
JAVA API
USER GUIDE

RELEASE 3.0

October 1998

ii ObjectStore Java API User Guide

ObjectStore Java API User Guide

ObjectStore Java Interface Release 3.0, October 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object Exchange are
registered trademarks of Object Design, Inc. ObjectForms and Object Manager are trademarks of Object
Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in the Federal
Acquisition Regulations and Department of Defense FAR Supplement, and are delivered to the United
States Government with only those rights set forth in Object Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be used,
disclosed, reproduced, modified, performed or displayed without the prior written approval of Object
Design, Inc.

This document contains proprietary Object Design information and is licensed for use pursuant to a
Software License Services Agreement between Object Design, Inc., and Customer.

The information in this document is subject to change without notice. Object Design, Inc., assumes no
responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Contents

Preface . xix

Chapter 1 Introducing ObjectStore . 1

What Is ObjectStore?. 2

What ObjectStore Does . 4

Benefits of Using ObjectStore . 5

Description of ObjectStore Process Architecture 6

Definitions of ObjectStore Terms. 8

Session. 9

Persistence-Capable . 10

Persistent Object . 10

Persistence-Aware. 14

Primary Object. 14

Peer Object . 15

Transient Object . 15

Transitive Persistence. 15

Annotations . 16

Database Roots. 16

Prerequisites for Using the ObjectStore Java Interface. . . . 17

Chapter 2 Example of Using ObjectStore. 19

Overview of Required Components . 20

Sample Code. 21

Before You Run the Program. 24

Adding An Entry to CLASSPATH . 24
Release 3.0 iii

Contents
Compiling the Program . 25

Running the Postprocessor. 25

Running the Program . 26

Chapter 3 Using Sessions to Manage Threads. 27

How Sessions Keep Threads Organized 28

What Is a Session? . 28

How Are Threads Related to Sessions? . 29

What Is the Benefit of a Session?. 29

What Kinds of Sessions Are There? . 31

Creating Sessions . 32

Creating Global Sessions . 33

Creating Nonglobal Sessions . 34

Creating a Nonglobal Session with ObjectStore.initialize() . . . 35

Working with Sessions . 36

Sessions and Transactions . 37

Shutting Down Sessions. 39

Obtaining a Session . 40

Determining If a Session Is Active . 40

Associating Threads with Sessions . 41

Automatically Joining Threads to a Session. 42

Associating a Persistent Object with a Session 43

Rules for Automatically Joining a Thread to a Session 43

Examples of Calls That Imply Sessions . 44

Examples of Calls That Do Not Imply Sessions 45

Explicitly Associating Threads with a Session 46

Working with Threads. 48

Cooperating Threads . 48

Noncooperating Threads. 49

Synchronizing Threads . 50

Removing Threads from Sessions. 50

Threads That Create a Session. 51

Other Threads . 51

Determining If ObjectStore Is Initialized for the Current Thread 52
iv ObjectStore Java API User Guide

Contents
Which Threads Can Access Which Persistent Objects? . . . 53

Multiple Representations of the Same Object. 53

Example of Multiple Sessions . 54

Application Responsibility. 54

Effects of Committing a Transaction. 55

API Objects and Sessions . 55

Description of Concurrency Rules . 56

Granularity of Concurrency . 56

Converting Read Locks to Write Locks . 56

Description of ObjectStore Properties 57

About Property Lists Relevant to ObjectStore 57

Description of COM.odi.applicationName 58

Description of COM.odi.cacheSize. 58

Description of COM.odi.disableWeakReferences. 59

Description of COM.odi.migrateUnexportedStrings 59

Description of COM.odi.ObjectStoreLibrary 60

Description of COM.odi.password and COM.odi.user. 60

Description of COM.odi.product. 60

Description of COM.odi.stringPoolSize . 64

Description of COM.odi.trapUnregisteredType 65

Chapter 4 Managing Databases. 67

Creating a Database . 68

Method Signature for Creating a Database 69

Example of Creating a Database . 69

Result of Creating a Database . 70

Specifying a Database Name in Creation Method 70

When the Database Already Exists . 71

Discussion of Installing Schema upon Database Creation . . . 71

Creating Segments . 72

Storing Objects in a Particular Segment. 72

Determining If a Database or Segment Is Transient 73

Iterating Through the Segments in a Database. 73

Opening and Closing a Database . 74
Release 3.0 v

Contents
Opening a Database . 74

Possible Open Modes . 75

Opening the Same Database Multiple Times 76

Closing a Database . 77

Automatic Opens of a Database. 79

Objects in Closed Databases . 79

Moving or Copying a Database . 80

Performing Garbage Collection in a Database. 81

Background About the Persistent Garbage Collector 81

API for Collecting Garbage in a Database 82

API for Collecting Garbage in a Segment. 82

Command Line Utility for Collecting Garbage 84

Running osgc on C++ Databases or Segments. 84

Schema Evolution: Modifying Class Definitions of Objects in a
Database . 86

When Is Schema Evolution Required? . 87

Preparing to Use the Schema Evolution API 88

Using the Schema Evolution API . 88

Considerations for Using Serialization to Perform
Schema Evolution . 90

Steps for Using Sample Schema Evolution Serialization Code. 91

Sample Code for Using Serialization to Perform
Schema Evolution . 92

Destroying a Database. 95

Obtaining Information About a Database. 96

Is a Database Open? . 96

What Kind of Access Is Allowed? . 97

What Is the Pathname of a Database? 97

What Is the Size of a Database? . 97

Which Session Is the Database or Segment Associated With? 98

Which Objects Are in the Database?. 98

Are There Invalid References in the Database? 98

Implementing Cross-Segment References for
Optimum Performance . 99

Procedure for Defining Cross-Segment References 99
vi ObjectStore Java API User Guide

Contents
Exporting Objects . 101

How Many Exported Objects Are Needed? 102

Explicitly Migrating Exported Objects . 103

Database Operations and Transactions 104

Upgrading Databases for Use with the JDK 1.2 106

Chapter 5 Working with Transactions . 109

Starting a Transaction . 110

Calling the begin() Method . 110

Allowing Objects to Be Modified in a Transaction 111

Difference Between Update and Read-Only Transactions . . 111

Working Inside a Transaction. 112

Obtaining the Session Associated with the
Current Transaction. 113

Transaction Already in Progress . 114

Obtaining Transaction Objects . 114

Performing a Transaction Checkpoint 114

Setting a Transaction Priority . 114

Ending a Transaction . 115

Committing Transactions . 116

What Can Cause a Transaction Commit to Fail? 117

Aborting Transactions . 118

Handling Automatic Transaction Aborts 120

Results of Transaction Abort . 120

Description of Transaction Abort Exceptions 120

Restarting Aborted Transactions . 121

Handling Deadlocks . 123

Determining Transaction Boundaries 124

Inconsistent Database State . 124

Combining Transactions . 125

Multiple Cooperating Threads . 126

Performance Considerations . 126

Chapter 6 Storing, Retrieving, and Updating Objects 127

Storing Objects . 128
Release 3.0 vii

Contents
How Objects Become Persistent . 129

Storing Objects in a Particular Segment. 129

What Is Reachability? . 130

Situations to Avoid . 130

Storing Java-Supplied Objects . 130

Working with Database Roots . 131

Creating Database Roots . 132

Retrieving Root Objects . 133

Roots with Null Values . 133

Using Primitive Values as Roots . 133

Changing the Object Referred To by a Database Root 134

Destroying a Database Root . 134

Destroying the Object Referred To by a Database Root. . . . 135

How Many Roots Are Needed in a Database? 135

Troubleshooting OutOfMemoryError . 136

Retrieving Persistent Objects. 137

Steps for Retrieving Persistent Objects 137

Obtaining a Database Root . 138

Determining Which Database Contains an Object 138

Determining Whether an Object Has Been Stored. 138

Iterating Through the Objects in a Segment 139

Locking Objects . 140

Using External References to Stored Objects. 141

Creating External References . 142

Using the No-Arguments Constructor . 143

Caution About Creating External References to
Nonexported Objects. 143

Obtaining Objects from External References 144

Determining Whether Two External References Refer to the
Same Object . 144

Reusing External Reference Objects . 145

Encoding External References as Strings 146

External References and Transactions 146

Updating Objects in the Database . 147
viii ObjectStore Java API User Guide

Contents
Background for Specifying Object State 147

 About Object Identity . 148

About the Object Table . 152

Committing Transactions to Save Modifications 153

Making Persistent Objects Stale. 154

Making Persistent Objects Hollow . 156

Retaining Persistent Objects as Readable 157

Retaining Persistent Objects as Writable 160

Caution About Retaining Nonexported Objects 161

Evicting Objects to Save Modifications 162

Description of Eviction Operation . 163

Setting the Evicted Object to Be Stale 164

Setting the Evicted Object to Be Hollow 165

Setting the Evicted Object to Remain Active 166

Summary of Eviction Results for Various Object States 167

Evicting All Persistent Objects . 167

Evicting Objects When There Are Cooperating Threads 168

Committing Transactions After Evicting Objects 169

Evicting Objects Outside a Transaction 169

Aborting Transactions to Cancel Changes 170

Setting Persistent Objects to the Default State 171

Setting the Default Abort Retain State 171

Specifying a Particular State for Persistent Objects. 171

Destroying Objects in the Database. 173

Calling ObjectStore.destroy(). 173

Destroying Objects That Refer to Other Objects 174

Destroying Objects That Are Referred to by Other Objects. . 178

Default Effects of Various Methods on Object State 179

Transient Fields in Persistence-Capable Classes 180

Behavior of Transient Fields. 180

Preventing fetch() and dirty() Calls on Transient Fields 181

Background Information About Access to Transient Fields . . 181

Avoiding finalize() Methods. 182

Troubleshooting Access to Persistent Objects 183
Release 3.0 ix

Contents
Handling Unregistered Types . 184

How Can There Be Unregistered Types? 185

Can Applications Work When There Are Types
Not Registered?. 185

What Does ObjectStore Do About Unregistered Types? 186

When Does ObjectStore Create UnregisteredType Objects? 187

Can Your Application Run with UnregisteredType Objects? . 188

Troubleshooting ClassCastExceptions Caused by
Unregistered Types . 189

Troubleshooting the Most Common Problem 190

Chapter 7 Working with Collections. 191

Description of ObjectStore Utility Collections. 192

Introduction to COM.odi.util Interfaces and Classes 193

Description of OSHashBag. 195

Description of OSHashMap . 195

Description of OSHashSet . 196

Description of OSHashtable . 197

Description of OSTreeMapxxx . 198

Description of OSTreeSet . 199

Description of OSVector . 200

Description of OSVectorList. 201

Advantages of Using ObjectStore Utility Collections 201

Querying Collection Views of Map Entries 202

Background About Utility Collections and
JDK 1.2 Collections . 203

How to Choose a Collections Alternative. 205

Using ObjectStore Utility Collections . 207

Creating Collections. 207

Navigating Collections with Iterators . 208

Performing Collection Updates During Iteration 209

Querying ObjectStore Utility Collections 210

Creating Queries . 211

Description of Query Syntax . 213

Sample Program That Uses Queries . 214
x ObjectStore Java API User Guide

Contents
Matching Patterns in Query Strings . 215

Using Free Variables in Queries . 218

Executing Queries . 219

Limitations on Queries . 221

Enhancing Query Performance with Indexes 222

How Indexes Work . 222

Adding Indexes to Collections. 223

Dropping Indexes from Collections. 224

Sample Program That Uses Indexes. 224

Modifying IndexValues . 225

Managing Indexes and Index Values . 227

Optimizing Queries for Indexes . 228

Manipulating Indexes Outside the Query Facility 230

Storing Objects as Keys in Persistent Hash Tables 231

Requirements for Hash Code Methods 231

Providing an Appropriate Persistent Hash Code Method . . . 232

Storing Built-In Types as Keys in Persistent Hash Tables 233

Using Third-Party Collections Libraries 234

Chapter 8 Automatically Generating Persistence-Capable
Classes. 235

Overview of the Class File Postprocessor. 237

Description of the Annotations . 238

Description of the Process . 239

Postprocessing a Batch of Files Is Important 239

Manual Annotation. 241

Running the Postprocessor. 242

Preparing to Run the Postprocessor . 243

Requirements for Running the Postprocessor. 244

Example of Running the Postprocessor 245

About the Postprocessor Destination Directory. 246

How the Postprocessor Interprets File Names 247

Order of Processing. 247

How the Postprocessor Handles Duplicate File Specifications249
Release 3.0 xi

Contents
How the Postprocessor Handles Files Not Found. 249

Zip and Jar Files as Input to Postprocessor 250

How the Postprocessor Handles Previously
Annotated Classes . 250

Troubleshooting OutOfMemory Error . 250

How the Postprocessor Handles Inner Classes. 251

Creating Smaller Annotated Files . 251

Managing Annotated Class Files. 252

 Ensuring That the Compiler Finds Unannotated Class Files . . 253

 Ensuring That ObjectStore Finds Annotated Class Files 254

Using the Right Class Files in Complex Applications 255

Alternatives for Finding the Right Files. 256

How the Postprocessor Determines Whether to Generate an
Annotated Class File . 256

Creating Persistence-Aware Classes 257

Specifying the Postprocessor Command Line. 257

No Changes to Superclasses . 257

How the Postprocessor Works . 258

Ensuring Consistent Class Files . 259

Modifications to Superclasses . 259

Effects on Inheritance. 260

Location of Annotated Class Files. 261

Postprocessor Errors and Warnings . 261

Handling of Final Fields . 261

Handling of Static Fields . 262

Which Java Executable to Use . 263

Line-Number and Local-Variable Information. 263

Using a Debugger . 264

Handling of finalize() Methods . 264

Description of Postprocessor Optimizations 265

Including Transient and Already Annotated Classes 266

Copying Classes to the Destination Directory 266

Specifying Classes to Be Copied and Classes to Be
Persistence-Capable . 266
xii ObjectStore Java API User Guide

Contents
When Can a Class Be Transient?. 267

Putting Processed Classes in a New Package. 268

Using the -translatepackage Option . 269

How the Postprocessor Applies the Option 270

Updating References to New Package Name 270

References to Transient and Persistent Versions of a Class . . 271

References to Transient Instances of a
Persistence-Capable Class . 272

Creating Persistence-Capable Classes with
Transient Fields . 273

Transient Fields and Serialization . 273

Initialization of Some Transient Fields. 274

Customizing Updated Classes . 275

Implementing Customized Methods and Hook Methods . . . 275

Creating a Hollow Object Constructor. 279

Optimizing Operations That Retrieve Persistent Objects . . 280

Procedure for Optimizing Operations . 280

Inlining Code . 281

Preventing Fetch of Transient Fields . 281

Specifying the Number of Array Dimensions in Persistence-
Capable Classes. 282

Performing a Test Run of the Postprocessor 283

Using an Input File . 284

Annotations You Must Add . 285

Interfacing with Nonpersistent Methods. 285

Interfacing with Native Classes . 286

Annotating Subclasses . 286

Passing Arrays. 286

Implementing the Hollow Object Constructor for
Some Instance Fields. 287

Using the Java Reflection API with Persistence-Capable
Objects . 287

Class File Postprocessor Limitations . 288
Release 3.0 xiii

Contents
Chapter 9 Manually Generating Persistence-Capable
Classes. 289

Explicitly Defining Persistence-Capable Classes 290

Implementing the IPersistent Interface. 291

Defining the Required Fields . 291

Defining Required Methods in the Class Definition 292

Making Object Contents Accessible . 294

Defining a ClassInfo Subclass . 295

Example of a Manually Annotated Persistence-Capable
Class . 298

Additional Information About Manual Annotation 302

Defining a hashCode() Method. 302

Defining a clone() Method. 303

Working with Transient-Only and Persistent-Only Fields 303

Defining Persistence-Aware Classes . 307

Following Postprocessor Conventions 307

Annotating Abstract Classes . 308

Removing ClassInfo Classes From Existing Applications 308

Creating and Accessing Fields in Annotations 309

Making Persistent Objects Accessible 310

Creating Fields. 311

Getting and Setting Generic Object Field Values 313

Methods for Creating Fields and Accessing Them in
Generic Objects . 314

Chapter 10 Controlling Concurrency . 317

Reducing Wait Time for Locks. 318

Clustering . 318

Transaction Length . 318

Multiversion Concurrency Control (MVCC). 319

Lock Timeouts . 319

Conflicts Caused by Schema Installation 319

Using Multiversion Concurrency Control (MVCC) 320

When Is MVCC Appropriate? . 320
xiv ObjectStore Java API User Guide

Contents
How Does MVCC Work?. 320

Obtaining Read Locks . 320

Accessing Multiple Databases in a Transaction 321

Serializability . 321

Opening a Database for MVCC Access 322

Determining If a Database Is Opened for MVCC 323

Updating the Snapshot. 324

Where to Find Additional Information. 324

Checkpoint: Committing and Continuing a Transaction . 325

Advantages of a Checkpoint . 326

Calling the checkpoint() Method. 327

Locking Objects, Segments, and Databases to
Ensure Access . 328

Description of Acquire Lock Methods. 329

Locking Objects for Read or Write Access. 329

Specifying the Wait Time for a Lock . 330

Releasing Locks . 330

Locking Peer Objects . 330

Obtaining Information About Concurrency Conflicts 331

Setting the Client Name . 331

Helping Determine the Transaction Victim in a Deadlock. . . 332

Installing Schema Information in Batch Mode. 333

Background About Schema Information 333

Procedure for Installing Schema in Batch 334

Identifying the Application Types . 335

Creating a Database with Batch Schema Installation 337

Installing Application Types in the Database Schema 338

If You Do Not Run the Postprocessor. 340

Chapter 11 Using the Notification Facility . 341

Background About How Notification Works 342

What Is a Notification? . 342

What Is the Flow of a Notification? . 343

Threads and Notifications. 344
Release 3.0 xv

Contents
Transactions and Notifications . 345

Security . 346

Creating Notifications . 347

Descriptions of Constructors . 347

Retaining References to Persistent Objects 348

Maximum Data Lengths . 349

Restriction on data Argument Content 349

Subscribing to Receive Notifications 350

Discarding Subscriptions. 350

Unsubscribing from Notifications . 351

Sending Notifications. 352

Retrieving Notifications . 353

Reading Notifications . 354

Managing the Notification Process . 355

Notification Queue . 355

Performance Considerations. 356

Network Service . 357

Chapter 12 Miscellaneous Information. 359

Java-Supplied Persistence-Capable Classes. 360

Description of Java-Supplied Persistence-Capable Classes . 360

Can Other Java-Supplied Classes Be Persistence-Capable? 363

Description of Special Behavior of String Literals. 366

Example of String Behavior . 366

Destroying Strings . 368

Serializing Persistent Objects . 369

Using Persistence-Capable Classes in a Transient Manner371

Description of Java Persistent Storage Layouts. 372

Differences Between C++ and Java Interfaces to
ObjectStore . 374

Timing of the Write Lock Acquisition . 374

Opening the Same Database Multiple Times 374

Environment Variables . 375
xvi ObjectStore Java API User Guide

Contents
Chapter 13 Tools Reference. 377

osgc: Collecting Garbage in Databases 378

osjbrowsedb: Browsing a Database . 380

osjcfp: Running the Postprocessor. 381

osjcgen: Generating Peer Classes. 389

Description of Command Line Format 389

Description of Additional Options . 390

Example of Running the Peer Generator Tool 393

osjcheckdb: Checking References in a Database. 395

osjshowdb: Displaying Information About a Database . . 397

osjuphsh: Upgrading String Hash Codes in Databases . . 402

osjversion: Obtaining ObjectStore Version Information. . 403

Appendix Packaging Your Application for End Users 405

Glossary . 407

Index. 411
Release 3.0 xvii

Contents
xviii ObjectStore Java API User Guide

Preface

Purpose The ObjectStore Java API User Guide provides information and
instructions for using the Java interface to ObjectStore. The Java
interface allows you to write Java applications that store and
retrieve data in ObjectStore databases.

Audience This book is for experienced Java programmers who want to write
applications that use the Java interface to ObjectStore.

Scope This book does not provide information for developing
ObjectStore applications that use C++ and Java. See Developing
ObjectStore Java Applications That Access C++.

This book supports Release 3.0 of the Java interface to ObjectStore.
See the README.htm file in the directory in which you installed
ObjectStore for specific ObjectStore release numbers.

How This Book Is Organized

This book is organized as follows:

• Chapter 1, Introducing ObjectStore, on page 1, describes what
ObjectStore does, shows the application architecture, and
defines some important terms.

• Chapter 2, Example of Using ObjectStore, on page 19, describes
the components your application must include to use
ObjectStore.

• Chapter 3, Using Sessions to Manage Threads, on page 27,
discusses how to initialize threads to use ObjectStore and how
to use threads with ObjectStore sessions.

• Chapter 4, Managing Databases, on page 67, provides
instructions for creating, opening, closing, garbage collecting,
and upgrading databases.
Release 3.0 xix

Preface
• Chapter 5, Working with Transactions, on page 109, describes
how to start and end transactions.

• Chapter 6, Storing, Retrieving, and Updating Objects, on
page 127, discusses the steps for storing, retrieving, and
updating data.

• Chapter 7, Working with Collections, on page 191, provides
information about eachhows how to create collections of
objects and run queries over the collections.

• Chapter 8, Automatically Generating Persistence-Capable
Classes, on page 235, describes how to use the class file
postprocessor to create persistence-capable classes.

• Chapter 9, Manually Generating Persistence-Capable Classes,
on page 289, describes how to manually annotate classes you
define so they are persistence-capable.

• Chapter 10, Controlling Concurrency, on page 317, describes
the APIs you can use to ensure your application’s access to
data.

• Chapter 11, Using the Notification Facility, on page 341,
discusses the system you can set up to notify sessions when a
previously defined event has taken place.

• Chapter 12, Miscellaneous Information, on page 359, discusses
serialization, String literals, storage layout, differences from
C++ interface, and Java-supplied persistence-capable classes.

• Chapter 13, Tools Reference, on page 377 provides reference
information for the ObjectStore utilities: osgc, osjcfp, osjcgen,
osjcheckdb, osjshowdb, and osjversion.

• Appendix, Packaging Your Application for End Users, on
page 405, provides instructions for which files you must
include when you distribute your application.
xx ObjectStore Java API User Guide

Preface
Documentation Conventions

This document uses the following conventions:

Examples in the
documentation

Examples in the documentation assume that COM.odi.* is
imported. This allows specification of, for example,

db.open(ObjectStore.READONLY)

instead of

db.open(COM.odi.ObjectStore.READONLY)

Convention Meaning

Bold Bold typeface indicates user input, code
fragments, method signatures, file names,
and object, field, and method names.

Sans serif Sans serif typeface is used for system
output and system output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can
specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.
Release 3.0 xxi

Preface
Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Internet Explorer or Netscape Navigator. You can
obtain information by accessing the Object Design home page
with the URL http://www.objectdesign.com. Select Tech Support.
Select Tech Support Information for detailed instructions about
different methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name objectdesignftp and the
password obtained from patch-info. This password also changes
monthly, but you can automatically receive the updated
password by subscribing to patch-info. See the ObjectStore 5.1
README file for guidelines for using this connection. The FAQs
are in the /support/FAQ subdirectory. This directory contains a
group of subdirectories organized by topic. The FAQ/FAQ.tar.Z file
is a compressed tar version of this hierarchy that you can
download.

Automatic email
notification

In addition to the preceding methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page), you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info <your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Email discussion list There is a majordomo discussion list called osji-discussion. The
purpose of this list is to facilitate discussion about the Java
interface to ObjectStorePSE and PSE Pro for Java. For subscription
information, see ObjectStore Java Interface Release Notes,
Description of Discussion List.
xxii ObjectStore Java API User Guide

Preface
Support

Object Design’s support organization provides a number of
information resources and services. Their home page is at
http://support.objectdesign.com/WWW/Welcome.html. From the
support home page, you can learn about support policies, product
discussion groups, and the different ways Object Design can keep
you informed about the latest release information — including the
Web, ftp, and email services.

Training

You can obtain information about training courses from the
Object Design Web site (http://www.objectdesign.com). From the
home page, select Services and then Education.

If you are in North America, for information about Object
Design’s educational offerings, call 781.674.5000, Monday
through Friday from 8:30 AM to 5:30 PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send feedback to support@objectdesign.com. To
expedite your message, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
Release 3.0 xxiii

Preface
xxiv ObjectStore Java API User Guide

Chapter 1
Introducing ObjectStore

ObjectStore provides an application programming interface (API)
that allows you to persistently store Java objects.

Contents This chapter discusses the following topics:

What Is ObjectStore? 2

What ObjectStore Does 4

Benefits of Using ObjectStore 5

Description of ObjectStore Process Architecture 6

Definitions of ObjectStore Terms 8

Prerequisites for Using the ObjectStore Java Interface 17
Release 3.0 1

What Is ObjectStore?
What Is ObjectStore?

ObjectStore is an object-oriented database management system. It
allows you to

• Manipulate information in the database transparently by
creating and modifying persistent Java objects.

• Store and access data in the same format as it exists in the
application.

• Describe, store, and query complex data used in sophisticated
software applications, as well as data traditionally managed by
relational database applications.

• Persistently store data independent of the data type.

The Java interface to ObjectStore Development Client (referred to
as ObjectStore) is for Java and C++ applications that require
multiuser high-performance persistent storage for large databases
with enterprise database features such as failover, on-line backup,
fine-grained concurrency, and security.

ObjectStore can work well for distributed databases of virtually
unlimited sizes and unlimited numbers of objects. ObjectStore
supports the following:

• Applications that interface with databases and servers on local
or remote machines

• Java applications and C++ applications that can access the
same data

• Multiple concurrent users

• Collections with indexed look-ups and queries

• Databases that consist of multiple segments, which are
variable-sized regions of disk space that ObjectStore uses to
cluster objects stored in the database

• Operating on multiple databases in a transaction

• Cross-database and cross-segment references

• On-line backup, failover, and archive logging
2 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
ObjectStore PSE for Java and ObjectStore PSE Pro for Java are
personal storage editions (subsets) of the Java interface to
ObjectStore. It is possible to use multiple ObjectStore Java
products in the same Java virtual machine (VM). The
COM.odi.product property allows you to do this.

ObjectStore includes the COM.odi.odmg package, which provides
an Object Data Management Group (ODMG) binding. This
binding includes classes for Database and Transaction that closely
follow the ODMG specification. The package also includes the
COM.odi.odmg.Collection interface, persistence-capable classes
that implement the Collection interface, and ODMG exception
classes. See the COM.odi.odmg package in the ObjectStore Java API
Reference.
Release 3.0 3

What ObjectStore Does
What ObjectStore Does

ObjectStore provides an API that allows a program to

• Start and end sessions to allow threads to use the ObjectStore
API.

• Create, open, close, and destroy databases.

• Start, commit, and abort transactions to access data in the
database.

• Read and write database roots, which provide starting points
for navigating to persistent objects.

• Store objects in a database and retrieve and update those
objects.

ObjectStore can recover from an application failure or system
crash. If a failure prevents some of the changes in a transaction
from being saved to disk, ObjectStore ensures that none of that
transaction’s changes are saved in the database. When you restart
the application, the database is consistent with the way it was
before the transaction started.

With ObjectStore’s archive logging facility, you can protect
against media failure. See ObjectStore Management.
4 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Benefits of Using ObjectStore

ObjectStore provides a convenient and complete API for storing
and sharing Java objects among users, hosts, and programs. After
you define persistence-capable classes (classes whose instances
can be stored in a database), writing an ObjectStore application is
just like writing any other Java application.

ObjectStore allows you to quickly read or modify portions of your
persistent data. You are not required to read in all persistent data
when you just want to look at a subset. This reduces start-up and
transaction commit times and allows you to run much larger Java
applications without increasing the amount of memory or swap
space on the system.

When you access persistent data inside a transaction, ObjectStore
ensures that your results are not compromised by other users
sharing the data. If something goes wrong, or if you determine
that you do not want to keep changes, you can abort the
transaction. In that case, ObjectStore restores the database to its
state before the transaction started. This makes it straightforward
to recover from exceptions or failures.
Release 3.0 5

Description of ObjectStore Process Architecture
Description of ObjectStore Process Architecture

See Committing Transactions to Save Modifications on
page 153.There are three kinds of processes in the ObjectStore
environment:

• The Server is the ObjectStore process that controls object
storage. The Server can manage databases for multiple client
applications, which might be on multiple hosts.

• The client is the process in which ObjectStore links the
ObjectStore client library into each ObjectStore application. In
this way, each ObjectStore application is an ObjectStore client.

• The Cache Manager facilitates concurrent access to data by
handling callback messages from the Server to client
applications.

The process architecture for the Java interface to ObjectStore is the
same as for the C++ interface to ObjectStore. The Server and the
Cache Manager are the same, regardless of the language interface
you use with ObjectStore. See ObjectStore Management for detailed
information about managing these processes. The following
figure shows the process architecture.

Server Client Application

disk

host

host

hosthost

hosthost

network

Server

Cache ManagerCache ManagerCache Manager

Cache Manager

disk

Client Application

Client Application

Client ApplicationClient Application
6 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
In the Java interface to ObjectStore, the client is a single process
that has several software components. These components call
each other as needed:

• ObjectStore C++ client library, which, among other things,
communicates with the Server

• ObjectStore Java client library, which provides the ObjectStore
Java API

• Your Java application

The client library and the Cache Manager work together to
maintain local copies of data on the client machine. Since local
access is a great deal faster than remote access, this improves
application performance. ObjectStore ensures that you can never
retrieve stale data, so you obtain performance benefits without
sacrificing accuracy.
Release 3.0 7

Definitions of ObjectStore Terms
Definitions of ObjectStore Terms

Here are some terms you must be familiar with to use ObjectStore:

• Session on page 9

• Persistence-Capable on page 10

• Persistent Object on page 10

- Hollow persistent object on page 11

- Active persistent object on page 12

- Stale persistent object on page 13

• Persistence-Aware on page 14

• Primary Object on page 14

• Peer Object on page 15

• Transient Object on page 15

• Transitive Persistence on page 15

• Annotations on page 16

• Database Roots on page 16
8 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Session

A session allows the use of the ObjectStore API. ObjectStore uses
the abstract COM.odi.Session class to represent sessions.

Your application must create a session before it can use any of the
ObjectStore API. After a session is created, it is an active session.
A session remains active until your application or ObjectStore
terminates it. After a session is terminated, it is never used again.
You can, however, create a new session.

A session creates a context in which you can create a transaction,
access a database, and manipulate persistent objects. A session
consists of a set of persistent objects, and a set of ObjectStore API
objects, such as a Transaction, Databases, and Segments. In a
single Java VM process,

• PSE allows one session at a time.

• PSE Pro allows multiple concurrent sessions.

• ObjectStore allows one session at a time. It is expected that
ObjectStore will allow multiple sessions in a future release.

Separate Java virtual machines can each run their own session at
the same time. In addition, if you are using PSE Pro, separate Java
virtual machines can each run multiple sessions at the same time.
See How Sessions Keep Threads Organized on page 28.
Release 3.0 9

Definitions of ObjectStore Terms
Persistence-Capable

The term persistence-capable refers to the capacity of an object to be
stored in a database. If you can store an object in a database, the
object is persistence-capable. If you can store the instances of a
class in a database, the class is a persistence-capable class and the
instances are persistence-capable objects.

The definition of a persistence-capable class includes specific
annotations required by ObjectStore. After you compile class
definitions, you run the ObjectStore class file postprocessor on the
compiled classes to add the annotations that make the classes
persistence-capable. See Chapter 8, Automatically Generating
Persistence-Capable Classes, on page 235. In unusual
circumstances, you might choose to manually add the annotations
to the Java source file. See Chapter 9, Manually Generating
Persistence-Capable Classes, on page 289.

You must explicitly postprocess or manually annotate each class
that you want to be persistence-capable. The capacity for an object
to be stored in a database is not inherited when you subclass a
persistence-capable class.

Some Java-supplied classes are persistence-capable. Other classes
are not and cannot be made persistence-capable. A third category
of classes can be made persistence-capable, but there are
important issues to consider when you do so. Be sure to read Java-
Supplied Persistence-Capable Classes on page 360.

Persistent Object

A persistent object is a representation of an object that is stored in a
database.

After an application retrieves an object from the database, the
application works with the persistent object in the Java
environment. A persistent object always exists in one of three
states:

• Hollow

• Active

• Stale

Methods you call can change the state of a persistent object.
10 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Hollow persistent
object

A hollow persistent object has the same structure as the object in the
database that it represents. A hollow object contains the same
fields as the object in the database that the persistent object
represents, but the fields of the hollow object have default values.

When your application acquires a reference to an object that has
not yet been read in from the database, ObjectStore generates a
hollow object as a placeholder for that object. ObjectStore does not
actually read in the contents of the object until your application
tries to read, write, or invoke a method on the object.

When your application accesses a hollow object, ObjectStore turns
it into an active persistent object. ObjectStore retrieves the
contents of the object from the database and stores them in the
fields of the hollow object, which makes it an active persistent
object. This process is referred to as initialization.

Obtaining an object from a database root always results in a
hollow object. If you get the same root three times, the object it
identifies is still hollow. You must access the object to make it
active.

After an application accesses the contents of a persistent object,
the objects that the persistent object references are hollow objects,
unless their contents were previously accessed. For example,
suppose you have the following class:

class A {
B b;

}

When you obtain a reference to an instance of A, ObjectStore
creates a hollow A object to represent that instance. When you
read or update the instance of A, ObjectStore turns it into an active
object and creates a hollow B object to represent the referred to
instance of B. If you then read or update the instance of B,
ObjectStore makes that hollow object into an active object and
creates hollow objects for any objects referred to by B.
Release 3.0 11

Definitions of ObjectStore Terms
Active persistent
object

An active persistent object starts as an exact copy of the object that it
represents in the database. The contents of an active object are
available to be read by the application and might be available to
be modified. If an active object is updated by the application, it is
no longer identical to the object in the database that it represents.

An application can read or update an active persistent object; a
persistent object must be active for an application to read or
update it. The postprocessor takes care of this for classes that it
annotates.

When ObjectStore changes a hollow object to an active object, it
initializes the object. In most applications, this happens
automatically, because the postprocessor inserts the required
calls.

When a persistent object is active, ObjectStore internally flags it as
either clean or dirty. An active object is initially marked as clean
when its contents are read into memory. At this point, ObjectStore
recognizes that the contents of the persistent object match the
contents of the object in the database. An active object is dirty
when it is a modified version of the stored object that the active
object represents. When you modify an object, ObjectStore
automatically changes the flag from clean to dirty. The class file
postprocessor inserts the code that does this.

For example, suppose you have an instance of a Person object
where the age field has the value 30. When you read this object, it
is in the clean state. If you modify the value of age, even if the new
value you assign is 30, the object is then in the dirty state.
12 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Stale persistent object A stale persistent object is no longer valid. Its fields have default
values and should not be used. An object becomes stale when an
application calls

• Transaction.commit() on the transaction in which the object
could be read or modified, and the call does not specify a retain
argument, or it specifies ObjectStore.RETAIN_STALE.

(There is no API that sets a default retain value for the commit(),
evict(), or destroy() methods. You can only set a default retain
value for the abort() method.)

• Transaction.abort() on the transaction in which the persistent
object could be read or modified, and the call does not specify
a retain argument (and the default retain value is ObjectStore.
RETAIN_STALE), or it specifies ObjectStore.RETAIN_STALE

• ObjectStore.evict() on the object and the call does not specify a
retain argument, or it specifies ObjectStore.RETAIN_STALE

• ObjectStore.destroy() on the object

An object can also become stale when the transaction in which it
was accessed is aborted because of a deadlock or some other
action that caused AbortException to be thrown.

If an application tries to read or update a stale object, ObjectStore
throws ObjectException. An application must not invoke any
instance method on a stale object.
Release 3.0 13

Definitions of ObjectStore Terms
Persistence-Aware

If the methods of a class can operate on fields of persistent objects,
but instances of the class itself are not persistence-capable, the
class is persistence-aware. Typically, if you want a class to be
persistence-aware, you run the postprocessor on it to put in the
required annotations. See Chapter 8, Automatically Generating
Persistence-Capable Classes, on page 235. Occasionally, you
might choose to manually annotate the class to make it
persistence-aware. See Chapter 9, Manually Generating
Persistence-Capable Classes, on page 289.

When a method accesses fields in a persistent object, ObjectStore
checks to ensure that the data has been read from the database.
This checking is done by calls that the postprocessor inserts in
your code. These are the annotations mentioned in the previous
paragraph. The annotations are calls to the ObjectStore.fetch() or
ObjectStore.dirty() method.

Every persistence-capable and persistence-aware class must have
these annotations. Persistence-capable classes also include many
other annotations.

A class must be persistence-aware only if it directly accesses the
fields of a persistence-capable object. This includes access of
elements of a persistent array. If your persistence-capable classes
have only private fields and do not return arrays that might be
persistent, other classes can call methods on the persistence-
capable object without having to be persistence-aware.

Primary Object

A primary object is a persistence-capable Java object. A persistence-
capable object is an object that can be stored in an ObjectStore
database. You can use primary objects just as if they were
ordinary Java objects. The database correctly records their
identities, classes, and field values. Primary objects do not extend
the CPlusPlus class.
14 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Peer Object

Peer objects provide a way for Java applications to use C++ objects.
A peer object acts as a proxy for a particular C++ object. It has no
data fields and so it does not hold any state that is represented by
the data members of the corresponding C++ object.

However, a peer object provides object identity, which allows you
to invoke a method on the corresponding C++ object. You can call
Java methods on a peer object to invoke all public methods of the
original C++ object. You can think of a peer object as a handle to a
C++ object.

Each peer object identifies exactly one C++ object. Multiple peer
objects can represent the same C++ object. For example, each
element of a C++ array of classes is represented by a peer object.

A peer object is an instance of a Java peer class. All peer objects
extend the CPlusPlus class. Information about using peer objects
is in Developing ObjectStore Java Applications That Access C++.

Transient Object

A transient object is an object that is not already in a database.

Transitive Persistence

When an application commits a transaction, ObjectStore stores in
the database any transient objects that can be reached transitively
from any persistent object. This is the process of transitive
persistence. Transient objects that are referenced by persistent
objects become persistent when the transaction commits. For this
to work, the transient objects must be persistence-capable.
Release 3.0 15

Definitions of ObjectStore Terms
Annotations

The class file postprocessor annotates classes you define so that
they are persistence-capable. This means that the postprocessor
makes a copy of your class files, overwrites your original class
files or places them in a directory you specify, and adds byte code
instructions (annotations) that are required for persistence.
Complete information about annotations is in Chapter 8,
Automatically Generating Persistence-Capable Classes, on
page 235.

Occasionally, you might want to manually annotate your code.
Information you need to do this is in Chapter 9, Manually
Generating Persistence-Capable Classes, on page 289.

Database Roots

A database root provides a way to associate a name with an object
in a database. Applications use database roots to locate one or
more persistent objects for performing queries or navigating to
other persistent objects. When you make an object the value of a
persistent database root, doing so establishes the object as
persistent and makes the objects it refers to available for transitive
persistence.

At any given time, a database root is either associated with one
database or it is null. You can change the database with which a
root is associated. Information about database roots is in Working
with Database Roots on page 131.
16 ObjectStore Java API User Guide

Chapter 1: Introducing ObjectStore
Prerequisites for Using the ObjectStore Java
Interface

To use the ObjectStore Java interface you must

• Be an experienced programmer familiar with the Java
language.

• Have available a supported Java platform. The compiler must
conform to JavaSoft specifications. The Java VM must be
among those supported by ObjectStore. You cannot use a
supported compiler with an unsupported VM. See
Requirements for Using This Release in the release notes.

• Have installed ObjectStore Server and the C++ interface to
ObjectStore Development Client.

You should also be familiar with the information in the ObjectStore
Management manual, which describes the ObjectStore architecture
and provides information about ObjectStore Server parameters,
ObjectStore client environment variables, and ObjectStore utilities
that you can use.

If you plan to use ObjectStore to operate on both Java and C++
objects, then you must also be an experienced C++ programmer.
Release 3.0 17

Prerequisites for Using the ObjectStore Java Interface
18 ObjectStore Java API User Guide

Chapter 2
Example of Using
ObjectStore

This chapter provides a simple example of a complete ObjectStore
program. The code for this example is in the COM\odi\demo\people
directory provided with ObjectStore.

Contents This chapter discusses the following topics:

Overview of Required Components 20

Sample Code 21

Before You Run the Program 24

Running the Program 26
Release 3.0 19

Overview of Required Components
Overview of Required Components

The sample program stores some information about a few people
and then retrieves some of the information from the database and
displays it. The program shows the components you must include
in your application so that it can use ObjectStore. These
components are

• Create a session. The example calls the Session.create() method
to start a nonglobal session. See page 34.

• Join a thread to a session. The example calls the Session.join()
method to associate this thread with the session. See page 46.

• Create or open a database. The example creates the person.odb
database and uses the db variable to refer to it. See page 68.

• Start and commit transactions as needed. The example uses one
transaction to store the objects in the database. It then uses a
second transaction to retrieve the stored objects.See page 110.

• Create a database root, which provides a starting point for
accessing objects in the database. The example creates a root
with the name "Tim" and associates it with the tim instance of
the Person class. See page 131.

• Store objects referenced by a root in the database. The example
stores sophie and joseph in the database when the transaction
is committed. See page 128.

• Use a database root to retrieve objects from a database and do
something with them. The example starts a new transaction,
retrieves tim, and displays a line of information.See page 137.

• End the session. The example calls the Session.terminate()
method. This closes the open database and also shuts down
ObjectStore. See page 39.

When you write an ObjectStore program, you write it as though
classes are persistence-capable. However, a program cannot store
objects persistently until you run the ObjectStore-provided class
file postprocessor. The postprocessor generates annotated
versions of the class files. The annotated version of the class
definition is persistence-capable. You run the postprocessor after
you compile the program and before you run the program.
20 ObjectStore Java API User Guide

Chapter 2: Example of Using ObjectStore
Sample Code

package COM.odi.demo.people;

// Import the COM.odi package, which contains the API:
import COM.odi.*;

public
class Person {

// Fields in the Person class:

String name;
int age;
Person children[];

// Main:

public static void main(String argv[]) {
try {

String dbName = argv[0];

// The following line starts a nonglobal session and joins this
// thread to the new session. This allows the thread to use
// ObjectStore.
Session.create(null, null).join();

Database db = createDatabase(dbName);
readDatabase(db);
db.close();

}

// The following shuts down ObjectStore.
finally {

Session.getCurrent().terminate();
}

}

static Database createDatabase(String dbName) {

// Attempt to open and destroy the database specified on the
// command line. This ensures that the program creates a
// new database each time the application is called.

try {
Database.open(dbName, ObjectStore.OPEN_UPDATE).destroy();
} catch (DatabaseNotFoundException e) {
}

// Call the Database.create() method to create a new database.

Database db = Database.create(dbName,
ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);
// Start an update transaction:

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
Release 3.0 21

Sample Code
// Create instances of Person:

Person sophie = new Person("Sophie", 5, null);
Person joseph = new Person("Joseph", 1, null);
Person children[] = {sophie, joseph};
Person tim = new Person("Tim", 35, children);

// Create a database root and associate it with
// tim, which is a persistence-capable object.
// ObjectStore uses a database root as an entry
// point into a database.

db.createRoot("Tim", tim);

// End the transaction. This stores the three person objects,
// along with the String objects representing their names, and
// the array of children, in the database.

tr.commit();

return db;
}

static void readDatabase(Database db) {

// Start a read-only transaction:

Transaction tr = Transaction.begin(ObjectStore.READONLY);

// Use the "Tim" database root to access objects in the
// database. Because tim references sophie and joseph,
// obtaining the "Tim" database root allows the program
// also to reach sophie and joseph.
Person tim = (Person)db.getRoot("Tim");
Person children[] = tim.getChildren();

System.out.print("Tim is " + tim.getAge() + " and has " +
children.length + " children named: ");

for (int i=0; i < children.length; i++) {
String name = children[i].getName();
System.out.print(name + " ");

}
System.out.println("");
// End the read-only transaction.
// This form of the commit method ends the accessibility
// of the persistent objects and makes the objects stale.
tr.commit();

}

// Constructor:

public Person(String name, int age, Person children[]) {
 this.name = name; this.age = age; this.children = children;

}

public String getName() {return name;}
public void setName(String name) {this.name = name;}
public int getAge() {return age;}
22 ObjectStore Java API User Guide

Chapter 2: Example of Using ObjectStore
public void setAge(int age) {this.age = age;}
public Person[] getChildren() {return children;}
public void setChildren(Person children[]) {

this.children = children;
}

// This class is never used as a persistent hash key, so
// include the following definition. If you do not, then
// when you run the postprocessor it is unclear whether or
// not you intend to use the class as a hash code.
// Consequently, the postprocessor inserts a hashCode
// function for you. The following definition avoids this.
public int hashCode() {
return super.hashCode();

}

}

Release 3.0 23

Before You Run the Program
Before You Run the Program

Before you can run the sample program, you must

• Add an entry to your CLASSPATH environment variable

• Compile the source file

• Run the postprocessor on the .class file

Adding An Entry to CLASSPATH

In your CLASSPATH environment variable, you already have two
entries related to ObjectStore:

• An entry for the osji.zip or osji.jar file to use ObjectStore

• An entry for the tools.zip or tools.jar file to use the class file
postprocessor and other database tools

Ensure that these zip files are explicitly in your class path. An
entry for the directory that contains them is not sufficient.

Another entry is required for you to be able to build and run the
program. This entry names the ObjectStore installation directory,
and allows ObjectStore to locate the annotated class files when
you run the program.

For example, on Windows, if you place the ObjectStore
distribution in the c:\odi\osji directory, you need the following
entries:

c:\odi\osji\osji.zip;c:\odi\osji\tools.zip;c:\odi\osji

On UNIX, if you place the ObjectStore distribution in
/usr/local/osji, you need

/usr/local/osji/osji.zip:/usr/local/osji/tools.zip:/usr/local/osji
24 ObjectStore Java API User Guide

Chapter 2: Example of Using ObjectStore
Compiling the Program

To compile the program, change to the COM\odi\demo\people
directory and enter

javac *.java

As output, the javac compiler produces the byte code class file
Person.class.

Running the Postprocessor

You must run the class file postprocessor to make the Person class
persistence-capable. The postprocessor generates new annotated
class files. After you run the postprocessor, your program uses the
annotated class files and not the original class files.

Ensure that the bin directory that contains the osjcfp executable is
in your path, as noted in the README file in the installation
directory and the postprocessor documentation. See Preparing to
Run the Postprocessor on page 243.

On Windows, to run the postprocessor, enter

osjcfp -dest . -inplace Person.class

On UNIX, to run the postprocessor, enter

osjcfp -dest . -inplace Person.class

The -dest option specifies a destination directory for the annotated
files. It is a required option. The -inplace option specifes that the
postprocessor should overwrite the original class files. When you
specify the -inplace option, the postprocessor ignores the -dest
option.

The result from the osjcfp command shown above is

• The annotated class file COM\odi\demo\people\Person.class

• The PersonClassInfo.class file, also in the people directory

The -inplace option is the best choice for this example. But when
you are in an iterative development cycle, it is best not to specify
-inplace. During development, putting the postprocessed files in a
different directory avoids errors.
Release 3.0 25

Running the Program
Running the Program

Run the program as a Java application. Here is a typical command
line:

java COM.odi.demo.people.Person person.odb

The argument is the pathname of the database.

The expected output is

Tim is 35 and has 2 children named: Sophie Joseph

Also, the example application creates or replaces the person.odb
database in the current directory.
26 ObjectStore Java API User Guide

Chapter 3
Using Sessions to Manage
Threads

This chapter provides information about how to manage the
threads in your application. Sample code that uses threads is in
COM\odi\demo\threads.

Contents This chapter discusses the following topics:

How Sessions Keep Threads Organized 28

Creating Sessions 32

Working with Sessions 36

Associating Threads with Sessions 41

Working with Threads 48

Which Threads Can Access Which Persistent Objects? 53

Description of ObjectStore Properties 57

Description of Concurrency Rules 56
Release 3.0 27

How Sessions Keep Threads Organized
How Sessions Keep Threads Organized

For a thread to use ObjectStore, it must be associated with a
session. To use threads with ObjectStore, you must create at least
one session and you must understand how to work with sessions.

If you try to use the ObjectStore API and you have not created a
session, ObjectStore throws ObjectStoreException.

This section discusses the following information about sessions:

• What Is a Session? on page 28

• How Are Threads Related to Sessions? on page 29

• What Is the Benefit of a Session? on page 29

• What Kinds of Sessions Are There? on page 31

What Is a Session?

A session allows the use of the ObjectStore API. ObjectStore uses
the abstract COM.odi.Session class to represent sessions.

Your application must create a session before it can use any of the
ObjectStore API. After a session is created, it is an active session.
A session remains active until your application or ObjectStore
terminates it. After a session is terminated, it is never used again.
You can, however, create a new session.

A session creates a context in which you can create a transaction,
access one or more databases, and manipulate persistent objects.

Concurrent sessions In a single Java VM,

• PSE allows one session at a time.

• PSE Pro allows multiple concurrent sessions.

• ObjectStore allows one session at a time in Release 1.3. It is
expected that ObjectStore will allow multiple sessions in a
future release.

If you are using ObjectStore, separate Java virtual machines can
each run their own session at the same time. If you are using PSE
Pro, separate Java virtual machines can each run multiple sessions
at the same time. However, the default behavior is that at any one
time only one Java VM process can access a database. See
Description of Concurrency Rules on page 56.
28 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
How Are Threads Related to Sessions?

At any given time, an active session has zero or more associated
threads. Any number of threads can join a session. Each thread
can belong to only one session at a time.

At any given time, each thread is either joined to a single session
or not joined (not associated) with a session. A thread that is not
associated with a session can join a session. A thread that is
associated with a session can leave the session to end its
association with that session. It can rejoin the session at a later
time or it can join some other session.

For a thread to use the ObjectStore API, it must be automatically
or explicitly associated with a session. All threads that join the
same session cooperate with each other. ObjectStore does not
prevent cooperating threads from accessing the same object.
Consequently, it is your responsibility to identify code segments
that must be synchronized. To successfully call the Session.join()
method to join a session, a thread must not already be associated
with any session.

Current thread and
current session

The current thread is the thread that you are making a call from.
The current session is the session the current thread belongs to.

What Is the Benefit of a Session?

The benefit of a session is apparent when you want to have more
than one session. Two sessions in the same Java process allow you
to perform two distinct activities that involve ObjectStore. Each
session has a clean, isolated view of the database. If you want to
have two or more independent transactions going on at the same
time, you can use two or more sessions. Concurrent sessions can
be accessing the same database or different databases.

When two sessions are accessing the same object in the database,
there are two distinct persistent objects. Each session has its own
persistent object, which is a copy of the object in the database. At
least initially, these two persistent objects have the same content.

Each session has its own set of persistent objects and API objects.
In most circumstances, the threads of session A are not allowed to
operate on the persistent objects of session B. An exception to this
rule is described in Multiple Representations of the Same Object
on page 53.
Release 3.0 29

How Sessions Keep Threads Organized
Independent threads A need for many different independent transactions normally
arises because you have many Java threads with different things
going on in each one. Typically, this happens with a
multithreaded application server, in which there are many
threads. Each thread serves a different client, so you might want
to have many threads. Each thread runs a separate transaction.
Each thread is separate from each other thread.

Cooperating threads On the other hand, there are times when you have multiple
threads that are cooperating on some database task, and must
operate on the same objects at the same time. In this case, you
might want two different Java threads to participate in the same
transaction.

Controlling which
threads cooperate

Sessions allow you to control which threads cooperate in a
transaction and which threads work in independent transactions.
A session groups together a set of cooperating threads. Each
session has a sequence (in time) of transactions, and a set of
associated threads that participate in these transactions.

There is a many-to-one relationship between threads and
sessions. That is, any number of threads can belong to one session.

Example of
cooperating threads

A common case of cooperating threads arises when you are
writing a Java applet. In an applet, there are calls to different parts
of your program in different threads. You have to specify for
ObjectStore that all these threads are part of the same session. This
allows them to operate on the same objects and in the same
transactions. A similar situation exists when you use RMI and
CORBA servers. That is, there is a control mechanism that calls
your methods in different threads.
30 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
What Kinds of Sessions Are There?

An active session can be a global session or a nonglobal session.
ObjectStore provides two kinds of sessions because, when you
only need one session, there are many things ObjectStore can do
for you automatically.

Joining threads to
sessions

As mentioned earlier, before you can use ObjectStore, you must
create a session. For a thread to use ObjectStore, it must join a
session. In a global session, an unassociated thread that makes a
call to the ObjectStore API automatically joins the session. In a
nonglobal session, this happens only when the call implies the
session. See Rules for Automatically Joining a Thread to a Session
on page 43. Otherwise, you must explicitly add the thread to a
session.

Number of sessions When there is an active global session, it is the only session in the
Java VM. With PSE Pro and a future release of ObjectStore, you
can have multiple nonglobal sessions or one global session in a
Java VM. In the current release of ObjectStore and with PSE, there
can be one session in a Java VM. It can be global or nonglobal.

Global sessions Global sessions make programming easier, because you do not
need to know the ObjectStore APIs for associating threads with
sessions. All threads that make ObjectStore API calls
automatically join the one global session.

The drawback is that you can only have one session. If you ever
change your program in the future to use multiple sessions, you
might have to go back and put in API calls to associate threads
with the appropriate session. If you think you might use multiple
sessions in the future, it would probably be a good idea to prepare
for that by using a nonglobal session, and explicitly joining the
session in each thread.

Note: Automatic joining of threads to a global session is not
working in this release. You must explicitly join a thread to a
session. See ObjectStore Java Interface Release Notes, Known
Problems, Threads Are Not Being Automatically Joined to
Sessions.
Release 3.0 31

Creating Sessions
Creating Sessions

When you create a session, you initialize ObjectStore for use by
the threads that become associated with that session. There are
three ways to create a session:

• Call the Session.globalCreate() method to create a global
session.

• Call the Session.create() method to create a nonglobal session.

• Call the ObjectStore.initialize(host, properties) method to create
a nonglobal session. This method is maintained for
compatibility with previous releases. It might be deprecated in
a future release.

Regardless of how you create a session, there are a number of
ObjectStore properties you can specify when you create the
session. These properties determine how ObjectStore behaves in a
variety of situations.
32 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Creating Global Sessions

When the session is a global one and a thread that is not associated
with the session calls an ObjectStore API, ObjectStore
automatically joins the thread to the session. After you create a
global session, you do not need to be concerned about joining
threads to the session.

To create a global session, call the Session.createGlobal() method.
The method signature is

public static Session createGlobal(String host,
java.util.Properties properties)

This method creates and returns a new session and designates the
session as a global session. There are no threads joined to this
session yet. Any thread, including the thread that creates the
session, automatically joins the session the first time the thread
uses ObjectStore.

ObjectStore ignores the first parameter; you can specify null. The
second parameter specifies null or a property list. See Description
of ObjectStore Properties on page 57.

If you try to create a global session when there is already an active
session, ObjectStore throws ObjectStoreException.

To obtain a global session, call Session.getGlobal(). The method
signature is

public static Session getGlobal()

If the global session is active, ObjectStore returns it. Otherwise,
ObjectStore returns null.
Release 3.0 33

Creating Sessions
Creating Nonglobal Sessions

You can create a nonglobal session. The difference between a
global and nonglobal session is that in a nonglobal session

• ObjectStore does not automatically join all unassociated
threads to the session.

• There can be multiple nonglobal sessions in the same Java VM.
(It is expected that ObjectStore will allow multiple sessions in a
future release.)

Joining threads to
sessions

For ObjectStore to automatically join an unassociated thread to a
nonglobal session, the thread must be making an ObjectStore API
call that implies a session. See Rules for Automatically Joining a
Thread to a Session on page 43. You must explicitly join a thread
to a session before that thread can call an ObjectStore API that
does not imply a session. See Explicitly Associating Threads with
a Session on page 46.

