior. The default is that
the index is unordered and that the collection can contain
duplicates.

• The location to store the index itself. The default is that it is
stored in the same segment as the collection for which it is an
index.

An application can add and remove indexes while it is running.
The index remains in the database until you remove it with the
Collection.dropIndex() method. The method signature is

public void dropIndex(Path path)

For example:

allGolfers.dropIndex (aPath);

You can test for the presence of a particular index. Invoke the
Collection.hasIndex() method and pass the path that specifies the
index you want to know about.
Release 3.0 111

Using Indexes on Peer Collections
Example of Using an Index

For example, suppose you want to optimize looking up golfers in
the allGolfers collection. You want to optimize this by name, as in
the following query:

ProGolfer aGolfer = (ProGolfer)
golfers.queryPick ("COM.odi.test.ProGolfer",

"name == \"tiger\"");

When you run the postprocessor on the ProGolfer class, specify
the fully qualified name of the field. For example:

-indexablefield COM.odi.test.ProGolfer.name

In your code, add an index to the name field in the allGolfers
collection. First, create the Path object, and then, pass the path to
the addIndex() method:

Path aPath = Path.create("COM.odi.test.ProGolfer", "name", db);
allGolfers.addIndex(aPath);

Performing a Query on Multiple Fields

You can perform a single query on several data members. When
ObjectStore processes the query, it does so in this order:

1 Indexed fields in the order they appear in the query string

2 Nonindexed fields in the order they appear in the query string
112 Developing ObjectStore Java Applications That Access C++

Chapter 5: Using ObjectStore Peer Collections
Types of Indexes

The options argument to the addIndex() method specifies the type
of index to create. Possible values are limited to

• COM.odi.coll.Path.ORDERED

ObjectStore creates an ordered index. The advantage of an
ordered index is that it can speed up inequality queries as well
as equality queries. Inequality queries involve the comparison
operators <, >, <=, and >=. An unordered index can speed up
only equality queries.

For equality queries

- Looking up an element with an unordered index is faster
than looking it up with an ordered index.

- Looking up an element with an ordered index is faster than
looking it up without any index.

• COM.odi.coll.Path.SIGNAL_DUPLICATES

ObjectStore ensures that no two elements in the collection can
have the same key value. If you try to insert an element into the
collection with the same key value as some other element that
is already in the collection, ObjectStore throws
COM.odi.coll.DuplicateKeyException.

Restrictions

A particular index is restricted to a single data member.
Release 3.0 113

Using Indexes on Peer Collections
114 Developing ObjectStore Java Applications That Access C++

