
JAVA INTERFACE
RELEASE NOTES

RELEASE 3.0

October 1998

ii ObjectStore Java Interface Release Notes

ObjectStore Java Interface Release Notes

ObjectStore Java Interface Release 3.0, October 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object Exchange are
registered trademarks of Object Design, Inc. ObjectForms and Object Manager are trademarks of Object
Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in the Federal
Acquisition Regulations and Department of Defense FAR Supplement, and are delivered to the United
States Government with only those rights set forth in Object Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be used,
disclosed, reproduced, modified, performed or displayed without the prior written approval of Object
Design, Inc.

This document contains proprietary Object Design information and is licensed for use pursuant to a
Software License Services Agreement between Object Design, Inc., and Customer.

The information in this document is subject to change without notice. Object Design, Inc., assumes no
responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Contents

Preface . v

Release Notes. 1

Known Problems and Restrictions . 2

Threads Are Not Being Automatically Joined to Sessions. 3

Use of oscompact and ossevol Utilities . 4

Notification Subscriptions Might Be Lost If Database Destroy Fails
4

Hosted Pathname Syntax Might Require Setting of Environment Variable
4

Destroying Java Peer Objects . 4

Applets . 4

Weak References Cause Incorrect Java Garbage Collection. 5

Troubleshooting Problems — It Might Be the JIT Compiler 5

Peer Generator Incorrectly Generates Code for Some Abstract Classes
7

Postprocessor Options Required for ObjectStore Collections with Indexes
8

Solaris: Requirement for Using Notification. 8

Solaris: Accessing Multithreaded C++ Applications 9

Solaris: C++ Runtime Library . 9

SPARCompiler 4.2 Known Problem . 10

Microsoft VM: Problems with Utility Collection Queries 10

Problem Building Large Utility Collection Indexes 11

Requirements for Using This Release . 12

Repostprocessing with OSJI 3.0 Postprocessor. 12
Release 3.0 iii

Contents
Upgrading Databases to Use JDK 1.2. 12

Additions to CLASSPATH Variable. 12

Addition to PATH Variable. 14

Native Libraries . 14

Addition on Solaris to LD_LIBRARY_PATH 14

 Using the Postprocessor. 15

Mixing Platforms . 16

Windows Clients with Solaris Server . 17

Solaris Clients with Windows Server . 17

Solaris and Windows Clients with Solaris Server 18

Solaris and Windows Clients with Windows Server 19

Compatibility Between ObjectStore, PSE Pro, and PSE. . . . 20

API Compatibility. 20

Database Compatibility. 20

Handling of Retained Objects at Start of New Transaction is Now
the Same . 21

Interchangeable Postprocessed Class Files. 22

Browsing HTML Documentation . 24

Requirements for Viewing Documentation 24

Displaying the Documentation . 24

Accessing PDF Files . 24

Obtaining Support . 25

Description of Discussion List . 25

Subscribing to the Discussion List . 25

Sending Messages . 26

Unsubscribing from the Discussion List . 26

Choosing Between Support and the Discussion List 26

Other Object Design Discussion Lists. 27

Receiving Announcements of New Releases 27

Obtaining Third-Party Persistence-Capable Classes 28
iv ObjectStore Java Interface Release Notes

Preface

Purpose ObjectStore Java Interface Release Notes provides information about
known problems, requirements for running ObjectStore,
compatibility with other ObjectStore Java products, obtaining
support, and obtaining third-party persistence-capable classes.

Audience This book is for experienced Java programmers who are writing
applications that use the Java interface to ObjectStore.

Scope This book supports Release 3.0 of the Java interface to ObjectStore.

This book does not provide information about new features,
changes, and bug fixes in this release. For that information, see the
CHANGES.htm file in the directory in which you installed
ObjectStore.
Release 3.0 v

Preface
Documentation Conventions

This document uses the following conventions:

Examples in the
documentation

Examples in the documentation assume that COM.odi.* is
imported. This allows specification of, for example,

db.open(ObjectStore.READONLY)

instead of db.open(COM.odi.ObjectStore.READONLY)

Convention Meaning

Bold Bold typeface indicates user input, code
fragments, method signatures, file names,
and object, field, and method names.

Sans serif Sans serif typeface is used for system
output and system output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can
specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.
vi ObjectStore Java Interface Release Notes

Preface
Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Internet Explorer or Netscape Navigator. You can
obtain information by accessing the Object Design home page
with the URL http://www.objectdesign.com. Select Tech Support.
Select Support Communications for detailed instructions about
different methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name objectdesignftp and the
password obtained from patch-info. This password also changes
monthly, but you can automatically receive the updated
password by subscribing to patch-info. See the ObjectStore Release
5.1 README file for guidelines for using this connection. The
FAQs are in the /support/FAQ subdirectory. This directory
contains a group of subdirectories organized by topic. The
FAQ/FAQ.tar.Z file is a compressed tar version of this hierarchy
that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page), you can now automatically be
notified of updates. To subscribe, send email to
majordomo@objectdesign.com with the keyword SUBSCRIBE
patch-info <your siteid> in the body of your email. This will
subscribe you to Object Design’s patch information server
daemon that automatically provides site access information and
notification of other changes to the on-line support services. Your
site ID is listed on any shipment from Object Design, or you can
contact your Object Design Sales Administrator for the site ID
information.