Method signature The method signature for creating a nonglobal session is

public static Session create(String host,
java.util.Properties properties)

This method creates and returns a new session. ObjectStore
ignores the host argument; specify null. The second argument
specifies null or a property list. See Description of ObjectStore
Properties on page 57.

ObjectStore does not join the calling thread to the session.

Session name ObjectStore generates a name for the session and never reuses that
name for the lifetime of the process in which the session was
created. If you want to specify a particular name, use the
following overloading to specify a unique session name:

public static Session create(String host,
java.util.Properties properties,

String name)

ObjectStore uses the session name in debugging messages. The
Session.getName() method returns the name of the session.

Exception conditions If you call Session.create() when there is an active global session,
ObjectStore throws ObjectStoreException. If you are using
ObjectStore, and you call Session.create() when there is an active
nonglobal session, ObjectStore throws FatalApplicationException.
34 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Creating a Nonglobal Session with ObjectStore.initialize()

In previous releases of ObjectStore, the only way to create a
session was to call the ObjectStore.initialize(host, properties)
method. In this release, this method is provided for compatibility
with earlier releases. This method might be deprecated in a future
release. The method signature is

public static boolean initialize(String host,
java.util.Properties properties)

This method creates a new session, joins the calling thread to the
session, and returns true. The host argument can be null. The
second parameter specifies null or a property list. See Description
of ObjectStore Properties on page 57.

Comparison with
Session.create()

When you use the Session.create() method in place of the
ObjectStore.initialize(host, properties) method, you must also call
the Session.join() method. While the ObjectStore.initialize(host,
properties) method starts a session and joins the calling thread to
the session, the Session.create() method only starts the session. It
does not join the calling thread to the session.

False return value When the three conditions listed below all exist, the
ObjectStore.initialize() method returns false to indicate that it did
not start a new session.

• The calling thread is already associated with a session.

• The associated session is not a global session.

• The host parameter in this invocation of the initialize() method
is exactly the same as the host value that was specified when
the session was created.

Exception conditions If the calling thread already belongs to a session, but the host
value specified in the initialize() method and the host value
specified when the session was created are not the same,
ObjectStore throws IllegalArgumentException.

If there is already a global session, ObjectStore throws
ObjectStoreException.

If there is already an active session, ObjectStore throws
FatalApplicationException.
Release 3.0 35

Working with Sessions
Working with Sessions

After you create a session, you need to know how the session
functions with regard to transactions. You also need to know
about the operations you can perform on the session. This section
discusses

• Sessions and Transactions on page 37

• Shutting Down Sessions on page 39

• Obtaining a Session on page 40

• Determining If a Session Is Active on page 40
36 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Sessions and Transactions

At any given time, a session has one associated transaction in
progress or it does not have any associated transaction. Each
transaction is associated with exactly one active session.

When a session is created, there is no associated transaction.
While a session is active, an application can start and then commit
or abort one transaction at a time per session. Over time, a session
is associated with a sequence of transactions.

If there is a transaction in progress when an application or
ObjectStore shuts down the session, ObjectStore aborts the
transaction as part of the shutdown process.

Within a session, multiple databases can be open at the same time.

All transactions can access the same database. All sessions must
have read-only transactions against that database.

See also Description of Concurrency Rules on page 56.
Release 3.0 37

Working with Sessions
Transaction in
progress?

To determine whether or not there is a transaction in progress, call
the Session.inTransaction() method. The method signature is

public boolean inTransaction()

If there is a transaction associated with the session, this method
returns true. If there is no transaction associated with the session,
this method returns false. If the session has been terminated,
ObjectStore throws ObjectStoreException.

Obtaining associated
transaction

To obtain the transaction associated with a session, call the
Session.currentTransaction() method. The method signature is

public Transaction currentTransaction()

If the session has been terminated, ObjectStore throws
ObjectStoreException. If no transaction is associated with the
session, ObjectStore throws NoTransactionInProgressException.

Obtaining
transaction’s session

To obtain the session associated with a transaction, call the
Transaction.getSession() method. The method signature is

public Session getSession()
38 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Shutting Down Sessions

An application can shut down sessions. One reason you might
want to shut down a session is to release the Java objects
associated with the session.However, shutting down a session
does not release all resources used by the C++ client. Such
resources are released only when the application exits.To shut
down a session, call the Session.terminate() method. The method
signature is

public void terminate()

It does not matter whether the session is a global session or a
nonglobal session. ObjectStore shuts down the session. If there are
no other sessions, no thread can use the ObjectStore API until
there is a new active session. The terminated session is never
reused. If you are using ObjectStore, you must start a new session
before you can use the ObjectStore API again.

Transaction in progress If the session you shut down has an associated transaction,
ObjectStore aborts the transaction. If the session has already been
terminated, ObjectStore does nothing. If the session has any
associated threads, ObjectStore causes them to leave the session. If
the session has an open database, ObjectStore closes it.

ObjectStore.
shutdown()

In previous releases, the way to shut down a session was to call
the ObjectStore.shutdown() method. This method is maintained in
this release for compatibility with earlier releases. It might be
deprecated in a future release.

If ObjectStore throws FatalException, this shuts down the session.
Release 3.0 39

Working with Sessions
Obtaining a Session

You can obtain a session with a call to any of the methods listed
below:

• Placement.getSession()

• Session.getCurrent()

• Session.getGlobal()

• Session.of(object)

• Session.ofThread(thread)

• Transaction.getSession(thread)

Determining If a Session Is Active

To determine whether or not a session is active, call the
Session.isActive() method. The method signature is

public boolean isActive()

If the session is active, this method returns true. If the session has
been terminated, this method returns false.
40 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Associating Threads with Sessions

To help you associate threads with sessions, this section discusses

• Automatically Joining Threads to a Session on page 42

• Associating a Persistent Object with a Session on page 43

• Rules for Automatically Joining a Thread to a Session on
page 43

• Examples of Calls That Imply Sessions on page 44

• Examples of Calls That Do Not Imply Sessions on page 45

• Explicitly Associating Threads with a Session on page 46

There is a bug in the software that prevents threads from
automatically being joined to sessions. As a work around, you
must explicitly join each thread to a session. See the release notes
for details. This bug will be fixed in a future release.
Release 3.0 41

Associating Threads with Sessions
Automatically Joining Threads to a Session

Whether a thread can automatically join a session depends on

• Whether the session is global or nonglobal

• Whether or not the API call that the thread is making implies a
session

Global sessions When there is a global session, an unassociated thread that makes
a call to the ObjectStore API automatically joins the global session,
if necessary. In the following situations, it might not be necessary
to join the thread to the session:

• An unassociated thread calls a method on a transient object and
the method requires a persistent object. Since the object is not
persistent, the method cannot do anything, and so it does not
need to be joined to the session.

• An unassociated thread calls a method that does not operate on
persistent objects, for example, calls to
ObjectStore.getAutoOpenMode() and
ObjectStore.setLazyWriteLocking.

• An unassociated thread calls a method that has already been
executed. The thread might automatically join the session if it
executes the method anyway. For example, when an
unassociated thread tries to open a database that is already
open, ObjectStore joins the thread to the session that the
database belongs to, even though the thread doesn’t actually
do anything.

Nonglobal sessions In a nonglobal session, ObjectStore automatically joins threads to
the session when the call from the thread implies that session. This
means that the call specifies an argument that is already
associated with that session. This includes the object on which the
method is invoked.

After ObjectStore automatically joins a thread to a session,

• The thread is associated with the session until you remove it
from the session or the session terminates.

• ObjectStore performs the called method.
42 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Associating a Persistent Object with a Session

How does an object become associated with a session? It happens
implicitly. Assume that a thread is already associated with a
session. This associated thread successfully calls an ObjectStore
API. If there are any objects that result from that call, ObjectStore
associates them with the session that the calling thread belongs to.

As a result of explicit and implicit association, a session provides
a context for a set of persistent objects, and a set of ObjectStore API
objects, such a Database objects and a Transaction object.

The session defines a namespace. The namespace defines unique
names (and consequently identities) for databases, segments,
transactions, and persistent objects. While it is possible for threads
in different sessions to share objects, doing so is incorrect and
usually results in exceptions.

If the thread in which an object was materialized leaves the
session, the object remains associated with the session.

Rules for Automatically Joining a Thread to a Session

Because of the associations between objects and a particular
session, some API calls imply a session. If there is no global
session,

• A call that implies a session allows the calling thread to
automatically be joined to the implied session.

• A call that does not imply a session does not allow the calling
thread to automatically be joined to a nonglobal session.

If a thread associated with one session makes a call that implies
some other session, ObjectStore throws ObjectStoreException.
Release 3.0 43

Associating Threads with Sessions
Examples of Calls That Imply Sessions

A call that implies a session is a call that specifies an argument that
is already associated with a session. It can also be a call in which
the object on which the method is called is associated with a
session. When these calls are in a thread that is not associated with
a session, ObjectStore automatically joins the thread to the session
with which the argument is already associated. It does not matter
whether it is a global or nonglobal session. Some examples of API
calls that imply a session follow:

• Database.close() — The Database argument was associated
with a session when it was created.

• ObjectStore.migrate(object, placement, export) — The placement
argument specifies a segment or database, which was
associated with a session when it was initialized.

• ObjectStore.destroy(object) — The object argument designates
a persistent object. It was associated with a session the first time
it was accessed.
44 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Examples of Calls That Do Not Imply Sessions

A call that does not imply a session is a call that does not specify
an argument that is associated with a session. When these calls are
in a thread that is not associated with a session, ObjectStore cannot
automatically join the thread to a session, if it is a nonglobal
session. Consequently, the call fails and ObjectStore throws
ObjectStoreException. Some examples of API calls that do not imply
a session follow:

• Database.open(name, openType) — This is a static method. The
Database object does not exist yet so the name argument is not
associated with a session.

• Transaction.begin(type) — This is another static method and the
Transaction object does not exist yet.

• ObjectStore.majorRelease() — This is another static method.

• A call that accesses a transient object.

• A call that never accesses a persistent object, for example,
ObjectStore.getAutoOpenType() and
ObjectStore.setLazyWriteLocking().

• Calls to the ObjectStore.initialize() and ObjectStore.shutdown()
methods.
Release 3.0 45

Associating Threads with Sessions
Explicitly Associating Threads with a Session

To explicitly join a thread to a session, you can call the following
methods:

• Session.join()

• ObjectStore.initialize(targetThread)

Session.join() To explicitly associate a thread with a session, call the
Session.join() method. The method signature is

public void join()

This associates the current thread (the thread that contains the call
to join()) with the session on which the join() method is called.

If the session has been terminated, or if the thread making the call
is already associated with that session or some other session,
ObjectStore throws ObjectStoreException.

To join a thread to a session for a bounded duration of time, try
something like this:

Session session;
session.create(null, myproperties);
try {

session.join();
...;
...;
...;

} finally {
session.leave();

}

46 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
ObjectStore.initialize() In previous releases of ObjectStore, the only way to join a thread
to a session was to call the ObjectStore.initialize(targetThread)
method. In this release, this method is provided for compatibility
with earlier releases. This method might be deprecated in a future
release. The method signature is

public static boolean initialize(Thread targetThread)

If the specified target thread is already joined to a session, this
method joins the current thread to that session and returns true. If
the current thread is already joined to the target thread’s session,
this method returns false.

If the target thread is null, ObjectStore throws
IllegalArgumentException. If the target thread is not associated with
a session, ObjectStore throws ObjectStoreException, whether or not
the session that the target thread was previously associated with
is still active.

It does not matter whether or not the target thread has a
transaction in progress. You can call
ObjectStore.initialize(targetThread) at any time.
Release 3.0 47

Working with Threads
Working with Threads

After you associate a thread with a session, it is important to
understand how to use the thread within the framework of a
session. To that end, this section discusses

• Cooperating Threads on page 48

• Noncooperating Threads on page 49

• Synchronizing Threads on page 50

• Removing Threads from Sessions on page 50

• Threads That Create a Session on page 51

• Other Threads on page 51

• Determining If ObjectStore Is Initialized for the Current Thread
on page 52

Cooperating Threads

All threads associated with a particular session cooperate with
each other. That is, they

• Share transactions, persistent objects, and locks on ObjectStore
data

• View the same state of any databases they access

For example, suppose thread A and thread B are cooperating
threads (that is, they belong to the same session). A and B are
running asynchronously. Each thread is issuing a sequence of
operations and these sequences are interleaved in an
unpredictable fashion.

For ObjectStore, it is as if these operations are all coming from the
same thread. It does not matter which operation comes from A
and which operation comes from B. ObjectStore views the
operations as being in a single sequence, because they are issued
from cooperating threads.

If A or B starts a transaction, it does not matter which thread issues
the call. The transaction begins for both threads regardless of
which thread actually starts the transaction. Any changes
performed by A or B during the transaction are visible to both
threads and can be acted on by either thread. Similarly, if A
commits the transaction, it is just as if B commits the transaction.
48 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
So B must be in a state where it is okay to commit the transaction.
A and B must cooperate.

Noncooperating Threads

Threads that do not belong to the same session cannot share
transactions, persistent objects, or locks on data, and cannot view
the same state of the database. Threads that belong to different
sessions are noncooperating threads. With ObjectStore, a different
session belongs to a different process. With PSE Pro, a different
session can belong to the same or a different process.

Two or more noncooperating threads can open the same database
at the same time and access the same root object. If two or more
noncooperating threads access the same object in the database,
there are an equivalent number of distinct instances of the
persistent object — one for each thread. The identity test, ==, does
not show them to be identical.

Noncooperating threads can experience deadlock. See page 123.
Release 3.0 49

Working with Threads
Synchronizing Threads

Your application is responsible for synchronizing activity among
cooperating threads when the transaction is committed or
aborted. In general, your application must avoid accessing the
database while a thread is committing the transaction and until a
cooperating thread starts a new transaction. If a transaction is
aborted, cooperating threads might need to retry database
operations.

Additional information about synchronizing threads is in
Multiple Cooperating Threads on page 126.

Removing Threads from Sessions

A thread can leave a session at any time, including while a
transaction is in progress. This does not affect the transaction, nor
any threads that are still joined to that session. With or without a
transaction in progress, it is okay if there are no threads associated
with a session. The session does not terminate. A thread can join a
session later to finish the transaction. If no thread ever does that,
ObjectStore aborts the transaction when the session terminates.

To end the association of a thread with a session, call the
Session.leave() method. The method signature is

public static void leave()

After you execute this method, the current thread is no longer
joined to the session. If the current thread is already not associated
with the session on which the method is called, ObjectStore
throws ObjectStoreException.

If your application or ObjectStore shuts down a session,
ObjectStore causes any associated threads to leave the session
before it performs the shut down.

You can also call ObjectStore.shutdown() to remove a thread from
a session. However, this method also shuts down the session
when it is called on the last thread in the session.

If a thread is associated with a session and the thread terminates,
it automatically leaves the session.
50 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Threads That Create a Session

There is nothing special about the thread that creates a session.
This thread can leave the session and any threads associated with
that session can continue operating.

When your application calls the Session.createGlobal() or
Session.create() method, ObjectStore does not associate the thread
that calls the method with the newly created session. For that
thread to join the new session, it must call the Session.join()
method.

Other Threads

A thread that does not belong to a session cannot use the
ObjectStore API. This rule has a few exceptions. A thread must not
be associated with a session when it calls

• Session.createGlobal()

• Session.join()

• ObjectStore.initialize()

A thread need not be associated with a session to successfully call
Session.isActive().

If a session has a transaction in progress, a thread that is not
associated with that session must not use persistent objects that
belong to that session. See Which Threads Can Access Which
Persistent Objects? on page 53.

If a session does not have a transaction in progress, any thread,
including threads that do not belong to that session, can access
persistent objects to the degree they were left visible when the
application committed or aborted the transaction. See Ending a
Transaction on page 115.
Release 3.0 51

Working with Threads
Determining If ObjectStore Is Initialized for the Current Thread

You can use the Session.getCurrent() method to determine
whether or not ObjectStore is initialized for the current thread.
The method signature is

public static Session getCurrent()

This method returns the session with which the current thread is
associated. If the current thread is not associated with a session,
this method returns null.
52 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Which Threads Can Access Which Persistent
Objects?

Each persistent object is associated with exactly one session. Any
modification to the state of a persistent object must be done by a
thread that cooperates in the session to which the persistent object
belongs.

After you terminate a session, the persistent objects and API
objects that were associated with it when it was terminated
continue to be associated with the terminated session. One
exception to this is when you call the Database.close() method
with a true argument. This causes the persistent objects to be
retained as transient objects, which are not associated with any
session.

The information in this section is provided to help you ensure that
threads access the correct objects. This section discusses these
topics:

• Multiple Representations of the Same Object on page 53

• Example of Multiple Sessions on page 54

• Application Responsibility on page 54

• Effects of Committing a Transaction on page 55

• API Objects and Sessions on page 55

Multiple Representations of the Same Object

When you have multiple sessions, it is possible to have multiple
persistent objects that represent the same object in the database.
For example, a thread belonging to session A accesses object X.
Then a thread belonging to session B accesses object X. There are
two persistent objects that represent X. Each one is a
representation of the same object in the database. If you use the ==
operator on session A’s X and session B’s X, the result is that they
are not identical; they are not the same object. Within a session,
ObjectStore preserves object identity.
Release 3.0 53

Which Threads Can Access Which Persistent Objects?
Example of Multiple Sessions

The following example shows some actions you can and cannot
perform when you have multiple sessions. In this example,
suppose you have

• sessionA and sessionB

• threadA is associated with sessionA

• threadB is associated with sessionB

In threadA, you start a transaction and read the contents of a
persistent object called objectA. Since threadA is associated with
sessionA, objectA belongs to sessionA. You commit the
transaction with ObjectStore.RETAIN_UPDATE.

At this point, in threadB you can read or modify objectA as long as
there is no transaction in progress in sessionB. However, any
modifications will be discarded when sessionA starts a
transaction.

Application Responsibility

It is the responsibility of the application to ensure that
noncooperating threads act on persistent objects only in the ways
allowed when a transaction is not in progress.

If you have a Java static variable that contains a persistent object
and there are two separate sessions, you must decide which
session owns the static variable. In other words, if there is a Java
static variable whose value is a persistent object, that persistent
object is associated with one session.
54 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Effects of Committing a Transaction

When a thread commits a transaction, it affects only those
persistent objects that belong to the same session that the thread
belongs to.

Caution You must ensure that an object never refers to an object that
belongs to a different session. This is crucial because transitive
persistence (performed when committing a transaction) must
never reach an object that belongs to another session. If it does,
ObjectStore throws ObjectStoreException.

Array objects When a thread commits a transaction, if ObjectStore reaches an
object whose class does not implement IPersistent, ObjectStore
treats the object as a transient object and migrates it to a database.
This works correctly for immutable classes such as Integer and
String. For array objects, this can cause unpredictable results,
because one session might modify the object while another
session is using the old contents.

API Objects and Sessions

Each ObjectStore API object is related to one session. These
metaobjects are

• Database

• DatabaseRootEnumeration

• DatabaseSegmentEnumeration

• Segment

• SegmentObjectEnumeration

• Transaction

If you open the same database from two noncooperating
transactions, each session has its own Database object to represent
the database. These Database objects are not identical, that is, ==
returns false.

If you try to use a database in the wrong session, ObjectStore
throws ObjectStoreException.
Release 3.0 55

Description of Concurrency Rules
Description of Concurrency Rules

ObjectStore allows multiple readers or one writer of an object at
any given time. The term one writer implies one session in any
process. In a session, two cooperating threads that are both
updating an object count as one writer. Two threads from
different processes do not cooperate and, therefore, count as two
writers.

If you use Multiversion Concurrency Control (MVCC), there can
be one writer and multiple readers. See Chapter 10, Controlling
Concurrency, on page 317.

See also Handling Deadlocks on page 123.

Granularity of Concurrency

ObjectStore locks data at the page level. ObjectStore acquires a
read lock on the object the first time the Java application reads or
writes the contents of the object in a transaction. When that
happens, the underlying C++ ObjectStore acquires a read lock on
all pages used to store the object, as well as additional locks on
other internal data structures (the info segment and schema
segment). There is also Java-specific metadata that gets locked.

On Solaris and Windows, the size of a page is 4 KB.

Converting Read Locks to Write Locks

When a Java application modifies an object for which it already
has a read lock, ObjectStore does not necessarily convert the read
lock to a write lock immediately. The ObjectStore
setLazyWriteLocking() method controls this behavior. If lazy write
locking is true (the default) then ObjectStore only acquires write
locks when it attempts to write the modified contents of the object
to the database. That occurs either at commit time or when and if
the application calls ObjectStore.evict() on the modified object.
56 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Description of ObjectStore Properties

When you create a session, you can specify a properties argument.
This section provides the following information about this
argument:

• About Property Lists Relevant to ObjectStore on page 57

• Description of COM.odi.applicationName on page 58

• Description of COM.odi.cacheSize on page 58

• Description of COM.odi.disableWeakReferences on page 59

• Description of COM.odi.migrateUnexportedStrings on page 59

• Description of COM.odi.ObjectStoreLibrary on page 60

• Description of COM.odi.password and COM.odi.user on
page 60

• Description of COM.odi.product on page 60

• Description of COM.odi.stringPoolSize on page 64

• Description of COM.odi.trapUnregisteredType on page 65

• on page 65

About Property Lists Relevant to ObjectStore

When you create a session, there are two relevant property lists.

• The java.util.Properties object that is the second argument to the
method that creates the session

• The system property list

Finding the value of a
property

To find the value of a property, ObjectStore checks the
java.util.Properties object. If it provides a value, ObjectStore uses
it. If it does not provide a value, ObjectStore checks the system
property list.

Passing a property
value

When you want to pass a property value to the method that
creates a session, you typically put it in the java.util.Properties
object that is an argument to the method that creates the session.

There is only one system property list for each Java VM. If there
are multiple sessions in the same Java VM, they all use the same
system property list. For more information about system
properties, see System.getProperty, in section 20.17.9 of the Java
Language Specification.
Release 3.0 57

Description of ObjectStore Properties
Defining a system
property

All ObjectStore property names start with COM.odi. You can pass
in property information by defining it as a system property. For
example:

Properties props = System.getProperties();
props.put("COM.odi.useDatabaseLocking", "true");
Session session = Session.create(null,props);

There is also a System.setProperties() method that resets the
System property list.

The JDK allows you to specify a system property by including

-Dparameter=value

on the java command line before the class name. Each such
specification defines one system property. Not all Java virtual
machines run this way.

Defining a Properties
object

If you want to construct your own property list, the type of the
property list argument is java.util.Properties. For example:

Properties props = new Properties();
props.put("COM.odi.useDatabaseLocking", "true");
Session session = Session.create(null,props);

Description of COM.odi.applicationName

Set the COM.odi.applicationName property to the name of the
application for the current client. This allows users of the
LockTimeoutBlocker class and the ossvrstat utility to retrieve
information about clients involved in concurrency conflicts. When
you set this property, it can provide information about your
application to other clients.

Description of COM.odi.cacheSize

The COM.odi.cacheSize property specifies the size of the C++
client cache in bytes. The default is 8 MB. If the value is a String
that starts with 0x or 0X, ObjectStore treats the value as a
hexadecimal number. ObjectStore rounds the cache size down to
the nearest whole number of pages.

For information about how to determine the optimum cache size,
see the book ObjectStore Management, Chapter 3, OS_CACHE_SIZE
environment variable.
58 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Description of COM.odi.disableWeakReferences

The COM.odi.disableWeakReferences property defaults to "false".
This means that ObjectStore uses the weak reference facility of the
JDK. If you set this property to "true", it disables the weak
reference facility and ObjectStore does not use it.

When you start the first session in a Java process, the setting of the
COM.odi.disableWeakReferences property is in effect for the
duration of the Java process. If you terminate the session and start
another session with a different value for the
COM.odi.disableWeakReferences property, the new value is
ignored.

A weak reference to an object is a reference that does not prevent
the object from being garbage collected by the Java VM’s garbage
collector. ObjectStore uses weak references in its internal object
table to hold references to unmodified persistent objects. If your
program does not have any references to a persistent object and
the reference in the object table is the only reference, the object can
be garbage collected. If the persistent object has been modified
and the changes have not yet been saved, ObjectStore uses strong
references. Strong references do not allow the object to be garbage
collected.

The weak reference facility in the JDK 1.1 is implemented in such
a way that it prevents unmodified persistent objects from being
garbage collected. This is corrected in the JDK 1.2. To use your
database with the JDK 1.2, you must upgrade it. See Upgrading
Databases for Use with the JDK 1.2 on page 106.

Description of COM.odi.migrateUnexportedStrings

The COM.odi.migrateUnexportedStrings property controls what
happens when ObjectStore encounters a cross-segment reference
to an unexported String object. If this property is not set or if it is
set to true, ObjectStore creates a new String object that has the
same value as the referenced object. ObjectStore places this new
string in the same segment as the referring object and substitutes
this new string for the referenced string. If this property is set to
false, ObjectStore throws ObjectNotExportedException if it
encounters a reference to a string in another segment and that
string is not exported.
Release 3.0 59

Description of ObjectStore Properties
Description of COM.odi.ObjectStoreLibrary

COM.odi.ObjectStoreLibrary specifies the name of the native C++
library that contains the ObjectStore schema and native methods
for the application.

If you use Java/C++ interoperability, you must specify this
property. If you do not use any C++ libraries in your application,
you do not need to specify this property. The standard library
supports COM.odi.coll collections, which are Java peer objects. A
custom library is needed for application-specific peer classes.

You must specify a name that is acceptable to
System.Load.Library() and not an explicit path. The name should
follow platform conventions for library names. If you do not
specify this property, ObjectStore uses the standard library, which
provides for primary Java objects but not for Java peer objects. If
your ObjectStore Java application is accessing C++ classes, you
want the library that provides for Java peer objects.

For additional information, see Developing ObjectStore Java
Applications That Access C++, Chapter 4, Building the Application.

Description of COM.odi.password and COM.odi.user

COM.odi.user and COM.odi.password allow you to supply a user
name and a password when the ObjectStore Server has Name
Password set for the Authentication Required Server parameter.

Description of COM.odi.product

COM.odi.product allows you to run multiple simultaneous
sessions against different Object Design Java products in the same
Java VM. Each Object Design Java product runs in its own session.

You must separately obtain each Object Design Java product that
you want to use. When you purchase ObjectStore, neither PSE nor
PSE Pro is included. To use PSE or PSE Pro, you must have a copy
of PSE or PSE Pro.

Your CLASSPATH environment variable must include an entry for
each Object Design Java product that you want to use. For
example, if you want to use ObjectStore and PSE Pro, you must
have entries for both osji.zip and pro.zip in your CLASSPATH. The
order of the entries does not matter.
60 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
When you use multiple Object Design Java products, they must be
compatible with each other. If they are not,
FatalApplicationException is thrown.

You can set the COM.odi.product property to one of the following
three values (case is not significant):

• PSE

• PSEPro

• ObjectStore

The COM.odi.product property applies to one session; it is not
global. In other words, each session has a product attribute. After
you start a session, you cannot change the value of
COM.odi.product for that session.

With the COM.odi.product property, a single process can run all of
the following at the same time:

• One PSE session

• Multiple PSE Pro sessions

• One ObjectStore session

You can create a session without explicitly setting the
COM.odi.product property. In this case, Object Design software
checks the Java system property list. If it finds a value for
COM.odi.product, it uses that value. If it does not find a value, the
default is that the software looks for PSE Pro, then PSE, then
ObjectStore, and uses the first product it finds.

There are many ways this feature can be useful. For example, an
application can:

• Open a PSE database in one session and an ObjectStore
database in another session and use both.

• Copy data from a database created with one product to a
database created with another product.

The use of COM.odi.product to copy data among databases created
with different products requires several steps. For example, to
copy data from a PSE database to an ObjectStore database, you
must do the following in the PSE session:

1 Open the source database.

2 Read the objects you want to copy.
Release 3.0 61

Description of ObjectStore Properties
The ObjectStore.deepFetch() method is useful for doing this.

3 Commit the transaction with ObjectStore.RETAIN_READONY.

4 Close the source database and specify true to retain the
persistent objects as transient objects.

If you do not close the database, the persistent objects remain
associated with the session in which you read them. This
prevents another session from storing them in another
database.

Then, in the ObjectStore session, you must

5 Make the objects reachable from the destination database.

6 Commit the transaction.

ObjectStore uses transitive persistence to store all reachable
objects in the destination database.

Here is an example of code that performs these steps.
62 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
import COM.odi.*;
import COM.odi.util.*;
import java.util.Properties;

class CopyToOSJI implements ObjectStoreConstants {
public static void main(String[] args) {

/* Create some data in a PSE database and then read it out. */

Properties properties = new Properties();
 properties.put("COM.odi.product", "PSE");

Session.create(null, properties).join();
Database database = Database.create(

"pse.odb", ALL_READ | ALL_WRITE);

Transaction.begin(UPDATE);
OSVector vector = new OSVector();
vector.addElement(new Integer(3));
vector.addElement(new Integer(4));
database.createRoot("vector", vector);
Transaction.current().commit();

Transaction.begin(READONLY);
vector = (OSVector)database.getRoot("vector");
ObjectStore.deepFetch(vector);
Transaction.current().commit(RETAIN_READONLY);

 /* Close the database and specify true
to retain persistent objects as transient objects. */

database.close(true);
Session.leave();

/* Copy the data to an ObjectStore database. */

properties.put("COM.odi.product", "ObjectStore");
Session.create(null, properties).join();
database = Database.create("osji.odb",

ALL_READ | ALL_WRITE);

Transaction.begin(UPDATE);
database.createRoot("vector", vector);
Transaction.current().commit();
database.close();

}
}

Release 3.0 63

Description of ObjectStore Properties
Description of COM.odi.stringPoolSize

The COM.odi.stringPoolSize property allows you to specify how
many newly created strings ObjectStore maintains in the string
pool for the current session. The default is "100".

When ObjectStore is about to migrate a string to the database, it
first checks the string pool for an identical string. If it finds one, it
uses the string that is already stored in the database instead of
adding a new identical string to the database. The information
about which strings are available to be shared is maintained only
for the current transaction. The strings that are available to be
shared are maintained in a string pool. ObjectStore resets the
string pool to empty at the start of each transaction.

For example, suppose you create two instances of a Person object
in a transaction. In each instance, the value of the name field is Lee.
If you store both instances in the database in the same transaction,
ObjectStore adds only one instance of the string "Lee" to the
database. This is true even though the Java VM might contain two
instances of the string "Lee". When ObjectStore writes the first
"Lee" string in the database, it notes it in the string pool. Before
ObjectStore stores the next instance of "Lee" in the database, it
checks the string pool to see if an identical instance is already in
the database.

Continuing the example, suppose you use two transactions and
you store one instance of Person in each transaction. The result is
that there are two identical "Lee" strings in the database. This is
because ObjectStore resets the string pool to be empty at the start
of each transaction. Consequently, ObjectStore cannot reuse the
"Lee" string from the previous transaction.

Caution If you use ObjectStore.destroy() to destroy strings explicitly, you
might want to turn off string pooling, so that you do not
inadvertently destroy a string that is shared by different objects.
Alternatively, you can use the persistent GC to reclaim strings
when they are no longer referenced. Using the GC is usually
preferable to explicitly calling destroy(), because it is safer to let
the persistent GC collect unreachable strings. Also, this approach
is often more efficient and results in less database fragmentation.
64 ObjectStore Java API User Guide

Chapter 3: Using Sessions to Manage Threads
Description of COM.odi.trapUnregisteredType

The COM.odi.trapUnregisteredType property is useful for
troubleshooting ClassCastExceptions. The default is that this
property is not set, and it is usually best to use the default.

When ObjectStore encounters an object of a type for which it does
not have information (that is, the type is unregistered), it checks
the setting of the COM.odi.trapUnregisteredType property.

If the property is not set, ObjectStore creates an instance of the
UnregisteredType class to represent the object of the unknown
type. Your application continues to run as long as it does not try
to use the UnregisteredType object. Often, this can be fine because
your application has no need for that particular field. However, if
you do try to use the object of the unregistered type, ObjectStore
throws ClassCastException.

If COM.odi.trapUnregisteredType is set, ObjectStore does not create
an UnregisteredType object. Instead, it throws
FatalApplicationException and provides a message that indicates the
name of the unregistered class. For additional information, see
Handling Unregistered Types on page 184.
Release 3.0 65

Description of ObjectStore Properties
66 ObjectStore Java API User Guide

Chapter 4
Managing Databases

You create databases to store your objects. The Database class
provides the API for creating and managing databases.

The Java interface to ObjectStore supports rawfs databases. For
information about rawfs databases, see the book ObjectStore
Management.

Contents This chapter discusses the following topics:

Creating a Database 68

Creating Segments 72

Opening and Closing a Database 74

Moving or Copying a Database 80

Performing Garbage Collection in a Database 81

Schema Evolution: Modifying Class Definitions of Objects in a Database
86

Destroying a Database 95

Obtaining Information About a Database 96

Implementing Cross-Segment References for Optimum Performance
99

Database Operations and Transactions 104

Upgrading Databases for Use with the JDK 1.2 106
Release 3.0 67

Creating a Database
Creating a Database

The Database class is an abstract class that represents a database.
When you create a database,

• There must be an active session or ObjectStore throws
ObjectStoreException.

• A transaction must not be in progress, or ObjectStore throws
TransactionInProgressException.

Databases are cross-platform compatible. You can create
databases on any supported platform and access them from any
supported platform.

This section discusses the following topics:

• Method Signature for Creating a Database on page 69

• Example of Creating a Database on page 69

• Result of Creating a Database on page 70

• Specifying a Database Name in Creation Method on page 70

• When the Database Already Exists on page 71

• Discussion of Installing Schema upon Database Creation on
page 71
68 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Method Signature for Creating a Database

To create a database, call the static create method on the Database
class and specify the database name and an access mode. The
method signature is

public static Database create(String name, int fileMode)

ObjectStore throws AccessViolationException if the access mode
does not provide owner write access.

Example of Creating a Database

For example:

import COM.odi.*;
class DbTest {

void test() {
Database db = Database.create("objectsrus.odb",

ObjectStore.OWNER_WRITE);
...

}
}

This example creates an instance of Database and stores a
reference to the instance in the variable named db. The
Database.create method is called with two parameters.

The first parameter specifies the pathname of a file. The path can
specify a relative name or a fully qualified name. It must always
specify a file that is one of the following:

• Local.

• In a mounted directory.

• In an unmounted remote directory—in this case the file must
be identified by a pathname that specifies a remote host.

An ObjectStore Server must be available for the directory that
contains the specified file.

The second parameter specifies the access mode for the database.

Terminology note Database is an abstract class, so ObjectStore actually creates an
instance of a subclass that extends Database. From your point of
view, it does not matter whether ObjectStore creates an instance of
Database or an instance of a Database subclass.
Release 3.0 69

Creating a Database
Result of Creating a Database

The result is a database named "objectsrus.odb" with an access
mode that allows the owner to modify the database. The example
stores the reference to the Database object in the db variable. This
means that db represents, or is a handle for, the objectsrus.odb
database.

For each database you create, ObjectStore creates an instance of
Database to represent your database. Each database is associated
with one instance of Database. Consequently, you can use the ==
operator to determine whether or not two Database objects in the
same session represent the same database, for example, the
following method returns true:

boolean checkIdentity(String dbname) {
Database db = Database.create(dbname,

ObjectStore.OWNER_WRITE);
Database dbAgain = Database.open(dbname,

ObjectStore.UPDATE);
return (db == dbAgain);

}

Specifying a Database Name in Creation Method

When you create or open a database, you can specify or pass a
database name that is a relative name, an absolute operating
system pathname, or a rawfs pathname. ObjectStore takes into
account local network mount points when interpreting
pathnames. A pathname can refer to a database on a remote host.
However, an ObjectStore Server must be available to the local host
of the directory that contains an ObjectStore database.

If you want to refer to a database on a remote host for which there
is no local mount point, you can use a Server host prefix. This is
the name of the remote host followed by a colon (:), as in
oak:/foo/bar.odb or jackhammer:c:\bob\mydb.odb. On Windows,
you can also use UNC pathnames, as in \\oak\c\foo\bar.odb.

Also, you can use locator files to allow access to additional hosts.
See ObjectStore Management for information.
70 ObjectStore Java API User Guide

Chapter 4: Managing Databases
When the Database Already Exists

If you try to create a database that already exists, ObjectStore
throws DatabaseAlreadyExistsException. Before you create a
database, you might want to check to see if it exists and destroy it
if it does. For example, you can insert the following just before you
create a database:

try {
Database.open(dbName, ObjectStore.UPDATE).destroy();

} catch(DatabaseNotFoundException e) {
}

Warning Do this only if you want to destroy and recreate your database.
Otherwise, invoke Database.open().

Discussion of Installing Schema upon Database Creation

The Database.create() method has an overloading that allows you
to install the schema in batch mode rather than incrementally. The
default is that ObjectStore performs schema installation as
needed. The advantage of batch schema installation is that
concurrency conflicts due to schema installation are minimized.
The disadvantage is that database creation takes a little longer and
the initial database size is larger. See Installing Schema
Information in Batch Mode on page 333.
Release 3.0 71

Creating Segments
Creating Segments

ObjectStore creates each database with one segment that you can
use to store objects. A segment is a variable-sized region of disk
space that ObjectStore uses to cluster objects stored in the
database. Initially, the size of the segment is about 3 K. As you
store additional objects in the segment, ObjectStore increases the
size of the segment automatically.

To create additional segments, use the Database.createSegment()
method. To locate a segment by its ID, use the
Database.getSegment() method. To retrieve the segment that
contains a particular object, call the Segment.of() method on that
object.

The initial segment in a database is the default segment. To
change the default segment, invoke the
Database.setDefaultSegment() method.

To lock all objects in a segment, see Locking Objects, Segments,
and Databases to Ensure Access on page 328.

For additional information about segments, see Managing
Databases in Chapter 1 of ObjectStore Management.

Storing Objects in a Particular Segment

You can store objects in different segments by changing which
segment is the default segment or by explicitly storing an object in
a particular segment. Distributing objects can improve
performance, but the following tradeoffs must be considered:

• If two objects are in the same segment, the time required to read
or update both decreases.

• If two objects are in different segments, the risk of lock
contention when you access only one of them is eliminated.

To make a persistent reference from an object in one segment to an
object in another segment, the object in the other segment (the
referenced object) must be exported. See Implementing Cross-
Segment References for Optimum Performance on page 99 for
additional information about distributing objects among
segments.
72 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Determining If a Database or Segment Is Transient

Sometimes there are Java peer objects that identify C++ objects
that have been transiently allocated. ObjectStore stores these C++
objects in the transient database and transient segment. Java
primary objects are never in the transient database or transient
segment, even if they are transient. ObjectStore creates transient
segments as part of some peer object operations. You cannot use
ObjectStore to create or manipulate transient segments.

If you try to retrieve the segment or database of a transient
primary object, ObjectStore throws ObjectNotPersistentException.
To determine whether or not a database or segment is transient,
you can do the following:

CPlusPlus.getTransientSegment() == segment
CPlusPlus.getTransientDatabase() == database

Iterating Through the Segments in a Database

To obtain an enumeration of the segments in a database, call the
Database.getSegments() method. The signature is

public DatabaseSegmentEnumeration getSegments()

This method returns a DatabaseSegmentEnumeration object. After
you have this object, you can use these methods to iterate over the
segments in the enumeration:

• DatabaseSegmentEnumeration.nextElement()

• DatabaseSegmentEnumeration.nextSegment()

• DatabaseSegmentEnumeration.hasMoreElements()

If you or another session add a segment to a database after you
create an enumeration, the enumeration might or might not
include the new segment. If it is important for the enumeration to
accurately list all segments, you should recreate the enumeration
after you create the segment.

After you create an enumeration, a segment in the enumeration
might be destroyed. If you use the enumeration to try to access a
destroyed segment, ObjectStore skips the destroyed segment.
However, if you retrieve a segment with
DatabaseSegmentEnumeration.nextElement() or nextSegment()
and then the segment is destroyed, ObjectStore throws
SegmentNotFoundException if you try to use the destroyed segment.
Release 3.0 73

Opening and Closing a Database
Opening and Closing a Database

A database can be either open or closed. A database must be open
before you can store or access objects in that database.When an
application opens a database, it does not matter whether

• A transaction is in progress

• The database is already open

When an application closes a database, a transaction cannot be in
progress and the database must be open.

This section discusses the following topics:

• Opening a Database on page 74

• Possible Open Modes on page 75

• Opening the Same Database Multiple Times on page 76

• Closing a Database on page 77

• Automatic Opens of a Database on page 79

• Objects in Closed Databases on page 79

Opening a Database

When you open a database, it does not matter whether there is a
transaction in progress, nor does it matter whether the database is
already open.

When you create a database, ObjectStore creates and opens the
database. To open an existing database, call the static
Database.open() method. The method signature is

public static Database open(String name, int openMode)

For example:

Database db = Database.open("myDb.odb",
ObjectStore.READONLY);

The first parameter specifies the pathname of your database. The
second parameter indicates the open mode of the database.
74 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Possible Open Modes

ObjectStore provides constants that you can specify for the
openMode parameter to Database.open(). The constants you can
specify for openMode are

• ObjectStore.UPDATE to read and modify a database

• ObjectStore.READONLY to read but not modify a database

• ObjectStore.MVCC allows you to open the database for MVCC
(multiversion concurrency control). This allows you to read the
database, but it does not block another session from updating
the database.

Incorrect attempts to
modify

If you open a database with ObjectStore.READONLY or
ObjectStore.MVCC, and attempt to modify an object, ObjectStore
throws UpdateReadOnlyException when you try to commit the
transaction.

Example Suppose you previously created and closed a database that is
represented by an instance of a Database subclass stored in the db
variable. You can call the instance open() method to open your
database this way:

db.open(ObjectStore.READONLY);

You can use the static class open() method this way:

db = Database.open("myDb.odb", ObjectStore.READONLY);

Typically, both lines cause the same result. However, they might
cause different results if a database has been destroyed and
recreated.

To recover the database, open it for update. This automatically
recovers the database if necessary. Alternatively, you can run the
osjcheckdb utility with the -openUpdateForRecovery option.

To lock all objects in a database, see Locking Objects, Segments,
and Databases to Ensure Access on page 328.
Release 3.0 75

Opening and Closing a Database
Opening the Same Database Multiple Times

Each subsequent opening of a database after the initial open
operation returns the same database object. For example:

db1 = Database.open("foo", ObjectStore.UPDATE);
db2 = Database.open("foo", ObjectStore.UPDATE);

The expression db1 == db2 returns true. They refer to the same
database object. Consequently, a call to db1.close() or db2.close()
closes the same database. No matter how many times you open a
database, a single call to the close() method closes the database.
(This is different in the C++ interface to ObjectStore. In that
interface, for example, if you call open() four times and close()
three times all on the same database, the database is still open.)
76 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Closing a Database

To close a database, call the close() method on the instance of the
Database subclass that represents the database, for example,

db.close();

You cannot close a database when a transaction is in progress. The
database you want to close must be open.

Object state after
close

When you close a database, all persistent objects that belong to
that database become stale or transient. If the last committed
transaction that operated on the database retained persistent
objects, you can use an overloading of close() that allows you to
specify what should happen to the retained objects. (For
information about retained objects, see Committing Transactions
to Save Modifications on page 153.) The method signature is

public void close(boolean retainAsTransient)

Specify true to make retained objects transient. If you specify false,
it is the same as calling the close() method without an argument.
All access to retained objects ends.

Suppose you close a database and make retained objects transient.
In the next transaction, if you reread an object from the database
that you retained as a transient object, you then have two separate
copies of the same object. One object is transient and one object is
persistent. You do not have two references to a single object.
When you close a database, all object identity is gone. After you
close a database, the database is still associated with the session in
which it was closed.

If you do not close If you do not close a database, ObjectStore closes it when you shut
down ObjectStore.

Database identity Within a session, ObjectStore maintains database identity even
after you close a database. For example, consider the following
code:

import COM.odi.*;

public class Goo {
public static void main(String[] args) {

Session session = Session.create(null, null);
session.join();
try {

 try {
Release 3.0 77

Opening and Closing a Database
Database db = Database.create("my.odb", 0664);
db.close();

} catch (DatabaseAlreadyExistsException e) {
}
Database db1 = Database.open("my.odb",

ObjectStore.READONLY);
db1.close();
Database db2 = Database.open("my.odb",

ObjectStore.READONLY);
System.out.println(db1 == db2);

} finally {
 session.terminate();

 }
 }

}

If you run a program with the previous code, the system displays
true.

In general, it is best to leave databases open for the entire session
and write your application so that it shuts down ObjectStore
before it exits.

However, keeping databases open consumes some ObjectStore
Server resources. Also, there is a limit to the number of databases
the ObjectStore Server can keep open at one time. This depends on
the number of open files that the operating system permits, which
varies by platform.
78 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Automatic Opens of a Database

Sometimes an application traverses a reference to a database that
has not been explicitly opened. ObjectStore automatically opens
the database according to the default open mode. The default
open mode is one of the following:

• ObjectStore.READONLY

• ObjectStore.UPDATE

• ObjectStore.MVCC

An application can call the ObjectStore.setAutoOpenMode()
method to change the default open mode. A call to the
ObjectStore.getAutoOpenMode() method returns the current open
mode. The default autoopen mode is READONLY. When you set
the autoopen mode, it affects only the current session.

If you know the name of a database that has been automatically
opened, you can use Database.open() to obtain the already open
database. Another way to obtain a handle to an automatically
opened database is to call Database.of() on an object from the
automatically opened database.

If you do not close a database that ObjectStore automatically
opens, ObjectStore closes it when you shut down ObjectStore.

Disabling autoopen You can disable the ability of ObjectStore to automatically open
databases. Call the ObjectStore.setAutoOpenMode() method and
specify the ObjectStore.DISABLE_AUTO_OPEN constant. If you do
disable automatic opens and your application tries to follow a
reference to an unopened database, you receive
DatabaseNotOpenException.

Objects in Closed Databases

Objects in a closed database are not accessible. However, if you
close a database with an argument of true, ObjectStore retains the
persistent objects as transient objects.
Release 3.0 79

Moving or Copying a Database
Moving or Copying a Database

You can use the ObjectStore utilities oscopy and osmv to copy and
move a database. See ObjectStore Management for information.

You can move or copy databases among different supported
platforms.
80 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Performing Garbage Collection in a Database

The ObjectStore persistent garbage collector (GC) collects
unreferenced Java objects and ObjectStore collections in an
ObjectStore database. Persistent garbage collection frees storage
associated with objects that are unreachable. It does not move
remaining objects to make the free space contiguous.

Contents This section discusses these topics:

• Background About the Persistent Garbage Collector on page 81

• API for Collecting Garbage in a Database on page 82

• API for Collecting Garbage in a Segment on page 82

• Command Line Utility for Collecting Garbage on page 84

• Running osgc on C++ Databases or Segments on page 84

Background About the Persistent Garbage Collector

The ObjectStore persistent GC is independent of the Java VM GC.
The Java VM GC is strictly a transient object garbage collector. It
never operates on objects in the database.

Applications can continue to use a database while persistent GC
is in progress. GC locks portions of a segment as needed, as if it
were just another application. In this way, the GC minimizes the
number of pages that are locked and the duration for which the
locks are held. Also, the GC retries operations when it detects lock
conflicts.

By default, the GC runs with a transaction priority of zero.
Consequently, it is the preferred victim when the Server must
terminate a transaction to resolve a deadlock. At a later time, the
GC redoes the work that was lost when the transaction was
aborted.

The GC uses read and write lock timeouts of short duration. This
avoids competition with other processes for locks. If the GC
cannot acquire a lock because of a timeout, it retries the operation
at a later time.

The GC performs its job in two major phases. In the mark phase,
the GC identifies the unreachable objects. In the sweep phase, the
GC frees the storage used by the unreachable objects.
Release 3.0 81

Performing Garbage Collection in a Database
A segment is the smallest storage unit that can be garbage
collected. You can specify a segment or a database to be garbage
collected. It is usually best to avoid destroying strings (or objects)
altogether and let the persistent garbage collector take care of
destroying such unreachable objects. The persistent garbage
collector can typically destroy and reclaim such objects very
efficiently, since it can batch such operations and cluster them
effectively. If you set up the GC to run when the system is lightly
loaded, you can effectively defer the overhead of the destroy
operations to a time when your system would otherwise be idle,
thus getting greater real throughput from your application when
you really need it.

The persistent GC never removes tombstones for exported
objects. For unexported objects, the GC treats tombstones the
same way that it treats other objects. The GC removes tombstones
if they are not referenced. In other words, the GC removes only
unreferenced tombstones. This behavior preserves the safe
detection of bad references.

API for Collecting Garbage in a Database

To perform garbage collection on a database, call the
Database.GC() method. This method invokes the Segment.GC()
method on each the segment in the database. The method
signature is

public java.util.Properties GC(java.util.Properties GCproperties)

For the GCproperties parameter, specify null or a Properties object
for the garbage collection operation. The properties are described
in the next section as they are the same for Segment.GC(). If the
GCproperties parameter is null, ObjectStore uses the default
properties as defined in the documentation for Segment.GC(). The
properties you can specify are the same as the properties for
Segment.GC().

API for Collecting Garbage in a Segment

To perform garbage collection on a segment, call the Segment.GC()
method. The signature is

public java.util.Properties GC(java.util.Properties GCproperties)

A transaction must not be in progress for the current session. The
database that contains the segment you want to garbage collect
82 ObjectStore Java API User Guide

Chapter 4: Managing Databases
must not be open for the current session. You cannot perform GC
on the transient segment. If you try to, ObjectStore throws
SegmentException.However, you must open it to create a Database
object to represent it. After you close the database you want to
garbage collect, you can call Database.GC() on the Database object
that represents your closed database.

The GCproperties parameter specifies a list of GC properties or
null. When you specify null, ObjectStore checks the system
properties and uses the default properties, which are suitable for
most operations. For more control over GC, you can specify one
or more of the following properties. ObjectStore uses the default
for any property you do not specify.

• COM.odi.gc.retries is an int that defaults to 10. This indicates the
number of times the GC tries to resume the sweep phase of
garbage collection after it waits for a lock.

• COM.odi.gc.retryInterval is an int that defaults to 1000. This
value indicates the number of milliseconds the sweep
operation waits between sweep attempts for a concurrency
conflict to be resolved before it tries to resume the sweep.

• COM.odi.gc.lockTimeOut is an int that defaults to 1000. This
value indicates the number of milliseconds the sweep
operation waits for a lock conflict to be resolved. If it is not
resolved in the specified length of time, the GC aborts the
current transaction and starts a new transaction. ObjectStore
rounds this value up to the nearest second.

• COM.odi.gc.transactionPriority is an int that defaults to 0. This is
the transaction priority associated with transactions started by
the GC. The Server uses this specification when it must
determine which transaction must be the victim in a deadlock.
This number is intentionally low so that the GC transaction is
the deadlock victim of choice.

• COM.odi.gc.displayGarbage is an int that defaults to 0. If it is not
0, objects that are unreachable are not destroyed. Instead, they
are displayed. The argument controls the level of detail in the
display:

0 No display

1 Lists the total number of candidates for garbage
collection
Release 3.0 83

Performing Garbage Collection in a Database
The GC() method returns a Properties object that contains
information about the results of the garbage collection. The
properties in this object include

• COM.odi.gc.reclaimedObjects is the number of objects that were
collected by the GC operation.

• COM.odi.gc.reachableObjects is the number of objects that the
GC found to be reachable.

Command Line Utility for Collecting Garbage

The command line utility for collecting garbage in a database is
osgc. See page 378.

Running osgc on C++ Databases or Segments

You can run the osgc utility on C++ databases and segments, but
you must observe the following restrictions:

• The database or segment must be self-contained. There cannot
be any pointers in another database or segment that point to
objects in the database or segment on which you are
performing the GC. Similarly, there cannot be any dumped
references that point to objects in the segment or database being
garbage collected. (A dumped reference is encoded in a char*
string that is obtained by invoking the dump() member function
on any ObjectStore reference, for example, os_
reference.dump().)

The osgc utility is not aware of such pointers and can
erroneously reclaim such objects. If the database or segment
contains objects that are the targets of such pointers, you can
work around this by doing one of the following:

- Associate such objects with database roots.

- Make such objects the targets of protected references. (A
protected reference uses os_reference_protected.)

2 Reserved

3 Lists the location of each candidate for garbage
collection

4 Lists the roots of the object graphs of the candidates for
garbage collection
84 ObjectStore Java API User Guide

Chapter 4: Managing Databases
The osgc utility recognizes as reachable and, so, never collects
objects that are associated with database roots and objects that
are the targets of protected references.

• The database or segment cannot contain classes that have
union members. The osgc utility makes no provision for the
discriminant functions needed to examine instances of classes
that contain unions.

• The database or segment cannot contain instances of os_
reference_local or os_reference_protected_local. Such
references can be resolved only in the context of a database, and
osgc does not make provisions for resolving these references.

• You must not simultaneously run multiple osgc processes
against the same database or segment. You must synchronize
osgc processes so that a new osgc process on a database or
segment is initiated only after the previous osgc process on the
database or segment has run to completion.

• The database on which you run the osgc utility must have been
created with ObjectStore 5.0 or a subsequent release. You
cannot run the osgc utility on a database that was upgraded
from an earlier release. However, you can run the osdump
utility to obtain the contents of a database from an earlier
release and then run the osload utility to store the contents in a
Release 5.0 or later database. See ObjectStore Management for
information about running these utilities.

• Databases that contain schema information about template
instantiations, including information about ObjectStore
templated collection types, contain garbage that the osgc utility
removes. This is safe and does not affect correct operation.

• You can run the osgc utility concurrently with other
applications that modify the database.
Release 3.0 85

Schema Evolution: Modifying Class Definitions of Objects in a Database
Schema Evolution: Modifying Class Definitions of
Objects in a Database

You can modify the class definitions for objects already stored in
a database. This process is called schema evolution, since a
database schema is a description of the classes whose instances
are stored in a database.

There are primarily two ways to evolve schema:

• Use the Database.evolveSchema() API.

• Use serialization with a dump/load utility.

You can always use the schema evolution API, but you should use
it when the data you must evolve contains very large object
graphs. Also, you must use the API when a database contains
instances of COM.odi.coll objects.

Use the serialization technique with the sample code provided
only when the database you want to evolve fits into heap space.
When you use the serialization technique, the database cannot
contain ObjectStore collections because they are not serializable.

The topics discussed in this section are

• When is schema evolution required?

• Preparing to use the schema evolution API

• Using the schema evolution API

• Considerations for using serialization to evolve schema

• Steps for using sample code that uses serialization with a
dump/load utility

• Sample code
86 ObjectStore Java API User Guide

Chapter 4: Managing Databases
When Is Schema Evolution Required?

If you change your class in the following way, you must evolve
the schema:

• Add or remove a persistent instance field.

• Change the type of a persistent instance field (see additional
information about indexable fields).

• Change the order of persistent instance fields.

ObjectStore initializes each new instance field with its default
value as described in section 4.6.4 of the Java Language
Specification. The new fields are not initialized with the variable
initializer even if the class defines one for the new field.

If you change the type that is associated with a persistent instance
field, ObjectStore performs a default initialization, except in cases
where both the old and new instance fields are of the following
primitive types: byte, short, int, float, or double. In this case,
ObjectStore applies the appropriate narrowing or widening
conversion to the old value and assigns that value to the new
instance field. Conversions that involve the long type cause
ObjectStore to perform a default initialization on the new field.

hashCode() Also, you might need to perform schema evolution if you add or
remove the hashCode() method. If you use the postprocessor, it
determines whether or not to add a hashCode() method. If it
previously added a hashCode() method and now it does not, or if
it previously did not add a hashCode() method and now it does,
schema evolution is required.

Inheritance You cannot use schema evolution to change the inheritance
hierarchy of a class by adding, removing, or changing a
superclass.

Allowed changes You can make the following changes to your class and you are not
required to evolve the schema:

• Add or remove class or instance methods.

• Add or remove class fields.

• Add or remove transient instance fields.