Release 3.0
Index
A
adding indexes to collections 110

ALLOW_NULLS 87

application schema database
description 18

generating 73

arrays
creating collections 86

B
bags 86

bound queries 105

BoundQuery class 105

building applications
C++ files 66

compiling C++ glue code and C stub
code 73

compiling Java source files 71

creating libraries 76

description of files 66

generating application schema
database 73

generating C header and stub files 72

generating C++ glue code 71

generating Java peer classes 71

generating mapping schema
database 68

glue files 67

Java files 66

overview 9

steps to follow 68

C
C header files 72

C++ data members 33

C++ exceptions 58

C++ files 66

C++ function members 33

C++ objects
creating 51

deleting 52

charP class 60

-classdir option 20

ClassInfo class 6

Collection.addIndex() 110

Collection.changeBehavior() 88

Collection.exists() 98

Collection.newCursor() 90

Collection.query() 97

Collection.queryPick() 98

CollectionOptions class 82

collections 56

cursors 90

destroying 82

indexes 109

inserting objects during construction 84
115

D

ObjectStore peer collections 80

postprocessor optimization 84

queries 94

referencing destroyed 82

updating while traversing 91

COM.odi.jcpp.CPlusPlus 29

COM.odi.jcpp.CPlusPlus.delete() 52

COM.odi.jcpp.EUCJIScharP 60

COM.odi.jcpp.SJIScharP 60

COM.odi.ObjectStore.destroy() 53

COM.odi.ObjectStoreLibrary 50

compiling C++ glue code and C stub
code 73

compiling Java peer classes and source
files 71

creating C++ objects 51

creating libraries 76

creating ObjectStore peer collections 82

Cursor class 90

CURSOR.ORDER_BY_ADDRESS 90

CURSOR.SAFE 90

CURSOR.UPDATE_INSENSITIVE 90

cursors
behavior flags 90

creating 90

definition 90

example of using 93

safe 92

update-insensitive 91

updating during traversal 91

D
deleting C++ objects 52

destroying
collections, peer 82

dictionaries 86

DONT_MAINTAIN_CARDINALITY 87

duplicates
in collections 87

query results 97

E
embedded class type return values 44

enums
how they are mapped 36

specification 21

examples
C++ code 10

C++ code generated by tool 13

collection, COM.odi.coll 80

collection, cursor on 93

collection, indexes on 112

collection, querying 99

compiling 71

creating libraries 76

generating application schema
database 74

generating mapping schema database 69

Java code generated by tool 11

Java code that uses generated code 16

peer method with primitive return
value 31

running peer generator tool 24, 71

exception handling 58

exporting
collections 83

exporting peer objects 56

F
files for building applications 66

G
generating

application schema 73

C header and stub files 72

C++ glue code 71

Java peer classes 71

mapping schema database 68

getJNIEnv() function 64

glue files 67
116 Developing ObjectStore Java Applications That Access C++

Index
I
identity 7

-indexablefield option
when to specify 110

indexes
multistep 110

indexes on collections
adding 110

introduction 109

making fields indexable 110

performance 109

restrictions 113

inheritance in classes and structs 32

initializing ObjectStore 50

interoperability
ClassInfo class 6

description 2

enums, specification 21

example 10

example of peer method definition 31

how it works 3

identity 7

overview of using 9

peer objects 3

peer pointer objects 5

primary objects 3

J
Java files 66

javah tool 72

JNIEnv* value 64

L
-libdir option 20

libraries
COM.odi.ObjectStoreLibrary 50

creating 76

library schema databases 66

library schemas required 74

ListCursor class 90

lists 86

M
MAINTAIN_CURSORS 87

-map option 22

-map_existing option 22

mapping
classes 29

enums 36

pointers to nonclass types 39

primitive types 38

reference types 43

structs 29

mapping schema database
about 18

generating 68

-schema option 20

multiple inheritance 32

multistep indexes 110

path strings 96

multistep queries
object references 108

path strings 96

N
-native_interface option 20

navigational queries 95

nested queries 104

NewCollection class 82

-nosynchronize option 22

notation conventions xi

O
ObjectStore peer collections

ALLOW_NULLS 87

arrays 86

bags 86

Collection.changeBehavior() 88
Release 3.0 117

P

creating 82

decision tree 89

dictionaries 86

DONT_MAINTAIN_CARDINALITY 87

example 80

interface behaviors, description 87

interfaces, description 85

introduction 80

lists 86

MAINTAIN_CURSORS 87

objects, inserting 84

PICK_FROM_EMPTY_RETURNS_
NULL 87

queries and indexes 94

querying 97

sets 85

SIGNAL_DUP_KEYS 87

SIGNAL_DUPLICATES 87

ObjectStore.initialize() 50

-oldtemplates option 22

operators 34

OS_EUCJIS_STR typedef 41

OS_EUCJIS_TMPSTR typedef 41

OS_EUCJISP typedef
char* representation 41

charP customization 60

OS_SJIS_STR typedef 41

OS_SJIS_TMPSTR typedef 41

OS_SJISP typedef
char* representation 41

charP customization 60

OS_STR macro 41

OS_STR typedef 41

OS_TMP_STR macro 41

OS_TMP_STR typedef 41

osjcgen utility 20

ossg utility 18

overloaded C++ functions
handling 33

restrictions 45

P
-package option 20

patch updates xii

Path objects 110

description 96

example 96

path strings 96

peer classes
C++ classes 19

definition 6

generated class contents 27

inheritance structure 8

methods defined by tool 30

overview of defining 8

public constructors 30

restrictions 62

unsafe 31

peer collections
See ObjectStore peer collections

peer generator tool
C++ data members 33

C++ output 28

class list 21

classes, mapping 29

embedded class type return values 44

enums, mapping 36

example of running 24

generated names 29

input classes, specification 19

inputs 18

introduction 8

operators 34

options 20

output 26

pointers to nonclass types, mapping 39

primitive types, mapping 38

reference types, mapping 43

restrictions 45

running 20

structs, mapping 29

template names 35
118 Developing ObjectStore Java Applications That Access C++

Index
peer methods
allowable arguments to 54

allowable return values from 54

handling return values 55

peer objects
behavior 48

correct subclass, determining 55

creating C++ objects 51

definition 3

deleting C++ objects 52

exporting 56

primary objects, interface with 7

stale, becoming 48

what they can represent 49

peer pointer classes 27

peer pointer objects
description 5

initializing 59

performance
indexes on collections 109

persistence-capable object definition 3

PICK_FROM_EMPTY_RETURNS_
NULL 87

pointers
to nonclass types 39

to pointer types 40

to primitives 39

postprocessor 77

primary objects
definition 3

interface with peer objects 7

primitive types 38

private native peer methods 30

process requirement 2

public constructors 30

Q
queries

bound queries 105

navigational 95

Query class 105

querying collections
duplicates, allowing 97

elements exist? 98

example 99

indexes 109

introduction 97

multiple fields 112

one element, obtaining 98

query samples 103

query syntax 103

restrictions 104

string field values 104

R
reference types 43

representation of char* types 41

restrictions to peer generator tool 45

restrictions when using peer classes 62

retaining objects
collections 82

S
safe cursors 92

-schema option 20

schema source file include options 74

schema source files 66

sets 85

SIGNAL_DUP_KEYS 87

SIGNAL_DUPLICATES 87

-store_function_parameters option to
ossg 18

-store_member_functions option to ossg 18

string conversion
charP class 60

macros 41

strings
field values in queries 104

stub files 72

-suppress option 23

suppressing generation of methods 23
Release 3.0 119

T

-synchronize option 22

T
template names 35

TIX exceptions 58

tombstones
collections 82

Training xiii

U
unions 32

unsafe peer classes
description 31

for peer pointer classes 27

V
variable argument lists 34
120 Developing ObjectStore Java Applications That Access C++

	Developing Java Applications That Access C++
	ObjectStore Developing Java Applications That Access C++
	Preface
	How This Book Is Organized
	Notation Conventions
	Internet Sources of More Information
	Support
	Training
	Your Comments

	Introduction to Developing ObjectStore Java Applications That Access C++
	What Is Interoperability?
	How Does Interoperability Work?
	What Are Primary Objects?
	What Are Peer Objects?
	What Are Peer Classes?
	What Is the Interface Between Primary and Peer Objects?