Email discussion list There is a majordomo discussion list called osji-discussion. The
purpose of this list is to facilitate discussion about the Java
interface to ObjectStore.
Release 3.0 vii

Preface
Support

Object Design’s support organization provides a number of
information resources and services. Their home page is at
http://support.objectdesign.com/WWW/Welcome.html. From the
support home page, you can learn about support policies, product
discussion groups, and the different ways Object Design can keep
you informed about the latest release information — including the
Web, ftp, and email services.

Training

You can obtain information about training courses from the
Object Design web site (http://www.objectdesign.com). From the
home page, select Services and then Education.

If you are in North America, for information about Object
Design’s educational offerings, call 781.674.5000, Monday
through Friday from 8:30 AM to 5:30 PM Eastern Time. If you are
outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send feedback to support@objectdesign.com. To
expedite your message, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
viii ObjectStore Java Interface Release Notes

Release Notes

For information about new features, changes, and bug fixes in this
release, see the CHANGES.htm file in the top-level ObjectStore Java
interface directory. For information about supported platforms
and any last-minute changes, see the README.htm file, also in the
top-level directory. Release Notes provides information about the
following topics:

Known Problems and Restrictions 2

Requirements for Using This Release 12

Mixing Platforms 16

Compatibility Between ObjectStore, PSE Pro, and PSE 20

Browsing HTML Documentation 24

Obtaining Support 25

Obtaining Third-Party Persistence-Capable Classes 28

About the release
number

There is no Release 2.0 for the Java interface to ObjectStore. OSJI
goes from Release 1.3 to Release 3.0 to keep it synchronized with
the PSE and PSE Pro for Java releases.
Release 3.0 1

Known Problems and Restrictions
Known Problems and Restrictions

This section describes issues to consider concerning restrictions
and known problems:

• Threads Are Not Being Automatically Joined to Sessions on
page 3

• Use of oscompact and ossevol Utilities on page 4

• Notification Subscriptions Might Be Lost If Database Destroy
Fails on page 4

• Hosted Pathname Syntax Might Require Setting of
Environment Variable on page 4

• Destroying Java Peer Objects on page 4

• Applets on page 4

• Weak References Cause Incorrect Java Garbage Collection on
page 5

• Troubleshooting Problems — It Might Be the JIT Compiler on
page 5

• Peer Generator Incorrectly Generates Code for Some Abstract
Classes on page 7

• Postprocessor Options Required for ObjectStore Collections
with Indexes on page 8

• Solaris: Requirement for Using Notification on page 8

• Solaris: Accessing Multithreaded C++ Applications on page 9

• Solaris: C++ Runtime Library on page 9

• SPARCompiler 4.2 Known Problem on page 10

• Microsoft VM: Problems with Utility Collection Queries on
page 10

• Problem Building Large Utility Collection Indexes on page 11
2 ObjectStore Java Interface Release Notes

Release Notes
Threads Are Not Being Automatically Joined to Sessions

Threads that do not belong to a session are not automatically
joined to a session when they should be. This includes global
sessions. Until this problem is resolved, applications cannot rely
on session absorption to make a thread that accesses persistent
objects join the appropriate session. As a work around,
applications can explicitly join each thread to a session. Even if
you create a global session, you should call Session.join() for each
thread.

More specifically, API methods whose only session-implying
arguments are persistent objects require that the calling thread
already belong to the same session as the persistent objects. This
includes global and nonglobal sessions. This restriction will be
lifted in a future release. The methods affected by this restriction
include the following:

• ObjectStore.deepFetch()

• ObjectStore.destroy()

• ObjectStore.dirty()

• ObjectStore.evict()

• ObjectStore.export()

• ObjectStore.fetch()

• ObjectStore.isDestroyed()

• ObjectStore.isExported()

• ObjectStore.migrate()

• Persistent.deepFetch()

• Persistent.destroy()

• Persistent.dirty()

• Persistent.evict()

• Persistent.fetch()

• Persistent.isDestroyed()
Release 3.0 3

Known Problems and Restrictions
Use of oscompact and ossevol Utilities

Do not use the oscompact or ossevol utilities on databases created
with the Java interface to ObjectStore (OSJI). Also, do not use the
C++ API for these utilities on OSJI databases.

You can use the OSJI Database.evolveSchema() method to evolve
the schema in an OSJI database. OSJI does not yet provide a
compaction utility.

Notification Subscriptions Might Be Lost If Database Destroy Fails

If a call to Database.destroy() fails, notification subscriptions on
that database might be lost. Object Design expects to fix this
problem in a future release.

Hosted Pathname Syntax Might Require Setting of Environment Variable

If the directory specified in OS_LIBDIR uses the hosted pathname
syntax (host:/dir) and the pathname syntax for that directory has
the opposite style of slash from the one for local pathnames on the
client (that is, Windows and UNIX), you must set the OS_META_
SCHEMA_DB environment variable to the pathname of the meta-
schema database. That database is named metaschm.db, and its
default location is in the lib subdirectory of OS_ROOTDIR.

Destroying Java Peer Objects

There is a bug that prevents ObjectStore from leaving a tombstone
when you destroy a Java peer object. This will be fixed in a future
release. For now, you must be careful that you do not destroy a
Java peer object that is still referred to by another object and then
try to use that reference. While doing so is always a mistake, in the
current product there is no tombstone to flag the mistake for Java
peer objects. When you invoke ObjectStore.destroy() on a primary
Java object, ObjectStore leaves a tombstone. If any objects try to
access the destroyed object, the tombstone causes ObjectStore to
throw COM.odi.ObjectNotFoundException.