• Add or remove an implementation of an interface.
Release 3.0 87

Schema Evolution: Modifying Class Definitions of Objects in a Database
Indexable fields When you make a field indexable, the change might require
schema evolution. If a class (including its superclasses) does not
contain any indexable fields, schema evolution is required if you
make a field in the class indexable. The addition of the indexable
field changes the representation of the class.

If a class (including its superclasses) has at least one indexable
field, schema evolution is not required if you add indexes to other
fields.

Preparing to Use the Schema Evolution API

Before you can use the API to perform schema evolution on a
database, you must create a PersistentTypeSummary instance that
identifies the classes whose definitions have changed. The easiest
way to do this is to specify the -summary option when you run the
postprocessor on the updated class definitions. Be sure to run the
postprocessor on all the classes in your application at once or on a
correctly grouped batch of classes.

If the database contains collections that use indexes, you must
drop the indexes before you perform schema evolution. After you
evolve the schema, you can restore the indexes on the collection.

It is always advisable to make a copy of your database before you
evolve its schema. This allows you to restore the database if there
are errors.

To perform schema evolution, the following conditions must be
true:

• The database must not be open for read-only. It can be closed
or open-for-update.

• A transaction must not be in progress.

• There must be a PersistentTypeSummary instance that
identifies the classes whose definitions have changed.

Using the Schema Evolution API

When ObjectStore performs schema evolution, it makes the
database inaccessible to any other operation. To evolve the
schema for a database, call the Database.evolveSchema() method.
The signature is
88 ObjectStore Java API User Guide

Chapter 4: Managing Databases
void evolveSchema(String dbName,
String workdbName,
PersistentTypeSummary summary)

The dbName parameter specifies the database whose schema you
want to evolve. During schema evolution, this database is not
available to any other operation.

The workdbName parameter specifies the name of a database that
ObjectStore uses to hold a checkpoint version of the database
while schema evolution progresses. ObjectStore creates this
database as part of schema evolution and destroys it when schema
evolution is complete. This working database allows ObjectStore
to resume schema evolution if it is interrupted. For example, an
interruption can be caused by a power failure or a lack of disk
space.

The summary parameter specifies a PersistentTypeSummary object
that identifies the classes whose definitions have changed. It is
permissible for the summary to include types that have not
changed. However, if the summary does not include a type that
has changed, that type might not be evolved.

Typically, you create the summary object as follows:

1 When you run the postprocessor on your updated class
definitions, specify the -summary option.

This creates a class file.

2 Call the no-arguments constructor on this class to create the
summary object.

Under unusual circumstances, you might create the
PersistentTypeSummary object yourself. In this case, you must use
its constructor for specifying the persistent classes and included
summaries.

ObjectStore can evolve only one database at a time. This means
that if there are cross-database references, only one database at a
time is unavailable to other operations.

When you perform schema evolution on a particular class, you
must provide definitions for all superclasses that are part of the
schema for the database being evolved.
Release 3.0 89

Schema Evolution: Modifying Class Definitions of Objects in a Database
Considerations for Using Serialization to Perform Schema Evolution

To evolve a schema, you can

1 Use serialization to dump the contents of a database.

2 Modify your class definitions.

3 Reload the data.

The next two sections provide instructions for using sample code
and the sample code that does this. If you use this sample code,
you should be aware of the following issues.

java.io.Serializable To serialize objects into the database, the classes of all the objects
stored in the database must implement java.io.Serializable. If you
have a database that contains objects that do not implement
Serializable, you can modify the class definitions just to
implement Serializable, recompile them, and still access the
database. This allows you to dump the database to a file before
you make the real class modifications.

readObject() When you modify a class after doing the dump, you must ensure
that the readObject() method considers the old and new versions
of the class to be compatible. The most straightforward way to do
this is to create a static final long field called serialVersionUID in the
modified class. This field must have the same value as the serial
version UID for the original class. You can obtain the value for the
original class with the serialver utility, for example:

serialver DumpReload$LinkedList
DumpReload$LinkedList: static final long serialVersionUID =
-5286408624542393371L;

For simplicity, the sample code includes this field.

Database size The database whose schema you want to evolve must be small
enough to fit into heap space. If it is not, you must customize the
code that dumps and loads the database. You would have to
organize your data so that you do not have to serialize all the data
in the database at one time.

Large numbers of
connected objects

The use of ObjectStore.deepFetch() is a performance concern for
very large object graphs. The current implementation of
deepFetch() is not careful about bounding stack space. A
consequence of this is that it is sometimes impossible to
successfully perform the deepFetch() operation for very large
object graphs.
90 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Steps for Using Sample Schema Evolution Serialization Code

The next section provides a program that takes an argument that
causes the program to perform one of three actions:

• Create a database with some data in it, such as instances of
OSHashtable, OSVector, or linked lists.

• Use object serialization to dump data in the database to a file.

• Use object serialization to reload the data from the file.

For example, you can use the sample program to add a new field
to the LinkedList class. To do so, follow these steps:

1 Place the code in a file called DumpReload.java.

2 Set your CLASSPATH environment variable to include the
directory that contains the osjcfpout file and the
DumpReload.java file.

3 Compile the program with the command

javac DumpReload.java.

4 Run the postprocessor to annotate the DumpReload and
LinkedList classes:

osjcfp -dest osjcfpout DumpReload.class \
DumpReload$LinkedList.class

5 Create the database:

java DumpReload create data.odb

6 Use serialization to dump the data:

java DumpReload dump data.odb data.out

7 Change the LinkedList class. Do this by removing the comment
flag from the newField field in LinkedList.

8 Recompile the class:

javac DumpReload.java

9 Rerun the postprocessor to annotate the DumpReload and
LinkedList classes:

osjcfp -dest osjcfpout DumpReload.class \
DumpReload$LinkedList.class

10 Use serialization to reload the data:

java DumpReload reload data.odb data.out
Release 3.0 91

Schema Evolution: Modifying Class Definitions of Objects in a Database
Sample Code for Using Serialization to Perform Schema Evolution

Here is the sample program for using serialization to perform
schema evolution.

import COM.odi.*;
import COM.odi.util.OSHashtable;
import COM.odi.util.OSVector;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.util.Enumeration;

public class DumpReload {
static public void main(String argv[]) throws Exception {

if (argv.length >= 2) {
if (argv[0].equalsIgnoreCase("create")) {

createDatabase(argv[1]);
} else if (argv[0].equalsIgnoreCase("dump")) {

dumpDatabase(argv[1], argv[2]);
} else if (argv[0].equalsIgnoreCase("reload")) {

reloadDatabase(argv[1], argv[2]);
} else {

usage();
}

} else {
usage();

}
}

static void usage() {
System.err.println(

"Usage: java DumpReload OPERATION ARGS...\n" +
"Operations:\n" +
" create DB\n" +
" dump FROMDB TOFILE\n" +
" reload TODB FROMFILE\n");

System.exit(1);
}

/* Create a database with 3 roots. Each root contains an
OSHashtable of OSVectors that contain some Strings. */

static void createDatabase(String dbName) throws Exception {
ObjectStore.initialize(null, null);

try {
Database.open(dbName, ObjectStore.UPDATE).destroy();

} catch (DatabaseNotFoundException DNFE) {
}

92 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Database db = Database.create(dbName, 0644);

Transaction t = Transaction.begin(ObjectStore.UPDATE);
for (int i = 0; i < 3; i++) {

OSHashtable ht = new OSHashtable();
for (int j = 0; j < 5; j++) {

OSVector vec = new OSVector(5);
for (int k = 0; k < 5; k++)

vec.addElement(new LinkedList(i));
ht.put(new Integer(j), vec);

}
db.createRoot("Root" + Integer.toString(i), ht);

}
t.commit();
db.close();

}

static void dumpDatabase(String dbName, String dumpName)
throws Exception {
ObjectStore.initialize(null, null);

Database db = Database.open(
dbName, ObjectStore.READONLY);

FileOutputStream fos = new FileOutputStream(dumpName);
ObjectOutputStream out = new ObjectOutputStream(fos);

Transaction t = Transaction.begin(ObjectStore.READONLY);

/* Count the roots and write out the count. */
Enumeration roots = db.getRoots();
int nRoots = 0;
while (roots.hasMoreElements()) {

String rootName= (String) roots.nextElement();
/* Skip internal OSJI header */
if (!rootName.equals("_DMA_Database_header")) nRoots++;

}
out.writeObject(new Integer(nRoots));

/* Rescan and write out the data.
The deepFetch() call is necessary because it obtains the
contents of all objects that are reachable from root,
and makes them available for serialization. */

roots = db.getRoots();
while (roots.hasMoreElements()) {

String rootName = (String) roots.nextElement();
if (!rootName.equals("_DMA_Database_header")) {

out.writeObject(rootName);
Object root = db.getRoot(rootName);
ObjectStore.deepFetch(root);
out.writeObject(root);

}

t.commit();
Release 3.0 93

Schema Evolution: Modifying Class Definitions of Objects in a Database
out.close();
}

static void reloadDatabase(String dbName, String dumpName)
throws Exception {
ObjectStore.initialize(null, null);

try {
Database.open(

dbName, ObjectStore.OPEN_UPDATE).destroy();
} catch (DatabaseNotFoundException DNFE) {
}
Database db = Database.create(dbName, 0644);

FileInputStream fis = new FileInputStream(dumpName);
ObjectInputStream in = new ObjectInputStream(fis);

Transaction t = Transaction.begin(ObjectStore.UPDATE);

int nRoots = ((Integer) in.readObject()).intValue();
while (nRoots-- > 0) {

String rootName = (String) in.readObject();
Object rootValue = in.readObject();
System.out.println("Creating " + rootName + " " + rootValue);
db.createRoot(rootName, rootValue);

}

t.commit();
db.close();

}

static
class LinkedList implements java.io.Serializable {

private int value;
private LinkedList next;
private LinkedList prev;
//private Object newField;
static final long serialVersionUID = -5286408624542393371L;

LinkedList(int value) {
this.value = value;
this.next = null;
this.prev = null;

}
}

}

94 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Destroying a Database

Destroying a database makes all objects in the database
permanently inaccessible. You cannot recover a destroyed
database except from backups.

To destroy a database, call the destroy() method on the Database
subclass instance, for example:

db.destroy();

The database must be open-for-update and a transaction cannot
be in progress.

When you destroy a database, all persistent objects that belong to
that database become stale.
Release 3.0 95

Obtaining Information About a Database
Obtaining Information About a Database

You can call methods on a database to answer the following
questions.

• Is a Database Open? on page 96

• What Kind of Access Is Allowed? on page 97

• What Is the Pathname of a Database? on page 97

• What Is the Size of a Database? on page 97

• Which Session Is the Database or Segment Associated With? on
page 98

• Which Objects Are in the Database? on page 98

• Are There Invalid References in the Database? on page 98

Is a Database Open?

To determine whether or not a database is open, call the isOpen()
method on the database, for example:

db.isOpen();

This expression returns true if the database is open. It returns false
if the database is closed or if it was destroyed. To determine
whether false indicates a closed or destroyed database, try to open
the database.
96 ObjectStore Java API User Guide

Chapter 4: Managing Databases
What Kind of Access Is Allowed?

To check what kind of access is allowed for an open database, call
the getOpenMode() method on the database. The database must be
open or ObjectStore throws DatabaseNotOpenException. The
method signature is

public int getOpenMode()

This method returns one of the following constants:

• ObjectStore.READONLY

• ObjectStore.UPDATE

• ObjectStore.MVCC

Here is an example of how you can use this method:

void checkUpdate(Database db) {
if (db.getOpenMode() != ObjectStore.UPDATE)

throw new Error("The database must be open for update.");
}

What Is the Pathname of a Database?

To find out the pathname of a database, call the getPath() method
on the database, for example:

String myString = db.getPath();

What Is the Size of a Database?

To obtain the size of a database, call the getSizeInBytes() method
on the database. The database must be open and a transaction
must be in progress, for example:

db = Database.open("myDb.odb", ObjectStore.READONLY);
Transaction tr = Transaction.begin(ObjectStore.READONLY);
long dbSize = db.getSizeInBytes();

This method does not necessarily return the exact number of bytes
that the database uses. The value returned might be the result of
your operating system’s rounding up to a block size. You should
be aware of how your operating system handles operations such
as these.
Release 3.0 97

Obtaining Information About a Database
Which Session Is the Database or Segment Associated With?

To obtain the session with which a database or segment is
associated, call the Placement.getSession() method. The method
signature is

public Session Placement.getSession()

Which Objects Are in the Database?

The osjshowdb utility displays information about one or more
databases. This utility is useful when you want to know how
many and what types of objects are in a database. You can use this
utility to verify the general contents of the database.

Information about the osjshowdb utility is in osjshowdb:
Displaying Information About a Database on page 397.

Are There Invalid References in the Database?

The osjcheckdb utility or the Database.check() method checks the
references in a database. This tool scans a database and checks that
there are no references to destroyed objects. The most likely cause
of dangling references is an incorrectly written program. You can
fix dangling references by finding the objects that contain them
and overwriting the invalid references with something else, such
as a null value. In addition to finding references to destroyed
objects, the tool performs various consistency checks on the
database.

Information about the osjcheckdb utility is in osjcheckdb:
Checking References in a Database on page 395.
98 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Implementing Cross-Segment References for
Optimum Performance

You can improve application performance by clustering together
objects that are expected to be used together. Effective clustering
both reduces the number of disk and network transfers the
applications require and increases concurrency among
applications. You can use a segment to store groups of objects that
are accessed as a logical cluster.

ObjectStore allows an object in one segment to refer to an object in
another segment in the same database or in a different database.
The advantage of cross-segment references is that you can cluster
related objects in separate segments and also provide links among
the segments. Your database can continue to grow without
necessarily slowing down access times.

There is a procedure to follow to implement cross-segment
references that results in the best performance. A description of
the overhead involved with cross-segment references shows why
it is important to follow this procedure.

Procedure for Defining Cross-Segment References

To obtain the greatest benefit from cross-segment references, you
must do the following:

1 Create a plan for organizing your objects into clusters and for
assigning the clusters to segments. You might want to put one
or several logical clusters into a segment. Base your plan on the
size of the objects and the patterns of access.

2 In each planned segment, designate a few objects to be the
points of reference to the other objects in the segment.

3 Use the ObjectStore.migrate() method to store the designated
objects in their respective segments.

You do not want these designated objects to become persistent
through reachability when a transaction commits. (See
transitive persistence on page 15.) If they did, ObjectStore
would store them in the same segment as whatever objects
pointed to them. The migrate() method allows you to specify
the segment in which to store an object. Be sure to specify true
Release 3.0 99

Implementing Cross-Segment References for Optimum Performance
for the export argument to migrate(). For an object to be referred
to by an object in another segment, the referred-to object must
be exported.

4 Ensure that the migrated objects reference the other objects in
their clusters.

This allows the other objects to be stored in the same segment
as the object that references them. When you commit the
transaction, ObjectStore automatically stores all referenced
objects in the same segment as the migrated object, unless they
were explicitly migrated to another segment.

5 Ensure that no objects outside the cluster’s segment try to store
a reference to an object that was stored by transitive
persistence.

6 There might be some objects that are not part of a cluster, but
that must be referenced by objects in multiple segments.
Migrate such objects into convenient segments and be sure to
export them.

It is most efficient to export objects when explicitly migrating
them. Although you can call ObjectStore.export() to change an
object in the database to be an exported object, doing so can be
slow. The time it takes to export an object already in the database
is proportional to the number of objects in the segment that
contains the object.

You want to minimize the number of exported objects in each
segment. A segment that contains large numbers of exported
objects has more overhead for the persistent system data needed
to describe the exported objects. Also, references to exported
objects from within their own segments might take longer because
of the increased size of the system data.

You only need to invoke ObjectStore.migrate() on objects that are
not yet in the database. To change which segment an object is in,
see Explicitly Migrating Exported Objects on page 103. You can
call the migrate() method repeatedly with the same arguments, but
there is usually no need to do so.
100 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Exporting Objects

When you export an object, whether you use migrate() or export(),
ObjectStore

• Assigns an export ID to the exported object

• Adds the object to the export table

When you export an object that is already in the database
(export()), ObjectStore also checks every object already in the
segment to determine if it refers to the exported object. If it does,
ObjectStore updates the reference from a local reference to a
reference through the export table.

If the segment is empty or relatively empty, the actual overhead is
small because there are few, if any, objects to check. If there are
already many objects in the segment, the overhead of checking
each one can be quite large.

Consequently, it is preferable to use the ObjectStore.migrate()
method and specify true for the export argument when you store
the object in the database. This also ensures that you are storing
the object in the intended segment.

Suppose you forget to export a particular object when you store it
in the segment. You can fix this by calling the ObjectStore.export()
method on the object. However, by the time you recognize the
need to export an object, there might already be many objects in
the segment. The overhead for exporting the object can be quite
large.

With the exception of ObjectStore collection objects, you cannot
export peer objects. If you try to export a peer object that is not an
ObjectStore collection object, ObjectStore throws ObjectException.
Release 3.0 101

Implementing Cross-Segment References for Optimum Performance
How Many Exported Objects Are Needed?

You do not want too many objects in a segment to be referred to
by objects in other segments. In other words, you want to
minimize the number of exported objects in each segment.
However, there is no additional cost if you have many objects that
refer to the same exported object.

The overhead of having many exported objects in a segment
comes from having many entries in the export table. Access to an
exported object is through the export table. Having many
exported objects is less efficient than having clustered objects
because access to the exported objects requires an indirect lookup
through the export table. While the lookup is implemented with a
highly-tuned hashing mechanism, the overhead for maintaining
the export table increases as it grows. Finally, if the exported
objects are very volatile, the database locking mechanism can
result in additional wait time for users who are creating or
accessing exported objects.

For these reasons, it is desirable to design your application so that
only a relatively small number of nonvolatile objects must be
exported. The figure below shows the optimum way to set up
cross-segment references.

Higher overhead More efficient

Segment A Segment B Segment A Segment B
102 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Explicitly Migrating Exported Objects

Objects can become persistent because they are reachable from an
already persistent object or a database root. ObjectStore places the
newly persistent object in the same segment as the object from
which it can be reached. Consequently, you must be careful to
explicitly migrate those objects that must be exported.

In a transaction, if you create a situation in which an object is
referred to by objects in more than one segment, and the object is
not exported, ObjectStore throws ObjectNotExportedException
when you try to do one of the following:

• Commit the transaction.

• Evict the unexported object.

This situation can happen if an application stores a reference to a
nonexported object from one segment into an object in another
segment. The check for this does not occur when you store the
reference.
Release 3.0 103

Database Operations and Transactions
Database Operations and Transactions

For each database operation, there are rules about whether it can
be performed

• Inside a transaction

• Outside a transaction

• Both inside and outside a transaction

The following table shows which rules apply to which operations.
If your application tries to perform a database operation that
breaks a rule, you receive a run-time exception.
104 ObjectStore Java API User Guide

Chapter 4: Managing Databases
Database Operation Can Be
Performed
Inside/Outside
Transaction?

Database
Open?

acquireLock() Inside Open

check() Inside Open

close() Outside Open

create() Outside Not applicable

createRoot() Inside Open

createSegment() Inside Open

destroy() Outside Open

destroyRoot() Inside Open

GC() Outside Open

getDefaultSegment() Inside Open

getOpenMode() Both Open

getPath() Both Open

getRoot() Inside Open

getRoots() Inside Open

getSegment() Inside Open

getSegments() Inside Open

getSizeInBytes() Inside Open

installTypes Inside Open

isOpen() Both Open or closed

of() Inside Open

open() Both Open or closed

setDefaultSegment() Inside Open

setRoot() Inside Open

show() Inside Open
Release 3.0 105

Upgrading Databases for Use with the JDK 1.2
Upgrading Databases for Use with the JDK 1.2

The JDK 1.2, currently in beta testing but expected to be released
soon by Sun Microsystems, computes hash codes for String types
differently than the JDK 1.1. As a result, databases that depend on
String hash codes force the database to only be usable from the
JDK 1.1 or the JDK 1.2, but not both.

ObjectStore marks databases to specify whether the JDK 1.1 or
JDK 1.2 was used when the database was created. It then ensures
that the same JDK version is used when the database is accessed.

Databases created with releases previous to this one are assumed
to have been created with the JDK 1.1. With this release of
ObjectStore, you can use only the JDK 1.1 to access these databases
unless you upgrade them for use with the JDK 1.2. ObjectStore
provides a tool and an API for

• Upgrading databases created with the JDK 1.1 to be accessible
with the JDK 1.2.

• Marking databases as already created with the JDK 1.2.

After you upgrade a database, you can no longer use it with the
JDK 1.1.

To use the upgrade tool, see osjuphsh: Upgrading String Hash
Codes in Databases on page 402. To use the API, see
COM.odi.Upgrade.upgradeDatabaseStringHash() in the ObjectStore
Java API Reference.

The upgrade facility also allows you to mark a database as not
containing any objects that depend on String hash codes. If you
mark a database in this way, you can use either the JDK 1.1 or the
JDK 1.2 to access the database.

After you upgrade your database, Object Design recommends
that you run the garbage collector on the database. Upgrading the
database creates some garbage.

If you use the upgrade API to perform the upgrade, watch out for
a problem that involves cross-database references from the
upgraded database to other databases. If the database being
upgraded contains references to other databases, those other
databases might need to be opened during the upgrade. If they are
106 ObjectStore Java API User Guide

Chapter 4: Managing Databases
opened, the upgrade API leaves them open when it is done. The
upgrade allows the other databases to be opened regardless of
whether they have been upgraded because of the limited way in
which the other databases are required by the upgrade. However,
if the application trys to use those database after performing the
upgrade, it receives exceptions if the other database are not
already upgraded.

The workaround is to ensure that you upgrade all databases you
intend to use before you try to access any upgraded database.
Release 3.0 107

Upgrading Databases for Use with the JDK 1.2
108 ObjectStore Java API User Guide

Chapter 5
Working with Transactions

A transaction is a logical unit of work. It is a consistent and
reliable portion of the execution of a program. In your code, you
place calls to the ObjectStore API to mark the beginnings and ends
of transactions. Initial access to a persistent object must always
take place inside a transaction. Depending on how the transaction
is committed, additional access to persistent objects might be
possible.

Either the database is updated with all of a transaction’s changes
to persistent objects, or the database is not updated at all. If a
failure occurs in the middle of a transaction, or you decide to abort
the transaction, the contents of the database remain unchanged.

Contents This chapter discusses the following topics:

Starting a Transaction 110

Working Inside a Transaction 112

Ending a Transaction 115

Handling Automatic Transaction Aborts 120

Determining Transaction Boundaries 124
Release 3.0 109

Starting a Transaction
Starting a Transaction

ObjectStore provides the COM.odi.Transaction class to represent a
transaction. You should not make subclasses of this class.

This section discusses the following topics:

• Calling the begin() Method on page 110

• Allowing Objects to Be Modified in a Transaction on page 111

• Difference Between Update and Read-Only Transactions on
page 111

Calling the begin() Method

To start a transaction, call the begin() method on the Transaction
class. This returns an instance of Transaction and you can assign it
to a variable. The method signature is

Method signature public static Transaction begin(int type)

The transaction type determines whether ObjectStore waits for a
database lock. There can be only one write lock on a database.
There can be multiple read-only locks on a database.The type of
the transaction can be ObjectStore.UPDATE or
ObjectStore.READONLY.

If there is no open database when you start the current
transaction, ObjectStore tries to obtain a read lock as soon as the
session tries to open a database.

Example Transaction tr = Transaction.begin(ObjectStore.UPDATE);

This example returns a Transaction object that represents the
transaction just started. The result is stored in tr. This is an update
transaction, which means that the application can modify
database contents.
110 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
Allowing Objects to Be Modified in a Transaction

To modify persistent objects, you must specify the transaction
type to be ObjectStore.UPDATE. Also, any database you modify
must have been opened for update. Note that even if you open a
database for read-only, ObjectStore allows you to start an update
transaction. An application does not receive an exception until it
tries to modify persistent objects inside the read-only database.

If you try to modify persistent data in a read-only transaction,
ObjectStore throws UpdateReadOnlyException.

Difference Between Update and Read-Only Transactions

You can start a transaction for READONLY or for UPDATE. The
only difference between the two types is that when you start a
transaction for READONLY, ObjectStore performs additional
checks during the transaction and when you commit the
transaction. These checks ensure that changes are not saved in the
database if they were made in a read-only transaction. There is no
difference in performance between a read-only transaction and an
update transaction.
Release 3.0 111

Working Inside a Transaction
Working Inside a Transaction

A transaction is associated with the session that is associated with
the thread that starts the transaction. A transaction remains active
until you explicitly commit it or until it aborts. A session can have
only one active transaction. Concurrent transactions must be in
separate sessions.

This section discusses the following topics:

• Obtaining the Session Associated with the Current Transaction
on page 113

• Transaction Already in Progress on page 114

• Obtaining Transaction Objects on page 114

• Performing a Transaction Checkpoint on page 114

• Setting a Transaction Priority on page 114

Separate transactions that access the same database compete with
one another for locks on the objects that they access. This can
cause one transaction to wait for another to release its locks.
Alternatively, it can cause a transaction deadlock situation in
which two or more transactions wait for each other. This forces
one transaction to abort.

Two transactions can never update the same object at the same
time. However, two transactions can both open the same database
for update at the same time and they can concurrently make
updates to different parts of the database.
112 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
Obtaining the Session Associated with the Current Transaction

The current session is the session that a thread most recently
joined. To obtain the session that is associated with the current
transaction, call the Transaction.getSession() method. The method
signature is

public Session Transaction.getSession()

To obtain the transaction that is associated with the current
session, call the Session.currentTransaction() method. The method
signature is

public Transaction Session.currentTransaction()

To determine whether or not there is a transaction in progress for
the current session, call the Transaction.inTransaction() method on
Transaction. The method signature is

public static boolean inTransaction()

This method returns true if there is a transaction in progress for
the current session. Otherwise, it returns false. It is worth noting
that inTransaction() return false if the calling thread is not joined
to the current session. This can be important if you use an
unassociated thread to check whether there is a transaction and
then try to close the database based on a false response. The
previously unassociated thread would be automatically joined to
the session to close the database. If a transaction is actually in
progress, ObjectStore throws TransactionInProgressException,
which is, of course, unexpected since inTransaction() returned
false.
Release 3.0 113

Working Inside a Transaction
Transaction Already in Progress

Nested transactions are not allowed. If you try to start a
transaction when a transaction for the current session is already in
progress, ObjectStore throws TransactionInProgressException.

Obtaining Transaction Objects

An application can obtain the transaction object for the current
thread by calling the static current() method on the Transaction
class. The method signature is

public static Transaction current()

This method returns the transaction object associated with the
current session, for example:

Transaction.current().commit()

This example commits the current transaction. If no transaction is
in progress, current() throws NoTransactionInProgressException.

Performing a Transaction Checkpoint

You can use the Transaction.checkpoint() method to commit
changes but continue working with the same persistent objects.
When you call the checkpoint() method, you specify whether to
retain persistent objects as hollow objects or make all persistent
objects stale. This is useful when you are trying to improve
concurrency, or when you are at a consistent state and want to
save your changes but keep working. See Checkpoint:
Committing and Continuing a Transaction on page 325.

Setting a Transaction Priority

When there is a deadlock, the Server uses the transaction priority
as one of the criteria to determine which transaction to abort. See
Helping Determine the Transaction Victim in a Deadlock on
page 332.
114 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
Ending a Transaction

When transactions terminate successfully, they commit, and their
changes to persistent objects are saved in the database. When
transactions terminate unsuccessfully, they abort, and their
changes to persistent objects are discarded.

For read-only transactions, there are no advantages to committing
them rather than aborting them, nor to aborting them rather than
committing them.

This section discusses the following topics:

• Committing Transactions on page 116

• What Can Cause a Transaction Commit to Fail? on page 117

• Aborting Transactions on page 118
Release 3.0 115

Ending a Transaction
Committing Transactions

ObjectStore provides the Transaction.commit() method for
successfully ending a transaction. When an application commits a
transaction, ObjectStore

• Saves and commits any changes in the database

• Performs transitive persistence if applicable (see page 15)

• Sets the state of persistent objects that were accessed or
referenced in the transaction

Transitive persistence When ObjectStore commits a transaction, it checks to see if there
are any transient objects that are referred to by persistent objects.
If there are, and if all referred-to objects are persistence-capable
objects, ObjectStore stores the referred-to objects in the segments
that contains the referring objects. This is the process of transitive
persistence. If at least one referred-to object is not persistence-
capable, ObjectStore throws ObjectNotPersistenceCapableException.

Also, a transient referred-to object cannot be referenced from
more than one segment. All cross-segment references must be to
exported objects, which means you must have explicitly migrated
the object to one of the segments and specified that it is exported.
If ObjectStore finds an unexported object that is referred to from
more than one segment, it throws AbortException.

Making objects stale To commit a transaction and make the state of persistent objects
stale, call the commit() method with no argument. The method
signature is

public void commit()

For example, tr.commit();

Setting object state To commit a transaction and be flexible about the state of
persistent objects after the transaction, call the commit(retain)
method on the transaction. The values you can specify for retain
are described in Committing Transactions to Save Modifications
on page 153. The method signature is

public void commit(int retain)

The following example commits the transaction and specifies that
the contents of the active persistent objects should remain
available to be read.
116 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
tr.commit(ObjectStore.RETAIN_READONLY);

What Can Cause a Transaction Commit to Fail?

When ObjectStore tries to commit a transaction, if ObjectStore
encounters any of the situations listed below, it causes the
transaction commit to fail. When ObjectStore aborts a transaction
commit, it throws AbortException.

• A nonexported object is reachable from an object in a different
segment.

• A persistent object references an object that is not persistence-
capable.

• A persistent object was updated to reference a stale object.

• A deadlock was encountered during commit. This is more
likely to happen when lazy write locking is enabled.

• There is a Server error. This can happen when there is not
enough disk space to fit everything you stored in the database.
It can also happen because of a broken network connection,
Server failover, or a disk error, that makes it impossible for the
Server to complete the commit. Failover also causes
ObjectStore to abort the transaction.
Release 3.0 117

Ending a Transaction
Aborting Transactions

ObjectStore provides the Transaction.abort() method for
unsuccessfully ending a transaction. An abort can happen
explicitly through the Transaction.abort() method or implicitly
because a session is terminated or there is a system exception.
When an application aborts a transaction, ObjectStore

• Ensures that the objects in the database are as they were just
before the aborted transaction started

• Sets the state of persistent objects from the transaction

• Returns any transient objects that were made persistent during
the transaction to their transient state

Transient objects Only the state of the database is rolled back. The state of transient
objects is not undone automatically. For example, if you created
new transient objects during the transaction, they still exist after
the transaction aborts. Applications are responsible for undoing
the states of transient objects. Any form of output that occurred
before the abort cannot be undone.

Open databases If you opened any databases during the transaction, ObjectStore
closes them. Any databases that were open before the aborted
transaction was started remain open after the abort operation.

Application failure If an application fails during a transaction, when you restart the
application the database is as it was before the transaction started.
If an application fails during a transaction commit, when you
restart the application either the database is as it was before the
transaction that was being committed or the database reflects all
the transaction’s changes. This depends on how far along in the
commit process the application was when it terminated. Either all
or none of the transaction’s changes are in the database.

abort() To abort a transaction and set the state of persistent objects to the
state specified by Transaction.setDefaultAbortRetain(), call the
abort() method. The default state is stale. The method signature is

public void abort()

For example,

tr.abort();
118 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
abort(retain) To abort a transaction and specify a particular state for persistent
objects after the transaction, call the abort(retain) method on the
transaction. The values you can specify for retain are described in
Specifying a Particular State for Persistent Objects on page 171.
The method signature is

public void abort(int retain)

The following example aborts the transaction and specifies that
the contents of the active persistent objects should remain
available to be read.

tr.abort(ObjectStore.RETAIN_READONLY);
Release 3.0 119

Handling Automatic Transaction Aborts
Handling Automatic Transaction Aborts

ObjectStore sometimes automatically aborts a transaction because

• There is a transaction deadlock.

• The connection to the Server is broken.

• The Server has been restarted.

• The Server refuses the connection.

• An exception occurs during a transaction commit. For example,
ObjectStore aborts a transaction if you try to commit it when a
persistent object refers to a transient object that is not
persistence-capable. This type of automatic abort is discussed
in various sections of Chapter 6, Storing, Retrieving, and
Updating Objects.

Results of Transaction Abort

When ObjectStore aborts a transaction, it rolls back the persistent
state to what it was before the transaction. ObjectStore does not
roll back the transient state. Any form of output that occurred
before the abort cannot be undone. Therefore, it is generally good
practice to perform output outside a transaction.

Description of Transaction Abort Exceptions

When ObjectStore aborts a transaction, it throws an exception that
indicates the reason for the abort and whether or not it makes
sense to retry the transaction. Here is the hierarchy of transaction
abort exceptions:

The superclass of exceptions for transaction abort is
AbortException. The superclass of exceptions for which it makes
sense to retry the aborted exception is RestartableAbortException.
AbortExceptions that do not extend RestartableAbortException

AbortException

ServerRefusedConnectionExceptionRestartableAbortException

DeadlockException

BrokenServerException

ServerRestartedException
120 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
indicate that before the transaction can proceed, some action is
probably required to correct the problem that caused the
exception.

Exceptions that
require intervention

Exceptions for which some action is probably required include

• AbortException — Thrown during transaction commit

• ServerRefusedConnectionException — Thrown when the Server is
unavailable when the client tries to connect to it

• BrokenServerException — Thrown when the Server becomes
unavailable while the client is connected to it. It indicates that
the Server refused to continue the connection.

If your application receives these exceptions, you should check
the situation before you retry the transaction. You should not
handle these exceptions with retry loops.

Exceptions that
indicate retrying

A RestartableAbortException indicates that it makes sense to retry
the aborted transaction immediately without taking any other
action. This class has two subclasses, which indicate the particular
reason for the abort.

• ServerRestartedException indicates that the Server was restarted,
for example, when failover occurs. The client was already
connected to the Server. The client receives this exception when
it next tries to contact the Server. ObjectStore aborts the
transaction because it cannot commit it. However, things
should be fine for a subsequent transaction. If your application
receives this exception, it should roll back transient state before
it retries the transaction.

• DeadlockException indicates that transactions were deadlocked.
It is possible that the next transaction will also deadlock.
However, there is a reasonable chance that the transaction that
was allowed to proceed has made progress so that the deadlock
is not repeated.

Restarting Aborted Transactions

ObjectStore does not retry transactions that are automatically
aborted, even if they extend RestartableAbortException. If you want
to retry the transaction when your application receives a
RestartableAbortException, you must include code to do this in your
Release 3.0 121

Handling Automatic Transaction Aborts
application. An example of this code follows. If you run the same
example in separate VMs at the same time, it produces deadlocks.

import COM.odi.*;
class DeadlockTest {
static final int MAX_RETRIES = 10;

public static void main(String[] args) {
ObjectStore.initialize(null, null);
Database db = getDatabase();
while (true) {
test(db);
}

}

static void test(Database db) {
int retries;
for (retries = 0; retries < MAX_RETRIES; retries++) {
try {

Transaction.begin(ObjectStore.UPDATE);
Integer value = increment(db);
Transaction.current().commit();
System.out.println("Value = " + value + ", retries = " + retries);
break;

} catch (RestartableAbortException e) {
}
}
if (retries >= MAX_RETRIES)
System.out.println("Gave up after " + retries + " retries.");

}

static Database getDatabase() {
try {
 return Database.open("test.odb", ObjectStore.UPDATE);
}catch (DatabaseNotFoundException e) {
Database db = Database.create("test.odb", 0664);
Transaction.begin(ObjectStore.UPDATE);
db.createRoot("root", null);
Transaction.current().commit();
return db;
}

}

static Integer increment(Database db) {
Integer value = (Integer)db.getRoot("root");
if (value == null)
value = new Integer(0);
else
value = new Integer(value.intValue() + 1);
db.setRoot("root", value);
return value;

}
}

122 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
Handling Deadlocks

A simple deadlock occurs when one transaction holds a lock on a
page that another transaction is waiting to access, while at the
same time this other transaction holds a lock on a page that the
first transaction is waiting to access. Neither process can proceed
until the other does. There are other, more complicated forms of
deadlock that are analogous.

ObjectStore has a deadlock detection facility that breaks
deadlocks, when detected, by aborting one of the transactions
involved in the deadlock. By aborting one transaction (the victim),
ObjectStore causes its locks to be released so other processes can
proceed.

ObjectStore throws DeadlockException when it detects a deadlock.
This causes ObjectStore to abort the transaction that causes the
deadlock. You can change which transaction ObjectStore aborts
by changing the setting of the Deadlock Victim Server parameter.

ObjectStore does not detect deadlocks when the deadlock is
distributed across multiple Servers.
Release 3.0 123

Determining Transaction Boundaries
Determining Transaction Boundaries

When determining whether or not to commit a transaction,
consider database state, whether or not to combine transactions,
and interdependencies among cooperating threads.

Inconsistent Database State

You should not commit a transaction if the database is in a
logically inconsistent state. A database is considered to be in an
inconsistent state if at that moment a just-started transaction
would encounter problems upon viewing the current state of the
data.

Consider your database to be something that moves from one
consistent state to another. You should commit a transaction only
when the state is consistent. When is a database consistent? When
the answer to this question is yes: If you start your application at
this very moment, is the database completely usable exactly the
way it is now?

For example, suppose your database contains information about
married couples. Couples refer to one another through a spouse
field. At a particular moment, suppose a person in the database
refers to another person in the database through its spouse field,
but that spouse does not refer to the first person. At that moment,
the database is in an inconsistent state.

Another inconsistency to avoid is retaining references to objects
that are not reachable from within the database. Such a situation
can cause trouble if the application fails between transactions or if
the garbage collector runs.

When the database state is consistent, you might decide not to
commit the transaction. However, if you do not commit, you risk
losing changes if ObjectStore aborts the transaction. You should
always commit changes before you inform a user or some other
interface that a particular task was accomplished.
124 ObjectStore Java API User Guide

Chapter 5: Working with Transactions
Combining Transactions

The transaction commit operation requires network interaction
with the ObjectStore Server. Consequently, you might be able to
improve performance by combining several logical transactions
into a single transaction.

To do this, skip the call to commit() and subsequent call to
Transaction.begin() for a series of sequential transactions. If many
of the same objects are used in the different transactions, the single
combined commit operation is more efficient than many small
commit operations would be.

However, this strategy means that you risk losing changes if
ObjectStore aborts the transaction before you commit it. All the
logical transactions up to that point would be rolled back with the
current logical transaction. You should always commit changes
before you inform a user or some other interface that a particular
task was accomplished.
Release 3.0 125

Determining Transaction Boundaries
Multiple Cooperating Threads

If your application uses cooperating threads, you must take this
into account when determining when to commit transactions. For
example, you do not want to create a situation where one thread
commits a transaction while a cooperating thread is updating
persistent objects. The commit() method might make all persistent
objects stale for all cooperating threads. If the commit() method
retains persistent objects, ObjectStore discards any modifications
to retained persistent objects at the start of the next transaction.
You must coordinate the Transaction.begin() and
Transaction.commit() operations among cooperating threads.

Synchronizing threads is like having a joint checking account.
Suppose the amount in the checking account is $100.00. Your
partner writes a check for $50.00. Then you try to cash a check for
$75.00. This does not work. It does not matter that it was your
partner and not you who wrote the check for $50.00. You and your
partner have to cooperate.

Performance Considerations

Committing a transaction, even a read-only transaction, has a
certain amount of overhead associated with it. If you have a lot of
small transactions. You might want to consider combining some
of them into larger transactions.
126 ObjectStore Java API User Guide

Chapter 6
Storing, Retrieving, and
Updating Objects

This chapter provides information about how to store data in a
database and also how to read it back and update it. An
application can access persistent data only inside a transaction
and only when the database is open.

Contents This chapter discusses the following topics:

Storing Objects 128

Working with Database Roots 131

Troubleshooting OutOfMemoryError 136

Retrieving Persistent Objects 137

Using External References to Stored Objects 141

Updating Objects in the Database 147

Committing Transactions to Save Modifications 153

Evicting Objects to Save Modifications 162

Aborting Transactions to Cancel Changes 170

Destroying Objects in the Database 173

Default Effects of Various Methods on Object State 179

Transient Fields in Persistence-Capable Classes 180

Avoiding finalize() Methods 182

Troubleshooting Access to Persistent Objects 183

Handling Unregistered Types 184
Release 3.0 127

Storing Objects
Storing Objects

ObjectStore’s Java API preserves the automatic storage
management semantics of Java. Objects become persistent when
they are referenced by other persistent objects. This is called
persistence by reachability. The application defines persistent
roots and, when it commits a transaction, ObjectStore finds all
objects reachable from persistent roots and stores them in the
database.

To store objects in a database, do the following:

1 Open the database or create the database in which you want to
store the objects. Be sure the database is opened for update. See
page 68.

2 Start an update transaction. See page 110.

3 Create a database root or access an existing database root and
specify that it refers to one of the objects you want to store. See
page 131.

4 Ensure that any other objects you want to store are referenced
by the object to which the database root refers.

5 Commit the transaction. This stores the object that the database
root refers to and any objects that object references. See
page 116.

In general, you should not create a root for each object you want
to store in a database. You must create a root to store some object
in a database by which all other objects can ultimately be reached.
128 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
How Objects Become Persistent

Objects can become persistent in several ways:

• An application assigns a transient object to a database root.
ObjectStore immediately migrates the object to the default
segment in the database. When the transaction commits, any
transient objects that are reachable from the object assigned to
the root are also stored in the default segment.

• A transient object is reachable from a persistent object. When
the transaction commits, ObjectStore stores the reachable object
in the same segment as the persistent object.

• An application invokes the ObjectStore.migrate() method on a
transient object and specifies a particular segment. When the
transaction commits, ObjectStore stores the migrated object in
the specified segment. ObjectStore also stores in the specified
segment any transient objects that are reachable from the
migrated object.

Storing Objects in a Particular Segment

When you want to store objects in a particular segment that is not
the default segment, follow these steps:

1 Open a database and start a transaction.

2 If you have not already created the segment in which you want
to store the objects, create the segment with the
Database.createSegment() method.

3 Invoke ObjectStore.migrate() to store an object and specify the
segment in which you want to store the object.

4 If there are other transient objects that you want to store in the
same segment, make those objects reachable from the migrated
object.

5 Commit the transaction.

ObjectStore stores all transient objects that are reachable from
the migrated object in the same segment as the migrated object.

To allow access to the objects, you must also assign some objects
to database roots.
Release 3.0 129

Storing Objects
Caution If you are going to have objects in one segment that refer to objects
in another segment, it is crucial that you do some planning before
you store any objects. Implementing Cross-Segment References
for Optimum Performance on page 99 provides information
about the issues to consider. It is important to familiarize yourself
with this information because doing so can help you avoid
problems.

What Is Reachability?

An object B is considered to be reachable from object A when A
contains a reference to B. B is also reachable from A when A
contains a reference to some object and that object contains a
reference to B. There are no limits to levels of reachability.

Situations to Avoid

When a transaction commits, you must ensure that objects in
different segments do not refer to the same transient object. If this
situation exists, ObjectStore cannot determine which segment to
store the transient object in. Consequently, ObjectStore throws
AbortException, aborts the transaction, and informs you that an
unexported object is referred to by an object in another segment.

To avoid this situation, you must explicitly migrate transient
objects to a database segment when those transient objects are
referred to by objects in more than one segment. You must do this
before the application commits the transaction and you must
export the objects when you migrate them.

When a transaction commits, you must ensure that any transient
objects that are reachable from persistent objects are persistence-
capable. If one such object is not, ObjectStore throws
AbortException, aborts the transaction, and informs you that a
reachable object is not persistence-capable.

Storing Java-Supplied Objects

Some Java-supplied classes are persistence-capable. Others are
not persistence-capable and cannot be made persistence-capable.
A third category of classes can be made persistence-capable, but
there are important issues to consider when you do so. Be sure to
read Java-Supplied Persistence-Capable Classes on page 360.
130 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Working with Database Roots

A root is a reference to an individual object. You can get by with a
single root, but you might find it convenient to have more. In
general, you do not want every object in the database to be
associated with a root. This is bad for performance. Each root
refers to exactly one object. More than one root can refer to the
same object. You cannot navigate backwards from the referenced
object to the database root.

This section discusses the following topics:

• Creating Database Roots on page 132

• Retrieving Root Objects on page 133

• Roots with Null Values on page 133

• Using Primitive Values as Roots on page 133

• Changing the Object Referred To by a Database Root on
page 134

• Destroying a Database Root on page 134

• Destroying the Object Referred To by a Database Root on
page 135

• How Many Roots Are Needed in a Database? on page 135
Release 3.0 131

Working with Database Roots
Creating Database Roots

When you create a database root, you give it a name and you
assign an object to it. The database root refers to that object and the
application can use the root name to access that object. In other
words, the object that you assign to a root is the value of that root.
The database root and the object assigned to the root are two
distinct objects.

You must create a database root inside a transaction. Call the
Database.createRoot() method on the database in which you want
to create the root. The method signature for this instance method
on Database is

public void createRoot(String name, Object object)

The name you specify for the root must be unique in the database.
If it is not unique, DatabaseRootAlreadyExistsException is thrown.
The object that you specify to be referred to by the root can be
either transient and persistence-capable, or persistent (including
null). If it is not yet persistent, ObjectStore immediately makes it
persistent. ObjectStore migrates it to the default segment, which is
the segment returned by Database.getDefaultSegment().

More than one root can reference the same object; an object can be
associated with more than one root. For example:

db.createRoot("Root1", anObject);
db.createRoot("Root2", anObject);

Example For example, suppose you create the variable db to be a handle to
a database opened for update and an object called anObject, and
start an update transaction. The following line creates a database
root:

db.createRoot("MyRootName", anObject);

Results In the database referred to by db, this creates a database root
named "MyRootName" and specifies that it refers to anObject.
ObjectStore immediately stores anObject in the database referred
to by db. When the transaction commits, ObjectStore stores in the
database referred to by db any objects that are reachable from
anObject, if they are not already in the database. If anObject or any
object it references refers to any transient objects that are not
persistence-capable, and you try to commit the transaction,
ObjectStore throws ObjectNotPersistenceCapableException.
132 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Retrieving Root Objects

When you retrieve a root object, you obtain a reference to the
object that is the value of the root. For example, suppose you
assign an OSVector object, myOSVector, to a root named
"myOSVectorRoot". When you get myOSVectorRoot, you receive a
reference to myOSVector. ObjectStore does not fetch the entire
vector. Now you can obtain a reference to any object in the vector.
For example, you can get a reference to the fifth element in the
vector like this:

AnObject obj = (AnObject)myOSVector.elementAt(5);

The result of this call is that you have a reference to the fifth
element in myOSVector. ObjectStore has fetched only the contents
of the myOSVector object, which includes references to the
elements in the vector. It has not yet fetched the contents of any
vector elements. When you try to access the contents of an element
in the vector, ObjectStore fetches the data for that element. When
you retrieve an element of an OSVector object, ObjectStore does
not fetch all the elements of the OSVector. It fetches only the
particular element you want to read or modify.

Roots with Null Values

It is possible to create a root with a null value. This is useful for
creating roots in preparation for assigning objects to them later.

Using Primitive Values as Roots

If you want to store a primitive value as an independent persistent
object, such as the value of a root, use an instance of a wrapper
class, such as an Integer. For example:

db.createRoot("foo", new Integer(5));

This assigns the value 5 to the root named foo.

You cannot directly store primitive values in a database. You can
define a primitive value as a field in a persistence-capable object.
Release 3.0 133

Working with Database Roots
Changing the Object Referred To by a Database Root

After you create a database root, you can change the object that it
refers to. Inside an update transaction, call the Database.setRoot()
method on the database that contains the root. You must specify
an existing root and you can specify either a transient (but
persistence-capable) or a persistent object. If you specify a
transient object, ObjectStore immediately stores it in the default
segment of the database. The default segment is the segment
returned by the Database.getDefaultSegment() method. The
method signature for changing the object associated with a root is

public void setRoot (String name, Object object)

If ObjectStore cannot find the specified root,
DatabaseRootNotFoundException is thrown.

Destroying a Database Root

To destroy a database root, call the destroyRoot() method on the
database that contains the root that you want to destroy. An
update transaction must be in progress. Specify the name of the
root. If ObjectStore cannot find the specified root, it throws
DatabaseRootNotFoundException. The method signature is

public void destroyRoot (String name)

This has no effect on the referenced object, except that it is no
longer accessible from that root. It might still be the value of
another root, or it might be pointed to by some other persistent
object. If a value of a root is no longer referenced after the root is
destroyed, the object becomes unreachable. You can invoke
ObjectStore.destroy() on it while you still have a reference to it.
Alternatively, you can run the persistent garbage collector to
remove all unreachable objects. See Performing Garbage
Collection in a Database on page 81.
134 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Destroying the Object Referred To by a Database Root

If you want to destroy the object that a database root refers to and
you want to continue to use that database root, you must set the
root to refer to null or another object before you destroy the object
that the root refers to. If you do not do this and you try to use the
root, ObjectStore throws ObjectNotFoundException. This is because
the root refers to a destroyed object. For example, the correct
sequence is something like this:

Object object = db.getRoot("username");
db.setRoot("username", null);
ObjectStore.destroy(object);

How Many Roots Are Needed in a Database?

It is important to realize that you need not create a root for most
objects that you want to store in a database. You only need to
create roots for top-level objects that you want to look up by name.
You must have at least one root to be able to navigate through a
database. Without a root, you have no way of accessing the objects
in the database.

Think of a database root as the root of a tree. From the root, you
can climb the tree. For many applications, a root is some kind of
container, such as an instance of OSHashtable or OSVector, or an
array. After you create one or more database roots, you create
other objects that are referred to by fields of the objects that the
roots refer to. These objects become persistent when you commit
the transaction in which you create them. In a subsequent
transaction, you can look up the root objects by name, and
navigate from them to any other reachable persistent objects.

Too many roots can cause performance problems. The maximum
practical number of roots within a database isapproximately 100.
Databases store roots in a vector and ObjectStore uses a linear
search to find roots. To avoid long look-up times, restrict the
number of database roots.
Release 3.0 135

Troubleshooting OutOfMemoryError
Troubleshooting OutOfMemoryError

If you are storing many large objects, it might appear as though
they are never garbage collected. In fact, you might receive the
java.lang.OutOfMemoryError. Here is a discussion of why this might
happen and what you can do.

When a transaction commits, ObjectStore releases references to all
objects except those that are exported. ObjectStore uses JDK weak
references to refer to exported objects. When an object is referred
to by only weak references, it can be garbage collected. However,
performing an explicit Java VM GC does not necessarily cause
such weakly referenced objects to be collected and so free their
space. Typically, the Java GC frees weakly referenced objects
when it needs to grow the VM heap space. So, eventually you
should see the storage for these objects being reclaimed.

Try running with the -verbosegc option to the Java VM. If the
weakly referenced objects are never freed, it is likely to be for one
of the following reasons:

• The application is inadvertently retaining references to these
exported objects.

• The application is using a commit retain option other than
ObjectStore.RETAIN_STALE or ObjectStore.RETAIN_HOLLOW.

• The application has disabled use of weak references when
invoking the Java VM (-DCOM.odi.disableWeakLinks=true).

• The application is being run with an initial heap size set to the
maximum heap size by the -ms or -mx option. There is a bug in
the Java VM (JDK 1.1.4, due to be fixed in some future release)
that causes premature java.lang.OutOfMemoryError errors to be
signaled in some cases because of an incorrect limit
computation in the JDK VM.

If you want the storage for a large object to be reclaimed
immediately, wrap the large object in a small dummy object.
Export the dummy object instead of the large object. This causes
the small object to be retained as a hollow object that is referred to
with a weak reference. Upon transaction commit with
ObjectSTore.RETAIN_STALE or ObjectStore.RETAIN.HOLLOW, the
large object is available to be garbage collected almost
immediately.
136 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Retrieving Persistent Objects

To read the contents of objects in a database, you must first obtain
the value of an existing database root. Then the application makes
the contents of the referenced object and any object it references
accessible.

This section discusses the following topics:

• Steps for Retrieving Persistent Objects on page 137

• Obtaining a Database Root on page 138

• Determining Which Database Contains an Object on page 138

• Determining Whether an Object Has Been Stored on page 138

• Iterating Through the Objects in a Segment on page 139

• Locking Objects on page 140

Steps for Retrieving Persistent Objects

Follow these steps to retrieve a persistent object from a database:

1 Open the database.

2 Start a transaction. If you want to modify the object, start an
update transaction.

3 Call the Database.getRoot() method on the database and specify
the name of a previously created root.

ObjectStore returns a reference to the object that the root refers
to. This assumes that the object you want is either the object the
root refers to or reachable from that object.

4 Access the object just as you would access a transient object.

If you do not plan to run the postprocessor, see Chapter 9,
Manually Generating Persistence-Capable Classes, Making
Object Contents Accessible on page 294.
Release 3.0 137

Retrieving Persistent Objects
Obtaining a Database Root

Call the Database.getRoot() method to obtain a database root.
When you obtain a database root, it returns a reference to its
assigned object. You can use this reference to obtain a reference to
any object that the assigned object references.

The signature for the getRoot() method is

public Object getRoot(String name)

Null return It is possible for the getRoot() method to return a null value, which
indicates that there is no object associated with the root. It does
not mean that the root does not exist. If the root does not exist,
ObjectStore throws DatabaseRootNotFoundException.

List of all roots To obtain a list of the roots in a database, call the getRoots()
method on the database. The signature of this method is

public DatabaseRootEnumeration getRoots()

Determining Which Database Contains an Object

You can use the Database.of() method to determine the database
in which an object is stored. The method signature is

public static Database of(Object object)

If the specified object has been stored in a database, ObjectStore
returns the database in which it is stored. The specified object
must be a persistent primary Java object or a Java peer object. If
you specify a Java peer object, it can identify a persistent or
transient C++ object. If the specified object is a peer object for a
transient object, the method returns the transient database.

Determining Whether an Object Has Been Stored

To determine whether an object has already been stored in a
database, call the ObjectStore.isPersistent() method. The method
signature is

public static boolean isPersistent(Object object)

If the specified object has been stored in a database, ObjectStore
returns true. The specified object must not be a stale persistent
object. If it is, ObjectStore throws ObjectException.
138 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Iterating Through the Objects in a Segment

To obtain an enumeration of the objects in a segment, call the
Segment.getObjects() method. This allows you to access any
objects that are unreachable, but which have not yet been garbage
collected. It also provides an application-independent means for
processing all objects within a segment. The method signature is

public SegmentObjectEnumeration getObjects()

This method returns a SegmentObjectEnumeration object. After
you have this object, you can use the following methods to iterate
through the objects in the enumeration:

• SegmentObjectEnumeration.nextElement()

• SegmentObjectEnumeration.hasMoreElements()

The Segment.getObjects() method has an overloading that takes a
java.lang.Class object as an argument and returns an iterator over
all objects of that type in the database. The type can be an
interface, class, or array type.

If your session or another session adds an object to a segment after
you create an enumeration, the enumeration might or might not
include the new object. If it is important for the enumeration to
accurately include all objects, you should create the enumeration
again.

After you create a SegmentObjectEnumeration, objects in the
enumeration might get destroyed. When you use the enumeration
to iterate through the objects, ObjectStore skips any destroyed
objects. However, if you destroy a COM.odi.coll dictionary from
C++, ObjectStore does not recognize that the dictionary has been
destroyed. In this case, the enumeration might return a reference
to garbage.

You can use a SegmentObjectEnumeration across transactions. If a
transaction in which you use the SegmentObjectEnumeration
aborts, the enumeration becomes stale.

After you create an enumeration of the objects in a segment, other
sessions are blocked from destroying that segment until you end
your transaction. If you create the enumeration and then destroy
the segment, the next call to nextElement() or hasMoreElements()
causes ObjectStore to throw SegmentNotFoundException.
Release 3.0 139

Retrieving Persistent Objects
There is a bug that makes the enumeration work incorrectly if you
call Transaction.checkpoint(RETAIN_STALE). Doing so causes the
next use of the enumeration to throw ObjectException because of
stale objects. This will be fixed in a future release.