	How Are Peer Classes Defined?
	What Is the Procedure for Using C++/Java Interoperability?
	Example of Accessing C++ Classes
	C++ Code
	Java Code and C++ Code Generated by Tool
	Java Code That Uses Generated Code

	Generating Peer Classes
	Description of Inputs to the Tool
	About the Mapping Schema Database
	Generating the Mapping Schema Database
	Specifying Classes for Which to Generate Peer Class Definitions

	Running the Peer Generator Tool
	Description of Command Line Format
	Description of Additional Options
	Example of Running the Peer Generator Tool

	Overview of Tool Output
	About Java Peer Class Definitions
	About Java Peer Pointer and Unsafe Class Definitions
	About C++ Output

	How Classes and Structs Are Mapped
	Generated Names
	Methods in Java Peer Classes
	Unsafe Peer Classes
	Inheritance in Classes and Structs
	Handling of C++ Data Members
	Handling of C++ Function Members
	Handling of Operators
	Rules for Template Name Flattening

	How Enums Are Mapped
	How Primitive Types Are Mapped
	How Pointers to Nonclass Types Are Mapped
	Pointers to Primitives
	Pointers to Pointer Types
	Representation of char* Types
	Converting Strings

	How Reference Types Are Mapped
	How Embedded Class Type Return Values Are Mapped
	Restrictions
	Code for Which Peer Classes Cannot Be Generated
	Overloaded Functions

	Writing the Application
	Behavior of Peer Objects
	Peer Objects Can Become Stale
	What a Peer Object Can Represent

	Initializing ObjectStore/Starting a Session
	Creating C++ Objects
	Deleting C++ Objects
	Using the CPlusPlus.delete() Method
	Using the ObjectStore.destroy() Method

	Invoking Peer Methods
	Synchronizing Calls to Peer Methods
	Allowable Arguments To and Return Values From Peer Methods
	Handling Return Values from Peer Methods

	Creating References to Peer Objects
	References from Java Primary Objects
	References from ObjectStore Collections
	References from C++ Pointers
	Summary of Cross-Segment and Cross-Database Rules

	Handling Exceptions
	Initializing Peer Pointers
	Using the charP Class
	Specifying Peer Objects in Notifications
	Restrictions When Using Peer Classes
	Capability of C++ Functions
	Inheritance from Java Peer Classes
	Use of SegmentObjectEnumeration Objects
	Destruction of Segments
	C++ Pointers
	Performing deepFetch() on a Peer Object
	Retaining Collections

	Calling Java From C++

	Building the Application
	Description of Files
	C++ Files
	Java Files

	Steps for Building the Application
	Step 1: Generate the Mapping Schema Database for Your C++ Application
	Step 2: Generate Java Peer Classes and C++ Glue Code
	Step 3: Write Java Classes
	Step 4: Compile Java Peer Classes and Java Files
	Step 5: Generate C Header File
	Step 6: Compile C++ Glue Code
	Step 7: Generate the Application Schema Database for Your Library
	Step 8: Create the Library
	Running the Postprocessor

	UNIX: Using Additional Native Libraries with the Java Interface to ObjectStore

	Using ObjectStore Peer Collections
	Introduction to ObjectStore Java Interface Peer Collections
	Creating New Peer Collections
	Which Objects Can Be Inserted in Peer Collections?
	Choosing a Peer Collection Interface
	Description of Peer Collection Behaviors
	Default Behaviors for Each Kind of Peer Collection
	Decision Tree for Choosing a Peer Collection Type
	Navigating Peer Collections with Cursors
	Creating Cursors
	Performing Collection Updates During Traversal
	Example of Using a Cursor
	Restriction on Cursors

	Introduction to Using Peer Queries and Indexes
	Performing Navigational Queries
	Using Path Strings

	Querying a Peer Collection
	Allowing Duplicates
	Obtaining One Element
	Do Any Elements Exist?
	String Comparison
	Peer Query Example
	Description of Peer Query Syntax
	Relative Values of String Fields

	Using Bound Queries
	About Free Variables
	Description of Query and BoundQuery classes
	Advantages of Bound Queries
	Example of Using a Bound Query
	Creating Peer Query Objects
	Creating BoundQuery Objects
	Running a Bound Query
	Querying on Object References

	Using Indexes on Peer Collections
	Performance
	Making Fields Indexable
	Adding Indexes
	Example of Using an Index
	Performing a Query on Multiple Fields
	Types of Indexes
	Restrictions

	Index