Applets

ObjectStore is a Java application that uses C++ native methods.
Consequently, you cannot use ObjectStore in an applet other than
through the Sun JDK Appletviewer application.
4 ObjectStore Java Interface Release Notes

Release Notes
Weak References Cause Incorrect Java Garbage Collection

Persistent objects that meet both of the following conditions
should be removed by the Java garbage collector:

• The persistent object was not modified.

• The application no longer refers to the persistent object.

However, when weak references are enabled, which is the default,
a bug in the JDK 1.1 prevents these objects from being removed by
the Java garbage collector. This problem is corrected in the beta
release of the JDK 1.2.

You can work around this problem by including a call to
evict(ObjectStore.RETAIN_HOLLOW) or evict(ObjectStore.RETAIN_
STALE) for the relevant objects. Here is an example of the work
around. For access to OSHashtable elements, the use of the
noCache option to the get() method is very important. It prevents
the OSHashtable instance from retaining references to the
retrieved objects.

t = Transaction.begin(ObjectStore.UPDATE);
ht = (OSHashtable) db.getRoot(“foo”);
int cnt = 0;
while (++cnt > 0) {

Object obj =
ht.get(getKey(cnt), true);

... do something with obj ...
ObjectStore.evict(obj, ObjectStore.RETAIN_HOLLOW);

}
t.commit()

Troubleshooting Problems — It Might Be the JIT Compiler

Object Design has tested the Just In Time (JIT) compilers available
with supported and maintained platforms.

All JIT compilers tested by Object Design have exhibited one or
more problems when running tests of ObjectStore. These
problems often appear when NullPointerException is thrown
unexpectedly, although other incorrect behavior has also been
seen. Object Design has fixed the problems that have been
encountered. At the time of this release, there was one
outstanding problem with the Microsoft JIT that was causing a
query test to get an incorrect result. You might still encounter
problems in ObjectStore or in your application when you use a JIT
Release 3.0 5

Known Problems and Restrictions
compiler. Object Design will continue to make every effort to fix
any problems.

If you are using a JIT compiler, and you encounter a problem that
you cannot diagnose, try running your application without the JIT
compler. If you find that there is no problem when you run
without the JIT compiler, you might be able to work around the
problem and continue to run with the JIT compiler. However, you
might find that you cannot use the JIT compiler.

Disabling JIT on Solaris To disable the JDK JIT on Solaris, do one of the following:

• Set the JAVA_COMPILER environment variable to NONE:

setenv JAVA_COMPILER NONE

• Specify NONE as the value of the java.compiler system property:

java -Djava.compiler=NONE MyClass

Disabling Sun JDK JIT
on Windows

To disable the Sun JDK JIT on Windows, do one of the following:

• Unset the JAVA_COMPILER environment variable:

set JAVA_COMPILER=

• Specify the empty string for the java.compiler system property:

java -Djava.compiler= MyClass

Disabling Microsoft
VM JIT

To disable the JIT for the Microsoft VM, start the Internet
Explorer, select Internet Options from under View, choose the
Advanced tab, and make sure the Java JIT compiler enabled box is
not checked.

Disabling JIT on
Symantec

If you are using Symantec Visual Cafe, add the following line to
the Symantec sc.ini file:

JAVA_COMPCMD=DISABLE;STACKTRACE
6 ObjectStore Java Interface Release Notes

Release Notes
Peer Generator Incorrectly Generates Code for Some Abstract Classes

Under certain circumstances, the peer generator tool (osjcgen)
fails to recognize that a class is abstract, and it generates code,
which attempts to instantiate the class. The generated C++ code
does not compile.

A work around is to suppress the generation of the methods that
contain compilation errors. To do this, specify the -suppress
option with the name of a problem method when you run the peer
generator tool. This prevents the problem methods from being
generated.

For example, suppose the C++ person class has a Java peer class
generated into the COM.people package and there are three
methods that are not compiling correctly. Run osjcgen and specify
the -suppress option for each problem method.

-suppress COM.people.person.person \
-suppress COM.people.personU.makeArray \
-suppress COM.people.personU.set

The problem occurs when a C++ class inherits a pure virtual
function from a base class. For example:

/* class A is abstract */
class A {

public:
virtual void f() = 0;

}

/* class B is abstract, but osjcgen treats it as nonabstract */
class B : public A {

public:
virtual void f() = 0;

}

/* class C is abstract - the redeclaration of the pure virtual causes
osjcgen to handle this correctly. */

class C : public B {
public:

virtual void f() = 0;
}

/* class D is nonabstract */
class D : public C {

public:
virtual void f();

}
Release 3.0 7

Known Problems and Restrictions
Postprocessor Options Required for ObjectStore Collections with Indexes

If you use indexes with ObjectStore collections, you must specify
the -nothisopt and -noarrayopt options when you run the
postprocessor on your classes. Alternatively, you can specify the
-noinitializeropt option in place of the two options.

This ensures that the postprocessor does not apply certain
optimizations, which might cause your code to work incorrectly
for evict operations performed on ObjectStore collections. These
evict operations can happen during execution of the following
methods:

• addIndex(), query(), queryPick(), and exists() on any collection

• insert(), replaceAt(), insertFirst(), insertLast(), insertBefore(), and
insertAfter() on collections that have indexes that have SIGNAL_
DUPLICATES behavior

Solaris: Requirement for Using Notification

The notification facility requires a native threads implementation
of the JDK to work correctly on Solaris. To use the notification
facility, you can use a Solaris production implementation of the
JDK, which always uses native threads. Currently, the JDK 1.1.6
version is available. You can also use the separate native threads
package that is sometimes available for the reference
implementation of the JDK. However, the latest JDK 1.1.7
reference implementation does not currently have a native
threads package available.