Locking Objects

You can lock an object if you want to ensure that no other session
can access it. This is useful when you want to ensure that a
particular operation is not interrupted. See Locking Objects,
Segments, and Databases to Ensure Access on page 328.
140 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Using External References to Stored Objects

Outside a database, you might want to represent a reference to an
object in a database. This external reference can be in an ASCII file
or you might want to transmit it over a serial network connection.
External references can be especially useful when you write a
distributed application server that processes requests for many
clients. This includes client/server applications that are based on
Java RMI, ObjectStore ObjectForms, or the Object Management
Group’s Common Object Request Broker Architecture (CORBA).

ObjectStore provides the ExternalReference class to represent
external references. To help you use external references, this
section discusses

• Creating External References on page 142

• Using the No-Arguments Constructor on page 143

• Caution About Creating External References to Nonexported
Objects on page 143

• Determining Whether Two External References Refer to the
Same Object on page 144

• Reusing External Reference Objects on page 145

• Encoding External References as Strings on page 146

• External References and Transactions on page 146
Release 3.0 141

Using External References to Stored Objects
Creating External References

When you have a persistent object for which you want to create an
external reference, follow these steps:

1 Create a new ExternalReference object by passing the persistent
object to the constructor.

2 Obtain the database, segment ID, and location of the persistent
object for which you just created an ExternalReference object.
Use ExternalReference methods to do this.

3 In the format of your choice, store the values for the database,
segment ID, and location wherever you want them to be.

For example, you can call the Database.getPath() method on the
database reference and store a string pathname. Alternatively,
you can look up the database object in a hash table, obtain an
identifier, and store the identifier. Such an identifier is typically
shorter than a pathname.

Example For example:

ExternalReference myExRef = new ExternalReference(myPObj);
Database refToDb = myExRef.getDatabase();
int segId = myExRef.getSegmentId();
int loc = myExRef.getLocation();

An object represented by an external reference must be a
persistent object or null. It can be a Java peer object only if it
identifies a persistent C++ object. If you try to create an external
reference to a peer object that identifies a transient C++ object,
ObjectStore throws DatabaseException.

Requirements If you want to create an external reference for an object that
becomes persistent when the transaction commits, you must
migrate the object to the database before you can create the
external reference.

A database referred to in a call to an ExternalReference constructor
or method must exist in the file system at the time of the call and
must be open.

One-argument
constructor

A transaction must be in progress to use the one-argument
external reference constructor, whether or not the specified
persistent object is null. The constructor signature is

public ExternalReference(Object o)
142 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Three-argument
constructor

An open transaction is not required for the three-argument
constructor. This constructor signature is

public ExternalReference(Database d, int segid, int loc)

Cloning The ExternalReference class implements the Cloneable interface.
This allows you to call the clone() method on an ExternalReference
object if you want to create another ExternalReference object with
the same contents.

Using the No-Arguments Constructor

For convenience, the ExternalReference class also has a no-
arguments constructor that sets the external reference to represent
null. When an ExternalReference object represents null,

• ExternalReference.getObject() and
ExternalReference.getDatabase() return null

• ExternalReference.getSegmentId() and
ExternalReference.getLocation() return -1

When you try to call ExternalReference.getObject() or
ExternalReference.toString() on an external reference object that
was created with the no-arguments constructor, the object must
contain all these values. If ObjectStore finds one of them but not
the others, it throws IllegalArgumentException. You must be in a
transaction when you use the no-arguments constructor.

Caution About Creating External References to Nonexported Objects

When you create an external reference to an object that is not
exported, you must be aware of these possible situations:

• Your application might garbage collect the object.

• Your application might delete the object and then garbage
collect the tombstone.

• ObjectStore reorganization of the segment might move the
object.

If one of these situations occurs and you try to use the external
reference, you receive incorrect results.

When an object is exported, ObjectStore uses its export ID in the
external reference. This prevents the object or its tombstone from
being garbage collected. It also allows ObjectStore to find the
object if it is moved in a segment reorganization.
Release 3.0 143

Using External References to Stored Objects
Obtaining Objects from External References

To obtain the object that an external reference refers to, you must
do the following:

1 Set an ExternalReference object with the values of your external
reference.

2 Use the ExternalReference.getObject() method to obtain the
object.

Perform these steps while the database is open and a transaction
is in progress.

To perform step 1, you can use the three-argument
ExternalReference constructor:

public ExternalReference(Database d, int segid, int loc);

When you use this constructor, a transaction in progress is not
required. For example:

ExternalReference anExRef = new ExternalReference(
refToDb, segId, loc);

To obtain the corresponding object, call
ExternalReference.getObject(). For example:

Object myPObj = myExRef.getObject();

Determining Whether Two External References Refer to the Same Object

Two external references are considered to be equal if they both
refer to the same object. In other words, if you call
ExternalReference.getObject() on each external reference, both
calls return identical objects. Call the ExternalReference.equals()
method to determine whether two external references refer to the
same object. The method signature is

public boolean equals(Object obj)
144 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Reusing External Reference Objects

After you create an ExternalReference object, you can reuse it any
number of times. The advantage of reusing ExternalReference
objects is that you avoid the overhead of storage allocation and
garbage collection when you use large numbers of external
references.

Storing external
references

You can use an existing ExternalReference object to store an
external reference. To do this, set the ExternalReference object to
contain information about the persistent object for which you
want an external reference. A transaction must be in progress. The
method signature is

public void setObject(Object o)

For example, suppose myExRef was constructed for myPObj. Then
you retrieved the database, segment ID, and location values and
stored them in some file outside the database. Now you want to
do the same thing for another persistent object, herPObj:

myExRef = ExternalReference.setObject(herPObj);

The myExRef external reference object now contains information
for herPObj. You can use the ExternalReference.getxxx() methods
to obtain the values you can store outside the database.

Obtaining externally
referenced objects

You can also reuse an external reference object when you want to
obtain a persistent object from an externally stored reference. Use
the ExternalReference.setxxx() methods. The method signatures
are

• public void setDatabase(Database d);

• public void setSegmentId(int segid);

• public void setLocation(int loc);

For example, suppose you have an external reference to hisPObj.
You can reuse the myExRef object to obtain hisPObj by passing the
stored values for hisPObj to the set methods on myExRef:

myExRef.setDatabase(refToDb);
myExRef.setSegmentId(segId);
myExRef.setLocation(loc);
hisPObj = myExRef.getObject();
Release 3.0 145

Using External References to Stored Objects
Encoding External References as Strings

The ExternalReference.toString() and
ExternalReference.fromString() methods act as a printer and
parser, respectively. They allow you to encode an
ExternalReference as a string, and then parse the string to rebuild
an equivalent ExternalReference. This is convenient to use, but the
strings are relatively long. They include the entire pathname of
the database.

toString() The toString() method is straightforward to use. You call the
method on an ExternalReference object that contains values for a
persistent object. The method signature is

public String toString()

fromString() To use the fromString() method, pass it a string created by a call to
toString(). This creates and returns a new ExternalReference object.
The method signature is

public static ExternalReference fromString(String string)

Large numbers of
external references

There might be situations when you print a large number of
ExternalReference objects and you know that they are all from the
same database. In this case it is more efficient to construct your
own printed representation by using the
ExternalReference.getSegmentId() and
ExternalReference.getLocation() methods.

External References and Transactions

You must be in a transaction when you call these methods and
constructors on the ExternalReference class:

• ExternalReference()

• ExternalReference(object)

• fromString()

• getObject()

• setObject() if you are not setting the object to null

You do not need to be in a transaction to call the other
ExternalReference constructor and methods.
146 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Updating Objects in the Database

To update objects in the database, start at a database root and
traverse objects to locate the objects you want to modify. Make
your modifications by updating fields or invoking methods on the
object, just as you would operate on a transient object. Finally,
save your changes by committing the transaction (this ends the
transaction) or evicting the modified objects (this allows the
transaction to remain active).

Whether you commit a transaction or evict an object, you can
specify the state of objects after the operation. To specify the state
that makes the most sense for your application, an understanding
of the following background information is important:

• Background for Specifying Object State on page 147

• About Object Identity on page 148

• About the Object Table on page 152

Instructions for invoking commit() or evict() follow this
background information.

Background for Specifying Object State

When a Java program accesses an object in an ObjectStore
database, there are two copies of the object:

• The copy of the object in the database. This is the copy on the
disk. This can be anything that is not a primitive. It can be a
wrapper object.

• The copy of the object in your Java program. This is the copy
that is referred to as a persistent object.

Normally, you need not be aware of the fact that there are two
copies. Your application simply operates on the object in the Java
program as if that is the only copy. This is why the documentation
refers to this copy as a persistent object. However, the fact that
there are two copies becomes apparent if a transaction aborts. In
this case, the contents of the object in the database revert to the last
committed copy.
Release 3.0 147

Updating Objects in the Database
 About Object Identity

In a session, persistent objects maintain identity. Suppose there is
an object in the database that is referred to by two different
objects. You can reach the object in the database through two
navigation paths. Regardless of which path you use, the resulting
persistent object is the same object in the Java VM. In other words,
if you have two unrelated objects (a and b), that refer to a third
object (c), a.c == b.c is true.

In a single session, the Java VM never creates two distinct objects
that both represent the same object in the database.

Sample class
definitions

For example, suppose you have the following classes:

public class City {
String name;
int population;

}

public class State {
City capital;
String name;
int population;

}

Creating objects Suppose you also have the following code, which creates some
instances of these classes and stores them:

City boston = new City("Boston", 1000000);
State massachusetts = new State(

boston, "Massachusetts", 20000000);
OSHashtable cities = new OSHashtable();
cities.put("Boston", boston);
OSHashtable states = new OSHashtable();
states.put("Massachusetts", massachusetts);
db.createRoot("cities", cities);
db.createRoot("states", states);

This creates

• A City instance (Boston)

• A State instance (Massachusetts) with the Boston City instance
as its capital

• Two instances of OSHashtable — one to hold City objects and
one to hold State objects

• Two database roots — one to refer to each instance of
OSHashtable
148 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Accessing stored
objects

Now you execute the following code to access the stored objects:

OSHashtable cities = (OSHashtable) db.getRoot("cities");
OSHashtable states = (OSHashtable) db.getRoot("states");
City boston1 = cities.get("Boston");
State massachusetts = states.get("Massachusetts");
City boston2 = massachusetts.capital;
if (boston1 == boston2)

System.out.println("same");
else

System.out.println("not the same");

Results This code prints "same". This is because boston1 and boston2,
even though they are located through different paths in the
database, are still represented by the same object in the Java VM
and therefore they are ==.

If you use cities to reach boston1 and you modify boston1, you can
then use states to access the updated version as boston2.

Alternative way to
create objects

However, suppose that you change the way you create some
instances of the City and State classes. Instead of doing it in one
transaction, use two transactions. Create a new city called Boston,
store it in the cities hash table, and commit the transaction. In a
subsequent transaction, define a new state, massachusetts, and
assign yet another new Boston object to its capital field. Store
massachusetts in the states hash table and commit the
transaction. Here is the code that does this:

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
City Boston = new City("Boston", 1000000);
OSHashtable cities = new OSHashtable();
cities.put("Boston", Boston);
db.createRoot("cities", cities);
tr.commit();

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
City Boston = new City("Boston", 1000000);
State massachusetts = new State(

Boston, "Massachusetts", 20000000);
OSHashtable states = new OSHashtable();
states.put("Massachusetts", massachusetts);
db.createRoot("states", states);
tr.commit();
Release 3.0 149

Updating Objects in the Database
Results of alternative
approach

Now there are two different Boston objects in the database. One is
accessible through the cities root and another one is accessible
through the states root. Although both objects are instances of City
and both are named Boston, they are two different objects because
they were stored as two different objects. When you create objects
with separate calls to new, the objects can never be the same in the
sense of ==.

If you follow the two different paths through the database to the
two different Boston objects, you obtain two discrete persistent
objects. If you update one Boston object, ObjectStore does not
update the other Boston object. If you execute the same code
fragment as you did for the first code sample, the result is "not the
same". That is, (boston1 == boston2) returns false.

Strings and primitive
wrappers

There are additional considerations for Strings and primitive
wrapper classes.

String pooling causes some strings to be the same, even when you
create them separately. If you call new multiple times to create
multiple String objects, these separately created objects might be
identical. See Description of COM.odi.stringPoolSize. If you
explicitly migrate the string to the database, it prevents
ObjectStore from using string pooling.

A String or primitive wrapper object that you create with a single
call to new might be represented by more than one persistent
object. Usually, this does not matter for Stings and primitive
wrapper objects because it is their value and not their identity that
matters. If identity does matter, you can explicitly migrate
wrapper objects into the database.
150 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Identity across
transactions

ObjectStore maintains the identity of referenced objects across
transactions within the same session. The following code
fragment provides an example of this. It displays "same".

public
class Person {

// Fields in the Person class:
String name;
int age;
Person children[];
Person father;
// Constructor:
public Person(String name, int age,

Person children[], Person father) {
this.name = name;
this.age = age;
this.children = children;
this.father = father;

}

static void testIdentity() {
// Omit open database calls

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
Person children[] = { null, null };
Person tim = new Person("Tim", 35, children, null);
Person sophie = new Person("Sophie", 5, null, tim);
children[0] = sophie;
db.createRoot("Tim", tim);
tr.commit();

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
tim = (Person)db.getRoot("Tim");
Person joseph = new Person("Joseph", 1, null, tim);
tim.getChildren()[1] = joseph;
tr.commit();

Transaction tr = Transaction.begin(ObjectStore.READONLY);
tim = (Person)db.getRoot("Tim");
sophie = tim.getChildren()[0];
joseph = tim.getChildren()[1];
if (sophie.getFather() == joseph.getFather())

System.out.println("same");
else
 System.out.println("not the same");
tr.commit();

}

Release 3.0 151

Updating Objects in the Database
About the Object Table

ObjectStore keeps a table of all objects referenced in a transaction.
If you refer to the same object in the database twice (perhaps
accessing the object through different paths), there is only one
copy of the object in your Java program. Remember, if you
retrieve the same object through different paths, == returns true
because ObjectStore preserves object identity.

If the system property COM.odi.disableWeakReferences is set to
false (the default), the references in the object table are weak
references, which means that they do not interfere with the Java
garbage collector. The Java garbage collector can function in the
same way that it normally does. That is, if a Java program does not
have any references to a persistent object (the copy in your Java
program), other than through the ObjectStore object table, the
object can be garbage collected. (The object in the database, of
course, is not garbage collected.)
152 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Committing Transactions to Save Modifications

When you commit a transaction, ObjectStore

• Saves and commits any modifications in the database.

• Checks for transient objects that are referred to by persistent
objects.

If there are such objects, ObjectStore stores them in the database
if they are persistence-capable. This is called transitive
persistence. All reachable persistence-capable objects become
persistent through transitive persistence.

If the modifications contain references to objects that are not
persistence-capable, ObjectStore throws AbortException. The
AbortException.getOriginalException() method returns the
object that causes the exception.

• Sets the state of persistent objects after the transaction.

If objects were stored in the database for the first time during
this transaction, the copies of these objects in your Java
program are included in the group of persistent objects.

The default is that persistent objects are stale after the
transaction. If you do not want them to be stale, specify a retain
argument when you invoke commit().

Method signatures The commit() method has two overloadings. The first overloading
takes no argument. The method signature is

public void commit()

The second overloading has an argument that specifies the state of
persistent objects after the commit operation. The method
signature is

public void commit(int retain)

Contents This section discusses the object states in the following topics:

• Making Persistent Objects Stale on page 154

• Making Persistent Objects Hollow on page 156

• Retaining Persistent Objects as Readable on page 157

• Retaining Persistent Objects as Writable on page 160

• Caution About Retaining Nonexported Objects on page 161
Release 3.0 153

Committing Transactions to Save Modifications
Exceptions If you try to commit a transaction when an object in one segment
refers to an unexported object in another segment, ObjectStore
throws AbortException and aborts the transaction.

Incorrect access to
persistent objects

If your application commits a transaction while an annotated
method is executing, your program might incorrectly access
additional persistent objects after the commit. For more
information about this and a work around, see Troubleshooting
Access to Persistent Objects on page 183.

Synchronization Synchronizing on a persistent object is another way to retain a
reference to that object after a transaction ends. To do this, an
application must end a transaction with a retain type other than
stale. When objects become stale, ObjectStore does not maintain
transient object identity. The synchronized state of an object is not
saved persistently.

Making Persistent Objects Stale

When you call the commit() method with no argument,
ObjectStore makes all persistent objects stale. Stale persistent
objects are not accessible and their contents are set to default
values. ObjectStore reclaims the entry in the Object Table for the
stale object and the object loses its persistent identity.

If your Java program still has references to stale objects, any
attempt to use those references (such as by accessing a field or
calling a method on the object) causes ObjectStore to throw
ObjectException. Therefore, your application must discard any
references to persistent objects when it calls this overloading of
commit().

Objects available for
garbage collection

This overloading of commit() also discards any internal
ObjectStore references to the copies of the objects in your Java
program. When your application makes an object stale,
ObjectStore makes any references from the stale object to other
objects null. This makes the referenced objects, which can be
persistent or transient, available for garbage collection if there are
no other references to them from other objects.

Stale persistent objects are not available for Java garbage
collection if your Java application has transient references to them.
154 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Accessing objects
again

You can reaccess the same objects in the database in subsequent
transactions. To do so, look up a database root and traverse to
objects from there, or reference them through hollow objects.
ObjectStore refetches the contents of the object and creates a new
active persistent object. The new object has a new transient
identity and the same persistent identity as the object that became
stale. For example:

Foo foo = myDB.getRoot("A_FOO");
ExternalReference fooRef = new ExternalReference(foo);
ObjectStore.evict(foo, ObjectStore.RETAIN_STALE);
Foo fooTwo = myDB.getRoot("A_FOO"); // refetch from database
ExternalReference fooRefTwo = new ExternalReference(fooTwo);
// At this point (foo == fooTwo) returns false,
// but (fooRef.equals(fooTwoRef)) returns true.

Advantage The advantage of using commit() with no argument is that it wipes
your database cache clean, and typically makes all transient
copies of persistent data available for Java garbage collection.

Disadvantage The disadvantage is that any references to these objects that your
Java program holds become unusable.

Alternative method Invoking commit(ObjectStore.RETAIN_STALE) is the same as
calling commit() with no argument.
Release 3.0 155

Committing Transactions to Save Modifications
Making Persistent Objects Hollow

Call commit(ObjectStore.RETAIN_HOLLOW) to make persistent
objects (the copies of the objects in your Java program) hollow.
ObjectStore resets the contents of persistent objects to default
values.

References to these objects remain valid; the application can use
them in a subsequent transaction. If a hollow object is accessed in
a subsequent transaction, ObjectStore refreshes the contents of the
object in your Java program with the contents of the
corresponding object in the database.

Outside transaction An application cannot access hollow objects outside a transaction.
An attempt to do so causes ObjectStore to throw
NoTransactionInProgressException.

Advantage The advantage of invoking commit(ObjectStore.RETAIN_
HOLLOW) is that any references to persistent objects that the Java
application holds remain valid in subsequent transactions. This
means that it is not necessary to renavigate to these objects from a
database root.

Garbage collection Sometimes an application might retain a reference to an object and
prevent Java garbage collection that would otherwise occur. It is
good practice to avoid retaining references to objects
unnecessarily.

Scope If you commit a transaction with ObjectStore.RETAIN_HOLLOW,
and then commit a subsequent transaction with no retain
argument or ObjectStore.RETAIN_STALE, this cancels the
previous ObjectStore.RETAIN_HOLLOW specification. No object
references are available in the next transaction. This is true
regardless of whether or not they were previously retained.
156 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Retaining Persistent Objects as Readable

Call commit(ObjectStore.RETAIN_READONLY) to retain the copies
of the objects in your Java program as readable persistent objects.
ObjectStore maintains the contents of the persistent objects that
the application read in the transaction just committed. The
contents of these persistent objects are as they were the last time
the objects were read or modified in the transaction just
committed.

If there are any hollow objects when you commit the transaction,
ObjectStore retains these objects as hollow objects that you can use
during the next transaction.

After this transaction and before the next transaction, your
application can read the contents of any retained objects whose
contents were also retained. The actual contents of the object in the
database might be different because some other process modified
it. Your application cannot modify these objects. An attempt to do
so causes ObjectStore to throw NoTransactionInProgressException.
Your application cannot access the contents of hollow retained
objects. An attempt to do so causes ObjectStore to throw
NoTransactionInProgressException.

Scope If you commit a transaction with ObjectStore.RETAIN_READONLY,
the contents of only those persistent objects whose contents were
accessed in the transaction just committed are available to you
after the transaction. This is because ObjectStore makes all
retained objects hollow at the start of the next transaction. Any
cached references to persistent objects remain valid. In the new
transaction, ObjectStore fetches the contents of a persistent object
when your application requires it.

Advantage The advantage of using commit(ObjectStore.RETAIN_READONLY)
is that the copies of the persistent objects in your Java program
remain accessible after the transaction is over. In the next
transaction, any cached references to persistent objects remain
valid. ObjectStore copies the object’s contents from the database
when you access the object.

Disadvantage The disadvantage of using commit(ObjectStore.RETAIN_
READONLY) is that it makes more work for the Java garbage
collector, because the contents of the copies of the objects in your
Java program are not cleared.
Release 3.0 157

Committing Transactions to Save Modifications
Your program might return results that are inconsistent with the
current state of the database.

ObjectStore cannot fetch any objects outside a transaction. This
makes it difficult to ensure that methods can execute without
throwing an exception. However, you can call
ObjectStore.deepFetch() in the transaction to obtain the contents of
all objects you might need. Of course, this increases the risk of the
Java VM running out of memory.

Serialization If you are using Java Remote Method Interface (RMI) or
serialization, you can call the ObjectStore.deepFetch() method
followed by commit(ObjectStore.RETAIN_READONLY). This
allows you to perform object serialization outside a transaction.

Retaining collections
not allowed

Peer objects, and therefore collection objects, have no data
members and so, in Java, peer objects do not appear to be
connected to other objects. Even if you explicitly iterate through
the elements in a collection and then commit the transaction with
ObjectStore.RETAIN_READONLY, you cannot access the collection
outside a transaction. However, if the collection elements are not
themselves peer objects or collections, you can manipulate them
outside a transaction, but you cannot use the collection to access
them. You must explicitly read them in the transaction, retain
them, and then access them directly or through another nonpeer
object.

Troubleshooting:
NoTransactionIn
ProgressException

Between transactions, you might try to read an object that you
thought you retained, and receive
NoTransactionInProgressException. Often, the cause of this is that
you retained a reference to the object but not the contents of the
object.

In a transaction, you might read the contents of an object, but not
the contents of objects the first object refers to. For example,
during a transaction, suppose you access a vector but not any of
the elements in the vector. When you commit the transaction, the
contents of vector elements are not available in the transaction
and they are not retained. In other words, to be able to read the
contents of an object between transactions, you must read that
particular object during the previous transaction.

To be able to read objects between transactions, you might want
to call ObjectStore.deepFetch() on an object. This method fetches
158 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
the contents of the specified object, the contents of any objects that
object refers to, the contents of any objects those objects refer to,
and so on for all reachable objects.

Inside a transaction, ObjectStore automatically fetches the
contents of objects as you read the objects. Outside a transaction,
if a reference to an object, but not the contents of the object, was
retained, ObjectStore throws NoTransactionInProgressException.

Here is another situation in which you would receive the
NoTransactionInProgressException:

1 In a transaction, you read object A.

2 You commit the transaction with ObjectStore.RETAIN_
READONLY.

3 You start a new transaction. It does not matter whether or not
you access object A in this transaction.

4 You commit this transaction with ObjectStore.RETAIN_STALE
or without a retain argument.

5 Outside a transaction, you try to access object A and you receive
the NoTransactionInProgressException.

You might think that because you retained A after a previous
transaction, its contents are still available. This is not the case.
Since nothing was retained after the second transaction, the
contents of A are no longer available.

MVCC alternative Many applications that seem to be suitable for retaining persistent
objects as readable can be better implemented with the
Multiversion Concurrency Control (MVCC) feature. See page 317.
Release 3.0 159

Committing Transactions to Save Modifications
Retaining Persistent Objects as Writable

Call commit(ObjectStore.RETAIN_UPDATE) to retain the copies of
the objects in your Java program as readable and writable.
ObjectStore maintains the contents of the persistent objects as they
are at the end of the transaction.

Sometimes, the contents of an object are not available in a
transaction when you expect that they are available. See
Troubleshooting: NoTransactionIn ProgressException on
page 158.

A specification of ObjectStore.RETAIN_UPDATE is exactly like a
specification of ObjectStore.RETAIN_READONLY, except that if
your application accesses the objects after the transaction and
before the next transaction, it can modify as well as read the
objects. At the beginning of the next transaction, ObjectStore
discards any updates made to the persistent objects between
transactions. ObjectStore does not modify the contents of any
transient-only fields unless you have explicitly defined one of the
following methods to modify transient-only fields.

• IPersistent.clearContents()

• IPersistent.preClearContents()

• IPersistent.initializeContents()

• IPersistent.postInitializeContents()

The clearContents() and initializeContents() methods that are
generated by the postprocessor do not modify transient-only
fields.

Advantage The advantage of using commit(ObjectStore.RETAIN_UPDATE) is
that the copies of the objects in your Java program become scratch
space between transactions. You can use them to determine what
the results might be for a particular scenario.

Disadvantage The disadvantage is that updates are automatically discarded at
the beginning of the next transaction. This can make it difficult to
debug applications that use this option indiscriminantly.
160 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Caution About Retaining Nonexported Objects

Suppose you commit a transaction and retain persistent objects as
hollow, readable, or writable. Retained objects that are not
exported can become stale inside a subsequent transaction. This
can happen if you run the schema evolution tool or use the schema
evolution API. If you try to access a retained object that has
become stale after schema evolution, ObjectStore throws
UnexportedObjectsBecameStaleException.

When retained objects are exported, ObjectStore can correctly
retain them after schema evolution.

Consequently, you must follow at least one of these rules:

• Do not retain nonexported objects between transactions.

• Ensure than schema evolution does not operate on your
database while your application is running.

• Catch the UnexportedObjectsBecameStaleException, abort the
transaction, and retry the transaction. This is similar to
handling DeadlockException, except that
UnexportedObjectsBecameStaleException does not abort the
transaction.

• Catch the exception, retrieve objects from roots again, and retry
the operation. You do not need to abort the transaction.
Release 3.0 161

Evicting Objects to Save Modifications
Evicting Objects to Save Modifications

You might want to save modifications to an object or change the
state of an object without committing a transaction. The evict()
method allows you to do this.

Method signatures The evict() method has two overloadings. The first overloading
takes an object as an argument. The method signature is

public static void evict(Object object)

The second overloading has an additional argument that specifies
the state of the evicted object after the eviction. The method
signature is

public static void evict(Object object, int retain)

Contents This section provides the following information about evicting
objects:

• Description of Eviction Operation on page 163

• Setting the Evicted Object to Be Stale on page 164

• Setting the Evicted Object to Be Hollow on page 165

• Setting the Evicted Object to Remain Active on page 166

• Summary of Eviction Results for Various Object States on
page 167

• Evicting All Persistent Objects on page 167

• Evicting Objects When There Are Cooperating Threads on
page 168

• Committing Transactions After Evicting Objects on page 169

• Evicting Objects Outside a Transaction on page 169
162 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Description of Eviction Operation

When you evict an object, ObjectStore

• Saves any modifications to the object in the database, but does
not commit the changes. If the transaction commits, then any
changes are committed. If the transaction aborts, the contents of
the object in the database revert to the contents following the
last committed transaction in which the object was modified.

• Sets the state of the evicted object after the eviction. This affects
the copy of the object that is in your Java program. The default
is that the evicted object is stale after the eviction. If you do not
want it to be stale, you can specify another state when you
invoke evict().

References to other
objects

When you evict an object, ObjectStore does not evict objects that
the evicted object references.

You might evict an object that has instance variables that are
transient strings. ObjectStore migrates such strings to the database
and stores them in the same segment as the evicted object. As part
of the eviction process, ObjectStore evicts the just-stored string
with a specification of ObjectStore.RETAIN_READONLY.
Consequently, after the eviction, the migrated string remains
readable.

If you try to evict an object when that object refers to a transient
object that is not persistence-capable, ObjectStore throws
ObjectNotPersistenceCapableException and does not perform the
eviction. The exception message provides the class of the object
that is causing the problem.

If you try to evict an object when the object refers to an unexported
object in another segment, ObjectStore throws
ObjectNotExportedException and cancels the evict operation.

Caution If your application evicts one or more objects while an annotated
method is executing, your program might incorrectly access
persistent objects after the eviction. For more information about
this and a work around, see Troubleshooting Access to Persistent
Objects on page 183.
Release 3.0 163

Evicting Objects to Save Modifications
Setting the Evicted Object to Be Stale

When you invoke evict(Object), ObjectStore makes the evicted
object stale. ObjectStore resets the contents of the copy of the
object in your Java program to default values and makes the object
inaccessible. Any references to the evicted object are stale, and
your application should discard them. The copy of the object in
your Java program becomes available for Java garbage collection.

Advantage The advantage of using the evict(Object) method is that the evicted
object and all objects it refers to become available for Java garbage
collection (provided that they are not referenced by other objects
in the Java program).

Disadvantage The disadvantage is that any references to the evicted object
become stale. If you try to use the stale references, ObjectStore
throws ObjectException.

The effect on accessibility to the copy of the object in your Java
program is therefore similar to the effect of commit() and
commit(ObjectStore.RETAIN_STALE). However, if the transaction
aborts, any changes to the evicted object are discarded.

Alternative method A call to evict(Object, ObjectStore.RETAIN_STALE) is identical to a
call to evict(Object).
164 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Setting the Evicted Object to Be Hollow

When you invoke evict(Object, ObjectStore.RETAIN_HOLLOW),
ObjectStore makes the evicted object hollow. ObjectStore resets
the contents of the copy of the object in your Java program to
default values. References to the evicted object continue to be
valid.

If the application accesses the evicted object in the same
transaction, ObjectStore copies the contents of the object from the
database to the copy in your Java program. If your application
modified the object before evicting it, these modifications are
included in the new copy in your Java program.

Advantage The reason to use the evict(Object, ObjectStore.RETAIN_HOLLOW)
method is that the object and all objects it refers to become
available for Java garbage collection (provided that they are not
referenced from other objects in the Java program).

Sometimes an application might retain references to an object and
prevent Java garbage collection that would otherwise occur. It is
good practice to avoid retaining references to objects
unnecessarily.
Release 3.0 165

Evicting Objects to Save Modifications
Setting the Evicted Object to Remain Active

When you invoke evict(Object, ObjectStore.RETAIN_READONLY),
ObjectStore

• Retains references to the evicted object.

• Retains the contents of the evicted object.

• Saves any changes to the evicted object.

• Internally flags the object as read but not modified. This is
because any changes are already saved. If the application later
modifies the evicted object in the same transaction, ObjectStore
modifies this flag accordingly.

Garbage collection Any changes that were made before the object was evicted are
saved in the database. (Of course, if the transaction aborts, the
changes are rolled back.) Therefore, if the evicted object is not
referenced by other objects in the Java program, it becomes
available for Java garbage collection.

Additional changes Your application can read or modify the evicted object in the same
transaction. If it does, ObjectStore does not have to recopy the
contents of the object from the database to your program. When
the application commits the transaction or evicts the object again,
ObjectStore saves in the database any new changes to the evicted
object.

It might seem strange to evict an object with ObjectStore.RETAIN_
READONLY and yet be able to modify the object after the eviction.
The specification of READONLY in this context means that, as of
this point in time, the evicted object has been read but not
modified. The changes have already been saved, but not
committed. The contents are still available and can be read or
updated.

Advantage The advantage of using evict(Object, ObjectStore.RETAIN_
READONLY) is that the updated object becomes available for Java
garbage collection.
166 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Summary of Eviction Results for Various Object States

The following table shows the results of an eviction according to
the value specified for the retain argument.

Evicting All Persistent Objects

You can evict all persistent objects with one call to evictAll(). The
method signature is

public static void evictAll(int retain)

For the retain argument, you can specify

• ObjectStore.RETAIN_STALE

• ObjectStore.RETAIN_HOLLOW

• ObjectStore.RETAIN_READONLY

If you specify RETAIN_STALE or RETAIN_HOLLOW, ObjectStore
applies it to all persistent objects that belong to the same session
as the active thread. It does it in the same way that it applies it to
one object for the evict(object, retain) method. If you specify
RETAIN_READONLY, ObjectStore applies it to all active persistent
objects that belong to the same session as the active thread.

Results of Eviction RETAIN_STALE RETAIN_HOLLOW RETAIN_READONLY

Object state Stale Hollow Active

References to evicted
object

Stale Remain valid Remain valid

Candidate for Java
garbage collection

Candidate Can be candidate Not a candidate
Release 3.0 167

Evicting Objects to Save Modifications
Evicting Objects When There Are Cooperating Threads

Before an application evicts an object, it must ensure that no other
thread requires that object to be accessible. For example, suppose
you have code like this:

class C {
String x;
String y;

void function() {
System.out.println(x);
ObjectStore.evict(this);
System.out.println(y);

}
}

Before the first call to println(), the object is accessible. After the call
to evict(), the y field is null and the second println() call fails. There
are more complicated scenarios for this problem, which involve
subroutines that call evict() and cause problems in the calling
functions. This problem can occur in a single thread. If there are
multiple cooperating threads, each thread must recognize what
the other thread is doing. See Cooperating Threads on page 48.

It is the responsibility of the application to ensure that the object
being evicted is not the this argument of any method that is
currently executing.
168 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Committing Transactions After Evicting Objects

In a transaction, you might evict some objects and specify their
state to be hollow or active. If you then commit the transaction and
cause the state of persistent objects to be stale, this overrides the
hollow or active state set by the eviction. If you commit the
transaction and cause the state of persistent objects to be hollow,
this overrides an active state set by eviction. For example:

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
Trail trail = (Trail) db.getRoot("greenleaf");
GuideBook guideBook = trail.getDescription();
ObjectStore.evict(guideBook, ObjectStore.RETAIN_READONLY);
tr.commit();

After the transaction commits, the application cannot use
guideBook. Committing the transaction without specifying a
retain argument makes all persistent objects stale. This overrides
the RETAIN_READONLY specification when guideBook was
evicted.

Evicting Objects Outside a Transaction

Outside a transaction, eviction of an object has meaning only if
you retained objects when you committed the previous
transaction. In other words, if you invoke the commit(retain)
method and specify a value for the retain argument other than
RETAIN_STALE, you can evict retained objects outside a
transaction.

If you specified commit(ObjectStore.RETAIN_STALE), there are no
objects to evict after the transaction commits.

If you invoked commit() with any other retain value, you can call
evict() or evictAll() with the value of the retain argument as
RETAIN_STALE or RETAIN_HOLLOW. If you specify RETAIN_
READONLY, ObjectStore does nothing.

Outside a transaction, if you make any changes to the objects you
evict, ObjectStore discards these changes at the start of the next
transaction. They are not saved in the database.
Release 3.0 169

Aborting Transactions to Cancel Changes
Aborting Transactions to Cancel Changes

If you modify some objects and then decide that you do not want
to keep the changes, you can abort the transaction. Aborting a
transaction

• Ensures that the objects in the database are as they were just
before the aborted transaction started.

• Sets the state of persistent objects from the transaction.

Only the state of the database is rolled back. The state of transient
objects is not undone automatically. Applications are responsible
for undoing the state of transient objects. Any form of output that
occurred before the abort cannot be undone.

This section discusses the following topics:

• Setting Persistent Objects to the Default State on page 171

• Setting the Default Abort Retain State on page 171

• Specifying a Particular State for Persistent Objects on page 171

Caution If your application aborts a transaction while an annotated
method is executing, your program might incorrectly access
additional persistent objects after the abort operation. For more
information about this and a work around, see Troubleshooting
Access to Persistent Objects on page 183.
170 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Setting Persistent Objects to the Default State

To abort a transaction and set the state of persistent objects to the
state specified by Transaction.setDefaultAbortRetain(), call the
abort() method. The default state is stale. The method signature is

public void abort()

For example:

tr.abort();

Setting the Default Abort Retain State

Call the setDefaultAbortRetain() method to set the default state for
persistent objects after a transaction is aborted. The method
signature is

public void setDefaultAbortRetain(int newRetain)

The values you can specify for newRetain are the same values you
can specify when you call abort() with a retain argument. These
values are described in the next section.

Specifying a Particular State for Persistent Objects

To abort a transaction and specify a particular state for persistent
objects after the transaction, call the abort(retain) method on the
transaction. The method signature is

public void abort(int retain)

The following example aborts the transaction and specifies that
the contents of the active persistent objects should remain
available to be read:

tr.abort(ObjectStore.RETAIN_READONLY);

The values you can specify for retain are described below. The
rules for Java garbage collection of objects retained from aborted
transactions are the same as for objects retained from committed
transactions. See Committing Transactions to Save Modifications
on page 153.

RETAIN_STALE ObjectStore.RETAIN_STALE resets the contents of all persistent
objects to their default values and makes them stale. This is the
same as calling abort() when Transaction.setDefaultAbortRetain()
has either not been called or been called with ObjectStore.RETAIN_
STALE as its argument.
Release 3.0 171

Aborting Transactions to Cancel Changes
RETAIN_HOLLOW ObjectStore.RETAIN_HOLLOW resets the contents of all persistent
objects to their default values and makes them hollow. In the next
transaction, you can use references to persistent objects from this
transaction.

RETAIN_READONLY ObjectStore.RETAIN_READONLY retains the contents of
unmodified persistent objects that were read during the aborted
transaction. Any objects that were modified become hollow
objects, as if ObjectStore.RETAIN_HOLLOW had been specified.
Objects whose contents were read but not modified in the aborted
transaction can be read after the aborted transaction.

If you try to modify a persistent object before the next transaction,
ObjectStore throws NoTransactionInProgressException. If you
modified any persistent objects during the aborted transaction,
ObjectStore discards these modifications and makes these objects
hollow as part of the abort operation.

During the next transaction, the contents of persistent objects that
were not modified during the aborted transaction are still
available.

RETAIN_UPDATE ObjectStore.RETAIN_UPDATE retains the contents of persistent
objects that were read or modified during the aborted transaction.
The values that are retained are the last values that the objects
contained before the transaction was aborted. Even though the
changes to the modified objects are undone with regard to the
database, the changes are not undone in the objects in the Java
VM.

While you are between transactions, the changes that were
aborted are still visible in the Java objects. At the start of the next
transaction, ObjectStore discards the modifications and reads in
the contents from the database. Objects that were read or modified
in the aborted transaction can be modified between the aborted
transaction and the next transaction. If you modify any persistent
objects during or after the aborted transaction, ObjectStore
discards these modifications and makes these object hollow at the
start of the next transaction.

During the next transaction, the contents of persistent objects that
were not modified during or after the aborted transaction are still
available.
172 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Destroying Objects in the Database

You can explicitly destroy any object that you want to be deleted
from persistent storage. You can also perform persistent garbage
collection, which destroys unreachable objects in the database. See
Performing Garbage Collection in a Database on page 81. The
discussion of the destroy operation covers the following topics:

• Calling ObjectStore.destroy() on page 173

• Destroying Objects That Refer to Other Objects on page 174

• Destroying Objects That Are Referred to by Other Objects on
page 178

Calling ObjectStore.destroy()

To destroy an object, call ObjectStore.destroy(). The method
signature is

public static void destroy(Object object)

The object you specify must be persistent or the call has no effect.
The database that contains the object must be open-for-update
and an update transaction must be in progress.

If the destroyed object either implements the IPersistent interface
or is an array, you cannot access any of its fields after you destroy
it.

After you invoke ObjectStore.destroy() on a primary Java object,
ObjectStore leaves a tombstone. If you try to access the destroyed
object, the tombstone causes ObjectStore to throw
ObjectNotFoundException.
Release 3.0 173

Destroying Objects in the Database
Destroying Objects That Refer to Other Objects

By default, when you destroy an object, ObjectStore does not
destroy objects that the destroyed object references.

There is a hook method, IPersistent.preDestroyPersistent(), that
you can define. ObjectStore calls this method before actually
destroying the specified object. This method is useful when an
object has underlying structures that you want to destroy along
with the object. The default implementation of this method does
nothing.

You can use preDestroyPersistent() to propagate the destroy
operation to child objects that are referenced by the one being
destroyed. If you do this, be careful that the child objects
themselves are not referenced by other objects in the database. If
an object attempts to use a reference to an explicitly destroyed
object, ObjectStore throws ObjectNotFoundException. If you are not
certain whether a specific object might be referenced elsewhere, it
is better to avoid explicitly destroying the object. Let the persistent
garbage collector do the job instead.

OSHashtable and
OSVector

When you delete a COM.odi.util.OSHashtable or
COM.odi.util.OSVector object, ObjectStore deletes the hash table or
vector and its own internal data structures. ObjectStore does not
delete the keys or elements that were inserted into the hash table
or vector. Doing so might cause problems because other Java
objects might refer to those objects.

However, sometimes you want to destroy the objects in a hash
table or vector as well as the hash table or vector itself. Suppose
you have a class in which one of the instance variables is a
COM.odi.util.OSVector. You might want to ensure that whenever
an instance of this class is destroyed, the OSVector and its contents
are also destroyed. To do this, you can define a
preDestroyPersistent() method on your class. Define this method
to iterate over the elements in the vector, destroy each one, and
then destroy the COM.odi.util.OSVector.
174 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Types not destroyed When you call the ObjectStore.destroy() method on an object, it
does not destroy fields in the object that are

• String types

• Instances of wrapper classes that have been explicitly migrated
with the ObjectStore.migrate() method

For additional information about ObjectStore treatment of String
instances, see Description of Special Behavior of String Literals on
page 366. For example, if you define a class such as the one below,
when you destroy an instance of this class, you should also
explicitly destroy s and d.

class C {
int i;
String s;
Double d;

}

Advantages of explicit
destroy

You should always consider whether or not to have
preDestroyPersistent() call ObjectStore.destroy() on fields that
contain String types, instance of wrapper classes that have been
explicitly migrated, or types that you define. The advantages of
explicitly destroying objects are

• ObjectStore replaces large objects or arrays with a four-byte
tombstone.

• Space is freed without having to wait for the persistent garbage
collector to run.

• Without expanding the size of the database, the length of time
between persistent garbage collections can be longer.
Release 3.0 175

Destroying Objects in the Database
Disadvantages of
explicit destroy

The disadvantages of explicitly destroying such objects are

• You must write additional code.

• There is the risk of a dangling reference if you are not careful.
For example, an unanticipated ObjectException might prevent
an object from being destroyed.

• ObjectStore replaces a destroyed object with a tombstone that
uses four bytes. This can cause fragmentation. The tombstone
can also cause ObjectStore to throw ObjectNotFoundException.
For example, suppose you unintentionally destroy an object
that is referenced by another object. When you try to
dereference the reference to the destroyed object, the
tombstone causes ObjectStore to throw
ObjectNotFoundException.

If you do not explicitly destroy an unreferenced object,
ObjectStore destroys it when you run the persistent garbage
collector.

You do not need to have preDestroyPersistent() call
ObjectStore.destroy() on fields that contain primitive types.
176 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Example For example, suppose you have a persistence-capable class called
MyVector that has a private field called contents. When an instance
of MyVector is persistent, the contents field is also persistent, but a
user would not have access to it because it is private. If a user calls
ObjectStore.destroy() on an instance of MyVector, the operation
destroys the instance but not the contents object.

If you are the programmer implementing the MyVector class, you
have two choices:

• Provide a MyVector.destroy() method to call
ObjectStore.destroy(contents). If you do this, you must ensure
that users of MyVector understand that they should not call
ObjectStore.destroy() on an instance of MyVector because doing
so leaves garbage in the database.

• Provide a preDestroyPersistent() method that calls
ObjectStore.destroy(contents). This choice ensures that if a user
calls ObjectStore.destroy() on an instance of MyVector, the
operation cleans up the private contents field.

Here is code that shows the second alternative:

public class MyVector {
private Object[] contents;

public addElement(Object o) {
contents[nextElement++] = o;

}

public void preDestroyPersistent() {
if (contents != null)

ObjectStore.destroy(contents);
}

}

Release 3.0 177

Destroying Objects in the Database
Destroying Objects That Are Referred to by Other Objects

The usual practice is to remove references to a persistent object
before you destroy that persistent object. ObjectStore throws
ObjectNotFoundException when you try to access a destroyed object.
It is up to you to clean up any references to destroyed objects.

If an object retains a reference to a destroyed object, ObjectStore
throws ObjectNotFoundException when you try to use that
reference. This might occur long after the referenced object was
destroyed. To clean up this situation, set the reference in the
referring object to null.

String class A call to destroy on a String object has different behavior. When
you dereference a reference to such a destroyed object,
ObjectStore does not throw ObjectNotFoundException. Instead,
references to the destroyed object from objects modified in the
same transaction as the destroy operation continue to have the
value of the destroyed object. References to the destroyed object
from objects not modified in the same transaction appear as null
values when an object containing such a reference is fetched.

Hash tables You should avoid having a hash table refer to a destroyed object.
It is difficult to remove a reference from a hash table after you
destroy the object that it refers to. This is because the search
through the hash table for the referring object might cause
ObjectStore to try to access the destroyed object. In fact, a search
for another object in the hash table might cause ObjectStore to
access the destroyed object. The result is that the hash table
lookup procedure throws ObjectNotFoundException and the hash
table becomes useless. Consequently, you should always remove
objects from hash tables before you destroy them.
178 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Default Effects of Various Methods on Object State

The table below summarizes the default effects of various
methods on the state of hollow or active persistent objects. You
should never try to invoke a method on a stale object. If you do,
ObjectStore tries to detect it and throw ObjectException.
ObjectStore can throw ObjectException for objects that are instances
of classes that implement the IPersistent interface.

Unless you manually annotate your classes to make them
persistence-capable, you do not write ObjectStore.fetch() or
ObjectStore.dirty() calls in your application. The postprocessor
inserts these calls automatically as needed.

The information in this table assumes that you are not specifying
a retain argument with any of the methods that accept a retain
argument.

Method the Application
Calls

Result When Invoked on a Hollow
or Active Object

ObjectStore.fetch() Active persistent object

ObjectStore.dirty() Active persistent object

ObjectStore.evict() Hollow persistent object

ObjectStore.destroy() Stale persistent object

Method the Application
Calls

Result

Transaction.commit() Persistent objects become stale.

Transaction.abort() Persistent objects become stale.
Release 3.0 179

Transient Fields in Persistence-Capable Classes
Transient Fields in Persistence-Capable Classes

This section discusses

• Behavior of Transient Fields on page 180

• Preventing fetch() and dirty() Calls on Transient Fields on
page 181

• Background Information About Access to Transient Fields on
page 181

See also Creating Persistence-Capable Classes with Transient
Fields on page 273.

Behavior of Transient Fields

In a persistence-capable class, a field designated with the transient
keyword behaves as follows:

• A transient field is never stored in a database.

• A transient field can be initialized in a constructor just like any
other field.

• When an object is materialized from a database, a transient
field has the value that the constructor gives it.

• By overriding the postInitializeContents() method, you can
synchronize a transient field for an object when its contents are
refreshed from the database.

• When an object becomes hollow or stale, a transient field is not
cleared.

• If you assign the value of a persistent object to a transient field,
all memory of the reference is lost when the enclosing object is
garbage collected.

• If you try to access a transient field outside a transaction,
ObjectStore throws NoTransactionInProgressException if the
containing object is hollow or ObjectException if the containing
object is stale.

• Committing or aborting a transaction has no effect on a
transient field.
180 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Preventing fetch() and dirty() Calls on Transient Fields

When you run the postprocessor on a class that has transient
fields, you might want to specify the -noannotatefield option for
the transient fields. This option prevents access to the specified
field from causing fetch() and dirty() calls on the containing object.
This is useful for transient fields when you access them outside a
transaction. Normally, access to a transient field causes fetch() or
dirty() to be called to allow the postInitializeContents() and
preFlushContents() methods to convert between persistent and
transient states.

When you specify the -noannotatefield option, follow it with a
qualified field name.

Background Information About Access to Transient Fields

Suppose you define class X with transient field Y. When you try to
access X.Y outside a transaction, you receive
NoTransactionInProgressException. This happens because the
postprocessor annotates access to transient fields the same way
that it annotates access to persistent fields, that is, with calls to
fetch() and dirty() as needed. If you do not want this behavior,
specify the -noannotatefield option followed by the qualified name
of the transient field when you run the postprocessor.

The default behavior of the postprocessor is to insert calls to
fetch() and dirty(). This is because transient fields need to be
initialized in objects that are read from the database, and
initialization might be based on persistent state. You can define
the postInitializeContents() and preFlushContents() methods to
maintain persistent and transient fields in parallel. The calls to
fetch() and dirty() trigger the calls to these methods.

If the -noannotatefield behavior was the default, transient fields
would not be initialized and there would be no error notification
of this. Since this is not the default, you receive an exception if and
when there is a problem.
Release 3.0 181

Avoiding finalize() Methods
Avoiding finalize() Methods

Object Design strongly recommends that you do not define
java.lang.Object.finalize() methods in application classes that are
persistence-capable. If your persistence-capable class must define
a finalize() method, you must ensure that the finalize() method
does not access any persistent objects. This is because the Java
garbage collector might call the finalize() method outside a
transaction or from a thread that does not belong to the session of
the object being finalized. Such a situation causes ObjectStore to
throw ObjectStoreException and prevents execution of the finalize()
method.

If your class defines a finalize() method, the class file postprocessor
inserts annotations at the beginning of the finalize() method that
change the persistent object to a transient object. This makes it safe
to access fields of the finalized object. However, if the object has
not been fetched, the fields are in an uninitialized state.
182 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Troubleshooting Access to Persistent Objects

Incorrect program behavior can happen when your program does
one of the following while an annotated method is executing:

• Aborts, commits, or checkpoints a transaction

• Evicts one or all objects

The general result is that your program might incorrectly access
additional persistent objects after the abort, commit, checkpoint,
or eviction. The specific results vary according to the retain setting
ObjectStore uses for the operation:

• ObjectStore.RETAIN_STALE should cause ObjectStore to throw
ObjectException if your program tries to access a stale object.
With the optimizations, your program might be able to access
stale objects, which should not happen.

• ObjectStore.RETAIN_HOLLOW
ObjectStore.RETAIN_READONLY
ObjectStore.RETAIN_UPDATE

These settings might cause your program to retrieve null or 0
values in place of correct values. Also, ObjectStore might fail to
save some modifications in the database.

The class file postprocessor (osjcfp) uses two optimizations that
can cause incorrect access to persistent objects. Consequently,
there are two options to the postprocessor that allow you to
disable these optimizations:

• -noarrayopt disables optimization of fetch() and dirty() calls for
array objects in looping constructs. This causes osjcfp to make
the calls to fetch() or dirty() in every iteration rather than only in
the first loop iteration.

• -nothisopt disables optimization of fetch() and dirty() calls for
access to fields relative to this in nonstatic member methods.
This causes osjcfp to insert a fetch() or dirty() call for each access
to a field in this.

Specify these options when you recognize the behavior described
here.
Release 3.0 183

Handling Unregistered Types
Handling Unregistered Types

ObjectStore creates objects of type UnregisteredType when it must
create a persistent object and it cannot find a ClassInfo subclass
that describes the object it must create. The ClassInfo subclass
might not be found because of a problem with the CLASSPATH or
because the ClassInfo subclasses are not available for a particular
database.

Typically, the postprocessor creates a ClassInfo subclass for types
you want to store in a database. If you do not run the
postprocessor, you must define a ClassInfo subclass yourself.
ObjectStore uses this ClassInfo subclass to register the class the
first time ObjectStore encounters the class in your application. If
ObjectStore cannot find the ClassInfo subclass that describes a
type, that type is unregistered.

If your application receives error messages that indicate
unregistered types, the information here can help you determine
what is happening and what to do about it. This section discusses

• How Can There Be Unregistered Types? on page 185

• Can Applications Work When There Are Types Not
Registered? on page 185

• What Does ObjectStore Do About Unregistered Types? on
page 186

• When Does ObjectStore Create UnregisteredType Objects? on
page 187

• Can Your Application Run with UnregisteredType Objects? on
page 188

• Troubleshooting ClassCastExceptions Caused by Unregistered
Types on page 189

• Troubleshooting the Most Common Problem on page 190
184 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
How Can There Be Unregistered Types?

How can there be a type in the database with no corresponding
ClassInfo subclass? This can happen when

• The CLASSPATH environment variable has been changed since
the object was stored in the database, and the ClassInfo subclass
is no longer in the CLASSPATH.

• The CLASSPATH might include the directory or .zip or .jar file
that contains the original class files, but not the directory or .zip
or .jar file that contains the postprocessed class files with their
corresponding ClassInfo subclasses.

• The database was received from another computing
environment, but the corresponding ClassInfo class files were
not sent along with the database. For example, you might
receive a database with a .zip or .jar file that does not include
the postprocessed class files for the types in the database.

Can Applications Work When There Are Types Not Registered?

In some situations, it might not matter to your application that
there is an object whose type is unregistered. For example,
suppose you are looking up an element in a hash table. One of the
elements in the hash table is of an unregistered type, but it is not
the element you are looking for. Because ObjectStore creates an
UnregisteredType object instead of throwing an exception, your
application can keep running.
Release 3.0 185

Handling Unregistered Types
What Does ObjectStore Do About Unregistered Types?

ObjectStore provides the abstract class UnregisteredType to
represent objects whose types are unregistered. When ObjectStore
cannot find the ClassInfo subclass for a type that is referenced in
your application, it

• Creates an UnregisteredType object to represent the type

• Uses the UnregisteredType object in place of the hollow object it
would have created

You can never read or modify an UnregisteredType object. Because
of this, it is important for you to understand

• When ObjectStore creates UnregisteredType objects

• Whether or not ObjectStore can use UnregisteredType objects in
a particular situation

With this information, you can determine whether your
application can run with objects of unregistered types. Your
application can continue to run as long as you do not try to read
or modify an UnregisteredType object.
186 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
When Does ObjectStore Create UnregisteredType Objects?

ObjectStore creates an UnregisteredType object when it encounters
an object in a database and it determines that the type of that
object is not registered. ObjectStore encounters an object in a
database when it

• Obtains the value of a database root

• Initializes an object and the value of one of the fields is a class,
interface, or array

• Initializes an array and the element type of the array is a class,
interface, or array

• Iterates over all objects in a segment

In the above list, initialize means to read the contents of the object
out of the database and into the persistent Java object. This
happens when ObjectStore calls IPersistent.initializeContents() and
IPersistent.postInitializeContents().

When ObjectStore encounters an object in a database, it
determines whether there is already a Java object for the object in
the database. If there is, ObjectStore uses that object. If there is not,
ObjectStore checks to see if the type of the object is registered.

If the type is not registered, ObjectStore tries to load the ClassInfo
subclass for the type and register it. ObjectStore uses the regular
Java class loading mechanism. Usually, this means that
ObjectStore searches your CLASSPATH. Depending on the Java
implementation you are using, Java class loading can also involve
Java ClassLoader objects, as described in the Java Language
Specification.

If ObjectStore cannot load the ClassInfo subclass, it cannot register
the type and consequently it cannot create a hollow object for the
type. In this case, ObjectStore creates a new Java object of type
UnregisteredType and uses it in place of the hollow object.

ClassInfo background Typically, the postprocessor defines a ClassInfo subclass for your
class. If you do not run the postprocessor, you must manually
create the ClassInfo subclass. The name of the ClassInfo subclass is
usually the name of the class with ClassInfo as a suffix. However,
the suffix can also be Info or CI or another value that you specify
with the -classinfosuffix postprocessor option.
Release 3.0 187

Handling Unregistered Types
Can Your Application Run with UnregisteredType Objects?

ObjectStore can use the UnregisteredType object if java.lang.Object
is the type of the field in which the reference is being stored. For
example, suppose you have the following class:

class Person {
Pet mypet;
Object mytrash;

}

You also have a database that contains one Person object. The
value of the Person.mypet instance variable is an instance of the
Pet class. The value of the Person.mytrash instance variable is an
instance of the Shoe class.