The standard reference implementation of the JDK release relies
on green threads, which provide thread capability through Solaris
asynchronous I/O and a Java internal I/O manager. When using
green threads, the Notification.receive() method sometimes fails to
return after the specified timeout has expired.
8 ObjectStore Java Interface Release Notes

Release Notes
Solaris: Accessing Multithreaded C++ Applications

When OSJI applications access C++ libraries on Solaris, those
libraries must be linked with libosths to work with the green
threads version of the Java virtual machine.

The C++ interface to ObjectStore (OSC++) provides two thread
libraries:

• libosthr ensures that calls to ObjectStore from multiple C++
threads are safe.

• libosths does not provide this protection.

To be used by an OSJI application running with the green threads
version of the Java virtual machine, multithreaded OSC++
libraries must

• Use libosths.

• Use application-specific mechanisms to ensure that no two
threads try to use OSC++ entry points at the same time.

If you use the native threads version of the Java virtual machine,
you can link multithreaded OSC++ libraries with libosthr and
depend on the locking primitives provided by OSC++. When you
do this, the link line must include -losthr and either -mt or -lthread.

When you are using a Java virtual machine that is running with
green threads, an attempt to use a C++ library that is linked with
libosthr results in an error with the following message:

Application link error, please relink with the libthread library.

The message indicates that the library is multithreaded, but the
Java VM is not.

Solaris: C++ Runtime Library

The OSJI installation on Solaris contains the file libC.so.5 in its lib
subdirectory. This file is the C++ runtime for Solaris 2.6 that is
intended for use by customers who do not have C++ installed on
their systems. If you are running an earlier version of Solaris and
have C++ installed, you might want to ensure that your LD_
LIBRARY_PATH is set to include the installed version of the C++
library prior to the one supplied with OSJI.
Release 3.0 9

Known Problems and Restrictions
SPARCompiler 4.2 Known Problem

When you develop OSJI applications that access C++ on Solaris,
you might encounter a problem when you compile the code
generated by javah. This includes files in the JDK include
directory. The problem produces an error message like this:

"/odi/java/JDK-1.1.7/java/include/java_lang_String.h", line 19: Error:
Syntax error in pragma.

This error occurs because javah unconditionally produces
#pragma pack() compiler directives that the SunSoft SC4.2 C++
compiler cannot handle. The work around is to use the SC4.0
compiler instead. This is only an issue for the Java/C++ interface.

Microsoft VM: Problems with Utility Collection Queries

The COM.odi.util.Query class creates new classes when optimizing
queries. Because the Microsoft VM does not seem to garbage
collect class objects, long running applications or applications that
create many different queries might run out of heap space.
Applications that use the same query object many times are not
affected by this problem. The problem occurs when you

• Create and use new query objects

• Reoptimize existing query object results, which creates new
classes
10 ObjectStore Java Interface Release Notes

Release Notes
Problem Building Large Utility Collection Indexes

Adding an index to an existing collection
(COM.odi.util.IndexedCollection.addIndex()) and dropping an
index from a collection (IndexedCollection.dropIndex()) require
reading all the elements of the collection in a single transaction.
Doing this can result in a java.lang.OutOfMemoryError when the
collection is large. If you intend the collection to be indexed, there
are a few work arounds.

One work around is to increase the maximum heap space
available to the Java VM. For Sun-based JDKs, you can do so with
the -mx option.

Another work around is to add the index before inserting a large
number of elements into the collection.

A third work around is to move the collection elements
temporarily to a different collection before dropping an index.

This problem should be fixed in a future release.
Release 3.0 11

Requirements for Using This Release
Requirements for Using This Release

To use this release, you must satisfy requirements in the following
areas.

• Repostprocessing with OSJI 3.0 Postprocessor on page 12

• Additions to CLASSPATH Variable on page 12

• Addition to PATH Variable on page 14

• Native Libraries on page 14

• Addition on Solaris to LD_LIBRARY_PATH on page 14

• Using the Postprocessor on page 15

Repostprocessing with OSJI 3.0 Postprocessor

You must use the OSJI 3.0 postprocessor to repostprocess all
postprocessed class files that you used with OSJI 1.2 or 1.3.

Upgrading Databases to Use JDK 1.2

If you want to use the JDK 1.2 with OSJI 3.0, you must upgrade
your database to use the correct string hash code. See Upgrading
Databases for Use with the JDK 1.2 on page 107.

Additions to CLASSPATH Variable

To use ObjectStore, you must set your CLASSPATH environment
variable to contain

• The osji.zip or osji.jar file, which contains ObjectStore

• The tools.zip or tools.jar file, which contains the.class files for
the Class File Postprocessor and other development tools

Examples For example, under Solaris, you might set your CLASSPATH
variable to something like this:

CLASSPATH=/opt/ODI/osji/osji.zip:/opt/ODI/osji/tools.zip

Under Windows, you might set it to something like this:

CLASSPATH=c:\odi\osji\osji.zip;c:\odi\osji\tools.zip
12 ObjectStore Java Interface Release Notes

Release Notes
Compatibility The tools.zip file included in versions of OSJI prior to this release
is incompatible with the osji.zip file for this release. To use this
release, you must ensure that the osji.zip or osji.jar and tools.zip or
tools.jar files distributed with this release are both in your
CLASSPATH.

Your CLASSPATH can include entries for more than one Object
Design Java product only if the product versions are compatible.
The osji.zip file for OSJI 3.0 is compatible with the 3.0 pse.zip and
pro.zip files.

Developing
applications

To develop ObjectStore applications, you should add entries to
the CLASSPATH variable that allow ObjectStore to find your

• Annotated (postprocessed) .class files

• Original unpostprocessed .class files

The order of these entries is important. You want ObjectStore to
find the postprocessed .class files before it finds the
unpostprocessed .class files. This ensures that when you run the
program, the Java system finds the annotated class definitions
rather than the unannotated definitions. Detailed instructions for
doing this are in the ObjectStore Java API User Guide, Chapter 8,
Automatically Generating Persistence-Capable Classes.

Running demos To run the demos, you must add two other entries to the
CLASSPATH variable. Instructions are in the README.htm file that
is in the directory for each demo.

Using compatible
versions

Ensure that the OSJI lib directory you use is from the same release
as the .zip or .jar file.
Release 3.0 13

Requirements for Using This Release
Addition to PATH Variable

Set your PATH environment variable to contain the bin directory
that is in the release distribution. For example, on Solaris, this
might be

PATH=/usr/ucb:/usr/bin:/opt/jdk117/bin:/opt/SUNWspro/bin:/opt/ODI/OS5.1/bin:/opt/ODI/OSJI/bin

On Windows, it might be

PATH=c:\jdk117\bin;c:\odi\ostore\bin;c:\odi\osji\bin;c:\winnt\system32;c:\winnt

Native Libraries

The Java interface to ObjectStore requires C++ native libraries.
The native libraries are needed by every client machine that runs
an OSJI application. You can store the libraries on a central host
and access them over the network. However, they must be
available in the PATH environment variable for each client
machine.

Addition on Solaris to LD_LIBRARY_PATH

On Solaris, set your LD_LIBRARY_PATH environment variable to
contain the lib directory that is in the release distribution. For
example:

LD_LIBRARY_PATH=/usr/lib:/opt/ODI/OS5.1/lib:/opt/ODI/OSJI/lib
14 ObjectStore Java Interface Release Notes

Release Notes
 Using the Postprocessor

The class file postprocessor is a tool for making classes
persistence-capable. For simple applications, it is best to
postprocess all classes together. For more complex applications,
you can postprocess your classes in correctly grouped batches. For
the rules for grouping classes in batches, see ObjectStore Java API
User Guide, Chapter 8, Automatically Generating Persistence-
Capable Classes, Postprocessing a Batch of Files Is Important.

Failure to postprocess the correct classes together can result in
problem situations that appear when you try to run the
application and that are hard to diagnose. There are postprocessor
options that allow you to determine which classes are made
persistence-capable.

Work around for
memory limitation

The JDK 1.1 imposes a memory limitation of 16 MB unless you
override it. If you receive a java.lang.OutOfMemory error during
postprocessing, you must increase the run-time memory pool. Do
one of the following:

• Set the OSJCFPJAVA environment variable to include the -mx
option. For example, Solaris csh users can enter

setenv OSJCFPJAVA "java -mx32m"

Windows users can enter

set OSJCFPJAVA=java -mx32m

• Edit the osjcfp script (Solaris) or osjcfp.bat script (Windows) to
incorporate the -mx option in the invocation of Java near the
end of the script. On Solaris, the line to change is

$OSJCFPJAVA $javaargs COM.odi.filter.OSCFP $args

On Windows, the line to change is

%osjcfpjava% COM.odi.filter.OSCFP %1 %2 %3 %4 %5 %6 %7 %8

Add -mx32m before the COM.odi.filter.OSCFP entry. This allows
the Java virtual machine to increase the heap to 32 MB. You can
increase this value further if you need to.
Release 3.0 15

Mixing Platforms
Mixing Platforms

The Java interface to ObjectStore is layered on top of the C++
interface to ObjectStore. Correct installation of both products is
required. You must ensure that

• You install the version of each product component that is
intended for the platform on which you are installing it.

• The ObjectStore Server can access the OSJI application schema
databases that correspond to the client platform.

The following sections provide examples with ObjectStore
Servers on Solaris and Windows platforms. However, the
ObjectStore Server can be on any platform supported by
ObjectStore 5.1. There are examples for

• Windows Clients with Solaris Server on page 17

• Solaris Clients with Windows Server on page 17

• Solaris and Windows Clients with Solaris Server on page 18

• Solaris and Windows Clients with Windows Server on page 19
16 ObjectStore Java Interface Release Notes

Release Notes
Windows Clients with Solaris Server

For Windows clients with a Solaris server, you must

• Install the Solaris version of the ObjectStore Server on the
Solaris server.

• Install the Windows version of the C++ interface to ObjectStore
on each Windows client.

• Install the Windows version of the Java interface to ObjectStore
on each Windows client.

• Copy the Windows version of the OSJI application schema
databases to the Solaris server. The ObjectStore Server needs
these for Windows clients. You must copy these files to the
directory you specify when you run the setup command.
Instructions for running the setup command are in the
README.htm file in the ObjectStore installation directory.

If you do not want the Solaris server machine also to be an
ObjectStore client, you do not need to install the C++ interface to
ObjectStore or the Java interface to ObjectStore on the Solaris
server.

Solaris Clients with Windows Server

For Solaris clients with a Windows server, you must

• Install the Windows version of the ObjectStore Server on the
Windows server.

• Install the Solaris version of the C++ interface to ObjectStore on
each Solaris client.