Now, suppose that the Pet class is an unregistered class. Your
application opens the database and tries to read the Person object.
This means ObjectStore must initialize the Person object. When
ObjectStore recognizes that the Pet class is unregistered, it creates
an UnregisteredType object. ObjectStore then tries to assign the
mypet instance variable to the UnregisteredType object. The code
to do this is something like this:

mypet = (Pet)(handle.getClassField(1, XXX));

Typically, the postprocessor generates this code, but you can
specify it yourself in the IPersistent.initializeContents() method. In
any case, the call to handle.getClassField() returns an
UnregisteredType object. The cast to Pet is required because Pet is
the type of the mypet instance variable. However, this cast does
not work. You cannot cast an UnregisteredType to Pet because
UnregisteredType is not Pet and is not a subclass of Pet. The Java
VM throws a ClassCastException in the middle of the initialization.
The Person object is never initialized.

Now suppose that the Pet class is registered, and that the Shoe
class, which is the type of the Person.mytrash instance variable, is
not registered. ObjectStore creates an UnregisteredType object and
the handle.getClassField() method returns it:

mytrash = (Object)(handle.getClassField(1, XXX));

This time, the cast works correctly because UnregisteredType is a
subclass of Object. The initialization succeeds, and the application
continues to run.
188 ObjectStore Java API User Guide

Chapter 6: Storing, Retrieving, and Updating Objects
Troubleshooting ClassCastExceptions Caused by Unregistered Types

If ObjectStore creates an UnregisteredType object and you do not
try to do anything with it, your application should work just fine.
Now suppose you try to do something with it. Since it exists, it
must be in a variable of type java.lang.Object. (If it were not, you
would have had trouble with it earlier, as in the Pet example in the
previous section.)

You cannot do very much with objects of type Object, so it is likely
that the first thing you would do is try to cast the UnregisteredType
object to some specific type that you expect it to be. However, this
does not work. If you try to cast an UnregisteredType object to a
type other than java.lang.Object or UnregisteredType, the Java VM
throws ClassCastException.

Unfortunately, the ClassCastException does not identify the type
that is unregistered. There are two ways that you can determine
the name of the type that is not registered:

• Change your program.

• Set the COM.odi.trapUnregisteredType property

Changing your
program

Somewhere in your program, you have a variable of type Object
whose value is an object of the UnregisteredType class. Modify
your program to cast this variable to type UnregisteredType. Then
invoke the getTypeName() method on the UnregisteredType object.
This returns the name of the type that is unregistered.

The disadvantage of this approach is that you must edit and
recompile your code.

Setting the
trapUnregisteredType
property

ObjectStore provides the COM.odi.trapUnregisteredType property
to help you determine which class is unregistered. The default is
that this property is not set, and it is usually best to use the default.

When ObjectStore determines that a type is not registered, it
checks the setting of the COM.odi.trapUnregisteredType property.
If the property is not set, the default, ObjectStore creates an
UnregisteredType object to represent the unregistered type. If
COM.odi.trapUnregisteredType is set, ObjectStore throws
FatalApplicationException and provides a message that indicates the
name of the class that is unregistered.
Release 3.0 189

Handling Unregistered Types
Advantage The advantage of the COM.odi.trapUnregisteredType property is
that it provides the name of the class that is unregistered.

Disadvantage The disadvantage is that as soon as ObjectStore encounters the
first object whose type is unregistered, your application stops
running. If the object you want information about is the second
object of an unregistered type that ObjectStore would encounter,
ObjectStore never reaches that second object. When you set
COM.odi.trapUnregisteredType, ObjectStore throws
FatalApplicationException as soon as it encounters the first object
whose type is unregistered.

Troubleshooting the Most Common Problem

There is a common situation in which an UnregisteredType object
causes a ClassCastException. This is when you try to obtain a
database root (Database.getRoot()) and the value of the root is an
UnregisteredType object. For example:

Foo foo = (Foo) db.getRoot("foo");

If the Foo class is unregistered, the Java VM throws a
ClassCastException when it comes to the (Foo) cast operation. See
the previous section for two ways to determine which class is
unregistered in this situation.

However, when the value of a root is an unregistered type, it can
mean that none of your persistence-capable types is registered.
This is often true when an UnregisteredType object causes a
ClassCastException very early in your program. Your best course of
action is likely to be to ensure that your persistence-capable
classes are in your CLASSPATH, rather than trying to determine
which class is not registered.
190 ObjectStore Java API User Guide

Chapter 7
Working with Collections

ObjectStore provides a set of persistence-capable utility
collections classes in the COM.odi.util package. These classes
mirror those provided in the upcoming JDK 1.2 release.

ObjectStore includes another package that contains collections
classes. The COM.odi.coll packages provides the API for the
ObjectStore peer collections. Use these collections when you want
to access C++ as well as Java. Information about these collections
is in the book Developing ObjectStore Java Applications That Access
C++.

This chapter discusses the following topics:

Description of ObjectStore Utility Collections 192

How to Choose a Collections Alternative 205

Using ObjectStore Utility Collections 207

Querying ObjectStore Utility Collections 210

Enhancing Query Performance with Indexes 222

Storing Objects as Keys in Persistent Hash Tables 231

Using Third-Party Collections Libraries 234
Release 3.0 191

Description of ObjectStore Utility Collections
Description of ObjectStore Utility Collections

ObjectStore provides a number of utility collections interfaces and
classes in the COM.odi.util package. In addition, ObjectStore
provides a query facility in the COM.odi.util.query package.

A collection is an object that groups together other objects. It
provides a convenient means of storing and manipulating groups
of objects, and supports operations for inserting, removing, and
retrieving elements.

Collections form the basis of the ObjectStore query facility, which
allows you to select those elements of a collection that satisfy a
specified condition. However, some collections can be queried,
and others cannot. Consequently, before you create a collection
and store it in a database, you should consider how you plan to
use a collection. When you know what you need, you can select
the best persistent collection representation for your application.

To introduce you to the ObjectStore utility collections facility, this
section discusses the following topics:

• Introduction to COM.odi.util Interfaces and Classes on
page 193

• Description of OSHashBag on page 195

• Description of OSHashMap on page 195

• Description of OSHashSet on page 196

• Description of OSHashtable on page 197

• Description of OSTreeMapxxx on page 198

• Description of OSTreeSet on page 199

• Description of OSVector on page 200

• Description of OSVectorList on page 201

• Advantages of Using ObjectStore Utility Collections on
page 201

• Background About Utility Collections and JDK 1.2 Collections
on page 203
192 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Introduction to COM.odi.util Interfaces and Classes

The COM.odi.util.Collection and COM.odi.util.Map interfaces
provide methods for operating on ObjectStore collections.

• Collection provides methods for operating on groups of objects
in which the objects might be ordered, might include
duplicates, and can be queried. The internal representation of a
class that implements Collection might be a hash table or a
binary tree or some other data structure.

- The COM.odi.util.List interface extends Collection. In
collections that implement List, the elements are ordered
and duplicates are allowed.

- The COM.odi.util.Set interface extends Collection. In
collections that implement Set, the elements are not ordered
and duplicates are not allowed.

• Map provides methods for operating on groups of key/value
entries. Each key can map to at most one value. You cannot
query collections that implement Map.

The ObjectStore utility collections facility provides the
persistence-capable COM.odi.util classes shown in the following
table. Most of these classes implement a COM.odi.util interface
(many implement other interfaces as well).

Class Implements

OSHashBag Collection

OSHashMap Map

OSHashSet Set

OSHashtable None

OSTreeMapByteArray Map
OSTreeMapDouble Map
OSTreeMapFloat Map
OSTreeMapInteger Map

OSTreeMapLong Map

OSTreeMapString Map
OSTreeSet Set

OSVector Collection

OSVectorList List
Release 3.0 193

Description of ObjectStore Utility Collections
Postprocessing You do not need to postprocess the classes in the utility collections
facility. They are already persistence-capable. If you define a
subclass that extends any of these classes and you want the
subclass to be persistence-capable, you must either run the
postprocessor on the subclass or manually annotate the subclass.

Example The query demo provides an example of using ObjectStore with
utility collections. See the README file in the COM/odi/demo/query
directory.

JDK 1.2 The JDK 1.2 collections interfaces specify the behavior of the
hashCode() method on instances of the Set, Map, and List types.
This hashCode() specification is based on the contents of the
collection; the hashCode of a collection changes depending on
what elements are added or removed. This means that it is not
advisable to store an instance of a set, map, or list class in a hash
table, unless the set or list is immutable and will never change.

Future change After the JDK 1.2 is released, Object Design will modify
ObjectStore so that it implements the JDK 1.2 collections
interfaces. At that time, ObjectStore will no longer need to
provide, and so will not provide, the following interfaces:

• COM.odi.util.Collection

• COM.odi.util.List

• COM.odi.util.Map

• COM.odi.util.Set

• COM.odi.util.Iterator

• COM.odi.util.ListIterator

Therefore, this discussion of transient views of Map classes
pertains to OSHashtable as well.)
194 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Description of OSHashBag

An OSHashBag is an unordered collection that allows duplicates.
OSHashBags not only keep track of what their elements are, but
also of the number of occurrences of each element. As the name
implies, a hash table is the internal representation for an
OSHashBag. OSHashBag directly implements the
COM.odi.util.Collection interface and so you can query instances of
OSHashBag.

Description of OSHashMap

An OSHashMap is also an unordered collection that allows
duplicates. Unlike OSHashBag, OSHashMap associates a key with
each value in the map. When you insert a value into an
OSHashMap , you specify the key along with the value. You can
retrieve a value with a given key. The internal representation of an
OSHashMap is a hash table. OSHashMaps do not allow null keys
or null values.

Since OSHashMap implements the Map interface rather than the
Collection interface, you cannot query OSHashMaps. However,
you can query the collection views of a map: Map.keySet(),
Map.values(), and Map.entries(). See Querying Collection Views of
Map Entries on page 202.

The OSHashMap.equals() method performs value (contents)
comparisons as described by Map.equals() to determine whether
two Maps are equal. This is the only difference between
OSHashMap and OSHashtable. The OSHashtable.equals() method
compares the identity of the two objects to determine equality.
The OSHashtable.hashcode() method generates a hash code based
upon object identity; it is not based on the contents of the
OSHashtable. For information about content comparisons and
identity comparisons, see OSHashtable and OSVector on
page 204.

A call to OSHashMap.hashCode() throws
UnsupportedOperationException. See Unsupported operations on
page 203.
Release 3.0 195

Description of ObjectStore Utility Collections
Description of OSHashSet

An OSHashSet is an unordered collection that does not allow
duplicates. If you try to insert a value into an OSHashSet and the
set already contains that value, the set remanins unchanged.
OSHashSet implements the COM.odi.util.Set interface. As its name
implies, a hash table is the internal representation of an
OSHashSet. Since OSHashSet indirectly implements
COM.odi.util.Collection, you can query OSHashSets.

OSTreeSets are capable of storing much larger persistent
collections than OSHashSets. However, OSTreeSets must be
persistent; it is not possible to create a transient instance of an
OSTreeSet. If your collection is small, an OSHashSet is the best
choice. If your collection is large, an OSTreeSet performs better.

A call to OSHashSet.hashCode() throws
UnsupportedOperationException. See Unsupported operations on
page 203.
196 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Description of OSHashtable

An OSHashtable is also an unordered collection that allows
duplicates. This class has the same APIs as java.lang.Hashtable.

OSHashtable associates a key with each element. When you insert
an element into an OSHashtable , you specify the key along with
the element. You can retrieve an element with a given key. While
the internal representation of an OSHashtable is a hash table, it is
a map-like structure.

Since OSHashtable does not implement the COM.odi.util.Collection
interface, you cannot query OSHashtables. However, you can
query the collection views of an OSHashtable. See Querying
Collection Views of Map Entries on page 202.

The OSHashtable.equals() and OSHashtable.hashCode() methods
perform reference (identity) comparisons and not value (contents)
comparisons. This is the only difference between OSHashtable
and OSHashMap. The OSHashMap methods perform content
comparisons. For information about content comparisons and
identity comparisons, see OSHashtable and OSVector on
page 204.

By default, an OSHashtable allocates room for 50 elements. You
can presize an OSHashtable to better match what your application
really needs. In addition, you can delay allocation of OSHashtable
substructure, which ObjectStore uses to represent the
OSHashtable, until elements are actually added to the
OSHashtable. To do this, specify the lazy argument to the
OSHashtable contructor:

OSHashtable(int intitialBufferSize, int capacityIncrement,
boolean lazy)
Release 3.0 197

Description of ObjectStore Utility Collections
Description of OSTreeMapxxx

OSTreeMap is based on a binary tree representation that is tuned
for large persistent collections. OSTreeMap is an abstract class with
several concrete subclasses. In all OSTreeMapxxx instances, the
values are objects. As for the keys, there are separate classes for
different types of keys, as shown in the following table:

An OSTreeMapxxx is an unordered collection that allows
duplicates. Each OSTreeMapxxx associates a key with a value in
the map. When you insert a value into an OSTreeMapxxx , you
specify the key along with the value. You can retrieve a value with
a given key. OSTreeMapxxxs do not allow null keys or null values.

The OSTreeMapxxx classes extend OSTreeMap, which implements
Map. Consequently, you cannot query OSTreeMapxxxs. However,
you can query the collection views of a map: Map.keySet(),
Map.values(), and Map.entries(). See Querying Collection Views of
Map Entries on page 202.

The OSTreeMapxxx classes are designed for very large persistent
aggregations. These classes allow you to iterate over the collection
or query the collection without fetching any objects from the
database except those that are explicitly returned to you.
ObjectStore does not even create hollow objects to represent the
elements. OSTreeMap collections can only be persistent.

A call to OSTreeMap.hashCode() throws
UnsupportedOperationException. See Unsupported operations on
page 203.

Each OSTreeMapxxx class has a constructor for exported objects.

Class Key Type

OSTreeMapByteArray ByteArray

OSTreeMapDouble Double

OSTreeMapFloat Float

OSTreeMapInteger Integer

OSTreeMapLong Long

OSTreeMapString String
198 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Description of OSTreeSet

An OSTreeSet is an unordered collection that does not allow
duplicates. If you try to insert a value into an OSTreeSet and the
set already contains that value, the set remains unchanged.
OSTreeSet implements the COM.odi.util.Set interface. As its name
implies, a balanced tree is the internal representation of an
OSTreeSet. Since OSTreeSet indirectly implements
COM.odi.util.Collection, you can query OSTreeSets.

The OSTreeSet class is designed for very large persistent
aggregations. This class allows you to iterate over the collection or
query the collection without fetching any objects from the
database except those that are explicitly returned to you.
ObjectStore does not even create hollow objects to represent the
elements. OSTreeSet collections can only be persistent.

Object Design recommends that if you are going to query a
collection that contains a particularly large number objects, define
the collection as an OSTreeSet or a subclass of OSTreeSet.
OSTreeSet is the only collections class for which ObjectStore
provides the ability to add indexes. Indexes can speed up queries
on very large collections. You can, of course, define the ability to
add indexes to other types collections that implement
COM.odi.util.Collection. See Enhancing Query Performance with
Indexes on page 222.

The main difference between OSTreeSet and OSHashSet is the
internal representation. For very large collections, OSTreeSet is
the best choice. However, OSTreeSets can only be persistently
allocated. It is not possible to create a transient OSTreeSet.

A call to OSTreeSet.hashCode() throws
UnsupportedOperationException. See Unsupported operations on
page 203.

The OSTreeSet class has a constructor for creating exported
objects.
Release 3.0 199

Description of ObjectStore Utility Collections
Description of OSVector

An OSVector is a collection that implements a persistent
expandable array, as well as COM.odi.util.Collection. You can
query OSVectors.

An OSVector associates each element with a numerical position
based on insertion order. By default, OSVectors allow duplicates.
In addition to simple insert (insert into the beginning or end of the
collection) and simple remove (removal of the first occurrence of
a specified element), you can insert, remove, and retrieve
elements based on a specified numerical position, or based on a
specified iterator position. An OSVector does not have quick
lookup by object or key. Consequently, the overhead for an
OSVector is lower than for utility collections that have quick
lookup.

The OSVector.equals() and OSVector.hashCode() methods
perform reference (identity) comparisons and not value (contents)
comparisons. This is one difference between OSVector and
OSVectorList. The OSVectorList methods perform content
comparisons. For information about content comparisons and
identity comparisons, see OSHashtable and OSVector on
page 204.

By default, an OSVector allocates room for 32 elements. You can
presize an OSVector to better match what your application really
needs. In addition, you can delay allocation of OSVector
substructure, which ObjectStore uses to represent the OSVector,
until elements are actually added to the OSVector. To do this,
specify the lazy argument to the OSVector contructor:

OSVector(int intitialBufferSize, int capacityIncrement, boolean lazy)
200 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Description of OSVectorList

An OSVectorList is a collection that implements a persistent
expandable array. It implements the List interface and functions
exactly like an OSVector, except in the following way.

An OSVectorList does not have quick lookup by object or key.
Consequently, the overhead for an OSVectorList is lower than for
utility collections that have quick lookup.

The OSVectorList.equals() and OSVectorList.hashCode() methods
perform value (contents) comparisons and not reference (identity)
comparisons. This makes OSVectorList unsuitable for storage in a
persistent hash table or any other hash table based collection
representation. The OSVector methods perform identity
comparisons. For information about content comparisons and
identity comparisons, see OSHashtable and OSVector on
page 204.

A call to OSVectorList.hashCode() throws
UnsupportedOperationException. See Unsupported operations on
page 203.

Advantages of Using ObjectStore Utility Collections

The advantages of using COM.odi.util interfaces and classes are as
follows:

• The interfaces and classes in COM.odi.util are designed to be
compatible with the upcoming JDK 1.2 release.

• The classes are persistence-capable.

• There are collection representations that support queries.

• There are classes that are designed for very large aggregations
— OSTreeMapxxx and OSTreeSet.
Release 3.0 201

Description of ObjectStore Utility Collections
Querying Collection Views of Map Entries

The OSHashMap and OSTreeMapxxx classes extend
COM.odi.util.Map and not COM.odi.util.Collection, and therefore
you cannot use the ObjectStore query facility on them. However,
each of the classes that implements Map defines the following
methods:

• keySet() returns a COM.odi.util.Set view of the keys contained in
the map

• values() returns a COM.odi.util.Collection view of the values
contained in the map

• entries() returns a COM.odi.util.Set view of the key/value
mappings contained in the map

The OSHashtable class, although it does not implement Map, also
defines these methods.

You can use the ObjectStore query facility to query the Collection
and Set views returned by the keySet(), values(), and entries()
methods.

Transient views While OSHashtable, OSHashMap, and the OSTreeMapxxx
subclasses are persistence-capable, the views returned by the
entries(), keySet(), and values() methods are not. These are
transient views of persistence-capable classes.
202 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Background About Utility Collections and JDK 1.2 Collections

Here is some background information about how the ObjectStore
utility collections fit with the JDK 1.2 collections. This discussion
assumes that you are familiar with the JDK 1.2 collections API. If
you are not, see
http://java.sun.com/products/jdk/1.2/docs/guide/collections/referen
ce.html.

ObjectStore provides a collections package that parallels the JDK
1.2 java.util collections. In addition, ObjectStore includes query
and indexing facilities. The new collections implementations are
in the COM.odi.util package.

The core collections interfaces defined in the JDK 1.2 java.util
package are:

• java.util.Collection

• java.util.Set

• java.util.List

• java.util.Map

In the JDK 1.2, collections classes and behaviors are based on these
interfaces. Consequently, you can usually use any representation
that is parallel to a particular interface. The java.util
implementations and their corresponding ObjectStore
implementations are shown in the following table:

Unsupported
operations

In the COM.odi.util package, all persistence-capable collections
that implement the Set, List , and Map interfaces throw the

Interface java.util Class ObjectStore Class

Collection None COM.odi.util.OSHashBag

Set java.util.HashSet COM.odi.util.OSHashSet

Set java.util.ArraySet COM.odi.util.OSTreeSet

List java.util.Vector COM.odi.util.OSVector

List java.util.ArrayList COM.odi.util.OSVectorList

List java.util.LinkedList None

Map java.util.Hashtable COM.odi.util.OSHashtable

Map java.util.HashMap COM.odi.util.OSHashMap

Map java.util.ArrayMap None

Map java.util.TreeMap COM.odi.util.OSTreeMap xxx
Release 3.0 203

Description of ObjectStore Utility Collections
UnsupportedOperationException, when the hashCode() method is
invoked on them. This is because the definition of the
computation of hashCode() for these interfaces is currently in a
state of flux in JDK 1.2 beta 3. When JDK 1.2 collections are
finalized, ObjectStore will provide hashCode() methods that
conform to their JDK 1.2 specificatons. In the interim, you can
subclass these representations, and define a suitable overriding
hashCode() method if your applications needs it.

OSHashtable and
OSVector

COM.odi.util.OSHashtable and COM.odi.util.OSVector have been
updated to be parallel to most of the JDK 1.2 specifications. They
do not quite meet the description of the JDK 1.2 behavior for
equals() and hashCode(). The JDK 1.2 changed this behavior in an
incompatible way for these two classes.

The JDK 1.2 List, Set, and Map interfaces mandate an equals()
method that does value comparison and not reference
comparison. That is, two Sets are equal if they have the same
elements, two Lists are equal if they have the same elements in the
same order, and two Maps are equal if they have the same
key/value pairs.

This places corresponding constraints on the hashCode() method,
since (a.equals(b)) => (a.hashCode()==b.hashCode()). The
ObjectStore OSHashtable and OSVector classes, however,
implement persistent (unchanging) hashCodes, and rely on
Object.equals(). The JDK definition for hashCode means that
classes that meet the JDK 1.2 specification should not be stored in
hash tables, because their hashCodes change when elements are
added or removed. So for these two classes, ObjectStore retains
the old identity-based definitions, rather than moving to the new
content-based definitions of equals() and hashCode().

Collection interface There are no concrete implementations of the Collection interface
in the JDK 1.2. Collection is essentially a Bag, that is, a Set that
might contain duplicates. ObjectStore includes the
COM.odi.util.OSHashBag and COM.odi.util.OSVector classes to
implement Collection.
204 ObjectStore Java API User Guide

Chapter 7: Working with Collections
How to Choose a Collections Alternative

Your choice of how to implement collections depends on

• The amount of data to be stored in the collection. The numbers
below provide a rough guideline for determining whether a
collection is of small, medium, or large size. Use them as a
starting point when you decide which collection type is best for
your application.

- Small collections have fewer than 100 elements.

- Medium collections contain as many as 10,000 elements

- Large collections have more than 10,000 elements.

• Your familiarity with a third-party library. You might want to
use a particular library just because you already know how to
use it.

• Features required by your application.

If you want to access your collection from C++, use the
collections in the COM.odi.coll package. See Developing
ObjectStore Java Applications That Access C++.

• Importance of compatibility with the JDK 1.2 collection
interfaces. When the JDK 1.2 is released, it will provide
standard interfaces for collection representations. In a future
release, ObjectStore will no longer provide the Collection, List,
Map, and Set interfaces in COM.odi.util and will instead
implement the JDK 1.2 interfaces.

• Importance of compatibility between OSJI and PSE/PSE Pro.

For applications that already use the COM.odi.coll collections, the
COM.odi.util.OSTreeMapxxx collections are comparable to the
COM.odi.coll.Dictionary_xxx classes, while the
COM.odi.util.OSTreeSet class is comparable to the COM.odi.coll.Set
class. These classes are comparable in that their performance
should be about the same.

To help you choose the right persistent collection representation
for your application, the following table compares the behavior of
the utility collections in COM.odi.util.
Release 3.0 205

How to Choose a Collections Alternative

The OSHashtable class is not compatible with the JDK 1.2 API. All
other collections in COM.odi.util are compatible with the JDK 1.2
API.

Collection
Class

Ordered/
Unordered

Duplicates/
No duplicates

Quick
Lookup

Comparison
Operations

Queries
Allowed

Collection
Size

OSHashBag Unordered Duplicate
values allowed

Object
lookup

Identity-
based

Can query Medium

OSHashMap Unordered Duplicate
values allowed

No duplicate
keys

Key
lookup

Content-
based

No queries Medium

OSHashSet Unordered No duplicates Object
lookup

Content-
based

Can query Medium

OSHashtable Unordered Duplicate
values allowed

No duplicate
keys

Key
lookup

Identity-
based

No queries Medium

OSTreeMapxxx Ordered Duplicate
values allowed

No duplicate
keys

Key
lookup

Content-
based

No queries Large

OSTreeSet Unordered No duplicates Object
lookup

Content-
based

Can query
and index

Large

OSVector Ordered Duplicate
values allowed

None Identity-
based

Can query Small,
medium

OSVectorList Ordered Duplicate
values allowed

None Content-
based

Can query Small,
medium
206 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Using ObjectStore Utility Collections

To help you use ObjectStore utility collections, this section
discusses the following topics:

• Creating Collections on page 207

• Navigating Collections with Iterators on page 208

• Performing Collection Updates During Iteration on page 209

Creating Collections

Each collection representation has one or more constructors that
you can use to create collections. For details about each classes’
constructors, see the ObjectStore Java API Reference. For example:

Database db = Database.create(args[1], ALL_READ | ALL_WRITE);
Transaction.begin(UPDATE);
db.createRoot(“collection”, new OSTreeSet(db));
Transaction.current().commit();
Release 3.0 207

Using ObjectStore Utility Collections
Navigating Collections with Iterators

The Iterator and ListIterator interfaces help you navigate within a
utility collection. An iterator, an instance of the
COM.odi.util.Iterator or COM.odi.util.ListIterator interface,
designates a position in a collection. You can use iterators to
traverse collections, as well as to remove elements from
collections.

With the JDK 1.2, Iterator takes the place of Enumeration. Iterator
provides the same capabilitiess as Enumeration (though method
names are different), and it also allows you to remove elements
from the underlying collection. When the JDK 1.2 is released,
ObjectStore will implement the JDK 1.2 Iterator and ListIterator
interfaces and will no longer provide Iterator and ListIterator in
COM.odi.util.

The ListIterator interface extends the Iterator interface. A class that
implements ListIterator must also implement List. The additional
methods that ListIterator provides allow you to

• Insert objects relative to the current position of the iterator.

• Traverse the list in reverse, as well as forward.

• Replace an element in the underlying list.

• Retrieve the index of an element.

The IndexIterator interface, also in COM.odi.util, allows you to
traverse an index or map structure. You can use the IndexIterator
interface to obtain the key and value for elements in the
underlying collection.
208 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Performing Collection Updates During Iteration

While you are iterating through a collection, you can use the
Iterator and ListIterator interface methods to modify that
collection. This assumes that the implementation of the Iterator or
ListIterator interface supports the methods that modify
underlying collections. (The JDK 1.2 defines some of these
methods as optional. You should check the API reference
information for the particular class you are using to determine
exactly which behaviors are supported.)

You cannot use any other methods to update the collection while
you are iterating through its elements. If you try to, ObjectStore
throws ConcurrentModificationException.

When a thread is iterating over a collection, that thread and
cooperating threads can modify the object returned by the
iteration. If you are using an Iterator, your application cannot add
elements to the collection or change the order of the collection. If
you are using a ListIterator, your application can only use
ListIterator methods to modify the collection.

Suppose you do add an element in the middle of an iteration, and
then try to use the same iterator. ObjectStore recognizes that the
collection has been modified and throws
ConcurrentModificationException. At this point, if you create a new
iterator, it recognizes the updated collection and does not throw
an exception.
Release 3.0 209

Querying ObjectStore Utility Collections
Querying ObjectStore Utility Collections

The COM.odi.util.query.Query class provides a mechanism for
querying collections objects that implement the
COM.odi.util.Collection interface. A query applies a predicate
expression (an expression that evaluates to a boolean result) to all
elements in a collection. The query returns a subset collection of
all elements for which the expression is true. You can query the
following types of collections:

• OSHashBag

• OSHashSet

• OSTreeSet

• OSVector

• OSVectorList

To accelerate the processing of queries on particularly large
collections, you can build indexes on the collection. For
information about indexes, see the next section, Enhancing Query
Performance with Indexes on page 222.

This section provides the following information about queries on
ObjectStore utility collections:

• Creating Queries on page 211

• Description of Query Syntax on page 213

• Sample Program That Uses Queries on page 214

• Matching Patterns in Query Strings on page 215

• Using Free Variables in Queries on page 218

• Executing Queries on page 219

• Limitations on Queries on page 221
210 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Creating Queries

To create a query, run the COM.odi.util.query.Query constructor
and pass in a Class object and a query string. Here is the
constructor:

public Query(Class elementType, String queryExpression)

There is also a constructor that allows you to specify a
FreeVariables map.

elementType The elementType class or interface provides the context in which
the query facility interprets queryExpression. This must be a
publicly accessible class or interface. When your application calls
the Query.select() or Query.pick() method to execute the query
against a particular collection, every element of that collection
must be an instance of (in the sense of instanceof) the elementType
that was specified when the query was created. Any element of
the collection that is not an instance of elementType is not returned
in the query result (even if it evaluates to true for the predicate).

queryExpression The queryExpression is a predicate (that is, an expression with a
boolean result) that the query facility evaluates on each element of
the collection. The queryExpression operands can be literals and
names.

Literals Literals can be of any of the Java primitive types, including the
special values true, false, and null. Since the query expression is a
String, you must enclose any embedded strings in escaped
quotation marks, like \"this\".

Names Names can consist of a single identifier, or they can consist of a
sequence of identifiers separated by periods. Names can be either
free variables or member accesses. You must explicitly specify
free variables in the freeVariables argument of the three-argument
Query constructor. Any name that is not a free variable is
interpreted as a member access.

Member accesses are interpreted as accessing public members
(including static members) of an object of class/interface
elementType, if possible. This interpretation works as though
there were an implicit this argument, of elementType, at the root
of the name expression. Any member access that cannot be
interpreted as a member access on elementType is interpreted as a
Release 3.0 211

Querying ObjectStore Utility Collections
static access. Static accesses are resolved as if the package
containing elementType were imported.

Queries can contain methods that take arguments.

Example For example:

Query q = new Query(Employee.class, "salary < 50000");

The query expression can refer to classes without specifying a
package name. ObjectStore treats the query expression as if it
were defined in a file in another package that has imported the
package of the Class object that was passed to the Query
constructor. This default package only matters for class names,
though, not for member access. Only public classes and members
are accessible within the query.

An application can run the example query on a specific collection
with a call to the Query.select() method that specifies the collection
to be queried as the argument. For example:

Query q = new Query(Employee.class, "salary < 50000");
Collection employees = db.getRoot("employees");
Set result = q.select(employees);

When you create a query, you do not bind it to a particular
collection. You can create a query, run it once, and throw it away.
Alternatively, you can reuse a query multiple times against the
same collection (perhaps with different bindings for free
variables), or against different collections.

If something in your query is wrong, you find out at the point
where you create the query. You do not need to wait for the
application to optimize or execute the query. However, the query
facility cannot detect incorrect free variable bindings until you
specify them when you execute the query on a collection.
212 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Description of Query Syntax

ObjectStore performs syntax analysis of the query expression in
the context of the elementType class or interface that is passed to
the query constructor. This must be a publicly accessible class or
interface. It can also be a derived type.

When the query is executed against a particular collection using
the select() or pick() method, every element of that collection must
be an instance of (in the sense of instanceof) the elementType that
was specified when the query was created.

The queryExpression is a predicate (that is, an expression with a
boolean result). The query is executed on a collection by
evaluating this query expression on each element of the collection.
However, it might not be necessary to explicitly fetch and
examine all elements of the collection. This depends upon the
available indexes and query optimization strategy.

Supported operations Queries on utility collections can include most Java operations:

• Arithmetic: + / - * %

• Bitwise: ^ | &

• Unary numeric: ~ -

• Unary logic: !

• Relational: > < <= >= instanceof

• Equality: == !=

• String concatenation: +

• Conditional And, Or: && ||

• Shift operations: << >> >>>

• Cast operations: (type)

Unsupported
operations

The following operations are not supported:

• Assignment: = += *= /= %= -= <<= >>= >>>= &= ^= |=

• Conditional: ?:

• Array dereference: []

• New: new

• Prefix/Postfix: ++ --

Statements are not permitted. Only expressions are permitted.
Release 3.0 213

Querying ObjectStore Utility Collections
For details on operations and the operands, see the Java Language
Specification.

The operators have their usual Java meaning except for the
relational and equality operators when used with String
operands. In a query expression, ObjectStore uses these operators
to compare the contents of the two strings. Null Strings are
considered to be less than all other values.

String literals In a query expression, you must enclose String literals in escaped
quotation marks. For example:

new Query(Foo.class, "name == \"Davis\"")

You can specify wildcards in query strings. You can search for
substrings, and perform case insensitive searches. See Matching
Patterns in Query Strings on page 215.

Wrapper objects The query facility treats wrapper objects just like other Objects.
For example, suppose you have the query expression "A==B". A
and B refer to Integer wrappers. This results in an identity check
on the objects. The query facility determines whether A and B both
refer to the same wrapper instance. The query facility does not
check that the values of A and B are equal. You can specify
"A.intValue()==V.intValue()" to compare contents.

This behavior might change in a future release so that the query
facility treats wrapper objects in the way that it treats primitives.
Consequently, you should not rely on the identity check for
wrapper objects.

Miscellaneous You can use parentheses to group expressions.

The precedence and associativity of the operators is the same as
that for the Java language.

The entire query expression must resolve to a Boolean value.

Sample Program That Uses Queries

In the COM/odi/demo/query directory, there is a sample program
that uses ObjectStore utility queries. See the README.htm file in
that directory.
214 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Matching Patterns in Query Strings

Specifying a pattern
matching query

To specify a string pattern to be matched in a query, the Pattern
Matching operator (~~) is used. This operator, which has greater
precedence than the Multiplication operator (*), has two
arguments. These arguments must be either Strings or null. The
left-hand argument specifies the text to be checked for a match.
The right-hand argument specifies the pattern to be matched.

Pattern matching
characters

The following characters have special meanings when used in the
right-hand argument of the Pattern Matching operator. All other
characters match themselves.

Note The reserved characters are invalid if they are not preceded by an
ampersand (&).

Operator Function

 ? Matches any single character

 * Matches 0 or more of any character

 & Escape character

 [Reserved

] Reserved

 (Reserved

) Reserved

 | Reserved
Release 3.0 215

Querying ObjectStore Utility Collections
The following table shows special two character sequences,
known as escape sequences, that start with an ampersand (&).
These escape sequences are used to include characters literally in
the pattern without their special meaning and to enable case
insensitive matching.

Note that the ampersand (&) must appear in front of every
sequence. An ampersand followed by any other character is
invalid.

Case sensitivity in
matching

By default, pattern matches are case sensitive. The &i escape
sequence enables case insensitive matching for an entire pattern.
This escape sequence can only be specified at the start of a pattern.

Optimizing pattern
matching

Pattern matching operator takes advantage of any ordered
indexes available on the text being matched. If the pattern starts
with a character other than an asterisk (*) or a question mark (?),
then the query only searches the portion of the index that matches
the initial, constant prefix. Therefore, patterns that specify a
constant prefix produce much more efficient queries.

Escape Sequence Function

 &? Matches a question mark

 &* Matches an asterisk

 &[Matches left square bracket

 &] Matches right square bracket

 &(Matches left parentheses

 &) Matches right parentheses

 &| Matches a vertical bar

 && Matches an ampersand

 &i Enables case insensitive matching.
216 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Pattern matching
examples

The following pattern matching examples use the following class:

public class Person { public String name; }

• Matching a name beginning with the characters Tom:

new Query(Person.class,"name ~~ \"Tom*\"");

• Matching a name ending with the characters man or burn:

new Query(Person.class,"name ~~ \"*man\" || name ~~\"*burn\"");

• Matching a name using a single wildcard character with bound
variable:

FreeVariables vars = new FreeVariables();
vars.put("var", String.class);
Query query = new Query(Person.class,"name ~~ var", vars);

 FreeVariableBindings bindings = new FreeVariableBindings();
 bindings.put("var","*Gr?y");

query.select(coll, bindings);
• Matching a name using a case insensitive match for ?foo:

 new Query(Person.class,"name ~~ \"&i&?foo\"");

• Matching a name using a case insensitive match for *foo
appearing anywhere:

 new Query(Person.class,"name ~~ \"&i*&*foo*\"");

• Matching a name foo appearing anywhere followed by &bar:

 new Query(Person.class,"name ~~ \"*foo*&&bar*\"");

• Matching the name (a):

 new Query(Person.class,"name ~~ \"&(a&)\"");
Release 3.0 217

Querying ObjectStore Utility Collections
Using Free Variables in Queries

Free variables are lexically the same as identifiers in the Java
language. If you use free variables in your query, you must
specify them in an optional third argument to the Query
constructor. Use the COM.odi.util.query.FreeVariables class. This
class implements the Map interface. In addition, it provides type-
checking to ensure that the keys and values are Strings and
Classes, respectively. For example:

FreeVariables vars = new FreeVariables();
vars.put("INPUT_SALARY", int.class);
Query q = new Query(Person.class,

"salary>=INPUT_SALARY", vars);

When you execute a query, you must bind any free variables to
particular values. Do this by passing an additional argument to
the Query.select() or Query.pick() method. This argument must be
of type COM.odi.util.query.FreeVariableBindings. This class, like
FreeVariables, implements the Map interface, and provides
additional type-checking to ensure that the keys are Strings.

The values you bind to the free variables must be of the type
specified by the corresponding entry in the FreeVariables map that
was specified at query construction. For primitive types, the type
of value stored in the FreeVariableBindings must be the associated
wrapper type. ObjectStore does not check that the correct types
are bound until it executes the query.

For example, the INPUT_SALARY free variable is used in the
previous example query. Your application might read in a value
from a user in an interactive program, or compute the value in
some other way. Regardless of how your application computes
the value, the free variable is bound to a specific value only when
the query is executed. For example:

int INPUT_SALARY = {user input or some other computation}
FreeVariableBindings bindings = new FreeVariableBindings();
bindings.put("INPUT_SALARY", new Integer(INPUT_SALARY));
Set result = q.select(employees, bindings);
218 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Executing Queries

You can execute a query that

• Specifies predefined variables and/or free variables

• Returns one element or a set of elements

Obtaining a set To obtain the set of elements that satisfy a query, call the
COM.odi.util.query.Query.select() method. There are two
overloadings:

public Set select(Collection coll)

public Set select(Collection coll,
FreeVariableBindings freeVariableBindings)

The coll argument specifies the collection to be queried. If this
query has been explicitly optimized with the Query.optimize()
method, any indexes specified in the optimization must be
available on this collection. If this query has not been explicitly
optimized, ObjectStore optimizes it for all indexes on the
collection being queried. If the query has been explicitly
optimized for indexes that are not available on the specified
collection, ObjectStore throws QueryIndexMismatchException.

The freeVariableBindings argument specifies a
FreeVariableBindings object that defines bindings for each free
variable in the query. For each entry, the key is a String that
identifies the free variable, and the value is the value that should
be associated with the free variable during the evalution of the
query. The value must be of the type specified by the
corresponding entry in the FreeVariable argument passed to the
Query constructor. For the query to be evaluated, every free
variable associated with the query when it was constructed must
have a corresponding binding. Also, every free variable binding
must correspond to a free variable that was specified when the
query was constructed. If the free variable bindings do not match
the free variable definitions specified when the query was
constructed, ObjectStore throws QueryException.

The select() method returns a Set that contains the elements that
satisfy the query. If ObjectStore does not find any matching
elements, it returns an empty collection. The returned Set is
transient.
Release 3.0 219

Querying ObjectStore Utility Collections
Obtaining a single
element

To obtain one element that satisfies a query, call the
COM.odi.util.query.Query.pick() method. There are two
overloadings:

public Object pick(Collection coll)

public Object pick(Collection coll,
FreeVariableBindings freeVariableBindings)

The coll and freeVariableBindings arguments are the same as for
the select() method. The pick() methods return the first element
found that satisfies the query. The returned element is transient. If
no elements in the collection satisfy the query, ObjectStore returns
NoSuchElementException.

Type of returned
element

The select() and pick() methods never return elements that are not
of the class that was specified as the collection element type when
the query was constructed.

Null values Queries ignore null elements but not null fields. The result set of
a query never includes null elements. When a query reaches a null
element, execution continues to the next element. Suppose you
have a query like this:

name != "fred"

A query that evaluates this on a collection returns elements with
null name fields, as well as elements with names that are not
"fred".

Now suppose you have a query like this:

spouse.name != "fred"

On a collection that includes elements that do not have spouses,
this query does not return those elements without spouses. It only
returns the elements that have spouses with names that are not
"fred" plus the elements that have spouses with null name fields.
220 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Limitations on Queries

When a query refers to a class or field, the class or field must be
public.

When a query refers to a method, the method must return
something. In other words, in a query string, you cannot refer to
a method that returns void.

Queries no longer have the limitation against methods that take
arguments. Queries can contain methods that take arguments.
Release 3.0 221

Enhancing Query Performance with Indexes
Enhancing Query Performance with Indexes

When you want to run a query on a particularly large collection,
it is useful to build indexes on the collection to accelerate query
processing. An index provides a reverse-mapping from a field
value or from the value returned by a method when it is called, to
all elements that have the value. A query that refers to an indexed
member executes faster. This is because it is not necessary to
examine each object in the collection to determine which elements
match the predicate. Also, ObjectStore does not need to fetch into
memory every element.

This section discusses the following topics:

• How Indexes Work on page 222

• Adding Indexes to Collections on page 223

• Dropping Indexes from Collections on page 224

• Sample Program That Uses Indexes on page 224

• Modifying IndexValues on page 225

• Managing Indexes and Index Values on page 227

• Optimizing Queries for Indexes on page 228

How Indexes Work

When you add an index to a collection, ObjectStore examines
every element of the collection to determine the value of the
indexed field or method. After you build the index, you can run
queries against the collection without reexamining the elements to
determine the values of any indexed members. The query
examines the index instead of the collection.

A query can include both indexed fields/methods and
nonindexed fields/methods. ObjectStore evaluates the indexed
fields and methods first and establishes a preliminary result set.
ObjectStore then applies the nonindexed fields/methods to the
elements in the preliminary result set.
222 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Adding Indexes to Collections

You can add indexes to any collection that implements the
COM.odi.util.Collection interface, directly or indirectly. To add an
index to a collection, the collection must implement the
COM.odi.util.IndexedCollection interface, directly or indirectly.
Note that the IndexedCollection interface extends the Collection
interface.

The IndexedCollection interface provides methods for adding and
removing indexes, and updating indexes when the indexed data
changes. In this release of ObjectStore, COM.odi.util.OSTreeSet is
the only collection class that already implements
IndexedCollection. You can, of course, define other
COM.odi.util.Collection classes that implement IndexedCollection.
Call the COM.odi.util.IndexedCollection.addIndex() method to
create an index. There are three overloadings:

• addIndex(Class elementType, String path)

• addIndex(Class elementType, String path, boolean ordered,
boolean duplicates)

• addIndex(Class elementType, String path, boolean ordered,
boolean duplicates, Placement placement)

The elementType argument indicates the type to which the index
applies. Objects of other types can be in the collection that you
index, but they are ignored by the index. A query that uses the
index does not return such elements.

The path argument indicates the member to be indexed. A method
member can have no arguments or one constant argument.

The ordered and duplicates arguments allow you to specify
whether the index is ordered and whether it allows duplicates. If
you do not specify the boolean arguments, the index is unordered
and it allows duplicates.

Finally, the placement parameter indicates the database or
segment in which to store the index. The path must be either the
name of a public field or a call to a public instance method. If it is
not, ObjectStore throws IndexException. The public instance
method can be in a superclass. Indexes on paths that specify more
than one field or method access are not allowed. If you do not pass
a Placement argument, ObjectStore stores the index in the same
database and segment as the collection.
Release 3.0 223

Enhancing Query Performance with Indexes
Dropping Indexes from Collections

Call the COM.odi.util.IndexedCollection.dropIndex() method to
remove an index from a collection. Here is the method signature:

public boolean dropIndex(Class elementType, String path)

The elementType argument indicates the type to which the index
applies.

The path argument indicates the member for which the index is
being removed.

Sample Program That Uses Indexes

In the COM/odi/demo/query directory, the QueryCustomers class
includes the following example of using an index:

IndexedCollection collection = new OSTreeSet(db);
try {

collection.addIndex(Employee.class, "salary");
} catch (IllegalAccessException e) {

System.err.println("Couldn’t access field: " + e);
System.exit(1);

}
Set result = q.select(employees);
224 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Modifying IndexValues

After you add an index to a collection, ObjectStore automatically
maintains it as you add or remove elements from the collection.
However, it is your responsibility to manage index maintenance
when indexed members are modified for instances that are
already members of an indexed collection.

For example, suppose you insert Lee into your collection of
employees. You build an index for this collection on the
phoneExtension field. A query of "phoneExtension == 1234"
returns Lee. If you remove Lee from the collection, ObjectStore
updates the index so it no longer includes Lee. However, if you
leave Lee in the collection, but change Lee’s phone extension, you
must manually correct the index so that Lee refers to the correct
phone extension.

Methods There are three methods that you can use to manually maintain an
index:

• IndexedCollection.removeFromIndex() removes a value from the
index.

• IndexedCollection.addToIndex() inserts a value into the index.

• IndexedCollection.updateIndex() removes a value from the
index and replaces it with a value that you specify.

After an application calls one of these methods, the next time the
application uses that index it uses the updated index. A call to
updateIndex() does the same thing as a call to removeIndex()
followed by a call to addToIndex(). Except, removeIndex() and
addToIndex() inspect the value to determine the index key. That is,
they apply the index’s path expression to obtain the key from the
value. With updateIndex(), you pass in the old key and the new
key. ObjectStore does not have to inspect the value to determine
its key. For this reason, and because there is a single call, using
updateIndex() is more efficient.
Release 3.0 225

Enhancing Query Performance with Indexes
Removing and
adding index values

The removeFromIndex() method has two overloadings:

public void removeFromIndex(Object value)

public void removeFromIndex(Class elementType,
String path, Object value)

The addToIndex() method has two parallel overloadings:

public void addToIndex(Object value)

public void addToIndex(Class elementType,
String path, Object value)

Usually, after you remove a value from an index, you should add
a value to replace it.

If you know exactly which value you need to add or remove, you
can use the form that specifies elementType, path, and value. If you
do not know what indexes exist, or if you modified a lot of
different fields and want to update all indexes, use the short form.
In this case, ObjectStore iterates over all indexes and updates all of
them.

Here is an example of removing and adding values to an index:

Employee lee = new Employee("Lee", 1234);
collection.insert(lee);
try {

collection.removeFromIndex(lee);
lee.setExtension(5678);
collection.addToIndex(lee);

} catch (IllegalAccessException e) {
System.err.println("Could not access field: " + e);
System.exit(1);

}

Updating indexes The updateIndex() method has the following signature:

public void updateIndex(Class elementType,
String path, Object oldKey, Object newKey, Object value)

Here is an example of updating an index:

Employee lee = new Employee("Lee", 1234);
collection.insert(lee);
lee.setExtension(5678);
collection.updateIndex(

Employee.class, "extension",
new Integer(1234), new Integer(5678), lee);
226 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Managing Indexes and Index Values

When you add or drop an index, you do it at the class level. That
is, you specify the class and member that the index is on. For
example, you might add an index on the name field of the
Employee class:

employeeCollection.addIndex(Employee, "name")

But when you perform maintenance on an index, that is, when
you call removeFromIndex(), addToIndex(), or updateIndex(), you
do it at the instance level. For example, suppose you have an
employee named Jones with an employee ID number of 1234. The
employee’s name changes to Smith. You must update this index
entry at the instance level. One way you can do it is like this:

employeeCollection.removeFromIndex(employee1234);
employee1234.setName("Smith");
employeeCollection.addToIndex(employee1234);

For each index on the Employee class, these methods update the
index’s value for employee1234. If there are multiple indexes on
Employee, the one-argument overloading of removeFromIndex()
and addToIndex() updates all of them. You do not have to specify
that you want to update the index on the name field. For example,
there might be indexes on the Employee.salary and
Employee.location fields, as well as the Employee.name field. The
previous code fragment would update the indexes on salary and
location, as well as the index on name, even though only the index
on name needs to be updated. This technique is useful when you
make a lot of changes to different fields.

If you use the three-argument overloading of removeFromIndex()
or addToIndex(), you can update just the index that needs to be
updated. You must know the type of the indexed element, the
name of the indexed member, and the value to be removed or
added. For example:

employeeCollection.removeFromIndex(
Employee, "name", employee1234);

employee1234.setName("Smith");
employeeCollection.addToIndex(

Employee, "name", employee1234);
Release 3.0 227

Enhancing Query Performance with Indexes
Optimizing Queries for Indexes

If you do not explicitly optimize a query for a particular set of
indexes, ObjectStore automatically optimizes the query when it
applies the query to a collection. This means that ObjectStore
optimizes the query to use exactly those indexes that are available
on the collection being queried.

Preparation Before you optimize a query, you must obtain an instance of
IndexDescriptorSet. An IndexDescriptorSet implements a set of
IndexDescriptor objects. An IndexDescriptor is an object that
describes an IndexMap on an instance of IndexedCollection.
Typically, you can obtain an IndexDescriptorSet with a call to
IndexedCollection.getIndexes() on any collection that has exactly
the indexes for which you want to optimize your query.

Explicit optimization To explicitly optimize a query, call the Query.optimize() method.
the method signature is:

public synchronized void optimize(IndexDescriptorSet indexes)

The indexes argument is an instance of IndexDescriptorSet that
contains IndexDescriptor objects that describe the indexes against
which to optimize.

Reoptimizing If you apply an optimized query to the same collection again, or
to another collection with the same indexes, ObjectStore uses the
same optimization. Reoptimization is not required. However,
suppose you apply an optimized query to a collection that does
not have all the indexes that were present when the query was
first run. In this situation, ObjectStore must reoptimize the query.
ObjectStore does this automatically; your intervention is not
required.
228 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Manual optimization Automatic index optimization is convenient, and effective.
However, suppose a query is to be run multiple times against
more than one collection, potentially with different indexes
available. In this situation, it might be best to manually control the
query optimization strategy.

For example, consider that the same query is to be run repeatedly
against two different collections, where the collections have
different indexes. One alternative is to create two separate query
objects, one for each collection. This avoids the overhead of
recomputing the indexing optimization strategy each time you
apply the query to a different collection. A second alternative is to
explicitly optimize a query to use only the intersection of the
indexes that are available on both collections. You can do this with
a call to Query.optimize(). Pass in an IndexDescriptorSet object that
contains descriptions of only the common indexes.

Restriction If you explicitly optimize a query with the Query.optimize()
method, it cannot run against a collection that does not have the
specified indexes. If you try to do this, ObjectStore throws
QueryIndexMismatchException. In this way, an explicitly-optimized
query differs from an automatically-optimized query. An
automatically optimized query reoptimizes itself as needed when
you run it against a collection with different indexes.

This might be useful when it would be undesirable to run a
particular query on a collection that does not have the required
indexes. For example, this is useful when the collection is very
large and the overhead of examining every element of the
collection is prohibitive.

-noclassgc option to
Java VM

To evaluate query expressions efficiently, ObjectStore compiles
query expressions into classes and methods that are loaded when
the query is evaluated. Each new query can potentially result in
the creation of a new class with a new internal name to represent
the compiled state of the query. When the query is no longer
referenced, this class is normally garbage collected by the Java VM
garbage collector and its storage reclaimed.

With the JDK 1.1.7, you can disable garbage collection of classes
with the -noclassgc option to the Java VM. If you use this option,
you risk running out of heap storage as the query expression
classes are accumulated over time and the -noclassgc option
prevents them from being reclaimed.
Release 3.0 229

Enhancing Query Performance with Indexes
Manipulating Indexes Outside the Query Facility

You can use the IndexMap interface to directly access and
manipulate indexes outside the query facility. This interface is
useful when you want a sorted result set and you can represent
the query as a single range expression on an indexed member.
Instead of running a query, you can iterate over the index directly.
See ObjectStore Java API Reference, COM.odi.util.IndexMap.
230 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Storing Objects as Keys in Persistent Hash Tables

The COM.odi.util.OSHashtable class introduces a new requirement
for classes of objects that will be stored as keys in persistent
collections: these classes must provide a suitable hashCode()
method. ObjectStore and the class file postprocessor provide
facilities for doing this conveniently.

This section discusses the following topics:

• Requirements for Hash Code Methods on page 231

• Providing an Appropriate Persistent Hash Code Method on
page 232

• Storing Built-In Types as Keys in Persistent Hash Tables on
page 233

Requirements for Hash Code Methods

Objects that are stored as keys in persistent hash tables must
provide hash codes that remain the same across transactions.
ObjectStore can create a new transient Java object in each
transaction to represent a particular persistent object, so it is
important that the hashCode() method used for persistent objects
return the same hash code for these different transient objects.

The default Object.hashCode() method supplies an identity-based
hash code. This identity hash code might depend on the virtual
memory address or some internal implementation-level metadata
associated with the object. Such a hash code is unsuitable for use
in a persistent identity-based hash table because it would
effectively be different each time an object was fetched in a
transaction.
Release 3.0 231

Storing Objects as Keys in Persistent Hash Tables
Providing an Appropriate Persistent Hash Code Method

In cases where a persistence-capable class does not override the
hashCode() method it inherits from Object, the class file
postprocessor arranges for the class to implement a hashCode()
method suitable for storing instances in persistent hash tables. It
does this by adding an int field to the class. This field is initialized
to an appropriate hash code when an instance is created and
returns the value stored in the field from its hashCode() method.
This hash code value is guaranteed to remain unchanged for the
lifetime of the object.

Applications need to provide their own hashCode() methods for
classes that define equals() methods that depend on the contents
of instances rather than on object identity. If the equals() method
just uses the == operator to compare the argument with this (or
inherits Object.equals()), then it is identity-based and the
hashCode() method provided by the class file postprocessor is
appropriate. If the equals() method compares the contents of the
objects, then it is contents-based and your application must
supply a hashCode() method that returns the same hash code
value for all objects whose contents make them return true when
compared with the equals() method.

If an application does not need to store instances of a particular
persistence-capable class as keys in a persistent hash table, there
is no special requirement for that class’s hashCode() method. In
this case, to avoid making all your instances one word larger, have
the class define or inherit a hashCode() method that calls the
superclass’s hashCode() method:

public int hashCode() { return super.hashCode(); }

Doing this ensures that the hashCode() method inherited from
Object will be used, which returns a hash code that can be used
only in a nonpersistent context.
232 ObjectStore Java API User Guide

Chapter 7: Working with Collections
Storing Built-In Types as Keys in Persistent Hash Tables

You can use the following built-in Java types as OSHashtable keys
without overriding the hashCode() method:

• java.lang.String

• Wrapper classes, for example, Character, Integer, Long, Float

There is no way to override the hashCode() method for arrays.
Therefore, do not use Java arrays as keys in persistent hash tables.
You can, however, define a class that stores the array as a field and
provides an appropriate hashCode() method.

Java wrapper classes work nicely as keys because their hashCode()
methods are based on the value of the object rather than its
address.
Release 3.0 233

Using Third-Party Collections Libraries
Using Third-Party Collections Libraries

You can use a third-party Java collections library with
ObjectStore. The advantages of doing so are that it might have
features that you need or you might be familiar with how to use
it. The disadvantage is that it might not scale to the degree that
you need.

One third-party library you can use is Doug Lea’s collections
library. An example of using this is in the collection subdirectory
of the ObjectStore demo directory.
234 ObjectStore Java API User Guide

Chapter 8
Automatically Generating
Persistence-Capable
Classes

This chapter provides information and instructions for using the
class file postprocessor to make classes persistence-capable.
Reference information for all postprocessor options is in Chapter
13, Tools Reference, on page 377.

Caution For simple applications, it is best to postprocess all classes
together. For more complex applications, you can postprocess
your classes in correctly grouped batches. See Postprocessing a
Batch of Files Is Important on page 239.