• Install the Solaris version of the Java interface to ObjectStore on
each Solaris client.

• Copy the Solaris version of the OSJI application schema
databases to the Windows server. The ObjectStore Server needs
these for Solaris clients. You must copy these files to the
directory you specify when you run the setup command.
Instructions for running the setup command are in the
README.htm file in the ObjectStore installation directory.

If you do not want the Windows server machine also to be an
ObjectStore client, you do not need to install the C++ interface to
ObjectStore or the Java interface to ObjectStore on the Windows
server.
Release 3.0 17

Mixing Platforms
Solaris and Windows Clients with Solaris Server

For Solaris and Windows clients with a Solaris server, you must

• Install the Solaris version of the ObjectStore Server on the
Solaris server.

• Install the Solaris version of the C++ interface to ObjectStore on
each Solaris client. The Solaris server and a Solaris client can be
the same machine.

• Install the Solaris version of the Java interface to ObjectStore on
each Solaris client.

• Install the Windows version of the C++ interface to ObjectStore
on each Windows client.

• Install the Windows version of the Java interface to ObjectStore
on each Windows client.

• Copy the Windows version of the OSJI application schema
databases to the Solaris server. The ObjectStore Server needs
these for Windows clients. You must copy these files to the
directory you specify when you run the setup command on
Windows clients. Instructions for running the setup command
are in the README.htm file in the ObjectStore installation
directory.

• If you do not install OSJI on the same machine as the
ObjectStore Server, you must copy the Solaris version of the
OSJI application schema databases to the Solaris server. The
ObjectStore Server needs these for Solaris clients. You must
copy these files to the directory you specify when you run the
setup command on Solaris clients. Instructions for running the
setup command are in the README.htm file in the ObjectStore
installation directory.

If you install OSJI on the same machine as the ObjectStore
Server, the Solaris OSJI application schema databases are
already available to the ObjectStore Server.

When the server has OSJI application schema databases for
both Solaris and Windows, it works best if they are in separate
directories. It can be confusing when both sets of files are in the
lib subdirectory.
18 ObjectStore Java Interface Release Notes

Release Notes
Solaris and Windows Clients with Windows Server

For Solaris and Windows clients with a Windows server, you
must

• Install the Windows version of the ObjectStore Server on the
Windows server.

• Install the Windows version of the C++ interface to ObjectStore
on each Windows client. The Windows server and a Windows
client can be the same machine.

• Install the Windows version of the Java interface to ObjectStore
on each Windows client.

• Install the Solaris version of the C++ interface to ObjectStore on
each Solaris client.

• Install the Solaris version of the Java interface to ObjectStore on
each Solaris client.

• Copy the Solaris version of the OSJI application schema
databases to the Windows server. The ObjectStore Server needs
these for Solaris clients. You must copy these files to the
directory you specify when you run the setup command on
Solaris clients. Instructions for running the setup command are
in the README.htm file in the ObjectStore installation directory.

• If you do not install OSJI on the same machine as the
ObjectStore Server, you must copy the Windows version of the
OSJI application schema databases to the Windows server. The
ObjectStore Server needs these for Windows clients. You must
copy these files to the directory you specify when you run the
setup command on Windows clients. Instructions for running
the setup command are in the README.htm file in the
ObjectStore installation directory.

If you install OSJI on the same machine as the ObjectStore
Server, the Windows OSJI application schema databases are
already available to the ObjectStore Server.

When the server has OSJI application schema databases for
both Solaris and Windows, it works best if they are in separate
directories. It can be confusing when both sets of files are in the
lib subdirectory.
Release 3.0 19

Compatibility Between ObjectStore, PSE Pro, and PSE
Compatibility Between ObjectStore, PSE Pro, and
PSE

You can start development of an application in PSE or PSE Pro
and at a later time upgrade it to ObjectStore. This section provides
information to help you plan for this transition:

• API Compatibility on page 20

• Database Compatibility on page 20

• Handling of Retained Objects at Start of New Transaction is
Now the Same on page 21

• Interchangeable Postprocessed Class Files on page 22

API Compatibility

The API to ObjectStore is a superset of the API to PSE and PSE Pro.
All features in PSE are also in ObjectStore. The only feature in PSE
Pro that is not in ObjectStore is that PSE Pro can have many
sessions, while ObjectStore currently allows only one session.

Database Compatibility

Databases that you create with PSE or PSE Pro cannot be accessed
with ObjectStore. Databases that you create with ObjectStore
cannot be accessed by PSE or PSE Pro.

However, you can copy data among PSE, PSE Pro, and
ObjectStore databases. The COM.odi.product property allows you
to do this. See ObjectStore Java API User Guide, Chapter 3, Using
Sessions to Manage Threads, Description of COM.odi.product.
20 ObjectStore Java Interface Release Notes

Release Notes
Handling of Retained Objects at Start of New Transaction is Now the
Same

In previous releases of OSJI, the handling of retained objects at the
start of a new transaction was different than it was for PSE/PSE
Pro. PSE/PSE Pro has been modified so that it now behaves the
same way as previous releases of OSJI. OSJI has not been modified
in this area.

In OSJI, when you commit a transaction with
ObjectStore.RETAIN_READONLY or ObjectStore.RETAIN_UPDATE,
ObjectStore hollows the retained objects at the start of the next
transaction. This means that even if you always commit a
transaction with ObjectStore.RETAIN_READONLY or
ObjectStore.RETAIN_UPDATE, between transactions you have
access to the contents of only those persistent objects whose
contents were read or modified in the immediately previous
transaction.