Failure to postprocess the correct classes together can result in
problem situations that appear when you try to run the
application and that are hard to diagnose. There are postprocessor
options that allow you to determine which classes are made
persistence-capable.
Release 3.0 235

Contents This chapter discusses the following topics:

Overview of the Class File Postprocessor 237

Running the Postprocessor 242

Managing Annotated Class Files 252

Creating Persistence-Aware Classes 257

How the Postprocessor Works 258

Including Transient and Already Annotated Classes 266

Putting Processed Classes in a New Package 268

Creating Persistence-Capable Classes with Transient Fields 273

Customizing Updated Classes 275

Optimizing Operations That Retrieve Persistent Objects 280

Specifying the Number of Array Dimensions in Persistence-
Capable Classes 282

Performing a Test Run of the Postprocessor 283

Using an Input File 284

Annotations You Must Add 285

Class File Postprocessor Limitations 288
236 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Overview of the Class File Postprocessor

To store an object in a database, the object must be persistence-
capable. For an object to be persistence-capable, it must include
code that allows persistence. ObjectStore includes the class file
postprocessor to automatically insert the required code, referred
to as annotations, into your class files.

The command you use to run the class file postprocessor is osjcfp.
The postprocessor provides a number of command options that
allow you to tailor the results to your needs.

You can run the postprocessor on classes or class libraries that you
create or that you purchase from a vendor. See
COM\odi\demo\collections\README.htm for an example of making
a third-party library persistence-capable.

You must explicitly postprocess or manually annotate each class
that you want to be persistence-capable. The capacity for an object
to be stored in a database is not inherited when you subclass a
persistence-capable class.

When you postprocess or manually annotate a class, this registers
the class with ObjectStore. If a class is not postprocessed or
manually annotated, ObjectStore throws
ClassNotRegisteredException.

This overview provides the following information:

• Description of the Annotations on page 238

• Description of the Process on page 239

• Postprocessing a Batch of Files Is Important on page 239

• Manual Annotation on page 241
Release 3.0 237

Overview of the Class File Postprocessor
Description of the Annotations

The class file postprocessor annotates classes you define so that
they are persistence-capable. This means that the postprocessor
makes a copy of your class files, places them in a directory you
specify either the source directory or another directory), and
adds byte-code instructions (annotations) that are required for
persistence. These annotations are

• Modifying the class to implement the COM.odi.IPersistent
interface.

• Defining methods to initialize instance fields with data from
the database, writing modified fields to the database, and
resetting instance fields to default values.

• Modifying methods to fetch the contents of persistent instances
from the database as needed and to mark modified instances so
their changes can be written to the database at transaction
commit.

Before an application can access the contents of a persistent
object, it must call the ObjectStore.fetch() method to read the
object or the ObjectStore.dirty() method to modify the object.
These calls make the contents of the object available to your
application. The postprocessor inserts these calls in methods of
classes that it makes persistence-capable or persistence-aware.

• Defining an additional class that provides schema information
about the persistence-capable class. This new class is a subclass
of the COM.odi.ClassInfo class.
238 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Description of the Process

Before you run the postprocessor, you must compile your source
files. The set of files you run the postprocessor on can contain a
combination of class files, .zip files, and .jar files. The
postprocessor generates annotated class files and places them in a
directory that you specify.

This destination directory is never the original directory, unless
you specify the -inplace option, (see page 383). When you are in a
development cycle, it is best to specify a directory other than the
original directory. Doing so avoids errors and provides both a
persistence-capable and a transient version of the same class.

It is not necessary to recompile all classes before iteratively
running the postprocessor. The requirement is that the compiled
classes be consistent.

The postprocessor tries to minimize the amount of work it does. It
checks file modification times and only reprocesses those files that
have changed.

Postprocessing a Batch of Files Is Important

In one execution of the postprocessor, the postprocessor must
operate on a correctly grouped set of files. For example, an
application might use a file, perhaps a library, that is already
annotated. You must not specify the annotated files when you run
the postprocessor on the rest of the files in your application.
Hence, the term batch means all files that the postprocessor must
annotate in one execution of the osjcfp command. Each batch
must have its own postprocessor destination directory for this to
work correctly.

You can use the postprocessor -inplace option to create multiple
batches. When you do, there is no requirement for the separate
batches to be stored in different directories.
Release 3.0 239

Overview of the Class File Postprocessor
Example of one batch When you write a program that uses persistence, the program
usually consists of a batch (a set) of classes, for example, classes A,
B, and C. They are typically defined in files called A.java, B.java,
and C.java. It is possible for each class to reference the other
classes. For example, B might refer to C, and C might refer to B.
There is no ordering or layering; there are no rules for references
among the classes.

When this is the scenario, you must run the postprocessor on all
of these classes at the same time. You cannot run the
postprocessor on each file individually. This is because when the
postprocessor operates on A, it might refer to B and C. The
postprocessor must have information about B and C to correctly
annotate A.

Example of two
batches

In relatively simple programs, there is only one batch involved.
But sometimes there might be more than one batch in an
application. Suppose, for example, that you want to write a
persistent program that uses an existing library. An example of
this is djgl, which is Object Design’s persistence-capable version of
ObjectSpace's JGL library. Your program consists of A, B, and C
plus the JGL library.

Now, in a simple (one-batch) program, when you run the
postprocessor, you always specify all files in your application. In
this case, you do not want the postprocessor to operate on JGL
because it has already been postprocessed. In fact, you probably
do not have the class files that have not been postprocessed.

It is correct to run the postprocessor on only A, B, and C. This is
because there is a rule: JGL classes never know about A, B, and C.
After all, JGL was written, finished, and put on the shelf before A,
B, and C were created.

There are two batches here:

• The first batch contains the persistence-capable JGL library.
Object Design runs the postprocessor on this batch.

• The second batch contains your own classes, A, B, and C. You
run the postprocessor on this batch.

Whenever you run the postprocessor, you must run it on a whole
batch. Each batch must have its own postprocessor destination
directory.
240 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Checking for correct
batches

To determine if you have correctly grouped your files in batches,
you can apply this rule: Class A and class B must be in the same
batch if either of the following is true:

• Class B inherits from class A and either class is persistence-
capable.

• Class A is persistence-capable or persistence-aware and it
directly refers to the fields of class B, which is persistence-
capable.

Manual Annotation

In exceptional situations, you might want to insert all required
annotations needed for persistence and not use the postprocessor
at all. See Chapter 9, Manually Generating Persistence-Capable
Classes, on page 289. You can also manually annotate your code
to meet some persistence requirements and then run the
postprocessor to insert the other annotations.
Release 3.0 241

Running the Postprocessor
Running the Postprocessor

To make classes persistence-capable, do the following:

1 Compile the source files.

2 Run the postprocessor on the resulting class files.

You must run the postprocessor on all class files in a batch at the
same time.

Some Java-supplied classes are persistence-capable. Others are
not persistence-capable and cannot be made persistence-capable.
A third category of classes can be made persistence-capable, but
there are important issues to consider when you do so. Be sure to
read Java-Supplied Persistence-Capable Classes on page 360.

The topics discussed in this section are

• Preparing to Run the Postprocessor on page 243

• Requirements for Running the Postprocessor on page 244

• Example of Running the Postprocessor on page 245

• About the Postprocessor Destination Directory on page 246

• How the Postprocessor Interprets File Names on page 247

• Order of Processing on page 247

• How the Postprocessor Handles Duplicate File Specifications
on page 249

• How the Postprocessor Handles Files Not Found on page 249

• Zip and Jar Files as Input to Postprocessor on page 250

• How the Postprocessor Handles Previously Annotated Classes
on page 250

• Troubleshooting OutOfMemory Error on page 250

• How the Postprocessor Handles Inner Classes on page 251

• Creating Smaller Annotated Files on page 251
242 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Preparing to Run the Postprocessor

Before you run the postprocessor, ensure that the following .zip
files or .jar files are explicitly specified in your CLASSPATH. An
entry for the directory containing them is not sufficient.

• A tools.zip or tools.jar entry must be in your CLASSPATH
environment variable.

• The osji.zip or osji.jar file must be in your CLASSPATH
environment variable.

• Also, you must update your PATH environment variable to
contain the bin directory from the ObjectStore for Java
distribution.

On Windows, you might set PATH to be something like this:

PATH=c:\jdk117\bin;c:\odi\ostore\bin;c:\odi\osji\bin;
c:\winnt\system32;c:\winnt

On UNIX, it would be something like this:

PATH=/usr/ucb:/usr/bin:/opt/jdk117/bin:/opt/SUNWspro/bin:
/opt/ODI/ostore/bin:/opt/ODI/osji/bin
Release 3.0 243

Running the Postprocessor
Requirements for Running the Postprocessor

The postprocessor requires specification of

• The -dest option with a destination directory for the annotated
class files. This can be an absolute or relative path name. This
directory must already exist when you specify it on the
postprocessor command line. The postprocessor does not
create it.

You can also specify the -inplace option to instruct the
postporcessor to overwrite your original class files. If you do,
the -dest option is still required.

• A batch of files. A batch includes all files in your application
except for already annotated files that your application refers
to. You can specify

- One or more .class files

- One or more .zip files

- One or more .jar files

- One or more class names (you must specify the package
names)

- Any combination of the previous items

Insert a space between specifications and be sure to specify the
required destination parameter. When you run the postprocessor,
each batch must have its own destination directory. For example:

osjcfp -dest osjcfpout COM.odi.demo.threads.Institution Banking.zip Account.class

You can specify additional options, which are described in osjcfp:
Running the Postprocessor on page 381.
244 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Example of Running the Postprocessor

To make the Person class persistence-capable, enter a command
like this:

osjcfp -dest ..\osjcfpout Person.class

This command assumes that the Person.class file is in the current
directory and the osjcfpout directory is a sibling to the current
directory. If the postprocessor successfully generates an
annotated version of the Person.class file, it also generates the
PersonClassInfo.class file. This file contains information needed
by ObjectStore to persistently store instances of Person.

The postprocessor places the annotated Person.class file and the
PersonClassInfo.class file in a package-relative subdirectory of
the osjcfpout directory. For example, suppose the Person class
package name is COM.odi.demo.people. Further suppose that the
osjcfpout directory is in the \users\kim directory. The
postprocessor writes the annotated class file to a file whose name
is made up of the destination directory, the class package, the class
name, and the .class extension. It writes the PersonClassInfo.class
file to a similar location:

\users\kim\osjcfpout\COM\odi\demo\people\Person.class
\users\kim\osjcfpout\COM\odi\demo\people\PersonClassInfo.class

Note that both of the following commands have the same results,
as specified previously.

osjcfp -dest ..\osjcfpout Person.class
osjcfp -dest \users\kim\osjcfpout COM.odi.demo.people.Person
Release 3.0 245

Running the Postprocessor
About the Postprocessor Destination Directory

The postprocessor never overwrites the class files specified on the
postprocessor command line, unless you specify the -inplace
option when you run the postprocessor. If you do specify the
-inplace option, the postprocessor does overwrite the original
class files with the annotated class files.

If you specify a destination directory in such a way that it would
store the annotated class file in the same location as the
unannotated class file, and you do not specify the -inplace option,
the postprocessor displays an error message and terminates. It
does not produce any class file output.

The postprocessor ignores classes that are rooted in the
destination directory. If you try to postprocess a class that exists
only in the destination directory (and you do not specify -inplace),
the postprocessor reports that it cannot find the file. For example,
if you specify the following command when you run osjcfp, you
receive an error as shown.

setenv CLASSPATH /usr/devo/java/test:/opt/ODI/osji.zip:/optODI/tools.zip
cd /usr/devo/java/test
javac com/users/jobs/teacher.java
osjcfp -d . com.users.jobs.teacher
...
Error: Class com/users/jobs/teacher could not be found.

Because the postprocessor ignores the destination directory in the
CLASSPATH when it looks up classes, it is unable to locate the
specified class. Consequently, the destination directory you
specify cannot be the root directory for any of the classes you want
to postprocess or any classes referenced by classes you want to
postprocess.

Typically, after you run the postprocessor, you have a transient
version of a class (your original file) and a persistence-capable
version of the class (in the destination directory).

If there are no errors, the postprocessor places a version of all files
specified on the command line in the destination directory. The
postprocessor annotates those files that require annotations and
does not modify those files that do not.
246 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
How the Postprocessor Interprets File Names

If a name you specify ends with .class, .zip, or .jar, the
postprocessor assumes it is an explicit file name for a class file, .zip
file, or .jar file, respectively.

If a name you specify does not end with .class, .zip, or .jar, the
postprocessor assumes it is a class name delimited with periods,
for example, a.b.C. The postprocessor uses the CLASSPATH
environment variable or the -classpath specification on the
postprocessor command line to locate the .class file, which can be
in a .zip file or .jar file. (The use of the -classpath option does not
affect the class path used for the execution of the postprocessor.)

Here is an example of adding the -classpath option. It assumes
that you are using ObjectStore on UNIX with the JDK installed in
/usr/local/JDK-1.1.

osjcfp -dest osjcfpout -classpath \
/usr/osji:/usr/local/JDK-1.1/java/lib/classes.zip:\
/usr/osji/lib/osji.zip COM.odi.demo.threads.Institution \
Banking.zip Account.class

CLASSPATH and
-classpath

The postprocessor uses the class path you specify in the command
line to locate the specified files. This is in place of the CLASSPATH
environment variable. At run time, Java implementations append
the location of the system classes to the end of the CLASSPATH
environment variable. You must do this manually if you specify
the -classpath option. This is shown in the examples above as
classes.zip.

Order of Processing

The postprocessor processes the class files in the order in which
they appear on the command line and according to the persistence
mode that is in effect when the postprocessor reaches the file
name. The persistence mode indicates whether the postprocessor
is

• Annotating the class to be persistence-capable

• Annotating the class to be persistence-aware

• Copying the class to the destination directory without
annotating it
Release 3.0 247

Running the Postprocessor
Persistence mode
options

The default persistence mode is that the postprocessor generates
persistence-capable classes. Here are the options you can specify
to determine the persistence mode:

If you specify a .class file or class name, the postprocessor
processes it according to the persistence mode that is in effect
when the postprocessor reaches the file name. If you specify a .zip
file or .jar file the postprocessor processes all class files in the .zip
file or .jar file according to the persistence mode that is in effect
when the postprocessor reaches the name of the. zip file or .jar file
in the command line. For example:

osjcfp -dest osjcfpout -persistaware Tent.class Family.class \
-persistcapable Campers.zip Site.class -copyclass Weather.class

Persistence Mode
Option

Description

-pc |-persistcapable Classes specified after this option are
made persistence-capable. The
postprocessor annotates these classes to
include all annotations required by
ObjectStore for an object to be persistent.
This is the default. If you do not specify a
persistence mode option in the
postprocessor command line, the
postprocessor makes all specified classes
and superclasses of those classes
persistence-capable.

-pa |-persistaware Classes specified after this option are
made persistence-aware. The
postprocessor annotates these classes so
that they can operate on persistent objects,
but instances of these classes cannot
themselves be stored persistently.

-cc |-copyclass Classes specified after this option are not
annotated. Specify this option for classes
that should not be annotated either
because they are nonpersistent or already
annotated. The postprocessor copies these
classes to the destination directory along
with the annotated classes.
248 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Example After you run the postprocessor with the previous command,

• The Tent and Family classes are persistence-aware.

• The Site class, its superclass if it has one other than
java.lang.Object, all classes in the Campers.zip file, and any of
their superclasses (other than java.lang.Object) are persistence-
capable.

• The Weather class is not annotated and is copied as is to the
destination directory.

How the Postprocessor Handles Duplicate File Specifications

It is permissible for a class to be specified more than once in a
command line. For example, a file can be in a .zip file and you can
also explicitly specify it. Or on UNIX, a file can be included in a
wildcard specification and you can also explicitly specify it. In the
previous example, the Family class could be in the Campers.zip
file. If it were, the postprocessor would annotate the Family class
to be persistence-capable. This is because making a class
persistence-capable supersedes making it persistence-aware.
Likewise, making a class persistence-aware supersedes copying it
as is to the destination directory.

If you specify the same class more than once on a command line,
both specifications must resolve to the same disk location. For
example, suppose you specify both Person.class and
COM.odi.demo.people.Person. This is allowed only if the class
path causes COM.odi.demo.people.Person to resolve to the same
Person.class that is explicitly specified.

How the Postprocessor Handles Files Not Found

The postprocessor must be able to find every file that you specify
on the command line. If it cannot find one or more files, it displays
an error message and stops processing. It does not produce any
annotated class files.
Release 3.0 249

Running the Postprocessor
Zip and Jar Files as Input to Postprocessor

If a class originates in a .zip file or .jar file, either because you
specify a .zip file or .jar file when you run the postprocessor or
because the class path search locates the class in a .zip file or .jar
file, the postprocessor writes the annotated class to the package-
appropriate subdirectory of the destination directory.

How the Postprocessor Handles Previously Annotated Classes

If the postprocessor previously annotated a .class file, you can
only specify that .class file to be copied. You cannot specify it to
be annotated. If you do, the postprocessor displays a message that
states which specified class was already annotated, and
terminates without producing any annotated files.

Troubleshooting OutOfMemory Error

The JDK 1.1 imposes a memory limitation of 16 MB, unless you
override it. If you receive a java.lang.OutOfMemory error during
postprocessing, you must increase the run-time memory pool. Do
one of the following:

• Set the OSJCFPJAVA environment variable to include the -mx
option. For example, Solaris csh users can enter

setenv OSJCFPJAVA "java -mx32m"

Windows users can enter

set OSJCFPJAVA=java -mx32m

• Edit the osjcfp script (Solaris) or osjcfp.bat script (Windows) to
incorporate the -mx option in the invocation of Java near the
end of the script. On Solaris, the line to change is

$OSJCFPJAVA $javaargs COM.odi.filter.OSCFP $args

On Windows, the line to change is

%osjcfpjava% COM.odi.filter.OSCFP %1 %2 %3 %4 %5 %6 %7 %8

Add -mx32m before the COM.odi.filter.OSCFP entry. This allows
the Java virtual machine to increase the heap to 32 MB. You can
increase this value further if you need to.
250 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
How the Postprocessor Handles Inner Classes

When you define a class inside another class, you must explicitly
make both the outer class and the inner class persistence-capable.
For example, suppose you define the following class:

Class Foo {
int a;
public class Bar {}

}

You must specify both the Foo class and the Bar class when you
run the postprocessor:

osjcfp -dest ../osjcfpout -pc Foo.class -pc Foo$Bar.class

Creating Smaller Annotated Files

To create smaller annotated files, specify the -optimizeclassinfo
option when you run the postprocessor. This option prevents the
postprocessor from generating xxxClassInfo.java classes for
classes that are public or abstract. This reduces the disk footprint
and application startup times, since there are fewer classes to load
when the application starts.

When the postprocessor does not create a ClassInfo class, it uses
the Java reflection API instead. Some of the reflection API is
subject to security and access constraints that are enforced to
varying degrees depending on the version of the JDK and the
platform. In other words, you can use the -optimizeclassinfo
option if the Java environment in which you intend to run the
application does not restrict the use of the reflection API.
Release 3.0 251

Managing Annotated Class Files
Managing Annotated Class Files

After you run the postprocessor, there are two versions of your
class files:

• The unannotated class files in the original directory

• The annotated class files in the destination directory

It is important to keep these versions separate because

• When you compile source code, you must ensure that any class
files the compiler reads in are unannotated class files. The
compiler must find unannotated class files before it finds
annotated class files with the same names.

Note: While the above is true for simple applications, it might
not be true for more complex applications. See Using the Right
Class Files in Complex Applications on page 255.

• When you run your application, you must ensure that
ObjectStore finds the annotated class files before it finds the
unannotated class files with the same names.

There are several ways to accomplish this. Object Design
recommends that you

• Specify the -classpath argument to the compiler so it finds the
unannotated class files first.

• Modify your CLASSPATH environment variable so Java can
find the annotated class files first when it runs your
application.

To help you manage annotated class files, this section discusses

• Ensuring That the Compiler Finds Unannotated Class Files on
page 253

• Ensuring That ObjectStore Finds Annotated Class Files on
page 254

• Using the Right Class Files in Complex Applications on
page 255

• Alternatives for Finding the Right Files on page 256

• How the Postprocessor Determines Whether to Generate an
Annotated Class File on page 256
252 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
 Ensuring That the Compiler Finds Unannotated Class Files

There are two ways in which the compiler can locate class files:

• Through the CLASSPATH environment variable

• Through the -classpath argument to the compiler

CLASSPATH is convenient when you compile, but when you try
to run your application ObjectStore finds the unannotated files
before it finds the annotated files. The -classpath option is more
cumbersome to use since it means that the path to Java system
classes must be listed explicitly in the argument, but it is safe. It
ensures that the compiler does not operate on annotated class
files.

Example 1 For example, suppose ObjectStore is installed in c:\osji and you
are building an application in c:\app. Your destination directory
for annotated class files is c:\app\osjcfpout. Your CLASSPATH
variable might look like this:

CLASSPATH=c:\osji\osji.zip;c:\app\osjcfpout;c:\app

When you run the compiler, specify the -classpath option with the
following path. This removes the destination directory from the
class look-up path and adds the Java classes to the path.

javac -classpath c:\app;c:\osji\osji.zip;c:\jdk117\lib\classes.zip App.java

Example 2 Here is an example of why it is important for the compiler to
operate on unannotated class files. Suppose you have two classes
named X and Y in the same postprocessor batch. Neither of these
classes is explicitly declared to implement COM.odi.IPersistent.
Now, suppose you add the following two methods to class Y:

void foo(COM.odi.IPersistent p) {}
void bar() { foo(new X()); } // Trying to pass an X instance to

// a function that is expecting COM.odi.IPersistent

If you recompile only Y.java and the compiler finds the annotated
classes, examination of the annotated class file allows the
compiler to determine that X implements IPersistent, which
allows Y.bar() to compile. If you then recompile both X and Y, the
compiler recognizes that X is not declared to implement
COM.odi.IPersistent and refuses to compile class Y, even though it
successfully compiled earlier.
Release 3.0 253

Managing Annotated Class Files
 Ensuring That ObjectStore Finds Annotated Class Files

When you run your application, ObjectStore must find the
annotated class files before it finds the unannotated class files. The
recommended way to do this is to define a CLASSPATH
environment variable that has the postprocessor destination
directory before the source file directory.

Example Consider the following example:

• ObjectStore is installed in c:\odi\osji.

• You are building an application in c:\app.

• You create a directory named c:\app\osjcfpout to hold the
annotated class files.

In this scenario, use the following CLASSPATH:

c:\app\osjcfpout;c:\app;c:\odi\osji\osji.zip

After you modify your CLASSPATH environment variable, you
can run the postprocessor with no special action. The
postprocessor excludes the destination directory from the class
path when it does class-path-based searches.
254 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Using the Right Class Files in Complex Applications

There are situations when you want the compiler to read in
annotated class files. In these cases, the referenced classes are
similar to an independent library on which you are building your
application. The referenced classes form a batch, which is a group
of class files that must be postprocessed together. The other files
in your application form a second batch.

Independent library For example, suppose this second batch is named X. Specify the
-classpath option so that it points to the

• Unannotated class files for any classes in X

• Annotated class files for any classes that are in other batches
and are referenced by classes in X

This is the most common multiple-batch scenario. Your
application is in one batch and the other batches are existing
reusable libraries. Each batch has its own postprocessor
destination directory.

Classes referenced by
other classes

Now suppose that you are not using an existing library. Your
application itself contains a group of referenced classes (first
batch) and then another group of classes (second batch) that
reference the first batch. The following instructions show how to
build your application in stages:

1 Compile the source files and postprocess the class files in the
first batch. (This is the batch of files that are referenced by other
classes in the application.)

2 Compile the source files in the second batch. You might not
want to compile all files in this batch at the same time. Specify
the -classpath option to point to the annotated class files in the
first batch and any unannotated class files in the second batch.

3 Run the postprocessor on the second batch. Specify a
destination directory that is different from the destination
directory that was specified when the postprocessor operated
on the first batch. You can package the result of postprocessing
the second batch in a .zip file or .jar file.
Release 3.0 255

Managing Annotated Class Files
Alternatives for Finding the Right Files

In some circumstances, updating your CLASSPATH environment
variable might be cumbersome or might not work well with your
development environment. (This is true for the Symantec Cafe
product.) In these cases, you can copy annotated files back to the
building directory. However, if you do this, you must remove the
annotated files before you recompile. This ensures that
subsequent compilation and postprocessing operates on
unannotated class files.

Two other alternatives are to

• Delete the contents of the destination directory before you
recompile.

• Specify the -classpath option when you run the postprocessor,
just as you did for compilation.

How the Postprocessor Determines Whether to Generate an Annotated
Class File

When you run the postprocessor, it checks if any annotated file it
is going to create already exists. If an annotated file does not
already exist, the postprocessor generates it. If an annotated file
does exist, the postprocessor compares the date on the compiled
input file with the date on the annotated output file. If the input
file date is after the output file date, the postprocessor generates a
new output file. If the input file date is before the output file date,
the postprocessor does not generate a new file. It assumes that the
annotated file that already exists is still valid.

This works fine when you run the postprocessor repeatedly with
the same command line. However, when you change input
parameters to the postprocessor, it is a good idea to remove the
previously annotated class files from the destination directory.
The reason for this is that a comparison of dates might not cause a
new annotated file to be generated when the specification of a
new input parameter requires a new annotated file to be
generated.

To force the postprocessor to overwrite existing annotated files,
specify the -f or -force option when you run the postprocessor.
256 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Creating Persistence-Aware Classes

If you know that a class will never need to be stored persistently,
you can run the postprocessor to make the class persistence-
aware. A persistence-aware class can operate on persistent
objects, but it cannot be persistent itself. For an example of how
you might use persistence-aware classes, see
COM\odi\demo\pport\README.htm.

Persistence-aware annotations require less space than
persistence-capable annotations. The postprocessor only adds
calls to ObjectStore.fetch() and ObjectStore.dirty() where they are
needed to operate on persistent objects. When the postprocessor
makes a class persistence-aware, it does not annotate that class’s
superclass. You only need to make a class persistence-aware,
instead of copying it as is, if

• The class accesses fields of a persistence-capable class instead
of using methods to access the fields.

• The class accesses elements of persistent arrays.

You must make a class persistence-aware (or persistence-capable)
when it includes methods that obtain arrays from persistent
objects.

Specifying the Postprocessor Command Line

To create a persistence-aware class, specify the -pa or -
persistaware option followed by the names of the classes that you
want to be persistence-aware. For example:

osjcfp -dest osjcfpout -persistaware Compute.class

The preceding command line annotates Compute.class so that it
has calls to the fetch() and dirty() methods.

No Changes to Superclasses

Another reason to make a class persistence-aware is that doing so
does not require changing its superclasses. This is important for
classes such as java.lang.Thread, whose superclass should not be
modified. java.lang.Thread is inherently transient, so it makes no
sense for it to become persistent because it is not useful when you
take it out of the database. Typically, Java system classes are
restricted from annotations by the postprocessor.
Release 3.0 257

How the Postprocessor Works
How the Postprocessor Works

This section describes postprocessor behavior relative to various
components in your application. It is important to be familiar with
the information here so that the postprocessor produces the
results you expect. The topics covered in this section are

• Ensuring Consistent Class Files on page 259

• Modifications to Superclasses on page 259

• Effects on Inheritance on page 260

• Location of Annotated Class Files on page 261

• Postprocessor Errors and Warnings on page 261

• Handling of Final Fields on page 261

• Handling of Static Fields on page 262

• Which Java Executable to Use on page 263

• Line-Number and Local-Variable Information on page 263

• Using a Debugger on page 264

• Handling of finalize() Methods on page 264

• Description of Postprocessor Optimizations on page 265
258 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Ensuring Consistent Class Files

When you run the postprocessor on more than one class file at a
time, all specified classes must be consistent. To ensure class
consistency, compile all classes together. The postprocessor does
not detect inconsistencies among files it operates on. For example,
suppose you modify and recompile a class without also
recompiling its subclasses. This can cause inconsistencies, which
the postprocessor does not detect when it annotates the class files.

Modifications to Superclasses

When you run the postprocessor to make classes persistence-
capable, it generates annotated class files for the specified classes
and for any superclasses that are in the same packages as the
specified classes. ObjectStore requires annotations to superclasses
for all classes that the postprocessor makes persistence-capable. If
a superclass is not in the same package as one of its subclasses that
is being made persistence-capable, you must explicitly specify the
superclass on the postprocessor command line.
Release 3.0 259

How the Postprocessor Works
Effects on Inheritance

If a class that the postprocessor is annotating has no superclass,
other than java.lang.Object, the postprocessor annotates the class
to implement the COM.odi.IPersistent interface.

Implementation of the IPersistent interface is mandatory for
objects that you want to be persistent. You must define classes so
that if they inherit from another class, it is a class that can
implement IPersistent.

Problem with
Object.hashCode()

Every class inherits from the Object class, which defines the
hashCode() method and provides a default implementation. For a
persistent object, this default implementation often returns a
different value for the same persistent object (the object on the
disk) at different times. This is because ObjectStore fetches the
persistent object into different Java objects at different times (in
different transactions or different invocations of Java).

This is not a problem if you never put the object into a persistent
hash table or other structure that uses the hashCode() method to
locate objects. If you do put them in hash tables or something
similar, the hash table or other structure that relies on the
hashCode() method might become corrupted when you bring the
objects back from the database.

To resolve this problem, you can define your own hashCode()
method and base it on the contents of the object so it returns the
same thing every time. The signature of this method must be

public int hashCode()

If you do not provide a hashcode() method, the postprocessor
adds one if it is necessary. If the default behavior of the
postprocessor is not ideal for your application, you can specify the
-hashcode and -nohashcode options to control where the
postprocessor adds a hashCode() method.
260 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Location of Annotated Class Files

When you run the postprocessor, you must specify a destination
directory with the -dest option. The postprocessor uses the
destination directory as the root directory of the class hierarchy of
annotated files. The postprocessor places the annotated class file
in the package-relative subdirectory of the destination directory.
With the destination directory specified in your CLASSPATH
environment variable, Java can find the annotated classes.

You must create the destination directory before you specify it in
an osjcfp command line. The postprocessor creates the required
subdirectories in the destination directory.

For example, suppose you specify osjcfpout as the destination
directory. When you run the postprocessor on the Person.class
file, which is in the COM.odi.demo.people package, the
postprocessor places the annotated file in

osjcfpout\COM\odi\demo\people\Person.class

The package name of the annotated class file remains the same,
unless you specify an option to change it. The class name of the
annotated class file is always the same as the class name of the
unannotated class file.

Postprocessor Errors and Warnings

If an error occurs while the postprocessor is running, it terminates
without writing any annotated class files.

For any warnings from the postprocessor, you might determine
that you can safely ignore the warning. In this case, you can stop
the postprocessor from warning you about the field in question.
To do so, specify the -quietfield option followed by the fully
qualified name of the field for which you want to suppress
warnings. Alternatively, you can specify -quietclass to suppress
all warnings on the class.

Handling of Final Fields

You cannot make final fields persistent. If you try to do this, the
postprocessor displays a warning message and treats the fields
marked as final as though you declared them to be transient. To
allow such fields to be stored persistently, you must remove the
final keyword.
Release 3.0 261

How the Postprocessor Works
Handling of Static Fields

The postprocessor never stores static fields in the database and
never causes the values of static fields to be altered. You must
write your own code to update static fields and to store static
fields in the database, if that is what you want to do.

Static fields that can
hold persistent values

The postprocessor displays a warning for a static field that can
hold potentially persistent values. The postprocessor cannot
determine the type of the object that will actually be pointed to.
Consequently, depending on the type of object referenced, the
warning might not be applicable. For example, suppose you have
a persistence-capable class named X. The X class has a static
member named y of a type that implements COM.odi.IPersistent.
When you run the postprocessor, it displays a warning like this:

X.y is a static field of a type that implements COM.odi.IPersistent and that
might refer to a persistent object. If this field does refer to a persistent
object it must be user maintained.

Referring to a
persistent object

If the field mentioned in the warning is intended to refer to a
persistent object, you can write your application as follows:

• When you create a database, create an object of the desired type
and create a database root to refer to the object. This makes the
object persistent and provides a mechanism you can use to find
the object.

• When you start a new transaction, if the object referenced by
the static field is null or stale, look up the database root and set
the value of the static field to the root value.

If you specify ObjectStore.RETAIN_STALE when you commit or
abort a transaction, you must ensure that you correctly access the
objects at the beginning of the next transaction. This is because
ObjectStore does not make the object referenced by X.y persistent
if it is only reachable from X.y. If ObjectStore makes it persistent
because it is reachable from some other point, the object
referenced by X.y might become stale at the end of the transaction
in which it becomes persistent. If it does, and if the object
referenced by X.y does become persistent, it is possible that the
application might try to use the stale version of the object.

How can X.y be reachable from some other point? Perhaps some
other persistent object or an object that is going to be persistent
refers to the object that the static data member is referring to.
262 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
When ObjectStore commits the transaction and performs
transitive persistence, it finds the object that the static data
member is referring to.

References to stale
objects

An issue to consider is stale references to stale objects. To avoid
the inadvertent use of stale objects, update X.y at transaction
boundaries. Set X.y to null or to some other value to ensure that if
a stale object is referenced by X.y, it is no longer accessible through
X.y. Then you can suppress the warning with the -quietfield
option.

Summary For class X, the important points are listed below.

class X { static OSHashtable y = new OSHashtable(); }

• X.y does not become persistent just because class X is
persistence-capable or because an instance of X becomes
persistent.

• If you want X.y to become persistent, you must make it
reachable from a root through a path that does not involve a
static field, for example, db.createRoot(“X.y”, X.y) .

• If X.y does become persistent, you must be aware that the
OSHashtable object referenced by X.y might become stale at
transaction boundaries. If it does, you must update X.y to refer
to a nonstale instance.

Which Java Executable to Use

The postprocessor is a Java program; it requires a Java virtual
machine to run. It uses the first Java executable that it finds in your
PATH environment variable. If you want the postprocessor to use
some other Java executable, set the OSJCFPJAVA environment
variable to the name of the Java executable you want the
postprocessor to use. The default is java.

If the postprocessor cannot find a Java executable, it generates a
Bad command or file name error message.

Line-Number and Local-Variable Information

When the postprocessor annotates a class file, it maintains any
existing line-number and local-variable information.
Release 3.0 263

How the Postprocessor Works
Using a Debugger

The class file postprocessor annotates methods with VM
instructions for automatically performing fetch() and dirty()
operations on objects. It does this in such a way that the
debugging information in the class files remains intact. For the
most part, the annotations are invisible to an application.
However, it is possible to encounter them under certain
circumstances when using a debugger. For example, you might
encounter the following when you use the Step into command:

x = foo(y.m);

Stepping into that statement might cause you to enter the
ObjectStore code that causes the contents of the y object to be
fetched. In such a situation, use the Step out command to leave the
ObjectStore code. Then use the Step into command again, which
should then step into the call to the foo() method.

You should rely on the Step over command whenever possible.
However, there are situations where you must use the Step into
command. If you inadvertently step into an ObjectStore method,
step out of the ObjectStore code and return to your own code by
doing one of the following:

• Use a Step out command.

• Set a breakpoint in the calling code.

• Use repeated Step over commands until the method returns.

Handling of finalize() Methods

The Java garbage collector calls the java.lang.Object.finalize()
method on an object that is no longer referenced. The garbage
collector does this before it frees the space occupied by the object.
In this way, the finalize() method provides a hook that you can use
to free resources that are not freed by garbage collection, for
example, memory that was allocated by a native method call.

If your persistence-capable class defines a finalize() method
(Object Design recommends that it should not), the class file
postprocessor inserts annotations at the beginning of the finalize()
method that change the persistent object to a transient object. See
Avoiding finalize() Methods on page 182.
264 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Description of Postprocessor Optimizations

The postprocessor optimizes fetch() and dirty() calls in several
ways. If you determine that an optimization is preventing
insertion of a required call to fetch() or dirty(), you can disable the
optimization.

• For array objects in looping constructs, the postprocessor
inserts the call to fetch() or dirty() only in the first loop iteration.
To disable this optimization, specify the -noarrayopt option
when you run the postprocessor. This causes the postprocessor
to insert calls to fetch() or dirty() in every iteration.

• For constructors, the postprocessor does not insert full
annotations that would allow constructors to handle
modifications to newly constructed objects. To disable this
optimization, specify the -noinitializeropt option when you run
the postprocessor. This causes the postprocessor to fully
annotate constructors so that they can correctly handle
modifications to objects that become persistent during
constructor execution.

If your application inserts objects into ObjectStore collections
during construction of the objects being inserted, you must
specify the -noinitializeropt option. Doing so avoids errors in the
handling of modifications to the newly constructed objects.

• For access to fields relative to this in nonstatic member
methods, the postprocessor optimizes calls to fetch() and dirty().
To disable this optimization, specify the -nothisopt option
when you run the postprocessor. This causes the postprocessor
to insert a fetch() or dirty() call for each access to a field in this.

You should disable these optimizations if you commit
transactions or evict persistent objects as follows:

• If you call commit() or evict() while iterating over persistent
array elements, specify -noarrayopt when you run the
postprocessor.

• If you call commit() or evict() in between accesses to different
fields of this, specify -nothisopt when you run the
postprocessor.

If you want to disable all three optimizations, specify the -noopt
option instead of the three individual options.
Release 3.0 265

Including Transient and Already Annotated Classes
Including Transient and Already Annotated Classes

After you run the postprocessor, the annotated class files are in
the package-relative subdirectory of the destination directory
(root directory) you specified. You might want other class files in
this destination directory. These could be transient
(nonpersistence-capable or nonpersistence-aware) class files or
files that have already been annotated.

Copying Classes to the Destination Directory

To copy some files to the destination directory along with the
annotated files, specify the -copyclass option followed by the
name of the file you want to copy. For example:

osjcfp -dest osjcfpout a.zip -copyclass b.class

In this example, the postprocessor annotates the files in a.zip and
copies them to the package-relative subdirectory of the osjcfpout
directory. The postprocessor also copies b.class to the osjcfpout
directory, but it does not modify the b.class file.

You can follow the -copyclass option with one or more .class file
names, class names, .jar file names, or .zip file names. This option
applies to each name that follows it, until the postprocessor
reaches a -pc or -pa option.

Specifying Classes to Be Copied and Classes to Be Persistence-Capable

Classes for which you specify the -copyclass option can overlap
with classes for which you specify the -persistcapable or
-persistaware option. For example:

osjcfp -dest osjcfpout -copyclass *.class -persistcapable a.class

This allows you to keep all files in a package together and only
annotate the classes that need to be annotated. You need not
partition classes into those that need annotations and those that
do not. You can specify the same file with more than one
persistence mode option because the -persistcapable option and
the -persistaware option override the -copyclass option.
266 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
When Can a Class Be Transient?

Suppose you have a persistence-capable class, class A. A class that
refers to class A can be transient if all access to A’s nontransient
data members is through methods on A. The methods of A will be
properly annotated. Since all other classes only use A’s methods,
the other classes do not need to be persistence-aware.
Consequently, you do not need to postprocess any classes that
refer to A.

Any class that directly accesses A’s nontransient data members
must be either persistence-capable or persistence-aware. Any
other class that refers to A and does not directly access
nontransient data members can be transient. That is, you do not
have to postprocess it.

An important exception to this is that if a class manipulates an
array object that might be persistent (specifically, setting and
getting array elements), that class must be annotated to be
persistence-aware. However, if the code that provides access to
the array is annotated to access the values of the array, you can
avoid making the class persistence-aware. It is difficult to reliably
implement this in the general case.

If you compile with optimization the classes that use the methods
that get and set array values, the compiler might inline the get and
set methods. In this case, you must make the class that uses the get
and set methods persistence-aware.
Release 3.0 267

Putting Processed Classes in a New Package
Putting Processed Classes in a New Package

Normally, the postprocessor places the annotated files in a
package-relative subdirectory of the destination directory and the
annotated files have the same package names as the original files.
However, there is an option that allows you to change the package
name of files specified in the postprocessor command line. The
-translatepackage option modifies the package name so that the
persistence-capable version of the class is in one package and the
transient version (the original) is in another package.

To help you use the -translatepackage option, this section
discusses the following topics:

• Using the -translatepackage Option on page 269

• How the Postprocessor Applies the Option on page 270

• Updating References to New Package Name on page 270

• References to Transient and Persistent Versions of a Class on
page 271

• References to Transient Instances of a Persistence-Capable
Class on page 272
268 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Using the -translatepackage Option

To create persistence-capable classes whose package name is
different from the original package name, specify the
-translatepackage option followed by the current package name
and then the new package name. The format for this option is

{ -translatepackage | -tp } orig_pkg_name new_pkg_name

For example, suppose you have the a.b.C class and you want to
create the d.e.C persistence-capable class. Run the postprocessor
like this:

osjcfp -dest osjcfpout -translatepackage a.b d.e C.class

Exact match required The specification for the original package name must exactly
match the package name of the specified file. If there is not an
exact match, the postprocessor does not place the annotated file in
the new package. For example, suppose you have two classes
named COM.odi.demo.New and COM.odi.Old. You want to move
COM.odi.Old to the COM.odi.beta package and you specify the
following command:

osjcfp -dest osjcfpout -tp COM.odi COM.odi.beta
COM.odi.demo.New COM.odi.Old

The postprocessor places the annotated file for the COM.odi.Old
class in COM.odi.beta.Old in the package-relative subdirectory of
the osjcfpout directory
(osjcfpout\COM\odi\beta\COM.odi.beta.Old.class).

The postprocessor does not place the annotated file for
COM.odi.demo.New in a different package because the original
package name is COM.odi.demo and not just COM.odi. The
postprocessor annotates COM.odi.demo.New and places it in
osjcfpout\COM\odi\demo\COM.odi.demo.New.class.
Release 3.0 269

Putting Processed Classes in a New Package
How the Postprocessor Applies the Option

The postprocessor applies the -translatepackage specification to

• All classes in the original package that are locatable by means
of the CLASSPATH environment variable or the -classpath
option if you specify it. The -classpath specification overrides
the CLASSPATH environment variable.

• Files on the command line whose package name exactly
matches the specification for the original package name. This is
true for files processed with the -persistcapable, -persistaware,
or -copyclass option.

When copying files It does not matter whether the postprocessor is making any other
changes to the specified files. The postprocessor changes the
package names of files for which the -copyclass option is specified
right along with new persistence-capable or persistence-aware
files.

Multiple option
specifications

You can specify this option more than once on a command line to
specify several package translations. If you accidentally specify
more than one translation for the same package, the postprocessor
performs the last translation you specify in the command line.

Updating References to New Package Name

A change to the package name of a class requires updating all
references to that class to reflect the new name.

The postprocessor updates the references in classes that it is
currently operating on. This includes each class specified on the
command line and each class found in a. zip file or .jar file that is
specified on the command line.

The postprocessor cannot detect if there are .class files for which
the postprocessor was not called that refer to the renamed
package. You must either run the postprocessor on the complete
set of class files or modify the Java source of any files that the
postprocessor is not annotating.
270 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
References to Transient and Persistent Versions of a Class

You might want a class to refer to both the transient and
persistence-capable versions of some other class.

It is not possible for the postprocessor to determine which
references should be to persistence-capable objects. Because of
this, you must code the class so it uses the full path name of the
different versions of the class. This is the only way to clarify which
version of the class is wanted. However, this technique works
correctly only when you are operating across batches. It does not
work when you are within the same batch.

Example Here is an example of what that means. Suppose you have a utility
class called a.b.C. You want to have both a transient and a
persistence-capable version of a.b.C. When you run the
postprocessor, you specify -translatepackage to create a
persistence-capable version called y.z.C. Then, in another class
called a.b.D, you try to use both versions of the class. You write
source code in a.b.D that explicitly refers to y.z.C, something like

int n= y.z.C.countThem()

When you try to compile a.b.D, compilation can succeed only if
you put the annotated classes into the class path of the compiler.
Otherwise, the compiler reports an error, because there is no such
thing as y.z.C.

Also, it is not possible for a.b.C and a.b.D to be in the same batch,
because the -translatepackage option would apply to a.b.D. This
would make all of a.b.D’s calls go to the persistence-capable
version, which is not what you want.
Release 3.0 271

Putting Processed Classes in a New Package
Steps to follow To use persistence-capable and transient versions of the same
class, follow these steps:

1 Create a utility library.

This is the first batch. This library creates transient versions of
the class.

2 Run the postprocessor on the first batch and specify options
that put the two different versions of the class in two different
packages.

This step creates the persistence-capable version of the class.

3 Use the library from an application.

The application is the second batch.

4 Compile the application with the annotated files of the first
batch, but not the second batch, in the compiler’s class path.

References to Transient Instances of a Persistence-Capable Class

You can use instances of a persistence-capable class in a transient-
only fashion. No special action is required and the calls to
ObjectStore.fetch() and ObjectStore.dirty() do nothing.

There is no need for the unannotated version of the class to be
available at run time.

To use the annotated version of the class, even if you are using it
transiently, the osji.zip or stublib.zip file must be available in the
CLASSPATH at run-time. If you are only using the class
transiently, it can be the stublib.zip that is available.
272 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Creating Persistence-Capable Classes with
Transient Fields

You can create a persistence-capable class with transient fields. A
transient field is a field that is not stored in the database. The
postprocessor ignores transient fields. Use the transient keyword
to create a transient field. For example:

class A {
transient java.awt.Component myVisualizationComponent;
int myValue;
...

}

In this class, the myVisualizationComponent field is declared to be
a transient reference to java.awt.Component. java.awt is a package
that contains GUI classes that do not lend themselves to being
persistence-capable.

In your persistence-capable class, you might have transient fields
that you want to be able to access outside a transaction. In this
situation, you can specify the -noannotatefield or -naf option for
the field when you run the postprocessor. This option prevents
access to the specified field from causing fetch() and dirty() calls on
the containing object. Normally, access to a transient field causes
fetch() or dirty() to be called to allow the postInitializeContents()
and preFlushContents() methods to convert between persistent
and transient state.

Transient Fields and Serialization

If you have a class that has fields that are declared as transient,
this causes the default handling of these fields by object
serialization to be to ignore the fields. If you want them ignored
by object serialization and you also want them to be stored
persistently, specify the -ignoretransient option for the class when
you run the postprocessor.

On the other hand, there might be a field that must be available for
object serialization, but you do not want to store that field in the
database. In this situation, specify the -transientfield option for the
field when you run the postprocessor. This option causes the
postprocessor to treat the specified field as though it has a
transient modifier, even if it does not.
Release 3.0 273

Creating Persistence-Capable Classes with Transient Fields
Initialization of Some Transient Fields

In the declaration of a transient field in a persistence-capable class,
you might want to initialize the value of the transient field.
However, when the postprocessor creates the hollow object
constructor for the class, it does not define the constructor to
initialize the transient field. This is true even when you specify the
final keyword. The postprocessor does not initialize such fields,
because the initialization occurs as inlined code in each of the
constructors for the class. For example:

private transient final MyField myField = new MyField();

The final keyword indicates to the postprocessor that initialization
is required. However, the initialization code is not readily
available and myField is not initialized. There are several ways to
handle this situation.

You can create the hollow object constructor manually. For
example, suppose you define the MyField class, which extends the
MyFarm class:

...
public MyField(COM.odi.ClassInfo dummyClassInfo) {

super(dummyClassInfo);
}

This requires you to also manually define a hollow object
constructor for the MyFarm class, and for each superclass of the
myFarm class.

Alternatively, you can remove the final qualifier and initialize the
transient field in an IPersistent.postInitializeContents() method.

If you include an inline initialization of a field declared to be
transient and final, the postprocessor displays an error message
and stops processing. If you include an inline initialization of a
field declared to be transient, but not final, the postprocessor
warns you about the situation and continues processing. If you
determine that you can safely ignore the message, you can turn it
off with the -ignoretransient option to the postprocessor.

See also Transient Fields in Persistence-Capable Classes on
page 180.
274 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Customizing Updated Classes

There are several ways you can customize persistence-capable
and persistence-aware annotations. You can implement your own
versions of methods that the postprocessor typically adds. You
can implement hook methods that ObjectStore calls at specified
points. You can define a hollow object constructor in place of the
hollow object constructor the postprocessor typically defines. You
can also insert your own fetch() and dirty() calls.

Implementing Customized Methods and Hook Methods

The three methods described below are among the several
annotations that the postprocessor adds to persistence-capable
classes.

• The initializeContents() method loads real values into hollow
instances of your persistence-capable class. In other words,
hollow objects become active objects with an internal clean
state.

• The flushContents() method copies values from a modified
instance (active persistent object) back to the database. This
changes the internal clean or dirty state of the persistent object
to the clean state.

• The clearContents() method resets the values of an instance to
the default values. This changes a clean active object to a
hollow object.

Alternatives If you want to, there are two ways that you can customize the
behavior of these methods:

• Implement the method yourself. See Defining Required
Methods in the Class Definition on page 292. If you do, the
postprocessor does not add the method. However, if you
implement any of the three methods listed above, you must
implement all of them. Also, you must define the ClassInfo
subclass, define an instance of it, and register the instance. This
is because the ClassInfo instance and the three above methods
must agree on the conventions for field numbering. An
example of a program that implements these methods is in the
COM/odi/demo/rep directory in the Rectangle.java file. See
COM/odi/demo/rep/README.htm.
Release 3.0 275

Customizing Updated Classes
• Implement the hook method that corresponds to the method
you want to customize. The postprocessor does not annotate
hook methods. These hook methods provide a way to perform
transient field maintenance. You might also be able to use these
methods as an update mechanism for notification about a
change:

- postInitializeContents() — If you define this method,
ObjectStore calls it immediately after it calls the
initializeContents() method.

- preClearContents() — If you define this method, ObjectStore
calls it just before it calls the clearContents() method.

- preFlushContents() — If you define this method, ObjectStore
calls it just before it calls the flushContents() method.

Warning The body of a hook method must not call any methods of the class
and must not start or end a transaction. This is because the class
methods are annotated and consequently make calls to fetch() and
dirty(). Such calls in the middle of initializing or writing the object
are not allowed because they might cause the virtual machine to
encounter a stack overflow.
276 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Sample program with
hook methods

Here is an example of a program that implements these hook
methods.

import COM.odi.*;

/**
* PColor provides a persistent representation of colors that can be
* used with the Java AWT package. The java.awt.Color class itself
* cannot be stored persistently, because some of its internal state
* depends on the particular kind of color display being used. If a
* java.awt.Color were created on a computer that used a 24-bit-deep
* color monitor, stored in a database, and then retrieved and used
* on a different computer that had a gray-scale monitor, it would not
* function correctly. PColor stores the color value as three
* integers, and then recreates the java.awt.Color object whenever
* the PColor object is brought into Java from persistent storage.
*
* For expository purposes, this example pretends that the value of a
* java.awt.Color object can change after the object is created. The
* real java.awt.Color class is immutable, and so the setBlue method
* below would not work, and the preFlushContents method would
* not actually be needed.
*/

public class PColor {

/*These instance variables are stored persistently. They represent
the color value. */
int red;
int green;
int blue;

/*This instance variable is declared transient, so it is not stored
persistently. It is managed by the methods below. */

transient java.awt.Color color;
PColor(int r, int g, int b) {

red = r;
green = g;
blue = b;
color = new java.awt.Color(r, g, b);

}
/*When a PColor is brought into Java from persistent storage, the

java.awt.Color object is created. Note that this method runs
after the initializeContents, so that it can use the values
of the persistent instance variables. */

public void postInitializeContents() {
color = new java.awt.Color(red, green, blue);

}

Release 3.0 277

Customizing Updated Classes
/*When a PColor is sent out from Java to persistent storage, the
color value from the java.awt.Color object is copied into the
persistent instance variables, so that it will be saved.
Note that this method runs before flushContents, so that it
can set up the values of the persistent instance variables. */

public void preFlushContents() {
red = color.getRed();
green = color.getGreen();
blue = color.getBlue();

}
/*When clearContents happens, this method sets the color
instance variable to null, so that this PColor object won’t be
stopping the java.awt.Color object from being reclaimed. */

public void preClearContents() {
color = null;

}
/*Equality for PColor objects is the same as equality of the
underlying java.awt.Color objects. */

public boolean equals(Object obj) {
if (obj instanceof PColor) {

return color.getRGB() == ((PColor)obj).color.getRGB();
}
return false;

}
public java.awt.Color getColor() {

return color;
}
public int getBlue() {

return color.getBlue();
}
public int setBlue(int b) {

color.setBlue(b);
}
/* and so on.... */

}

278 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Creating a Hollow Object Constructor

For each persistence-capable class, the postprocessor finds or
generates a hollow object constructor. The hollow object
constructor takes a single argument whose type is
COM.odi.ClassInfo. Typically, you do not need to define a hollow
object constructor, but you can if you want to.

Why define one? A reason to define your own hollow object constructor is to
initialize transient fields that you want to be usable even if the
fetch() method has not been called.

You should avoid performing actions in a hollow object
constructor that would cause the object to be fetched. Doing so
might cause infinite recursion to occur.

For example, if a class has a persistent hashCode() method, it is a
bad idea to define a hollow object constructor to register the
instances of the class in a hash table. Doing so would cause the
hashCode() method to be called, which in turn would attempt to
fetch the object.

Creation steps When the postprocessor creates the hollow object constructor, it
follows these steps:

1 The postprocessor selects an appropriate superclass hollow
object constructor.

If the superclass has an accessible constructor that takes a
single COM.odi.ClassInfo argument, or if it will have one
because the postprocessor will add it during this execution of
the tool, the postprocessor uses that constructor. The
postprocessor reports an error if it cannot find an accessible
constructor.

2 The postprocessor creates a public constructor that

- Accepts a COM.odi.ClassInfo argument

- Invokes the selected superclass constructor

- Initializes all persistent fields to an appropriate default state
that is equivalent to the result of the clearContents() method

You can define the hollow object constructor instead of allowing
the postprocessor to do it. If you define one, the postprocessor
does not generate one.
Release 3.0 279

Optimizing Operations That Retrieve Persistent Objects
Optimizing Operations That Retrieve Persistent
Objects

Before an application can access the contents of a persistent object,
it must call the ObjectStore.fetch() method to read the object or the
ObjectStore.dirty() method to modify the object. These calls make
the contents of the object available to your application. The
postprocessor inserts these calls in methods of classes that it
makes persistence-capable or persistence-aware. However, the
postprocessor might not annotate your code for best performance.
You might find that you can improve performance by inserting
the fetch() and dirty() calls yourself.

Caution If you insert a fetch() or dirty() call in a method, the postprocessor
does not add any additional fetch() or dirty() calls to that method.

Procedure for Optimizing Operations

Before you add the calls yourself, first allow the postprocessor to
add the fetch() and dirty() calls. Then run and monitor your
program. If you want to try to improve performance, add the calls
to your source file and recompile. When you run the
postprocessor again, it recognizes that the fetch() or dirty() call is
already in place and does not add any fetch() or dirty() calls to any
methods that already contain such a call.

If you do this annotation, you should also add implements
IPersistent to the definition of any class that is accessed with a
fetch() or dirty() call. When you do this, the compiler can
effectively use the multiple overloadings of the fetch() and dirty()
methods, which take COM.odi.IPersistent arguments. Also, the
compiler can generate more efficient code when you declare the
class to implement IPersistent in your source.
280 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Inlining Code

An important consideration when annotating by hand is that the
compiler might inline the code into calling methods. This makes it
appear to the postprocessor that the code annotations are in the
calling method, which might not be true.

When using the JDK javac compiler, this occurs when you specify
the -O (capital O, as in Oslo) option.

To ensure that the postprocessor functions correctly, you must do
one of the following:

• Prevent the compiler from inlining code.

• If you add fetch() and dirty() calls to a method that is a candidate
for inlining, then also annotate all the methods that call that
method. A method is a candidate for inlining if it calls static,
final, or private methods, or invokes methods with the super.
qualification construct.