In previous releases of PSE/PSE Pro, when you committed a
transaction with ObjectStore.RETAIN_READONLY or
ObjectStore.RETAIN_UPDATE, PSE/PSE Pro did not hollow the
retained objects at the start of the next transaction. This meant that
if you always committed a transaction with ObjectStore.RETAIN_
READONLY or ObjectStore.RETAIN_UPDATE, between
transactions you had access to the contents of all persistent objects
whose contents were read or modified in the session. PSE/PSE
Pro no longer works this way. It now hollows all retained objects
at the start of a new transaction.
Release 3.0 21

Compatibility Between ObjectStore, PSE Pro, and PSE
Interchangeable Postprocessed Class Files

Subject to the conditions listed below, postprocessed class files
can run against PSE, PSE Pro, or ObjectStore.

Release compatibility The releases of PSE/PSE Pro and the Java interface to ObjectStore
must be compatible.

OSJI 3.0 is compatible with PSE/PSE Pro 3.0.

In the following cases, OSJI 3.0 and PSE/PSE Pro 2.x are
compatible.

• You can use PSE/PSE Pro 2.x postprocessed files with OSJI 3.0.

• You can use OSJI 3.0 postprocessed files with PSE/PSE Pro 2.x
if you specify -compatibilitymode when you run the
postprocessor.

If you specify the -optimizeclassinfo option when you run the 3.0
postprocessor, the postprocessed classes are not compatible with
PSE/PSE Pro 2.x.

Classes that you postprocess with PSE/PSE Pro 3.0 are not
compatible with PSE/PSE Pro 2.x, unless you specify
-compatibliitymode when you run the 3.0 postprocessor.

Background The 3.0 postprocessor generates fewer and smaller class files. It
does not generate ClassInfo classes for interfaces, nor does it
generate ClassInfo.createArray() methods. The -compatibilitymode
option to the postprocessor forces generation of postprocessed
classes that are compatible with PSE/PSE Pro 2.x.

22 ObjectStore Java Interface Release Notes

Release Notes
Common APIs The application must use only APIs that are common to all three
products.

The following APIs are included in OSJI, but not in PSE/PSE Pro:

• ObjectStore collections in COM.odi.coll.

• Multiple segments in a database.

• Multiple databases open at the same time in a single session.

• Java/C++ interoperability facility in COM.odi.jcpp.

• Objects that are larger than 16,777,211 bytes. While ObjectStore
allows larger objects, PSE/PSE Pro does not.

• Multiversion Concurrency Control (MVCC).

• Segment, and database locking through the acquireLock()
method.

• Schema evolution.

• Notification facility.

• Peer objects.

• Server restart exception classes.

• Rawfs databases.

PSE, PSE Pro, and OSJI all include the OSDictionary, OSHashtable,
and OSVector classes in COM.odi.util. However, only PSE Pro and
OSJI include the other classes and interfaces in the COM.odi.util
package.

PSE Pro allows multiple simultaneous sessions. Neither PSE, nor
OSJI, allow more than one session at a time.

The persistent garbage collection API is in OSJI and PSE Pro, but
not in PSE.

In PSE and PSE Pro, Transaction.checkpoint(retain) accepts a value
of ObjectStore.RETAIN_READONLY. OSJI does not support this
value.

In OSJI and PSE Pro, the default setting for the
COM.odi.stringPoolSize property is "100". But in PSE, the default
setting for this property is "0".
Release 3.0 23

Browsing HTML Documentation
Browsing HTML Documentation

The documentation for ObjectStore is formatted for HTML frames
and also provided in PDF format that you can print. To use the
documentation, you need to know the following:

• Requirements for Viewing Documentation on page 24

• Displaying the Documentation on page 24

• Accessing PDF Files on page 24

Requirements for Viewing Documentation

To use HTML frames, JavaScript must be enabled.

To view ObjectStore HTML documentation, you must be using
Microsoft Internet Explorer Release 3.0.2 or subsequent releases or
Netscape Navigator Release 3.0 or subsequent releases. It is
necessary to select the Back button twice to reload both text
frames.

To view PDF files in Acrobat Reader, you must use Acrobat
Reader 3.0 or a subsequent release.

Displaying the Documentation

To access the documentation, display the doc/index.htm file in
your browser. The doc directory is in the toplevel OSJI directory.
This displays the Bookshelf for ObjectStore Java Interface. It
provides a selectable list of the documentation components.

Accessing PDF Files

If you want to print a hardcopy of the documentation, there are
PDF versions of the books in the osji/doc/pdf directory. The API
reference information is generated with the javadoc tool and a
PDF version of that information is not available.
24 ObjectStore Java Interface Release Notes

Release Notes
Obtaining Support

To obtain support for using this release of the Java interface to
ObjectStore, send electronic mail to support@objectdesign.com.
Each message to this address creates a support event. Someone
from Technical Support responds to the message in accordance
with the policies stated at the Object Design Technical Support
web site.

You can access Object Design’s Support Frequently Asked
Questions (FAQ) search engine at
http://support.objectdesign.com/osji/faq.shtml.

Description of Discussion List

There is a majordomo discussion list called osji-discussion. The
purpose of this list is to facilitate discussion about the Java
interface to ObjectStore. You are invited to share tips and
comments about application design, development, and
performance with other users. Employees of Object Design read
the list regularly and might participate in discussions, but are not
obligated to respond.