Preventing Fetch of Transient Fields

You might want to avoid the insertion of the fetch() call in
methods that operate only on transient fields. A strategy for doing
this takes advantage of the fact that the postprocessor does not
annotate a method if it already includes a fetch() or dirty() call. If
you know that a method operates on only transient fields, you can
prevent insertion of the fetch() call with code such as the
following:

try {
method body goes here

} catch (SomeRuntimeExceptionThatWillNotOccur) {
ObjectStore.fetch(this);

}

This imposes no execution time and prevents the postprocessor
from inserting the fetch() method. You can create your own
exception, which inherits from java.lang.RuntimeException, or select
an existing one. The safest approach is to create your own
exception so that you can be sure that the exception is never
thrown.
Release 3.0 281

Specifying the Number of Array Dimensions in Persistence-Capable Classes
Specifying the Number of Array Dimensions in
Persistence-Capable Classes

By default, three is the maximum number of dimensions in a
persistent array. If you need a persistent array that has more than
three dimensions, you can run the postprocessor with the -a or
-arraydims option followed by an integer, which specifies the new
maximum number of array dimensions. This option applies to all
classes that the postprocessor annotates during this execution of
the tool. It does not apply to a class that the postprocessor does not
annotate. For example:

osjcfp -dest osjcfpout -a 4 Person.class Pet.class -copyclass
Car.class

This allows arrays of type Person and Pet to have as many as four
dimensions. The maximum number of array dimensions does not
change for the Car class because the postprocessor does not
annotate that file, it only copies it to the destination directory.

An alternative, and far more complex, way to increase the number
of allowed array dimensions is to manually implement the class of
the ClassInfo instance associated with the persistence-capable
class. See Defining a ClassInfo Subclass on page 295.
282 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Performing a Test Run of the Postprocessor

You can run the postprocessor without actually updating any
files. The tool performs all processing and error checking and can
display messages that indicate what it is doing. This allows you to
make corrections before creating the persistence-capable versions
of your classes.

To perform a test run of the postprocessor, specify the -nowrite
option on the command line. For example:

osjcfp -dest osjcfpout -nowrite classes.zip

This command processes all class files in the .zip file and displays
any error messages. To view information messages from the
postprocessor, include the -verbose option. For example:

osjcfp -dest osjcfpout -nowrite -verbose classes.zip

It does not matter where you place the -nowrite or -verbose option
in the command line. Wherever you place them, they apply to all
files that the postprocessor processes.

To suppress nonfatal warning messages, specify the -quiet option.
The -quiet and -verbose options are mutually exclusive. The last
one used on the command line applies to the entire execution. For
example, the following line suppresses warning messages during
the processing of all specified files because the -quiet option comes
after the -verbose option.

osjcfp -dest osjcfpout -nowrite -verbose classes.zip -quiet more.zip

You can also suppress some warnings but not all warnings.
Specify the -quietclass option followed by the fully qualified
name of a class to suppress warnings for that class. Specify the
-quietfield option followed by the fully qualified name of a field to
suppress warnings that pertain to that field. These options apply
only to the element whose name immediately follows the option.
If the -verbose option is also specified, these options take
precedence.
Release 3.0 283

Using an Input File
Using an Input File

When you are running the postprocessor on a lot of files and
specifying many options, the command line can be very long. As
a convenience, you can enter the options and file names in a file
and then specify the file name as a postprocessor option. Be sure
to prefix the file name with the @ symbol.

Windows On Windows systems, there is a limit of eight arguments on a
command line. Consequently, you usually must use input files on
Windows.

Format You can include comments in the input file. You can place items
on different lines and line continuation symbols are not required.
Line breaks are treated as white space. Otherwise, enter data in
the input file exactly as you would enter it on the command line.

Indicate comments with a # sign. The postprocessor ignores any
subsequent characters on the same line as the # sign.

Example For example, suppose you enter some postprocessor options and
files for the postprocessor to operate on in an input file named
optionsAndFiles. You specify this file as follows:

osjcfp @optionsAndFiles

You can intersperse input file specifications with options and files
that you enter on the command line. For each specified input file,
the postprocessor removes any comments from the input file and
replaces the input file specification with the data in the input file.
The postprocessor then begins to process the command line. For
example:

osjcfp -dest osjcfpout @file1 -tp old.pack new.pack @file2

The postprocessor

1 Replaces @file1 with the contents of file1.

2 Replaces @file2 with the contents of file2.

3 Executes the command line starting with the -dest option.

Nesting and wildcards You cannot nest input file specifications. That is, you cannot
include the @file_name option in an input file. Also, you cannot
use wildcards in an input file. The postprocessor does not expand
them.
284 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Annotations You Must Add

There are some annotations that the postprocessor either cannot
perform or does not perform because of execution performance
considerations. You must include these annotations when you
code your source files.

Keep in mind that when you add even one fetch() or dirty() call to
a method, the postprocessor recognizes that the method is already
annotated and does not add any other fetch() or dirty() calls to that
method. If you do annotate a method, be sure to add all required
calls.

This section provides information about the following topics:

• Interfacing with Nonpersistent Methods on page 285

• Interfacing with Native Classes on page 286

• Annotating Subclasses on page 286

• Passing Arrays on page 286

• Implementing the Hollow Object Constructor for Some
Instance Fields on page 287

• Using the Java Reflection API with Persistence-Capable Objects
on page 287

Interfacing with Nonpersistent Methods

It is possible for a method in a persistence-capable class to pass a
persistent object to a nonpersistent method. When this happens,
you must ensure that there is a fetch() or dirty() call for the
persistent object before it is passed to the nonpersistent method.

If all access to persistent objects is through annotated methods
(methods in persistence-capable or persistence-aware classes),
then manual annotations are not required. For arrays, there is no
way to define a class so that arrays of that class can only be
accessed by persistence-aware classes. You must be sure to call the
fetch() or dirty() method on a persistent array before passing it to a
method in a nonpersistent class.
Release 3.0 285

Annotations You Must Add
Interfacing with Native Classes

The postprocessor cannot analyze or annotate native methods. If
your code passes a persistent object to a native method, and if the
native code might try to access the object other than through
annotated methods, be sure to insert a call to fetch() or dirty() for
the persistent object before it is passed. In cases where native code
might access and/or navigate among persistent objects, you must
do one of the following:

• Modify the native code to call fetch() or dirty() itself.

• Make the necessary fetch() and dirty() calls before calling the
native method.

Annotating Subclasses

After you create a persistence-capable or persistence-aware class,
you can define a subclass of that class. Doing so does not make the
subclass persistence-capable or persistence-aware. You must run
the postprocessor on the subclass.

If you forget to run the postprocessor on a subclass and if the
subclass is reachable from a persistent root (other than through a
transient field), ObjectStore might try to migrate instances of the
subclass to the database. This attempt causes an error because the
subclass is not persistence-capable.

Passing Arrays

In your application, you might pass an array to a nonpersistent
method when the nonpersistent method is defined as having a
parameter of type java.lang.Object. In this situation, the
postprocessor cannot determine that it should insert fetch() or
dirty() calls for the array in the calling method before passing the
array. You must annotate the calling method yourself.

If the called method is declared to accept an array argument, the
postprocessor recognizes that a fetch() call might be needed and
inserts it.
286 ObjectStore Java API User Guide

Chapter 8: Automatically Generating Persistence-Capable Classes
Implementing the Hollow Object Constructor for Some Instance Fields

A class can include nonstatic (instance) fields that contain
initializer expressions in their declarations. Postprocessor-
generated ClassInfo constructors do not run these initializers.
Normally, this is not a problem. The constructor allows hollow
object initialization and the initializeContents() method overwrites
these fields when the object is fetched.

However, there might be transient nonstatic fields that have
initializer expressions or fields that are treated as transient by
your implementation of the ClassInfo type and the
initializeContents() and flushContents() methods. In this case, you
must manually implement the hollow object constructor or
ObjectStore does not run the initializer. It is impossible for the
postprocessor to detect such cases, and no warning message can
be provided. See Creating a Hollow Object Constructor on
page 279.

Using the Java Reflection API with Persistence-Capable Objects

You can use the java.lang.reflect.Field class to get and set fields of
persistence-capable objects. To do so, you must

• Call the ObjectStore.fetch() method for an object before you call
any of the java.lang.reflect.Field get methods to get the value of
any of the object’s fields.

• Call the ObjectStore.dirty() method for an object before you call
any of the java.lang.reflect.Field set methods to set the value of
any of the object’s fields.
Release 3.0 287

Class File Postprocessor Limitations
Class File Postprocessor Limitations

It is possible to cause invalid references when you run the
postprocessor and rename the package. In an annotated class, the
postprocessor locates and updates class names if they are in field,
method, or class references. The postprocessor cannot locate and
update string arguments to Class.forName() if the name specifies
a class whose package has been renamed.
288 ObjectStore Java API User Guide

Chapter 9
Manually Generating
Persistence-Capable
Classes

This chapter provides information about how to explicitly define
persistence-capable and persistence-aware classes in your
program without using the automated class file postprocessor
supplied with ObjectStore. Object Design recommends that you
use the automated postprocessor. See Chapter 8, Automatically
Generating Persistence-Capable Classes, on page 235.

However, you might choose the manual method if you want to

• Manually optimize the code

• Perform translation between nonpersistent objects and a
custom persistent representation

You can partially manually annotate a class and then run the
postprocessor to insert the remaining required annotations.

You must explicitly postprocess or manually annotate each class
that you want to be persistence-capable. The capacity for an object
to be stored in a databases is not inherited when you subclass a
persistence-capable class.

Contents This chapter discusses the following topics:

Explicitly Defining Persistence-Capable Classes 290

Additional Information About Manual Annotation 302

Creating and Accessing Fields in Annotations 309
Release 3.0 289

Explicitly Defining Persistence-Capable Classes
Explicitly Defining Persistence-Capable Classes

Follow these steps to annotate your program so that classes you
define are persistence-capable.

1 Define your class to implement the IPersistent interface. See
page 291.

2 In the class definition, define the required fields. See page 291.

3 In the class definition, define the required methods. See
page 292.

4 In the class definition, define accessor methods so that they
make the appropriate ObjectStore.fetch() and
ObjectStore.dirty() method calls. See page 294.

5 If required, define a class that extends the ClassInfo class. See
page 295.

Interfaces never require ClassInfo classes.

If you will be running your application in an environment that
allows the unrestricted use of the Java reflection API, public or
abstract classes with hollow object constructors do not require
ClassInfo classes. However, all classes that define indexable
fields on objects stored in peer (COM.odi.coll)collections do
require ClassInfo classes.

6 For any ClassInfo subclasses you define, create an instance of
the ClassInfo subclass. Only one instance of this subclass is ever
needed. See page 298.

7 Call the static get() method on ClassInfo. (Typically, this is in
static initializer code for the manually annotated class.) See
page 298.

Some Java-supplied classes are persistence-capable. Others are
not persistence-capable and cannot be made persistence-capable.
A third category of classes can be made persistence-capable, but
there are important issues to consider when you do so. Be sure to
read Java-Supplied Persistence-Capable Classes on page 360.

About interfaces Interfaces are always persistence-capable. You must specify them
when you run the postprocesor, but other than that you do not
need to do anything to make an interface persistence-capable.
290 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Implementing the IPersistent Interface

Every persistence-capable class must implement the IPersistent
interface or be a subclass of a class that implements it. As with any
interface, every method defined in the IPersistent interface must
be defined in a class that implements IPersistent. If you do not
define all methods, you can run the postprocessor to insert the
missing methods. If you do not define all methods, and you do not
run the postprocessor, you receive a compilation error.

Defining the Required Fields

The following code must be in your class definition. You can add
this code yourself, or you can run the postprocessor to add it.

transient private COM.odi.imp.ObjectReference ODIRef;
transient public byte ODIObjectState;

The ODIRef field stores a reference. The ODIObjectState field holds
some object state bits. The underlying run-time classes in
ObjectStore access these fields through the IPersistent accessor
methods as needed.
Release 3.0 291

Explicitly Defining Persistence-Capable Classes
Defining Required Methods in the Class Definition

This section describes the methods that must be defined in a class
that implements the IPersistent interface.

initializeContents() Define the initializeContents() method to load real values into
hollow instances of your class. This changes a hollow object to an
active object. ObjectStore provides methods on the GenericObject
class that retrieve each Field type. Be sure to call the correct
methods for the fields in your persistent object. There is a separate
method for obtaining each type of Field object. ObjectStore calls
the initializeContents() method as needed. The method signature is

public void initializeContents(GenericObject genObj)

Here is an example:

public void initializeContents(GenericObject handle) {
name = handle.getStringField(1, PCI);
age = handle.getIntField(2, PCI);
children = (Person[])handle.getArrayField(3, PCI);

}

If the class you are annotating implements IPersistent through a
superclass, you must also initialize superclass fields by invoking
initializeContents() on the superclass.

flushContents() Define the flushContents() method to copy values from a modified
instance (active persistent object) back to the database. This
method changes an active clean or dirty object to an active clean
object. ObjectStore provides methods on the GenericObject class
that set each Field type. Be sure to call the correct methods for the
fields in your persistent object. There is a separate method for
setting each type of Field object. ObjectStore calls the
flushContents() method as needed. The method signature is

public void flushContents(GenericObject genObj)

Here is an example:

public void flushContents(GenericObject handle) {
handle.setClassField(1, name, PCI);
handle.setIntField(2, age, PCI);
handle.setArrayField(3, children, PCI);

}

If the class you are annotating implements IPersistent through a
superclass, you must also flush superclass fields by invoking
flushContents() on the superclass.
292 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
clearContents() Define the clearContents() method to reset the values of an
instance to the default values. This method changes an active
clean object to a hollow object. This method must set all reference
fields that referred to persistent objects to null. ObjectStore calls
this method as needed. The method signature is

public void clearContents()

Here is an example:

public void clearContents() {
name = null;
age = 0;
children = null;

}

If the class you are annotating implements IPersistent through a
superclass, you must also clear superclass fields by invoking
clearContents() on the superclass.

Hook methods The following methods must also be in the class definition. You
can define them as methods with empty bodies. If you do not
define them and your class does not directly implement the
IPersistent interface, you can use the postprocessor to add these
methods with empty bodies.

• postInitializeContents() is called by ObjectStore immediately
after it calls the initializeContents() method.

• preFlushContents() is called by ObjectStore immediately before
it calls the flushContents() method.

• preClearContents() is called by ObjectStore immediately before
it calls the clearContents() method.

• preDestroyPersistent() is called by ObjectStore immediately
before it calls the ObjectStore.destroy() method.
Release 3.0 293

Explicitly Defining Persistence-Capable Classes
Field accessor
methods

The following accessor methods must be in the class definition.

• public ObjectReference ODIgetRef()

• public void ODIsetRef(ObjectReference objRef)

• public byte ODIgetState()

• public void ODIsetState(byte state)

If you do not want to define them, you can run the postprocessor
to insert them for you, but you must not declare the class to
implement IPersistent. However, if you explicitly define an
ODIgetxxx() method, you must explicitly define its associated
ODIsetxxx() method. Likewise, if you explicitly define an
ODIsetxxx() method, you must explicitly define its associated
ODIgetxxx() method.

If you add the code yourself, it must look like this:

public COM.odi.imp.ObjectReference ODIgetRef() {
return ODIRef;

}

public void ODIsetRef(COM.odi.imp.ObjectReference objRef) {
ODIRef = objRef;

}

public byte ODIgetState() {
return ODIObjectState;

}

public void ODIsetState(byte state) {
ODIObjectState = state;

}

Making Object Contents Accessible

In each class that you want to be persistence-capable, you must
annotate your class definition to include calls to the
ObjectStore.fetch() and ObjectStore.dirty() methods. It does not
matter whether the class explicitly implements IPersistent or
inherits from a class that implements IPersistent. These calls are
required for the class to be persistence-capable.

With some exceptions, before your application can access the
contents of an object, it must call the

• ObjectStore.fetch() method on the object to read its contents

• ObjectStore.dirty() method on the object to modify its contents
294 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Calls to fetch() or
dirty()

Your application calls the method and passes an object whose
contents you want to access. This makes the contents of the object
available. Modify the methods that reference nonstatic fields to
call the ObjectStore.fetch() and ObjectStore.dirty() methods as
needed. While this step is not mandatory, it does provide a
systematic way to ensure that the application calls the fetch() or
dirty() method before accessing or updating object contents.

Remember that you can add some annotations and run the
postprocessor to add other annotations. You might want to define
the required methods and the ClassInfo subclass, but let the
postprocessor insert the required fetch() and dirty() calls.

Exceptions You do not need to call the fetch() or dirty() method on instances of
primitive wrapper classes (see Description of Java-Supplied
Persistence-Capable Classes on page 360). If you do call fetch() or
dirty() on these objects, nothing happens and processing
continues.

You do not need to call the fetch() or dirty() method on instances of
java.lang.String. You do not need to call the fetch() or dirty()
method on the objects listed below. If you do call fetch() or dirty()
on these objects, nothing happens and processing continues.

• Instances of primitive wrapper classes

• Java peer objects (remember that ObjectStore collection objects
are Java peer objects)

If you call fetch() on instances of java.lang.String, nothing
happens. If you call dirty() on instances of java.lang.String,
ObjectStore throws ObjectException.

Defining a ClassInfo Subclass

If required, define a public class that inherits from the ClassInfo
class. (See page 290 for requirements.) You must define this class
in a separate file. If you plan to use the postprocessor to insert any
annotations, the name of this class must be one of the following:

• The name of the persistence-capable class followed by
ClassInfo, for example, PersonClassInfo.

• The suffix specified with the -classinfosuffix option to the
postprocessor.
Release 3.0 295

Explicitly Defining Persistence-Capable Classes
In each ClassInfo subclass definition, you must include the
methods described below.
296 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
create() Define a create() method to create instances of your persistence-
capable class with default field values:

public IPersistent create() { return new Person(this); }

This should call a constructor, referred to as a hollow object
constructor, that leaves fields in the default state. For an abstract
class, the create() method can return null.

getClassDescriptor() Define the public getClassDescriptor() method to obtain the class
object for your class. For example:

public Class getClassDescriptor()
throws ClassNotFoundException {
return Class.forName("COM.odi.demo.people.Person"); }

getFields() Define the public getFields() method to allow access to the names
and types of the fields of the class. For example:

public Field[] getFields() { return fields; }
private static Field[] fields = {

Field.createString("name"),
Field.createInt("age"),
Field.createClassArray("children", "Person", 1)

};

The definition of the getFields() method can specify create
methods for fields that are not in the class definition and can omit
create methods for fields that are in the class definition.
Release 3.0 297

Explicitly Defining Persistence-Capable Classes
Example of a Manually Annotated Persistence-Capable Class

Here is an example of a definition of a manually annotated
persistence-capable class. Three consecutive periods indicate lines
from a complete program that have been left out here because
they are not pertinent to creating a persistence-capable class.

Class definition package COM.odi.demo.people;
import COM.odi.*;

// Define a class that implements IPersistent:

class Person implements IPersistent {

// Fields:

String name;
int age;
Person children[];
// Other fields ...

// Constructor:

public Person(String name, int age, Person children[]) {
this.name = name; this.age = age; this.children = children;

}

// Hollow object constructor:

public Person(ClassInfo info) { }

// Accessor methods that have been modified to call
// the fetch() and dirty() methods:

public String getName() {ObjectStore.fetch(this); return name; }
public void setName(String name) {ObjectStore.dirty(this);

 this.name = name; }
public int getAge() {ObjectStore.fetch(this); return age; }
public void setAge(int age) {ObjectStore.dirty(this);

 this.age = age; }
public Person[] getChildren() {ObjectStore.fetch(this);

return children; }
public void setChildren(Person children[]) {

ObjectStore.dirty(this); this.children = children;
}
// Other methods ...

// Additions required for ObjectStore:

// Define the initializeContents() method to load real
// values into hollow persistent objects, which makes
// them active persistent objects:

public void initializeContents(GenericObject handle) {
name = handle.getStringField(1, myClassInfo);
age = handle.getIntField(2, myClassInfo);
298 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
children = (Person[])handle.getArrayField(3, myClassInfo);
}

// Define the flushContents() method to copy the
// contents of a persistent object to the database:

public void flushContents(GenericObject handle) {
handle.setClassField(1, name, myClassInfo);
handle.setIntField(2, age, myClassInfo);
handle.setArrayField(3, children, myClassInfo);

}

// Define the clearContents() method to reset the values
// of a persistent instance to the default values.
// This method must set all reference fields that
// referred to persistent objects to null:

public void clearContents() {
name = null;
age = 0;
children = null;

}

// Hook methods.
public void preFlushContents() { }
public void preClearcontents() { }
public void postInitializecontents() { }
public void preDestroyPersistent() { }

// Define the ODIRef and ODIObjectState fields and
// their accessor methods.

transient private COM.odi.imp.ObjectReference ODIRef;
transient public byte ODIObjectState;
public COM.odi.imp.ObjectReference ODIgetRef() {

return ODIRef;
}
public void ODIsetRef(COM.odi.imp.ObjectReference objRef) {

ODIRef = objRef;
}
public byte ODIgetState() {

return ODIObjectState;
}
public void ODIsetState(byte state) {

ODIObjectState = state;
}

// Create an instance of the subclass of ClassInfo and
// register that instance:

static ClassInfo myClassInfo =
ClassInfo.get("COM.odi.people.Person");

}

Release 3.0 299

Explicitly Defining Persistence-Capable Classes
ClassInfo definition In a separate file, define the subclass of the ClassInfo class if its
definition is required. For example:

// Define the subclass of ClassInfo. A recommended naming
// convention is to prefix the name of your persistence-capable
// class to "ClassInfo".

package COM.odi.demo.people;

import COM.odi.*;

public class PersonClassInfo extends ClassInfo {

// Define a create() method to create instances of your
// class with default field values. The method
// calls the hollow object constructor and passes this,

 // which is an instance of the ClassInfo subclass:

public IPersistent create() { return new Person(this); }

// Define these public methods to provide access to
// the name of the persistence-capable class, the name of its
// superclass, and the names of its fields.
// The array returned by getFields() must contain the
// fields in the order of their field numbers.

public Class getClassDescriptor()
throws ClassNotFoundException {

return Class.forName(“COM.odi.demo.people.Person”); }
public Field[] getFields() { return fields; }
private static Field[] fields = {
Field.createString(“name”),
Field.createInt(“age”),
Field.createClassArray(
"children”, “COM.odi.demo.People.Person", 1)

};

}

It does not matter whether the ClassInfo class explicitly
implements IPersistent or inherits from a class that implements
IPersistent .

ClassInfo is an abstract class for managing schema information for
persistence-capable classes. ObjectStore requires the schema
information to manage the object. If you do not explicitly define a
ClassInfo class, ObjectStore uses the Java reflection API to creates
the needed information at runtime.

After you perform the steps described in this section, you can
store instances of your class in a database.
300 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
ObjectStore does not let you store final instance variables
persistently. This is because it is not possible to write the
initializeContents() and clearContents() methods to correctly
handle final instance variables.
Release 3.0 301

Additional Information About Manual Annotation
Additional Information About Manual Annotation

This section provides additional information about manually
annotating a class to be persistence-capable. It discusses the
following topics:

• Defining a hashCode() Method on page 302

• Defining a clone() Method on page 303

• Working with Transient-Only and Persistent-Only Fields on
page 303

• Defining Persistence-Aware Classes on page 307

• Following Postprocessor Conventions on page 307

• Annotating Abstract Classes on page 308

Defining a hashCode() Method

Every class inherits from the Object class, which defines the
hashCode() method and provides a default implementation. For a
persistent object, this default implementation often returns a
different value for the same persistent object (the object on the
disk) at different times. This is because ObjectStore fetches the
persistent object into different Java objects at different times (in
different transactions or different invocations of Java).

This is not a problem if you never use the object as a key in a
persistent hash table or other structure that uses the hashCode()
method to locate objects. If you do use the object as a key, the hash
table or other structure that relies on the hashCode() method
might become corrupted when you bring the objects back from
the database.

To resolve this problem, you can define your own hashCode()
method and base it on the contents of the objects so it returns the
same thing every time. The signature of this method must be

public int hashCode()
302 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Defining a clone() Method

If your persistence-capable class implements the Cloneable
interface, your class must define a clone() method. This clone()
method must ensure that it correctly initializes and checks the
ODIRef and ODIObjectState fields when it performs a clone
operation. For new cloned objects, your application should
initialize ODIRef to null and ODIObjectState to zero.

Working with Transient-Only and Persistent-Only Fields

The definition of the ClassInfo.getFields() method returns an array
of COM.odi.Field instances. There is one element for each field that
you want to store and retrieve in a persistent object. ObjectStore
does not require an exact match between each field in the Java
class definition and each field array element returned by the
getFields() method. Furthermore, fields listed in the getFields()
return value need not directly represent fields in the class. They
can represent state from which values for fields in the class are
synthesized.

Transient-only fields A persistence-capable Java class can define a field that does not
appear in the list of fields returned by the ClassInfo.getFields()
method. Such a field is a transient-only field. The
initializeContents() method that is associated with the class can be
used to initialize transient-only fields based on persistent state.

For example:

class A {
transient java.awt.Component myVisualizationComponent;
int myValue;

...
}

In this class, the myVisualizationComponent field is declared to be
a transient reference to java.awt.Component. java.awt is a package
containing GUI classes that do not lend themselves to being
persistence-capable.

Number of fields The number of nonstatic, nontransient declared fields in the class
should generally be equal to the number of fields reported by the
getFields() method, unless the flushContents() and
initializeContents() methods are written to combine or split fields.
If they are so written, you can define an arbitrary mapping of
persistent fields to Java instance fields. For example:
Release 3.0 303

Additional Information About Manual Annotation
class Some {
int a;
int b;
int aPlusb;

initializeContents(GenericObject, go) {
a=go.getField(1, SomeClassInfo);
b=go.getField(2, SomeClassInfo);
c=a+b;

}
...

}

In a separate file:

public class SomeClassInfo
static Field[] fields=

{ field.createInt"a");
field.createInt("b");

}

Persistent-only fields The list of Field objects returned by the getFields() method might
include one or more fields that are not in the Java class definition.
Such fields are persistent-only fields. The flushContents() method
associated with the class must set the field value in the generic
object based on other fields of the class.

Variable initializers If you manually annotate a class, you should avoid using variable
intializers to initialize persistent fields of persistence-capable
objects. Instead, perform the initialization in the contructor. This
is because the values computed by the variable initializer
expression are typically overwritten by the
COM.odi.IPersistent.initializeContents() method. When an object is
actually fetched from the database, the fields are initialized with
their correct persistent values.

Example An example of how you might use transient-only and persistent-
only fields is in the demo directory that is included in ObjectStore.
In the rep example, Rectangle.a and Rectangle.b are transient-only
fields, while ax, ay, bx, and by are persistent-only fields. Here is
the part of the example that shows this:

package COM.odi.demo.rep;

/**
* A Rectangle has two Points, representing its upper-left
* and lower-right corners. However, its persistent representation
* is formed by storing the x and y coordinates of the two points,
* rather than the points themselves. This demonstrates the control
* that the definer of a persistent class has over the persistent
304 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
* representation. Note that Identity of the Point objects is not
* preserved, since the Point objects are not persistent objects. */

import COM.odi.*;

public class Rectangle implements IPersistent {

transient private COM.odi.imp.ObjectReference ODIref;
transient public byte ODIobjectState;

transient Point a;
transient Point b;

static ClassInfo classInfo
= ClassInfo.register(new RectangleClassInfo());

public COM.odi.imp.ObjectReference ODIgetRef() {
return ODIref;

}

public void ODIsetRef(COM.odi.imp.ObjectReference objRef) {
ODIref = objRef;

}

public byte ODIgetState() {
return ODIobjectState;

}

public void ODIsetState(byte state) {
ODIobjectState = state;

}

Rectangle(Point a, Point b) {
this.a = a;
this.b = b;

}

void describe() {
System.out.println(“Rectangle with two points:”);
a.describe();
b.describe();

}

/* Annotations for persistence. */

Rectangle(ClassInfo ignored) {}

public void initializeContents(GenericObject handle) {
a = new Point(handle.getIntField(1, classInfo),

handle.getIntField(2, classInfo));
b = new Point(handle.getIntField(3, classInfo),

handle.getIntField(4, classInfo));
}

public void flushContents(GenericObject handle) {
handle.setIntField(1, a.x, classInfo);
handle.setIntField(2, a.y, classInfo);
handle.setIntField(3, b.x, classInfo);
Release 3.0 305

Additional Information About Manual Annotation
handle.setIntField(4, b.y, classInfo);
}

public void clearContents() {
a = null;
b = null;

}

public void postInitializeContents() {};

public void preFlushContents() {};

public void preClearContents() {};

public void preDestroyPersistent() {};

/* This class is never used as a persistent hash key. */
public int hashCode() {

return super.hashCode();
}

}

In a separate file:

public class RectangleClassInfo extends ClassInfo
{

public IPersistent create() { return new Rectangle(this); }
public Class getClassDescriptor() throws

ClassNotFoundException {
return Class.forName(“COM.odi.demo.rep.Rectangle”);

}

public Field[] getFields() { return fields; }
private static Field[] fields =
{ Field.createInt("ax"),

Field.createInt("ay"),
Field.createInt("bx"),
Field.createInt("by"), };}
306 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Defining Persistence-Aware Classes

A persistence-aware class is a class whose instances

• Can operate on persistent objects

• Cannot be stored in a database

For a class to be persistence-aware, you must annotate it so that it
includes calls to the ObjectStore.fetch() and ObjectStore.dirty()
methods. The fetch() method makes the contents of a persistent
object available to be read. The dirty() method makes the contents
of a persistent object available to be modified.

To make a class persistence-aware, modify each method that
references

• Nonstatic fields of persistence-capable classes

• Array elements of arrays that might be persistent

Modify each method so that it calls the ObjectStore.fetch() or
ObjectStoret.dirty() method. This call must be before any attempt
to access the contents of the persistent object. The fetch() and
dirty() methods make the contents of persistent objects available.

A persistence-aware class includes the fetch() and dirty()
annotations. It does not include the other annotations that are
required for a class to be persistence-capable.

Following Postprocessor Conventions

If you plan to explicitly define all required annotations, you need
not be concerned with postprocessor conventions. However, if
you plan to explicitly insert some annotations and use the
postprocessor to insert other annotations, you must follow these
postprocessor conventions.

• The name of the ClassInfo subclass must have the following
format:

class_nameClassInfo

For example, if you define the Boat class, the name of the
associated subclass of ClassInfo must be BoatClassInfo.

• In the ClassInfo subclass definition, when you define the
hollow object constructor, it must take a single argument of
type ClassInfo. See page 297.
Release 3.0 307

Additional Information About Manual Annotation
Annotating Abstract Classes

Persistence-capable classes and their superclasses, even if they are
abstract, must each have a corresponding ClassInfo subclass. But
an application does not create instances of abstract classes, so you
cannot write the required create() method in the ClassInfo
subclass in the usual way. Define the create() method so that it
returns null. Since this method will never be called, it is safe to
define it this way.

Now, suppose you define the following two classes:

abstract class Y {
int yValue;
abstract void doSomething();

}

class X extends Y {
float xValue;
void doSomething() {}

}

Class Y must have an associated ClassInfo subclass and class X
must have an associated ClassInfo subclass. The ClassInfo
subclass associated with X does not extend the ClassInfo subclass
associated with Y.

In the ClassInfo subclass for X, the Field array must include only
those fields defined explicitly in X; XClassInfo.getFields() must
report only the immediate persistent fields in X. The ClassInfo
subclass for Y defines a Field array that contains the fields
explicitly defined in Y.

Removing ClassInfo Classes From Existing Applications

If you have applications that you created with earlier ObjectStore
releases, you can remove your ClassInfo classes for classes that
meet all of these conditions:

• The class is defined as public or abstract.

• The class has a hollow object constructor.

• The class does not define an indexable field on an object that is
stored in a peer (COM.odi.coll) collection.
308 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Creating and Accessing Fields in Annotations

As part of the process of manually defining a class that is
persistence-capable, the required annotations must (among other
things)

• Define an initializeContents() method in the persistence-capable
class.

• Define a flushContents() method in the persistence-capable
class.

• Define a getFields() method in the ClassInfo subclass.

To correctly define these methods, you must know how
ObjectStore makes persistent objects accessible and what methods
are available to create and access individual fields in an object. To
help you do this, this section discusses the following topics:

• Making Persistent Objects Accessible on page 310

• Creating Fields on page 311

• Getting and Setting Generic Object Field Values on page 313

• Methods for Creating Fields and Accessing Them in Generic
Objects on page 314
Release 3.0 309

Creating and Accessing Fields in Annotations
Making Persistent Objects Accessible

The ObjectStore.fetch() method makes the contents of a persistent
object available to be read by an application. The
ObjectStore.dirty() method makes the contents of a persistent
object available to be updated by an application.

To execute a fetch() or dirty() call, ObjectStore first checks whether
a fetch() or dirty() call was already invoked on the object in the
current transaction. If it was, ObjectStore does nothing and the
program continues. If it was not, ObjectStore executes the fetch()
or dirty() call as required.

Call to
initializeContents()

When ObjectStore retrieves a persistent object, it calls the
initializeContents() method that you defined. The
initializeContents() method calls methods on GenericObject to
obtain the field values for the persistent object. The result is that
your program has access to the desired data.

Description of
GenericObject

ObjectStore provides the GenericObject class for transferring data
between a database and a Java application or applet. A generic
object represents an object’s data as it is stored in the database. A
generic object is a temporary buffer that ObjectStore uses while it
is copying data from the database into a persistent object or
writing data into the database from a persistent object.
ObjectStore creates instances of GenericObject as needed. You do
not define subclasses of GenericObject nor do you create instances
of GenericObject.

For an object that was not already retrieved, ObjectStore copies
the contents of the object from the database into the GenericObject
instance. It then passes this instance to the initializeContents()
method defined in the persistence-capable class.
310 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Call to flushContents() Suppose you called the dirty() method on a persistent object and
modified it. To update the object in the database, commit the
transaction. This causes ObjectStore to create an instance of
GenericObject to hold the contents of your object. Then
ObjectStore calls the flushContents() method that you defined
when you defined the persistence-capable class.

The flushContents() method must call methods on the
GenericObject instance that store the object’s field values in the
generic object. ObjectStore calls the flushContents() method as
needed to copy the new contents of the object into the database.

Creating Fields

ObjectStore provides the Field class to represent a Java field in a
persistent object. When you define a persistence-capable class,
you must define a getFields() method in the required ClassInfo
subclass. This method provides a list of the nonstatic fields (also
called instance variables) whose values are being stored and
retrieved.

Description of
getFields()

The getFields() method must return an array that contains the
nonstatic persistent object fields. The order in which they appear
in the array implies their associated field numbers. This array
must include only those fields defined in the persistence-capable
class and not any inherited fields.

Field numbers represent the position of a nonstatic field within
the list of all nonstatic fields defined for the class and its
superclasses. The first field has field number 1. (Note that the first
field number is not 0.)

Order of fields When you define the getFields() method in the ClassInfo subclass,
you determine the order, and hence the number, of each field even
though you do not explicitly assign any numbers. ObjectStore
assigns the numbers according to the order in which the values
are returned from the field create methods defined in the
getFields() method. The field numbers are consecutive with no
gaps. For example:
Release 3.0 311

Creating and Accessing Fields in Annotations
Example public Field[] getFields() { return fields; }

private static Field[] fields = {
Field.createString("name"),
Field.createInt("age"),
Field.createClassArray("children",

"COM.odi.demo.people.Person", 1)
};

The definition above causes ObjectStore to associate 1 with the
name field, 2 with the age field, and 3 with the children field.

When you define the initializeContents() and flushContents()
methods, you must specify the correct field number for each field
that the methods get and set.

Creation methods The Field class provides a create method for each Java data type.
Minimally, the create methods on the Field object

• Return the created Field object

• Take a String parameter that specifies the name of the field

There are separate create methods for singleton and array fields of
each primitive type. There are also string fields, class fields, and
interface fields. The complete list of Field create methods is in
Methods for Creating Fields and Accessing Them in Generic
Objects on page 314.
312 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Getting and Setting Generic Object Field Values

As described earlier, ObjectStore provides the GenericObject class
to transfer objects between the database and an application.
Consequently, when you define a persistence-capable class, you
must define the initializeContents() method to retrieve values from
fields in instances of GenericObject, and the flushContents()
method to set values in fields of instances of GenericObject.

When you define the initializeContents() and flushContents()
methods, you must use a method that is appropriate for the type
of each field in the instance of GenericObject. For example, for
each character field, you must use the

• getCharField() method in the initializeContents() method

• setCharField() method in the flushContents() method

There is a different method for getting and setting each Java type.
To get or set an array of any type, you define the getArrayField()
and setArrayField() methods, respectively. In the
initializeContents() method, be sure to call the methods that get the
values. In the flushContents() method, be sure to call the methods
that set the values. The methods that get and set fields in a generic
object are listed in the table in Methods for Creating Fields and
Accessing Them in Generic Objects on page 314.
Release 3.0 313

Creating and Accessing Fields in Annotations
Methods for Creating Fields and Accessing Them in Generic Objects

Kind of Java Field Method That Operates on It

Single byte (byte) Field.createByte()
GenericObject.getByteField()
GenericObject.setByteField()

Array of bytes (byte[]) Field.createByteArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single character (char) Field.createChar()
GenericObject.getCharField()
GenericObject.setCharField()

Array of characters (char[]) Field.createCharArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 16-bit integer (short) Field.createShort()
GenericObject.getShortField()
GenericObject.setShortField()

Array of 16-bit integers
(short[])

Field.createShortArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 32-bit integer (int) Field.createInt()
GenericObject.getIntField()
GenericObject.setIntField()

Array of 32-bit integers (int[]) Field.createIntArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 64-bit integer (long) Field.createLong()
GenericObject.getLongField()
GenericObject.setLongField()

Array of 64-bit integers
(long[])

Field.createLongArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 32-bit floating-point
number (float)

Field.createFloat()
GenericObject.getFloatField()
GenericObject.setFloatField()

Array of 32-bit floating-point
numbers (float[])

Field.createFloatArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single 64-bit floating-point
number (double)

Field.createDouble()
GenericObject.getDoubleField()
GenericObject.setDoubleField()
314 ObjectStore Java API User Guide

Chapter 9: Manually Generating Persistence-Capable Classes
Array of 64-bit floating-point
numbers (double[])

Field.createDoubleArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single Boolean value
(boolean)

Field.createBoolean()
GenericObject.getBooleanField()
GenericObject.setBooleanField()

Array of Boolean values
(boolean[])

Field.createBooleanArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Single string value (String) Field.createString()
GenericObject.getStringField()
GenericObject.setStringField()

Array of string values
(String[])

Field.createStringArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

A class Field.createClass()
GenericObject.getClassField()
GenericObject.setClassField()

A class array Field.createClassArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

An interface Field.createInterface()
GenericObject.getInterfaceField()
GenericObject.setInterfaceField()

An interface array Field.createInterfaceArray()
GenericObject.getArrayField()
GenericObject.setArrayField()

Kind of Java Field Method That Operates on It
Release 3.0 315

Creating and Accessing Fields in Annotations
316 ObjectStore Java API User Guide

Chapter 10
Controlling Concurrency

This chapter provides information about ways that you can
control concurrency. The APIs described in this chapter make it
easier for your application to access data and less likely that your
application must wait to access that data. In addition, you can
choose to limit access by other users to the same data.

Contents This chapter discusses the following topics:

Reducing Wait Time for Locks 318

Using Multiversion Concurrency Control (MVCC) 320

Checkpoint: Committing and Continuing a Transaction 325

Locking Objects, Segments, and Databases to Ensure Access 328

Installing Schema Information in Batch Mode 333
Release 3.0 317

Reducing Wait Time for Locks
Reducing Wait Time for Locks

What can you do to reduce the overhead of waiting for locks? One
application can reduce the waiting overhead for other concurrent
applications by avoiding locking data unnecessarily, and by
avoiding locking data for unnecessarily long periods of time. This
section describes several techniques for minimizing wait time.

Clustering

One way to help avoid locking data unnecessarily involves not
clustering objects together when they are not normally accessed
together. Suppose that, during a given transaction, an application
requires object-a but not object-b. The two objects are stored on
the same page. Since ObjectStore performs page-level locking,
when you access one of these objects ObjectStore locks both of
them. This prevents other processes from accessing either object
until the end of the transaction. If you store object-b in a different
segment from object-a, you guarantee that the objects are on
different pages. Therefore, the objects will not be locked together.

Transaction Length

Making transactions shorter is one way to avoid locking data for
unnecessarily long periods of time. If you do this, you must still
ensure that objects in the database are in a consistent state
between transactions.

The disadvantage of using shorter transactions is that it can mean
using a greater number of transactions. This can increase network
overhead, because each transaction commit requires the client to
send a commit message to the Server. Nevertheless, this extra
network overhead is often outweighed by the savings from
shorter waits for locks to be released.

It is sometimes particularly important to make transactions that
store new objects in the database or destroy persistent objects as
short as possible. This is because many write locks are required,
which can decrease the level of concurrency.
318 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Multiversion Concurrency Control (MVCC)

Read-only transactions can use multiversion concurrency control, or
MVCC. With MVCC, an application can perform nonblocking
reads of a database. This allows another application to update the
database concurrently, with no waiting by either the reader or the
writer. See Using Multiversion Concurrency Control (MVCC) on
page 320.

Lock Timeouts

Lock timeouts provide the ability to limit the time that ObjectStore
waits to obtain a lock. When you try to obtain a lock on an object,
segment, or database, you can specify the number of milliseconds
for which it is all right to wait for the lock. See Locking Objects,
Segments, and Databases to Ensure Access on page 328.

Conflicts Caused by Schema Installation

If you find that there are concurrency conflicts caused by
incremental schema installation, you can install schema
information in batch mode. See Installing Schema Information in
Batch Mode on page 333.
Release 3.0 319

Using Multiversion Concurrency Control (MVCC)
Using Multiversion Concurrency Control (MVCC)

When an application uses multiversion concurrency control
(MVCC), it can perform nonblocking reads of a database. This
means that another ObjectStore application can concurrently
update the database. Neither the reader nor the writer has to wait
for the other. To use MVCC, specify ObjectStore.OPEN_MVCC as
the open type when you open a database.

When Is MVCC Appropriate?

MVCC is useful when your application contains a transaction that

• Does not modify a database

• Does not require a view of the database that is completely up to
date, but can instead rely on a snapshot of the data

• Does not depend on data in a database opened for MVCC being
transaction consistent with data in other databases

How Does MVCC Work?

In each transaction in which an application accesses a database
opened for MVCC, it is as if the application were viewing a
snapshot of the database. This snapshot

• Is taken sometime during the transaction

• Is internally consistent

• Might not contain changes that were committed by other
sessions during the transaction

• Contains all changes that were committed before the
transaction started

Obtaining Read Locks

When an application has a database opened for MVCC, the
application never has to wait for read locks on the database. When
an application reads data from a database opened for MVCC, the
application never causes other applications to wait for write locks.
In addition, when an application accesses a database it has opened
for MVCC, the application never causes a deadlock.
320 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Accessing Multiple Databases in a Transaction

When an application reads a database opened for MVCC, the
snapshot it views is internally consistent but potentially out of
date. This means that the snapshot might not be consistent with
other databases accessed in the same transaction. Even two
databases, both of which are opened for MVCC, might not be
consistent with each other. Updates might be performed on one of
the databases in between the times of their snapshots.

Serializability

A snapshot might be out of date by the time an application reads
some data. However, if each transaction that accesses a database
opened for MVCC accesses only that one database, MVCC retains
serializability. Such a transaction views a database state that
would have resulted from some serial execution of all
transactions. All transactions produce the same effects as would
have been produced by the serial execution.
Release 3.0 321

Using Multiversion Concurrency Control (MVCC)
Opening a Database for MVCC Access

To use MVCC, specify OPEN_MVCC as the open mode when you
open a database. For example:

Database db = Database.open(
"myDb.odb", ObjectStore.OPEN_MVCC);

After an application opens a database for MVCC, it can read that
database without ever waiting for locks or blocking other
applications.

You cannot change the open mode of an open database. To change
the type of access to a database, you must close the database and
then reopen it with a specification of the new open mode.

If you try to update data in a database that you opened for MVCC,
ObjectStore throws UpdateReadOnlyException.

In a session, all cooperating threads use the same access mode for
a particular database. For example, a thread cannot open a
database for update if a cooperating thread has already opened
that database for MVCC. However, if a thread opens a database
for MVCC, a thread in another session, that is, a noncooperating
thread, can open the same database for update.

In the same transaction, your application can open one or more
databases for MVCC and open other databases for read-only or
update.
322 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Determining If a Database Is Opened for MVCC

To determine if a database is opened for MVCC, call the
Database.getOpenMode() method. The method signature is

public int Database.getOpenMode()

If the database is opened for MVCC, ObjectStore returns the
ObjectStore.OPEN_MVCC constant. Otherwise, if the database is
open, ObjectStore returns either the ObjectStore.OPEN_UPDATE
or ObjectStore.OPEN_READONLY constant.

When ObjectStore opens a database as a result of following a
cross-database pointer, the automatic open mode can be
ObjectStore.OPEN_MVCC. If it is and there are multiple databases
open, it is possible that the databases are not consistent with each
other. Each database is always internally consistent.
Release 3.0 323

Using Multiversion Concurrency Control (MVCC)
Updating the Snapshot

In a transaction in which you access a database that you opened
for MVCC, you might want to update the snapshot periodically.
There are two ways to do this:

• End the transaction with commit() or abort() and start a new
transaction.

• Call checkpoint() on the transaction. This has the effect of
committing the transaction and starting a new transaction, but
it does not incur the overhead of a new transaction. See
Checkpoint: Committing and Continuing a Transaction on
page 325.

To help you decide when to do this, you can find out if, during
your transaction, there were any write locks on the database you
opened for MVCC. A write lock indicates that another application
might have made a modification to the database. To do this, call
the Transaction.hasLockContention() method on your in-progress
transaction. The method signature is

public boolean hasLockContention()

ObjectStore returns true if a Server involved in your transaction
has write-locked an object that was read by your application. PSE
and PSE Pro always return false.

With a return value of true, if you commit your transaction and
start a new one, or checkpoint your transaction, you might have
access to updated data. But you might also have access to the same
data if the application that had the write lock either aborted the
transaction or did not commit any changes.

Where to Find Additional Information

Additional information about MVCC can be found in the
ObjectStore C++ documentation. See ObjectStore Advanced C++
API User Guide, Chapter 2, Advanced Transactions, for
information about

• MVCC and the transaction log

• Conflict detection

• Propagating data from the log to the database

• Transaction locking examples
324 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Checkpoint: Committing and Continuing a
Transaction

With the Transaction.checkpoint() method, you get the effect of
committing a transaction and then continuing work in a new
transaction in which you have read locks on all or most of the
persistent objects that were locked in the committed transaction.
This is useful when

• You are making modifications to a database. You want to
periodically commit your changes but continue updating the
database without intervention. For example, you might be
loading new data into the database.

• You want to make your changes available to MVCC readers.

• You opened a database for MVCC and you want an updated
snapshot.

Note This checkpoint differs from a conventional checkpoint. In this
checkpoint, an application might not have all the locks after the
checkpoint that it had before the checkpoint. The details are
explained in the next section.

Caution If your application checkpoints a transaction while an annotated
method is executing, your program might incorrectly access
persistent objects after the checkpoint. For more information
about this and a workaround, see Troubleshooting Access to
Persistent Objects on page 183.
Release 3.0 325

Checkpoint: Committing and Continuing a Transaction
Advantages of a Checkpoint

The advantage of a checkpoint is that there is less overhead than
when you actually end one transaction and start another. When
you checkpoint a transaction, it is as if you committed the
transaction and then immediately started a new transaction. But
in the new transaction, you already have read locks on most or all
of your persistent objects.

If another session is waiting for a write lock on a persistent object
that was locked in your transaction, you lose that lock when you
checkpoint the transaction. As long as another session is not
waiting for a write lock on an object that was associated with your
transaction, you reacquire as read locks any locks you had before
the checkpoint.

After the checkpoint, the persistent objects are stale, or hollow
according to which you specify when you call checkpoint(). If you
specify that objects should be hollow, you do not have to start
from a root object to set up your access to objects. Your
application’s access to objects is the same before and after the
checkpoint.

After a checkpoint, ObjectStore has read locks on the same objects
as before the checkpoint, unless another session was waiting for a
write lock on one of these objects. In that case, your transaction
loses the lock.

If there were any write locks before the checkpoint, ObjectStore
changes them to read locks, or gives them to any sessions waiting
for those write locks. Consequently, you might have to wait for
locks or you might get a deadlock when you try to update the
database again.

Suppose your application calls Transaction.checkpoint() and then
the transaction started by the checkpoint() method is aborted.
ObjectStore does not commit any changes to the database that
were made after the checkpoint operation. Any changes made
before the checkpoint remain committed.
326 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Calling the checkpoint() Method

To checkpoint a transaction, call the Transaction.checkpoint()
method. The method signature is

public void checkpoint(int retain)

The value of retain can be one of the following:

• ObjectStore.RETAIN_STALE resets the contents of persistent
objects to default values and makes all persistent objects stale.

• ObjectStore.RETAIN_HOLLOW resets the contents of persistent
objects to default values but makes the persistent objects
hollow. Before and after the checkpoint, you can use references
to the same objects.

When to checkpoint Before you checkpoint a transaction, you must ensure that the
database is in a consistent state because the state is made
persistent.

Caution During the checkpoint, you must ensure that no other thread tries
to access the database.
Release 3.0 327

Locking Objects, Segments, and Databases to Ensure Access
Locking Objects, Segments, and Databases to
Ensure Access

There are times when you want to ensure your own access to
objects and also limit access to those objects by other sessions. This
can be when you want to ensure that

• An operation completes without interruption.

• All objects are immediately available.

• There are no deadlocks.

To ensure your own access, you can lock an object, a segment, or
a database. This means that

• A transaction from another session cannot block your
transaction from updating the locked object.

• If you update the object, no other sessions can read the object,
unless they use MVCC. The use of MVCC by other sessions
prevents them from being blocked and from running into a
deadlock.

Advantages of
locking

The overhead for locking objects is far less than the overhead for
reading a database with MVCC. Also, if you want to, you can
update a locked object. However, if you lock many individual
objects, the overhead might be comparable.

Disadvantages of
MVCC

The use of MVCC has some disadvantages:

• You cannot update the database.

• The overhead for MVCC grows with each concurrent update.

• It is possible for multiple databases to be inconsistent with each
other.

Note The COM.odi.useDatabaseLocking property is a PSE/PSE Pro
feature. If you are using PSE/PSE Pro as well as OSJI, beware of
confusing this property with the OSJI Database.acquireLock()
method. This method allows a session to explicitly lock a
particular database for exclusive use.

PSE/PSE Pro The acquireLock() methods do nothing in PSE and PSE Pro.
328 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Description of Acquire Lock Methods

The methods that allow you to acquire locks on objects are
described below.

• ObjectStore.acquireLock() obtains a lock on a specified object.
The method signature is

public static void ObjectStore.acquireLock(
Object object, int lockType, int timeoutMillis);

• Segment.acquireLock() obtains a lock on a specified segment.
This locks all the objects in the segment. The method signature
is

public static void Segment.acquireLock(
int lockType, int timeoutMillis);

• Database.acquireLock() obtains a lock on a database. This locks
all the segments, which locks all the objects in the segments.
The method signature is

public static void Database.acquireLock(
int lockType, int timeoutMillis);

Locking Objects for Read or Write Access

The lockType parameter indicates whether you want to read or
update the locked objects. You must specify one of the following:

• ObjectStore.READONLY instructs ObjectStore to make the
contents of the locked objects available to be read. While you
have this read lock, other sessions can obtain read locks as
usual.

• ObjectStore.UPDATE instructs ObjectStore to make the contents
of the locked objects available to be modified. You must be in
an update transaction and the database must be opened for
update. While you have this write lock, no other sessions can
access the object, unless they use MVCC to do so.

In a transaction, you can reissue the acquireLock() call to change
the lockType.
Release 3.0 329

Locking Objects, Segments, and Databases to Ensure Access
Specifying the Wait Time for a Lock

If the lock is not available, the timeoutMillis parameter indicates
how many milliseconds you are willing to wait for the lock. You
can specify

• ObjectStore.WAIT_FOREVER to wait until the lock is available.

• 0 if you do not want to wait at all.

• A positive number to indicate the number of milliseconds it is
all right to wait. ObjectStore rounds up to the nearest number
of seconds.

If ObjectStore cannot acquire the lock, either because you do not
want to wait, or because the waiting period has been exceeded,
ObjectStore throws LockTimeoutException.

Releasing Locks

To release locks, you must end the transaction in which you
acquired them. Transaction.checkpoint() also releases locks,
however you reacquire locks as read locks if no other session is
waiting for a write lock for the objects you had locked.

Locking Peer Objects

When you lock a Java peer object that identifies a persistent C++
object, ObjectStore locks the entire object. However, ObjectStore
does not lock subobjects that are logically part of the peer object.
For example, when you lock a COM.odi.coll collection, you do not
lock the contents of the collection.

You cannot lock Java peer objects that represent transient C++
objects.
330 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Obtaining Information About Concurrency Conflicts

Instances of the LockTimeoutBlocker class represent clients that
have been involved in concurrency conflicts.

Client list To obtain a list of such clients, call the
LockTimeoutException.getBlockers() method. The signature is

public LockTimeoutBlocker[] getBlockers()

Lock type To find out whether a concurrency conflict was for a read lock or
a write lock, call LockTimeoutBlocker.getLockType(). This returns
ObjectStore.READONLY or ObjectStore.UPDATE. The method
signature is

public int getLockType()

Client names To obtain the name of the client that caused the conflict, call
LockTimeoutBlocker.getApplicationName(). The method signature
is

public String getApplicationName();

Process IDs To obtain the process ID of the process running a client that
caused a conflict, call the LockTimeoutBlocker.getPID() method.
The method signature is

public int getPID()

Host names To obtain the name of the host for the process that was running the
client that caused the conflict, call the
LockTimeoutBlocker.getHostName() method. The method
signature is

public String getHostName()

Setting the Client Name

To allow other applications to see meaningful client names when
ObjectStore throws LockTimeoutException, your application should
set a client name for itself. Use the system property
COM.odi.applicationName to do this. Specify the name of the
application for the current client. Include it in the list of properties
that you specify when you create a session.
Release 3.0 331

Locking Objects, Segments, and Databases to Ensure Access
Helping Determine the Transaction Victim in a Deadlock

When there is a deadlock, the Server must choose a transaction to
abort. The Server uses several criteria to pick the victim. One of
the criteria is the transaction priority, which you can set with the
Transaction.setPriority() method.

To obtain the priority that is assigned to transactions started by
the current session, call the Transaction.getPriority() method.

Every client has a transaction priority, which is a value in the
range 0 to 0xffff. The default value is 0x8000, which is in the
middle of the range. The value 0 has a special meaning.

In a deadlock situation, the ObjectStore Server compares the
transaction priorities of clients involved in the deadlock. If the
lowest transaction priority is held by only one client, this client is
the victim. If the lowest transaction priority is held by more than
one client, the Server chooses a victim according to the setting of
the Deadlock Victim Server parameter. For information about this
parameter, see the ObjectStore C++ Interface documentation,
ObjectStore Management, Chapter 2, Server Parameters.

If all transactions in a deadlock have a transaction priority of 0, the
Server aborts all of them. While this is not a useful way to run a
program, it is useful for debugging. You can run several clients
under debuggers, and have them all set their priorities to 0. When
a deadlock happens, all of them abort and you can see what each
one of them was doing. You should only use a priority of 0 if you
want this special debugging behavior.
332 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Installing Schema Information in Batch Mode

Sometimes, schema installation causes concurrency conflicts. If it
does, you can minimize this by installing schema in batch mode.

By default, ObjectStore stores schema information in databases
incrementally as needed. If you want to, you can instruct
ObjectStore to install schema information in batch mode before it
is actually needed. This section provides information about how
to do that. The topics discussed are

• Background About Schema Information on page 333

• Procedure for Installing Schema in Batch on page 334

• Identifying the Application Types on page 335

• Creating a Database with Batch Schema Installation on
page 337

• Installing Application Types in the Database Schema on
page 338

• If You Do Not Run the Postprocessor on page 340

Background About Schema Information

Schema information describes the classes of objects that are stored
in the database. ObjectStore stores schema information in each
database.