The discussion list is not an official way to report support events,
support-related questions, or product enhancement requests to
Object Design, Inc. For official answers to technical questions or
product issues regarding the Java interface to ObjectStore, contact
Object Design Technical Support at support@objectdesign.com.

Additional information about Object Design discussion lists is at
http://support.objectdesign.com/general/majordomo.html.

Subscribing to the Discussion List

To subscribe to the discussion list, send a mail message to
majordomo@objectdesign.com. Put the following line in the body
of the message:

subscribe osji-discussion your_email_address
Release 3.0 25

Obtaining Support
Sending Messages

To broadcast a message to the list, send mail to osji-
discussion@objectdesign.com. To find out what commands
majordomo accepts, send email to majordomo@objectdesign.com
with the following in the body of the message:

help

Unsubscribing from the Discussion List

To unsubscribe from the discussion list, send a message to
majordomo@objectdesign.com. Put the following line in the body
of the message:

unsubscribe osji-discussion your_email_address

You receive email confirmation from majordomo when your
message has been received. If you do not receive a confirmation
after several hours, try resending the message. If you continue to
receive messages from the discussion list, it might be because of
one of the following reasons.

• The return address of the email message you sent is different
from the email address in the body of the message. In this case,
the unsubscribe request goes to the list administrator for
approval.

• You placed unsubscribe osji-discussion your_email_address in
the subject of the message instead of in the body.

• The messages were sent before you unsubscribed. If there are
system problems, it can take as long as several days for a
message to arrive.

Choosing Between Support and the Discussion List

When should you send mail to support@objectdesign.com and
when should you send mail to osji-discussion@objectdesign.com?
If you have a specific problem or question, send mail to support.
If you are looking for design ideas, performance tips, or problem
work arounds, send mail to the discussion list. You should not
send the same request to both addresses.
26 ObjectStore Java Interface Release Notes

Release Notes
Other Object Design Discussion Lists

Object Design hosts a number of discussion lists for its products.
To obtain a list of these discussion groups, send mail to
majordomo@objectdesign.com. Put the following in the body of
the message:

lists

Receiving Announcements of New Releases

To receive announcements of new releases, subscribe to the patch-
info mailing list. Send electronic mail to
majordomo@objectdesign.com and put the following line in the
body of the message:

subscribe patch-info your_email_address your_site_ID

If you do not know your site ID, provide your name, company,
address, and phone number.
Release 3.0 27

Obtaining Third-Party Persistence-Capable Classes
Obtaining Third-Party Persistence-Capable Classes

As a convenience, Object Design makes available a few third-
party persistence-capable versions of standard Java classes.

Caution Object Design does not provide support for these classes and does
not guarantee that these classes work. While Object Design does
look over these classes before providing them, Object Design is
not obligated to fix them if any problems occur.

Available classes The available files are

• OSBigDecimal.java

• OSBigInteger.java

• OSDate.java

• OSGregorian.zip — This file contains several classes, including
OSGregorianCalendar.java .

How to get them You can obtain these files from the Object Design FTP server,
ftp.objectdesign.com . The user name is jclasses . The password is
cLa$$less .

Disabling Microsoft
VM JIT

To disable the JIT for the Microsoft VM, start the Internet
Explorer, select Internet Options from under View, choose the
Advanced tab, and make sure the Java JIT compiler enabled box is
not checked.
28 ObjectStore Java Interface Release Notes

	Preface
	Documentation Conventions
	Internet Sources of More Information
	Support
	Training
	Your Comments

	Release Notes
	Known Problems and Restrictions
	Threads Are Not Being Automatically Joined to Sessions
	Use of oscompact and ossevol Utilities
	Notification Subscriptions Might Be Lost If Database Destroy Fails
	Hosted Pathname Syntax Might Require Setting of Environment Variable
	Destroying Java Peer Objects
	Applets
	Weak References Cause Incorrect Java Garbage Collection
	Troubleshooting Problems — It Might Be the JIT Compiler
	Peer Generator Incorrectly Generates Code for Some Abstract Classes
	Postprocessor Options Required for ObjectStore Collections with Indexes
	Solaris: Requirement for Using Notification
	Solaris: Accessing Multithreaded C++ Applications
	Solaris: C++ Runtime Library
	SPARCompiler 4.2 Known Problem
	Microsoft VM: Problems with Utility Collection Queries
	Problem Building Large Utility Collection Indexes

	Requirements for Using This Release
	Repostprocessing with OSJI 3.0 Postprocessor
	Upgrading Databases to Use JDK 1.2
	Additions to CLASSPATH Variable
	Addition to PATH Variable
	Native Libraries
	Addition on Solaris to LD_LIBRARY_PATH
	Using the Postprocessor

	Mixing Platforms
	Windows Clients with Solaris Server
	Solaris Clients with Windows Server
	Solaris and Windows Clients with Solaris Server
	Solaris and Windows Clients with Windows Server

	Compatibility Between ObjectStore, PSE Pro, and PSE
	API Compatibility
	Database Compatibility
	Handling of Retained Objects at Start of New Transaction is Now the Same
	Interchangeable Postprocessed Class Files

	Browsing HTML Documentation
	Requirements for Viewing Documentation
	Displaying the Documentation
	Accessing PDF Files

	Obtaining Support
	Description of Discussion List
	Subscribing to the Discussion List
	Sending Messages
	Unsubscribing from the Discussion List
	Choosing Between Support and the Discussion List
	Other Object Design Discussion Lists
	Receiving Announcements of New Releases

	Obtaining Third-Party Persistence-Capable Classes