Kinds of schema
information

When you install ObjectStore, you run the setup program. One of
the things this program does is ensure that schema information
for the ObjectStore classes is available to your applications. If your
application accesses C++ classes, the process of building your
Java/C++ application makes additional schema information
available. ObjectStore also needs schema information for classes
you define and for any third-party libraries that your classes use.
The postprocessor creates this schema information.

Incremental and
batch installation

ObjectStore dynamically stores schema information in each
database as needed. This is referred to as incremental schema
installation. If you want to, you can instruct ObjectStore to install
internal schema information when it creates the database and
application schema information when you invoke a method to do
so. In this way, you install schema information before it is needed.
This is referred to as batch schema installation.
Release 3.0 333

Installing Schema Information in Batch Mode
Advantages and
disadvantages

The advantages of batch schema installation are

• You minimize the chance of a concurrency conflict caused by
schema installation.

• It is more efficient when a large percentage of the schema
information is actually needed.

The disadvantages are

• It takes a little longer to create the database.

• An initial database is larger than an initial database that uses
incremental schema installation.

• Schema information that your application never uses might be
installed in a database.

Procedure for Installing Schema in Batch

To perform batch schema installation for a database, follow these
steps:

1 Use the postprocessor to create one or more objects that
identify the application types.

2 Create a database with the overloading of Database.create()
that allows you to specify batch schema installation.

3 Start an update transaction.

4 Install the application types in the database. These are the types
identified in the object or objects created in step 1.

In the unusual situation where you do not run the postprocessor,
you follow a different procedure to perform batch schema
installation. See If You Do Not Run the Postprocessor on page 340.
334 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Identifying the Application Types

The application types are the persistence-capable classes you
define and any persistence-capable classes in third-party libraries
that your classes refer to. To install schema information in batch
mode, you need to create one or more objects that identify all
application types. There are two postprocessor options that you
can specify to do this.

Individual types When you run the postprocessor to make classes you define
persistence-capable, specify the -summary option. The format is

-summary gen_class_name

This option instructs the postprocessor to generate a class with the
name gen_class_name. This generated class extends the
PersistentTypeSummary class. The gen_class_
name.getPersistentClasses() method returns a list of the classes
that were made persistence-capable in this execution of the
postprocessor.

The generated class has a no-arguments constructor that passes
arrays to the PersistentTypeSummary class constructor.

Types in libraries Classes in libraries that have already been postprocessed must
have an associated generated class (an associated summary) that
identifies the persistence-capable classes in the library. You must
do one of the following:

• Create this summary yourself when you specify the -summary
option during postprocessing of the library.

• Receive this summary with its associated library from a third-
party vendor.

• Manually code the summary yourself by defining a class that
extends the PersistentTypeSummary class.

You can create one object that contains all relevant summaries, or
you can have two or more summaries, which collectively identify
all application types. Object Design recommends that you include
the summaries for libraries in the summary the postprocessor
creates for the classes it makes persistence-capable. To do this, run
the postprocessor and specify the -includesummary option for
each library summary. The format for specifying this option is

-includesummary inc_class_name
Release 3.0 335

Installing Schema Information in Batch Mode
Replace inc_class_name with the name of a class generated by a
previous execution of the postprocessor with the -summary
option. You must know the name of the generated class. If you did
not postprocess the library yourself, you must get the name of the
generated class from the library vendor.

When you specify the -includesummary option, you must also
specify the -summary option. The postprocessor includes the
specified summaries in the new summary it creates. It does not
matter whether or not the postprocessor is also annotating any
classes.

Library providers If you are providing a library that contains persistence-capable
classes, you must also provide the summary object that identifies
those classes. ObjectStore uses the summary object to install
schema information for your library at run time. This allows users
to install a new version of a library without having to rebuild the
application type summary.

General use For a given execution of the postprocessor,

• You can specify the -summary option either once or not at all.

• You can specify the -includesummary option zero, one, or more
times.

• If you specify the -includesummary option, you must also
specify the -summary option.
336 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
Creating a Database with Batch Schema Installation

When you create a database, you determine whether you can
perform batch schema installation. To allow batch installation, use
this overloading of Database.create():

public static Database create(
String name, int fileMode, int schemaInstallMode);

The name parameter specifies the path name of a file. The path can
specify a relative name, fully qualified name, remotely mounted
directory, or a host name and host-relative pathname. An
ObjectStore Server must be available for the directory that
contains the specified file.

The fileMode parameter specifies the access mode for the database.
ObjectStore throws AccessViolationException if the access mode
does not provide owner write access. Otherwise, ObjectStore
ignores the access mode specification when you create a database.
This is due to a limitation in the Java implementation.

The schemaInstallMode parameter specifies the schema
installation mode for the database. The value of this parameter
must be either of the following:

• ObjectStore.INSTALL_SCHEMA_BATCH instructs ObjectStore to
immediately store schema information for all types other than
your application types in the database being created.

• ObjectStore.INSTALL_SCHEMA_INCREMENTAL indicates that
ObjectStore should install schema incrementally. ObjectStore
installs some schema information immediately. When you
store an object in the database, if the required schema
information is not already in the database, ObjectStore
automatically stores it at that time.

Incremental schema installation is the default. When you use the
overloading of Database.create() that does not include a
specification for schemaInstallMode, it is as if you specified
ObjectStore.INSTALL_SCHEMA_INCREMENTAL.

After you create a database, you cannot change the schema
installation mode.
Release 3.0 337

Installing Schema Information in Batch Mode
C++ interoperability If you use Java/C++ interoperability and you specify batch
schema installation when you create a database, you must not use
C++ to change the schema installation flag. Doing so might cause
concurrency conflicts during future access to the database.

Installing Application Types in the Database Schema

If you have one or more PersistentTypeSummary objects that
identify your application types, you can install schema
information in batch in that database. To do so, ensure that the
database is opened for update, start an update transaction, and
then invoke the Database.installTypes() method. The signature is

public void installTypes(PersistentTypeSummary summary);

Summary parameter The summary parameter must be an object that identifies the
persistence-capable types used by the application. If there are
multiple objects that collectively identify all application types,
you must do either of the following:

• Invoke installTypes() for each summary object.

• Construct a summary object that identifies these individual
summary objects as included libraries. Use this new summary
object as the parameter to the installTypes() method.

Typically, you create the summary object with the -summary and
-includesummary options to the postprocessor. In unusual
circumstances, you might explicitly create a summary object with
the COM.odi.PersistentTypeSummary constructor. Information
about doing this is in the next section.

Example For example, suppose you ran the postprocessor with this
command:

osjcfp -dest .\osjcfpout Class1 Class2 -summary
COM.xyz.MySummary

In your program, create a database with batch schema installation
and invoke installTypes() with an instance of MySummary:

Database db = Database.create(
"mydb.odb",
ObjectStore.OWNER_WRITE,
ObjectStore.INSTALL_SCHEMA_BATCH);
Transaction.begin(ObjectStore.UPDATE);

db.installTypes(new COM.xyz.MySummary());
Transaction.current().commit();
338 ObjectStore Java API User Guide

Chapter 10: Controlling Concurrency
ClassInfo must be
registered

The installTypes() method ensures that an instance of the ClassInfo
subclass associated with each identified persistence-capable class
is properly registered. This is normally done automatically by the
postprocessor. If ObjectStore cannot find the registered ClassInfo
subclass instance for a class, ObjectStore throws
ClassNotRegisteredException. When ObjectStore throws this
exception, it does not install any schema information for any
classes. So, even if it can find the schema information for 99 out of
100 classes, it does not install any schema information at all if it
cannot find schema information for one class.

If ObjectStore detects a problem in the type summary, it throws
InvalidSummaryException.

Indirectly identified
classes

ObjectStore installs schema information for persistence-capable
classes that are directly and indirectly identified. That is, if a class
contains a reference to a class that is not identified in the
summary, ObjectStore tries to install the schema information for
the referenced class. If the referenced class refers to some other
class that is not in the summary, ObjectStore tries to install the
schema information for that class.

ObjectStore installs schema information for any superclasses of
specified classes.

Omitting batch
installation

Suppose you specify batch schema installation when you create a
database, but you forget to install the application types before you
store objects in the database. ObjectStore behaves as though the
incremental schema installation flag were set. When you store the
objects, it loads any needed schema information.

You can invoke installTypes() at any time and ObjectStore installs
schema information for application types if that information is not
already in the database.

Omitting a type from
the summary

Now suppose you forget to identify a persistence-capable class in
the summary that you pass to installTypes(). When you store an
object of this class in the database, ObjectStore dynamically stores
the schema information for that class.
Release 3.0 339

Installing Schema Information in Batch Mode
If You Do Not Run the Postprocessor

In the unusual circumstance that you manually annotate your
code instead of running the postprocessor, there is a manual way
to create a summary of your application’s persistence-capable
classes.

The COM.odi.PersistentTypeSummary class allows your
application types to be identified. To create your own summary,
invoke the PersistentTypeSummary constructor. The signature is

public PersistentTypeSummary(
String[] persistentClasses,
String[] includedLibrarySummaries);

The persistentClasses parameter must be an array of names of
classes that are persistence-capable. This parameter can be null.
The PersistentTypeSummary.getPersistentClasses() method
returns an array of the class names that have been identified as
persistence-capable.

The includedLibrarySummaries parameter must be an array of
names of classes that extend the PersistentTypeSummary class.
Typically, these classes identify the persistence-capable classes in
a library. This parameter can be null. The
PersistentTypeSummary.getIncludedLibrarySummaries() method
returns an array of the class names that contain summaries of
persistence-capable classes in libraries.

When you define a class that extends the PersistentTypeSummary
class, it must have a no-argument constructor.

Suppose you identify a persistence-capable class in a summary,
but that class is not in fact persistence-capable. ObjectStore throws
ClassNotRegisteredException at run time if it recognizes this when
you invoke the installTypes() method on the database.
340 ObjectStore Java API User Guide

Chapter 11
Using the Notification
Facility

The notification facility allows an application to notify one or
more sessions that an event has taken place. Each notification is
associated with a location in a database. Your application
determines what constitutes an event. In general, an event is
anything you want your application to notify other sessions
about. For example, a modification to a particular object in a
database can be an event.

Contents This chapter discusses the following topics:

Background About How Notification Works 342

Creating Notifications 347

Subscribing to Receive Notifications 350

Sending Notifications 352

Retrieving Notifications 353

Reading Notifications 354

Managing the Notification Process 355
Release 3.0 341

Background About How Notification Works
Background About How Notification Works

This section provides information about how the notification
system works. It covers these topics:

• What Is a Notification? on page 342

• What Is the Flow of a Notification? on page 343

• Threads and Notifications on page 344

• Transactions and Notifications on page 345

• Security on page 346

What Is a Notification?

A notification is an ordinary transient Java object. A notification
always specifies

• A location. The location can be a persistent object, a segment, or
a database.

• An integer value. This is the value of the kind argument in the
Notification constructor.

• Information about the event. This is either a message string or
an array of bytes. In the Notification constructor that takes only
two arguments, ObjectStore uses a value of null for the third
argument, which specifies the message string or byte array.

When a session subscribes to receive notifications for a segment or
database, the subscribing session receives any notifications for
objects in the segment or database.

In Release 1.3, only one session is allowed in a single Java VM, so
only one session can subscribe to a notification. In a future release,
it is expected that there can be multiple sessions in the same Java
VM. In this release, separate processes can simultaneously
subscribe to receive notifications for the same locations.
342 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
What Is the Flow of a Notification?

An application creates a notification. Sessions that want
information about events related to a particular location subscribe
to notifications that specify the location of interest.

When there is an event that involves the location in a notification,
the application uses the notification API to send the notification to
the ObjectStore Server.

When the Server receives a notification, it determines which
sessions are subscribed for that notification. The Server then
queues messages to be sent to the receiving sessions. The Server
returns the number of messages queued and then asynchronously
sends notifications to the Cache Manager of the receiving sessions
(the subscribers).

There is a queue inside the Cache Manager for each session on that
host. When the Cache Manager receives a notification from the
Server, it puts the notification into the queue of each of the
subscribing sessions.

A session that subscribes to one or more notifications usually
dedicates a thread to receive notifications. When this thread finds
a notification in the Cache Manager’s queue for that session, it
removes the notification from the queue and returns it to the
associated session, which performs an application-specific action.
Release 3.0 343

Background About How Notification Works
Threads and Notifications

A session starts a thread whose sole purpose is to receive
notifications. This thread calls Notification.receive() with an
argument that specifies how long to wait for notifications. Each
session has its own dedicated thread.

When a session receives a notification, it performs an application-
specific action. For example, it might post a Windows message,
modify the application’s transient data structures, or otherwise
queue the notification for processing by another thread. It then
waits for the next notification.

The thread dedicated to receiving notifications typically does very
little work. It might do queue management, for example,
maintaining a priority queue of notifications for another thread,
or coalescing similar notifications. However, processing should
be minimal, so the Cache Manager notification queue does not
overflow. Queue overflow can happen if many notifications arrive
in quick succession. The thread receiving the notifications might
not be able to keep up with the process of removing the
notification from the queue and returning it to the session.

In contrast to most other ObjectStore APIs, Notification.receive() is
not locked out when other threads are in ObjectStore operations.
If the thread does not access persistent data or call other
ObjectStore APIs, it can run entirely asynchronously.
344 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Transactions and Notifications

An application can send a notification

• Immediately

• When the transaction commits

Transactions are independent of immediate notifications,
subscriptions, unsubscriptions, and notification retrieval.

The sending of commit-time notifications, however, is closely
integrated with transactions. ObjectStore queues commit-time
notifications inside a transaction, and sends them when the
transaction commits. If the transaction aborts, the application
never sends the commit-time notifications. This is useful when
you want dispatch of the notification to be contingent on a
database modification that becomes visible when a transaction
commits.

There are no restrictions on transaction types. The enclosing
transaction can be read-only or update. Databases can be opened
read-only, update, or MVCC.

As always, database changes made by a session are not visible to
other sessions until the transaction commits. Therefore, all
notifications that indicate changes to persistent data should be
made at commit time.
Release 3.0 345

Background About How Notification Works
Security

To send or subscribe to notifications, a session must open the
database that contains the referenced location. If a session does
not open a database, it cannot send or receive notifications
associated with that database. If you do not have permission to
open a database, you cannot send or subscribe to notifications on
objects in that database.

Within a database, notifications are not integrated with
ObjectStore security. A session can subscribe to notifications and
send notifications that reference database locations in any
segment.
346 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Creating Notifications

When an application creates a notification, the database that
contains the referenced object must be open. It does not matter
whether or not a transaction is in progress. However, an object
that an application passes to a Notification method cannot be a
stale object.

Descriptions of Constructors

The constructors for creating notifications have these signatures:

• public Notification(Object location, int kind)

• public Notification(Object location, int kind, byte[] data)

• public Notification(Object location, int kind, String message)

The location parameter specifies a persistent object. It indicates the
location at the beginning of the object. You must specify a
persistent object. It is not good enough for the location object to be
persistence-capable. If the specified object is not persistent when
you try to construct a notification, ObjectStore throws
ObjectNotPersistentException. To avoid this, call the
ObjectStore.migrate() method to store the object in the database
before you create the notification.

You can specify a Java peer object if it identifies a persistent C++
object. See Developing ObjectStore Java Applications That Access C++,
Chapter 3, Writing the Application.

The kind, data, and message parameters provide information
about the event. Every notification has a kind parameter. If you
specify a negative argument, ObjectStore throws
IllegalArgumentException.

If you do not want to attach a message or data to the notification,
specify null for the third argument when you create the
notification, or do not specify a third argument. For example, the
following two code fragments do exactly the same thing:

String a = null;
new Notification(foobar, 102, a);

new Notification(foobar, 102);
Release 3.0 347

Creating Notifications
If you do specify a third argument, it is a sequence of bytes. For
convenience, ObjectStore allows you to pass in a Java String
instead of a sequence of bytes. ObjectStore uses UTF-8 encoding to
encode message arguments into a sequence of bytes.

When ObjectStore sends a notification, it makes the kind
parameter and the data or message parameter, if there is one,
available to subscribers. If a notification includes a null string
("null"), it is received as an empty string ("").

Retaining References to Persistent Objects

A notification always contains a reference to a persistent object.
You can create a notification in one transaction, and then use it in
a subsequent transaction or between transactions.

To do so, you must ensure that the reference is not to a stale object.
If it is, ObjectStore throws ObjectException.

To ensure a nonstale object, you can evict the referenced object or
commit or abort the transaction with a retain type other than
ObjectStore.RETAIN_STALE. If you evict the object so that you can
still use it, but then you abort or commit the transaction with
ObjectStore.RETAIN_STALE, this cancels the retain type specified
for evict().
348 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Maximum Data Lengths

For the byte[] data parameter in the constructor, the MAXIMUM_
DATA_LENGTH variable specifies the maximum length of the byte
array:

public static final int MAXIMUM_DATA_LENGTH = 16383

For the String message parameter, this variable specifies the
maximum length of the UTF-8 encoding of the string. If the String
is ASCII, the compression is one-to-one.

Restriction on data Argument Content

The C++ interface to ObjectStore treats the data argument as a C
or C++ string, so there cannot be embedded zeros. If your
application is directly providing a data array, it must ensure that
there are no zeros in the data array. If your application is
providing the data in the form of a string, it works correctly
because the UTF-8 encoding of strings never uses zero bytes. If
you try to construct a notification with a byte[] data array and you
include a zero, ObjectStore throws IllegalArgumentException.
Release 3.0 349

Subscribing to Receive Notifications
Subscribing to Receive Notifications

A session uses the Notification.subscribe() method to register to
receive notifications for the specified location or within the
specified segment or database. The database that contains the
referenced object or segment must be open when a session calls
the subscribe() method. These are the overloadings of subscribe():

• public static void subscribe(Placement placement)

• public static void subscribe(Object location)

The placement parameter can specify a database or segment. The
subscribing session receives a notification if the application sends
a notification that refers to an object in the specified segment or
database.

The location parameter specifies a persistent object.

A session can subscribe to many locations, segments, and
databases simultaneously. ObjectStore stores subscriptions in the
ObjectStore Server for as long as the corresponding database is
open for the associated session.

Discarding Subscriptions

When a session closes a database, ObjectStore discards any
subscriptions in that session to notifications related to that
database.
350 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Unsubscribing from Notifications

A session can unsubscribe from particular notifications just as it
can subscribe to them. The unsubscription is immediate. The
Notification.unsubscribe() method has overloadings that are
parallel to subscribe():

• public static void unsubscribe(Placement placement)

• public static void unsubscribe(Object location)

If you try to unsubscribe from a notification that you are not
subscribed to, nothing happens.

Asynchronous
processing

ObjectStore processes notifications asynchronously.
Consequently, a session might unsubscribe from a particular
notification but still receive notifications for that location because
they were already queued.

The only way to cancel a segment or database subscription is to
unsubscribe from that segment or database. You cannot
unsubscribe from a segment or database by unsubscribing from
the notifications about the objects in that segment or database.
Release 3.0 351

Sending Notifications
Sending Notifications

An application can use any of the following methods to send
notifications:

• public void notifyImmediate()

• public void notifyOnCommit()

• public static void notifyImmediate(Notification[] notifications)

• public static void notifyOnCommit(Notification[] notifications)

You can send one notification at a time or an array of notifications.
You can send notifications immediately or when a transaction
commits. If you wait to send a notification until a transaction
commits, you ensure that a subscriber does not receive the
notification until any associated change is visible in the database.

The object referenced in the notification cannot be stale and
cannot have been destroyed.

Modification of an object does not cause a notification to be sent.
A notification is sent only when the application program
explicitly uses the notification API to send one.
352 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Retrieving Notifications

The ObjectStore Server queues notifications in the Cache Manager
that is associated with the subscribing session. It is up to the
session to retrieve notifications from the Cache Manager.
Typically, a session dedicates a thread to retrieve notifications
from the queue. To do this, a thread calls Notification.receive(). The
method signature is

public static Notification receive(int timeout)

The timeout parameter specifies the number of milliseconds to
wait for a notification. Specify ObjectStore.WAIT_FOREVER to
instruct the thread to wait forever. A value of 0 instructs the
thread to return if there are no notifications in the queue.

The method returns a Notification object, or null, if there are no
notifications in the allotted time. When the timeout parameter is
ObjectStore.WAIT_FOREVER, ObjectStore never returns null.

When you call receive(), it does not matter whether or not a
transaction is in progress. However, the thread from which you
call receive() must be associated with a session.

A thread that calls the Notification.receive() method allows you to
avoid polling your application. This method returns as soon as a
notification is available, and until then it just waits. No polling is
involved. The application is awakened when a notification
arrives.
Release 3.0 353

Reading Notifications
Reading Notifications

To extract the contents of a notification, use the following
Notification class methods:

• public Object getLocation() obtains the persistent object.

• public int getKind() obtains the value for the kind parameter.

• public byte[] getData() returns the byte array associated with the
notification. If the application specified a string when it created
the notification, this method still returns the byte array. The
notification itself does not maintain information about whether
it was created with the specification of a string or a byte array.

• public String getMessage() decodes the byte array and returns
the string associated with the notification. It does not matter
whether you specified a string or a byte array when you created
the notification. ObjectStore throws
java.io.UTFDataFormatException if the string is not correctly
encoded in UTF-8 format.
354 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Managing the Notification Process

Managing the notification process involves consideration of the
following:

• Notification Queue on page 355

• Performance Considerations on page 356

• Network Service on page 357

Notification Queue

The Cache Manager maintains a queue of notifications for each
session on a machine. To set the size of the queue, call
Notification.setQueueSize(int queueSize). ObjectStore throws
NotificationException if a session subscribes to a notification before
calling this method. The new queue size must not exceed the
value specified for the MAXIMUM_NOTIFICATION_QUEUE_
LENGTH.

Nothing forces a session to retrieve or read notifications. A session
can subscribe to notifications but never retrieve any.

To avoid resource exhaustion in the Cache Manager, the size of
the notification queue for each client is fixed. If the Cache
Manager receives a notification and the queue is full, ObjectStore
discards the notification. This is called an overflow. Overflows do
not cause any exception to be signaled and do not cause the
application, the Cache Manager, or the Server to crash.

The Cache Manager keeps statistics on the notification queue that
include

• Queue size

• Number of pending notifications

• Number of overflows

To obtain these statistics, you can call the following Notification
class methods:

• public static int getQueueSize()

• public static getPendingNotifications()

• public static int getQueueOverflows()
Release 3.0 355

Managing the Notification Process
The information returned by these methods applies to only the
session in which the method is called.

You can also use the ObjectStore utility oscmstat to obtain these
statistics. The ossvrstat utility displays statistics on the number of
notifications received and sent by the Server. See Chapter 4 in
ObjectStore Management.

Performance Considerations

All notifications and subscriptions on a database go to the
ObjectStore Server. The Server routes notifications to subscribed
sessions through the Cache Manager, which queues the
notifications for sessions. Because the Server acknowledges each
notification, sending a notification requires a round-trip message
to the Server.

Retrieving notifications only accesses shared memory and is very
fast. If a session does not retrieve its notifications, the Cache
Manager can run out of queue space. This causes the Cache
Manager to discard notifications.

Every call to subscribe(), unsubscribe(), notifyImmediate(), and
notifyOnCommit() requires one round-trip message to the
ObjectStore Server.

If any commit-time notifications are queued during a transaction,
there is an additional remote procedure call (RPC) to the
ObjectStore Server during the commit operation.

Notifications are stored and forwarded in the Server, Cache
Manager, and sometimes even in the receiving application.
Therefore, delivery of notifications might not be particularly fast.
Performance varies according to system load and the amount of
notification processing. For example, delivery could range from
milliseconds to several seconds.

As a general rule, if you plan your application to use notifications,
you should not expect high throughput. Do not expect a client
application to send or receive more than about ten notifications
per second. In other words, do not use ObjectStore notification to
meet high-speed requirements. The notification facility has a
fairly simple design with limited buffering capability.
356 ObjectStore Java API User Guide

Chapter 11: Using the Notification Facility
Network Service

When an ObjectStore application uses notifications, it
automatically establishes a second network connection to the
Cache Manager daemon on the local host. The application uses
this connection to receive (and acknowledge the receipt of)
incoming notifications from the Cache Manager. (Outgoing
notifications are sent to the Server, not the Cache Manager.) See
Chapter 1, Overview of Managing ObjectStore, in ObjectStore
Management for specific information about defaults.
Release 3.0 357

Managing the Notification Process
358 ObjectStore Java API User Guide

Chapter 12
Miscellaneous Information

This chapter provides miscellaneous information about
ObjectStore.

Contents This chapter discusses the following topics:

Java-Supplied Persistence-Capable Classes 360

Description of Special Behavior of String Literals 366

Serializing Persistent Objects 369

Using Persistence-Capable Classes in a Transient Manner 371

Description of Java Persistent Storage Layouts 372

Differences Between C++ and Java Interfaces to ObjectStore 374

Environment Variables 375
Release 3.0 359

Java-Supplied Persistence-Capable Classes
Java-Supplied Persistence-Capable Classes

Some Java-supplied classes are persistence-capable. Others are
not persistence-capable and cannot be made persistence-capable.
A third category of classes can be made persistence-capable, but
there are important issues to consider when you do so.

Description of Java-Supplied Persistence-Capable Classes

The following Java classes are persistence-capable:

• java.lang.String

• The wrapper classes:

- java.lang.Boolean

- java.lang.Byte

- java.lang.Character

- java.lang.Double

- java.lang.Float

- java.lang.Integer

- java.lang.Long

- java.lang.Short

• Arrays of Object, of any of the primitive types (boolean, byte,
integer, and so on), and of any persistence-capable type are all
persistence-capable. (You can allocate an array and initialize it
later, just as you would with any other field.)
360 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Identity ObjectStore does not always preserve identity for objects that are
instances of the Java wrapper classes. It is more efficient to store
these objects as values rather than as objects. Because identity is
not always preserved, programs that use object identity to
compare wrapper class objects work differently when used with
persistent objects. For example, this method is incorrect:

boolean comparePersistIntegers(Integer x, Integer y) {
return (x == y);

}

Instead, it should be written as

boolean comparePersistIntegers(Integer x, Integer y) {
return x.equals(y);

}

Additional information about object identity is in About Object
Identity on page 148.

VM overhead When ObjectStore makes them persistent, String types, primitive
wrapper types, and arrays have more runtime virtual memory
overhead than types that implement IPersistent. This is because
ObjectStore must create entries for these types in two hash tables.
COM.odi.IPersistent requires an entry in a single hash table since
some information is stored in fields in the object.
Release 3.0 361

Java-Supplied Persistence-Capable Classes
Persistent and
persistence-capable

In your program, some wrapper objects might be persistent and
some might be transient, though persistence-capable.

• If the application explicitly calls ObjectStore.migrate() on a
wrapper object or stores it in a COM.odi.coll collection, the
wrapper object becomes persistent.

• If the wrapper object is only reachable through transitive
persistence, it does not become persistent when the transaction
is committed. Instead, ObjectStore stores the object as an
immediate value.

This means that ObjectStore does not store the object in any of
its internal hash tables and does not store the object as a
separate value in the database. Instead, ObjectStore stores the
object in the location of the reference to the object. The reference
completely describes the object.

Any routine that requires a persistent object, as opposed to a
persistence-capable object, notices the distinction between
persistent and persistence-capable but transient. For example, if
an application calls Segment.of() on an Integer object, the return
value might be a segment in a database or ObjectStore might
throw ObjectNotPersistentException. You cannot always predict
what the return value will be because an Integer-valued field in a
persistent object can contain either a persistent or transient value.

Unicode strings ObjectStore stores Unicode strings. You can specify any Java
string with Unicode characters in it, and ObjectStore can store it
persistently and retrieve it correctly. ObjectStore uses UTF-8
encoding/compression to store regular English strings
compactly. Sun’s Java implementation uses the same mechanism.
362 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Can Other Java-Supplied Classes Be Persistence-Capable?

There are many Java system classes that cannot be persistence-
capable. There are other Java system classes that you can make
persistence-capable, but you must consider some issues when you
do so. In some situations, you can subclass the Java system class
and make the subclass persistence-capable. Of course, this would
not work for final classes.

Primitive types You cannot store an object of a primitive type, such as an int,
directly in a database as a discrete object. To store an object of a
primitive type in a database you can

• Place it in a wrapper object, such as an Integer.

• Define it as a field in a persistence-capable class.

For example, you cannot make byte persistence-capable because
all by itself, a byte is not an Object. But you can make byte[]
persistence-capable because it is an Object.

Native methods Classes that use native methods cannot be made persistence-
capable by the postprocessor because the postprocessor cannot
annotate the native methods the way it can annotate Java code.
What this means is that if a class has native methods, and you
postprocess the class, ObjectStore cannot guarantee that
everything will work properly.

You might choose to postprocess your code and then add native
code. If you do this, you must ensure that any persistent objects
that your native code references are properly fetched from the
database before the native method is called. Be careful, however,
if a native method changes the value of an indexed instance
variable. This does not work properly because the index is not
updated.

Classes that hold state Other system classes do not make sense as persistent objects
because they hold state that is inherently tied to the process, such
as open file channels or Java threads.
Release 3.0 363

Java-Supplied Persistence-Capable Classes
Postprocessing For other classes, like java.lang.Stringbuffer, the above obstacles
might not apply. If you postprocess the .class file for
java.lang.StringBuffer and specify the -modifyjava option, the
postprocessor produces a persistence-capable StringBuffer class:

osjcfp -dest \osjcfpout -modifyjava java.lang.StringBuffer

Then you must put the new .class file in your CLASSPATH
variable ahead of the standard Java .class file. All subsequent use
of the StringBuffer class in this environment would use the
persistence-capable version.

Performance
drawbacks

There are, however, some drawbacks to doing this. There will be
some slowdown of some or all the methods, because the
postprocessor must add new instructions to check whether the
object needs to be brought in from the database or needs to be
marked as modified.

How much slowdown is hard to determine. It depends on the
details of the method. Even parts of your program that never
handle persistence are affected by these extra instructions. This
also applies to indirect uses of the class, for example, if
StringBuffer is used heavily in some Java library that you are
using, such as a user interface or network library.

Library version
problems

There can also be problems with Java library version skew. If you
postprocess java.lang.StringBuffer from version 1.1 of the Java
Virtual Machine, and then your user uses your program with
version 1.1.2, and StringBuffer has changed in some way between
1.1 and 1.1.2, your user will see the 1.1 version (persistence-
capable) everywhere in the entire Java environment. If your user
was depending, directly or indirectly, on the new 1.1.2 version of
StringBuffer, something might not work properly.
364 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Renaming the class You might need to rename the newly created persistence-capable
version so that the non-persistence-capable version is still
available to the other Java system classes. To do this, specify the
-translatepackage option when you run the postprocessor. See
Putting Processed Classes in a New Package on page 268.

This avoids the problem and is generally safer. However, you
might need the persistence-capable class to have the original class
name. For example, suppose you have a library that has a method
that takes an argument of type java.lang.Stringbuffer. You want to
pass in a persistence-capable object. You cannot rename the class
because the argument type would not match.

java.util.Hashtable ObjectStore itself uses java.util.Hashtable. Consequently, invoking
Java or using ObjectStore with a persistence-capable version of
java.util.Hashtable that is available in your CLASSPATH is likely to
cause trouble, such as infinite loops. A better approach is to
substitute the ObjectStore-supplied class
COM.odi.util.OSHashtable.
Release 3.0 365

Description of Special Behavior of String Literals
Description of Special Behavior of String Literals

There are special considerations when making String literals
persistent.

When a Java program refers to a String literal by using quotation
marks to name a string, Java treats the resulting String as a
constant value. Multiple calls to a method with the String literal
operate on the same String object.

The COM.odi.stringPoolSize initialization property allows you to
control the way that ObjectStore causes Strings, other than literals
with the same contents, to be represented by a single, shared
instance in the database in certain circumstances. See Description
of COM.odi.stringPoolSize on page 64.

Example of String Behavior

Consider the following example:

Object string() { String result = "string"; return result; }
Object intArray() { int[] result = { 1, 2, 3 }; return result; }
boolean stringsTheSame() { return string() == string(); }
boolean intArraysTheSame() { return intArray() == intArray(); }

The stringsTheSame() method always returns true because every
call to string() returns the exact same String object. The
intArraysTheSame() method always returns false because each call
to intArray() constructs a new int[] object.

The behavior of String literals in Java has implications for making
strings persistent. If a String literal becomes persistent, then
subsequent calls to the method that contains the literal find that
the string is already persistent. This can cause trouble if different
calls to the method attempt to store references to the string in
objects stored in different segments.

The following example demonstrates this problem:

void makeSomeObjects(Segment segment1, Segment segment2) {
ObjectStore.migrate(makeObject(), segment1, false);
ObjectStore.migrate(makeObject(), segment2, false);

}

Object makeObject() {
Object[] result = new Object[1];
result[0] = "string";
366 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
return result;
}

The first call to makeObject() causes the "string" literal to be
migrated into segment1. The second call to makeObject() tries to
store a reference to "string", which is now an unexported object in
segment1, in an object in segment2.

The simplest solution to the problem is to avoid storing String
literals in objects that become persistent.

The following example shows a modification to the makeObject()
method that fixes this problem:

Object makeObject() {
Object[] result = new Object[1];
result[0] = new String("string");
return result;

}

In this version, the makeObject() method stores a new String
instance in each object that it returns. The result is that a new
String instance is stored in the database for each call to
makeObject().

Another solution is to create an exported String object and have
makeObject() always use that object. Decide on the approach you
want to use according to the way you want to cluster objects in the
database.

Another situation to consider is when an updated object refers to
a String that has the same identity it had when the object was read
from the database. ObjectStore does not store a new String in the
database. If the updated object refers to a String with a different
identity and that String is not stored in the database, ObjectStore
migrates the String into the database. This is regardless of whether
or not the database contains another String with the same
contents.

As in Java, strings in ObjectStore are immutable. To change a
string, you can destroy the old one and create a new one.
Release 3.0 367

Description of Special Behavior of String Literals
Destroying Strings

By default, String objects that become persistent during a
transaction revert to being transient at the end of the transaction.
Persistent objects are usually made stale at the end of a
transaction. Unlike objects that implement IPersistent, when a
String is made stale it becomes transient. As a result, the problem
with making String literals persistent only occurs if the String
literal is seen several times in the same transaction. If the String
literal is only incorporated in a persistent data structure once in a
transaction, then the problem does not occur.

When you destroy a String, in the transaction in which the destroy
operation occurs, ObjectStore keeps track of the fact that the object
was destroyed. An attempt to use a destroyed String literal causes
ObjectStore to throw ObjectNotFoundException. The solution is to
copy the String before you destroy it.

You should not destroy a String in a database unless you know
that no other object in the database refers to that String. A safe,
though possibly inefficient, way to handle this is to use

new String(String)

to force a new identity to each String that might be referenced.
Also, you must disable the String pool by specifying 0 for the
value of the COM.odi.stringPoolSize initialization property. This
allows you to be sure that you can safely destroy the old String
instance.

It is usually best to avoid destroying strings (or objects) altogether
and let the persistent garbage collector take care of destroying
such unreachable objects. The persistent garbage collector can
typically destroy and reclaim such objects very efficiently, since it
can batch such operations and cluster them effectively. If you set
up the GC to run when the system is lightly loaded, you can
effectively defer the overhead of the destroy operations to a time
when your system would otherwise be idle, thus getting greater
real throughput from your application when you really need it.
368 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Serializing Persistent Objects

You can serialize many classes that implement
COM.odi.IPersistent. For this to work, the definition of your
persistence-capable class must implement the java.io.Serializable
interface. The classes you can serialize include
COM.odi.util.OSVector and COM.odi.util.OSHashtable.

During serialization, none of the transient fields in the IPersistent
implementation need to be written out.

Before serializing an object, an application must always invoke
ObjectStore.deepFetch() on the object to be serialized. The
deepFetch() method ensures that the contents of all components of
the object are accessible. This must be the case for an application
to serialize an object.

Background about
the necessity for
deepFetch()

In an ObjectStore application, the first time you read or modify an
object, ObjectStore makes the contents of the object available. The
contents do not have to be available before you start the operation.
You do not have to add Java code to make the contents available.
When an ObjectStore program follows a reference from a source
object to a target object, it automatically makes the contents of the
target object available. This happens because the postprocessor
recognizes the Java byte-code instructions that follow references
and it inserts the code that fetches the object contents.

Serialization works differently. It follows references from one Java
object to another without using Java byte codes. Serialization does
not perform the automatic fetches the way that ObjectStore does.
Consequently, before you initiate serialization of an object, its
contents and the contents of all its components must already be
available. The ObjectStore.deepFetch() operation does this for
you.

Limitation You cannot serialize Java peer objects. Consequently, you cannot
serialize ObjectStore collection objects.

Example When an application serializes and deserializes a persistent object
with the default serialization methods, ObjectStore effectively
creates a transient copy of the object and its components. Here is
code that provides an example of serializing and deserializing
persistent objects. In this example, list2 is a transient copy of the
persistent list.
Release 3.0 369

Serializing Persistent Objects
public
class SerializationExample {

public static void main(String argv[])
throws java.lang.ClassNotFoundException, java.io.IOException,
java.io.FileNotFoundException {
String dbName = argv[0];
Session.createGlobal(null, null);
/* Create a database with a list in it. */
Database db = Database.create(dbname,

ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
List curr = new List("1", null);
db.createRoot("list", curr);
for (int i=2; i < 5; i++) {

curr.next = new List(""+i, null);
curr = curr.next;

 }
tr.commit();

/* Illustrate use of serialization in this example. */
tr = Transaction.begin(ObjectStore.UPDATE);
List head = (List)db.getRoot("list");

/* Fetch the entire list prior to serializing it. */
ObjectStore.deepFetch(head);

FileOutputStream f = new FileOutputStream("tmp");
ObjectOutputStream os = new ObjectOutputStream(f);
os.writeObject(head);

FileInputStream in = new FileInputStream("tmp");
ObjectInputStream is = new ObjectInputStream(in);

/* list2 is effectively a copy of the list denoted by head. */
List list2 = (List)is.readObject();
...

tr.commit();
}

}

public class List implements java.io.Serializable {

public Object value;
public List next;

List(Object value, List next) {
this.value = value;
this.next = next;

}

...
}

370 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Using Persistence-Capable Classes in a Transient
Manner

The stublib.zip file contains stubs of ObjectStore classes that allow
user-defined persistence-capable classes to be used in a purely
transient manner. The annotations in the persistence-capable
classes make calls to the various ObjectStore stub routines in
stublib.zip.

The stublib.zip file provides a stripped down version of the
ObjectStore API. This allows better performance and a smaller
footprint than the complete zip file.

For example, you might want to use stublib.zip for the client in an
RMI or CORBA application. The client might use persistence-
capable classes, which make references to various ObjectStore
methods, but the client never directly accesses a ObjectStore
database. In this situation, the stub routines in stublib.zip satisfy
the requirements of the Java VM’s linker.

To use stublib.zip, put it in your CLASSPATH instead of osji.zip.

If your application uses any classes in COM.odi.util, you must use
osji.zip. You cannot use stublib.zip because the stub definitions are
not sufficient for the COM.odi.util classes.
Release 3.0 371

Description of Java Persistent Storage Layouts
Description of Java Persistent Storage Layouts

There are some differences between databases created by the Java
and C++ interfaces to ObjectStore. These differences result in
some restrictions on the use of databases by both the C++ and Java
interfaces.

Databases created by the Java interface can be used by C++
programs, but the representation of Java primary objects is
different from regular C++ objects. Because of these differences,
accessing the contents of Java primary objects from C++ programs
is not currently supported. C++ programs can store, access, and
modify C++ objects in databases created by or modified by the
Java interface.

Databases created by the C++ interface can be read or modified by
the Java interface. C++ objects can be manipulated as described in
the book Developing ObjectStore Java Applications That Access C++.
In addition, the Java interface can store Java primary objects in
databases created by the C++ interface.

Databases that hold Java primary objects have a segment that
contains information used by the Java interface to describe the
schema for the classes of the Java objects stored in the database.
This segment also contains information about the location of other
information used by the Java interface, which is stored in each
segment that contains Java primary objects.

Segments that contain Java primary objects contain C++ data
structures that describe the exported objects stored in the
segment.

ObjectStore does not always align objects by page boundaries.
Any Java object might cross page boundaries.
372 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
All Java primary objects contain a four-byte object header
followed by data for the object fields. Java arrays are represented
by a 12-byte header object and a separate C++ array that contains
the array contents.

Fields of Java primary objects that contain object references are
represented by an eight-byte or twelve-byte data structure rather
than the four-byte pointer usually used by C++ objects. The larger
data structure allows the Java interface to provide more features
for object references. The eight-byte data structure is used for Java
object reference fields that cannot contain arrays. This includes
fields that are not of type Object or of an array type. The
twelve-byte data structure is used for Object fields and fields of
type array. The following table provides the exact element sizes.

Object references that are of type java.lang.Object,
java.land.Double, java.lang.Long, or any array type, require 12
bytes. All other object references require eight bytes.

Element Type Element Size

byte 1

short 2

char 2

int 4

float 4

double 8

long 8

Object reference 8 or 12
Release 3.0 373

Differences Between C++ and Java Interfaces to ObjectStore
Differences Between C++ and Java Interfaces to
ObjectStore

Here are some differences betweeen the Java and C++ interfaces
to ObjectStore.

Timing of the Write Lock Acquisition

In the C++ interface to ObjectStore, as soon as you modify an
object, you set (or try to set) the ObjectStore write lock for the page
that the object is on. But in the Java interface to ObjectStore, this
might or might not happen depending on the lazy write locking
flag. The default is that it does not happen, and the write locking
is deferred until later. So, if you have two sessions (in two VMs)
that are accessing the same data and they are not both just
reading, different timing of the write lock acquisition can cause
the behavior to be different in the Java interface than it is in the
C++ interface.

Opening the Same Database Multiple Times

In the Java interface to ObjectStore, each subsequent opening of a
database after the initial open operation returns the same
database object. For example:

db1 = Database.open("foo", ObjectStore.UPDATE);
db2 = Database.open("foo", ObjectStore.UPDATE);

In the Java interface to ObjectStore, the expression db1 == db2
returns true. They refer to the same database object.
Consequently, a call to db1.close() or db2.close() closes the same
database. No matter how many times you open a database, a
single call to the close() method closes the database.

This is different in the C++ interface to ObjectStore. In that
interface, for example, if you call open() four times and close()
three times all on the same database, the database is still open.
374 ObjectStore Java API User Guide

Chapter 12: Miscellaneous Information
Environment Variables

ObjectStore includes the following environment variables:

• OS_JAVA_VM specifies the command for running the Java
virtual machine, when it is set. The default is that this variable
is not set. The Windows tool batch files use the value of this
variable when it is set.

• OSJCFPJAVA specifies the name of the Java executable you
want the postprocessor to use. The default is java. If this
variable is not set, the postprocessor uses the first Java
executable that it finds in your PATH environment variable If
you want the postprocessor to use some other Java executable,
set the OSJCFPJAVA environment variable to the name of the
Java executable you want the postprocessor to use.

If the postprocessor cannot find a Java executable, it generates
a Bad command or file name error message.
Release 3.0 375

Environment Variables
376 ObjectStore Java API User Guide

Chapter 13
Tools Reference

This chapter provides reference information for the following
tools:

osgc: Collecting Garbage in Databases 378

osjbrowsedb: Browsing a Database 380

osjcfp: Running the Postprocessor 381

osjcgen: Generating Peer Classes 389

osjcheckdb: Checking References in a Database 395

osjshowdb: Displaying Information About a Database 397

osjuphsh: Upgrading String Hash Codes in Databases 402

osjversion: Obtaining ObjectStore Version Information 403
Release 3.0 377

osgc: Collecting Garbage in Databases
osgc: Collecting Garbage in Databases

The command line utility for collecting garbage is osgc. Invoke
this tool with the following format:

osgc [options] database_name

For example, execution of

osgc db

is the same as calling the Database.GC() method on the db
database. You can specify the following options:

Option Description

-seg segment_id Collects garbage from only the specified segment.
By default, the osgc utility operates on the entire
database.

-retries number Indicates the number of times the tool tries to
resume the sweep phase of garbage collection after
it waits for a lock. The default is 10. This is
identical to the COM.odi.gc.retries property.

-retryInterval interval Indicates the number of milliseconds the sweep
operation waits between sweep attempts for a
concurrency conflict to be resolved before it tries to
resume the sweep. The default is 1000. This is
identical to the COM.odi.gc.retryInterval property.

-lockTimeOut interval Indicates the number of milliseconds the sweep
operation waits for a lock conflict to be resolved. If
it is not resolved in the specified length of time, the
tool aborts the current transaction and starts a new
transaction. ObjectStore rounds this value up to
the nearest second. The default is 1000. This is
identical to the COM.odi.gc.lockTimeOut property.

-transactionPriority n Specifies the transaction priority associated with
transactions started by the tool. The Server uses
this specification when it must determine which
transaction must be the victim in a deadlock. This
number is intentionally low so that the garbage
collection transaction is the deadlock victim of
choice. The default is 0. This is identical to the
COM.odi.gc.transactionPriority property.
378 ObjectStore Java API User Guide

Chapter 13: Tools Reference
The name of the garbage collection utility is osgc and not osjgc
because this tool works on databases created with the C++
interface to ObjectStore, as well as databases created with the Java
interface to ObjectStore.

See also Running osgc on C++ Databases or Segments on page 84.

-displayGarbage level Displays information about the candidates for
garbage collection instead of actually destroying
the candidates. The level you specify determines
the amount of information the tool displays. 1 lists
the number of objects per segment that would be
destroyed. 2 is not currently supported. 3 lists the
location of each GC candidate. 4 lists the roots of
garbage graphs. Level 4 can require intensive
computations.

-statistics Displays statistics for the garbage collection
operation. This includes the total number of
reachable objects and the total number of garbage
objects.

Option Description
Release 3.0 379

osjbrowsedb: Browsing a Database
osjbrowsedb: Browsing a Database

This release includes a beta version of a database browser. For
information about how to use the browser, see the browser.htm
file in the doc directory of your ObjectStore installation directory.
380 ObjectStore Java API User Guide

Chapter 13: Tools Reference
osjcfp: Running the Postprocessor

To make classes persistence-capable, compile the source files and
then run the postprocessor on the resulting class files. You must
run the postprocessor on all class files in a batch at the same time.
The postprocessor can accept a command line that intersperses
file names, options, and input file specifications. Complete
information about the postprocessor is in Chapter 8,
Automatically Generating Persistence-Capable Classes, on
page 235.

The command format is

osjcfp -dest destination_dir file_name [file_name...] [options]

The following table describes the options you can specify.

Option Description

@input_file Causes the contents of the named input file to replace this
argument in the command line. The postprocessor does this
before any other argument processing. You can specify this
option multiple times on one command line to include multiple
files. You cannot nest this option. That is, the postprocessor does
not expand this argument if it appears in an input file.

{ -a | -arraydims }
num_array_dimensions

Specifies the maximum number of dimensions that ObjectStore
allows for persistent arrays of objects whose classes are
annotated during this execution of the postprocessor. If you do
not specify this option, the default is three dimensions.

{ -cis | -classinfosuffix }
suffix_string

Specifies the suffix that the postprocessor adds to the name of
the ClassInfo subclass that the postprocessor generates for each
class it makes persistence-capable. By default, the suffix is
ClassInfo. This is useful when you need to limit the number of
characters in file names. For all batches in an application, you
must specify the same suffix if you do not use the default.

{ -cpath | -classpath }
class_path

Specifies the path by which to locate class files for
postprocessing. If you specify this option, ObjectStore uses it in
place of the CLASSPATH environment variable. The -classpath
option does not affect the class path used for the execution of the
postprocessor.
Release 3.0 381

osjcfp: Running the Postprocessor
{ -cc | -copyclass } Copies classes to the destination directory without annotating
them. This option applies to class names, .class files, .jar files,
and .zip files that you specify on the command line after the
-copyclass option and before the next -persistcapable or
-persistaware option or the end of the command line. This option
is useful when you want nonpersistent classes or classes that
have already been annotated to be in the same directory as
persistence-capable or persistence-aware classes being created.

If you specify the -persistaware or -persistcapable option for any
file for which you also specify the -copyclass option, the
postprocessor ignores the -copyclass option for that file.

If you specify the -translatepackage option and the copyclass
option, the postprocessor modifies the class to accommodate the
new package name.

{ -d | -dest } destination_dir This option is required. The postprocessor uses the directory
you specify for destination_dir as the root for locating the
annotated files. The postprocessor places each class file it
operates on in the package-appropriate subdirectory of the
destination directory, as though the destination directory were
in your class path.

If the destination directory specification would cause the
postprocessor to overwrite an original file, and you did not
specify the -inplace option, the postprocessor reports an error
and terminates without producing any output.

{ -f | -force } Forces the postprocessor to overwrite existing annotated .class
and ClassInfo files.

-hashcode class_name Causes the postprocessor to add a persistent hashCode() method
to the specified class. You typically use this option with the
-nodefaulthashcode option. If you specify this option for a class
for which you explicitly defined a hashCode() method, the
postprocessor reports an error.

-includesummary
inc_class_name

Instructs the postprocessor to include the specified summary in
the new summary it creates. It does not matter whether or not the
postprocessor is also annotating any classes. Replace inc_class_
name with the name of a file generated by a previous execution of
the postprocessor with the -summary option. You must know the
name of the generated file. If you did not postprocess the library
yourself, you must get the name of the generated class from the
library vendor. When you specify the -includesummary option,
you must also specify the -summary option.

Option Description
382 ObjectStore Java API User Guide

Chapter 13: Tools Reference
{ -index | -indexablefield }
field

Marks a field as indexable for a peer (COM.odi.coll) collection.
This option applies only to the field that immediately follows it.
You must specify a fully qualified field, for example,
COM.odi.demo.people.name. You can specify this option
multiple times. This option does not apply to utility
(COModi.util) collections.

This option is useful because it allows a query to run faster. The
postprocessor does not actually add the index. You can add a
persistent index with a call to the API at run time. When the
index is present, queries that use the specified field are faster.

Suppose you declare a field to be indexable and then you change
the value of that field. Performance is slightly slower than if the
field were not indexable. This is true for any object of the class,
whether or not the object is in a collection.

Now suppose an object with an indexable field is in a collection
and the collection has an index on the indexable field. If you
change the value of the field, performance is slightly slower than
when the object is not in a collection. The extra time is needed to
update the index.

It is possible for an object to belong to many collections. Each
collection can have an index on a particular field. If you change
the value of that field, ObjectStore must update each index and
the performance penalty is greater.

If a class has any indexable fields, every instance of the class is
larger by three 32-bit words in the database.

-inplace Causes the postprocessor to annotate standalone files (files that
are not in .zip files or .jar files) in place rather than writing the
annotated file in the destination directory. When the
postprocessor annotates a class in place, it overwrites the
original class files with the annotated class files, and writes the
ClassInfo subclass to the same directory as the persistence-
capable class. If a class originates in a .zip file or .jar file, the
postprocessor writes the annotated class and its corresponding
ClassInfo subclass to the destination directory.

Do not use this option when you are doing iterative
development. During development, a separate output directory
avoid errors and supports debugging.

When you specify the -inplace option, you must still specify a
destination directory, but the postprocessor ignores it.

Option Description
Release 3.0 383

osjcfp: Running the Postprocessor
{ -it | -ignoretransient }
field_name

Instructs the postprocessor to ignore the transient attribute of
the specified field and treat the field as a persistence-capable
field. You must specify a fully qualified field name. The field is
treated as persistence-capable only for the purposes of
postprocessing. This option is useful when a persistence-capable
class you are defining inherits from a class that includes a
transient field. If you do not specify this option for a transient
field, the postprocessor ignores the field, which can cause
problems if you want to use the field.

-modifyjava Allows the postprocessor to modify classes in standard Java
packages. The default is that the postprocessor does not modify
standard Java classes.

{ -naf | -noannotatefield }
qualified_field_name

Prevents access to the specified field from causing fetch() and
dirty() calls on the containing object. This is useful for transient
fields when you access them outside a transaction. Normally,
access to a transient field causes fetch() or dirty() to be called to
allow the postInitializeContents() and preFlushContents()
methods to convert between persistent and transient state.

-noarrayopt Disables optimization of fetch() and dirty() calls for array objects
in looping constructs. This causes osjcfp to insert the calls to
fetch() or dirty() in every iteration rather than only in the first
loop iteration.

{-nodefaulthashcode
| -ndhc }

Prevents the postprocessor from automatically adding a
hashCode() method to a class, except for classes for which you
explicitly specify the -hashcode option. If you specify this
option, it is your responsibility to ensure that there is a suitable
hashCode() method for classes that are used as keys in persistent
hash tables.

-noinitializeropt Disables optimization of fetch() and dirty() calls in constructors.
Specify this option when you want the postprocessor to perform
full annotation of constructors. Full annotation means that if the
object becomes persistent during constructor execution,
modifications to the object are correctly handled. By default, the
postprocessor does not fully annotate constructors to handle
changes in the newly constructed object. Typically, this is the
desired behavior.

If your application inserts objects into ObjectStore collections
during construction of the objects being inserted, you must
specify the -noinitializeropt option. Doing so avoids errors in the
handling of modifications to the newly constructed objects.

Option Description
384 ObjectStore Java API User Guide

Chapter 13: Tools Reference
-noopt Disables the three optimizations that are disabled by the
-noarrayopt, -noinitializeropt, and -nothisopt options. The -noopt
option is a shortcut you can use when you want to specify all
three options. You might want to specify this option when the
optimizations are preventing the postprocessor from inserting
required fetch() and dirty() calls in your classes.

-nothisopt Disables optimization of fetch() and dirty() calls for access to
fields relative to this in nonstatic member methods. This causes
osjcfp to insert a fetch() or dirty() call for each access to a field in
this.

-nowrite Performs process and error checking but does not actually
annotate class files. This option allows a test run of the
postprocessor. You use it to determine whether or not all
specified classes are accessible, whether or not additional
options are needed, and if you specify -v (verbose) you can see
where the resulting files would be located.

-optimizeclassinfo | -oci Prevents the postprocessor from generating xxxClassInfo.java
files for public and abstract classes. This reduces the disk
footprint and application startup times, since there are fewer
classes to load when the application starts. When the
postprocessor does not create a ClassInfo class, it uses the Java
reflection API instead. Some of the reflection API is subject to
security and access constraints that are enforced to varying
degrees depending on the version of the JDK and the platform.
In other words, you can use the -optimizeclassinfo option if the
Java environment in which you intend to run the application
does not restrict the use of the reflection API.

{ -pa | -persistaware } Causes subsequent .class files, .jar files, and .zip files on the
command line to be persistence-aware. This means that
instances of the classes can operate on persistent objects but
cannot be persistent. The postprocessor annotates persistence-
aware classes so that there are calls to ObjectStore.fetch() and
ObjectStore.dirty() where needed during operations on
potentially persistent objects and arrays that might be used by
the persistence-aware class. This option applies to class names,
.class files, .jar files, and .zip files that you specify on the
command line after the -persistaware option and before the next
-persistcapable or -copyclass option or the end of the command
line. In other words, the -persistcapable option or the -copyclass
option alters this mode. The -pc option is in effect by default.

Option Description
Release 3.0 385

osjcfp: Running the Postprocessor
{ -pc | -persistcapable } Causes subsequent .class files, .jar files, and .zip files on the
command line to be persistence-capable. This option applies to
class names, .class files, .jar files, and .zip files that you specify
on the command line after the -persistcapable option and before
the next -persistaware or -copyclass option or the end of the
command line. The -pa (persistence-aware) option or the
-copyclass option alters this mode. The -pc option is in effect by
default.

{ -q | -quiet } Causes the postprocessor to refrain from displaying warnings. A
warning message provides information about something that
the postprocessor recognizes as a possible problem, but cannot
confirm as actually being a problem. This option cancels a
previous -verbose option, if you specified one.

{ -qc | -quietclass }
class_name

Causes the postprocessor to refrain from displaying warnings
for the specified class. A warning message provides information
about something that the postprocessor recognizes as a possible
problem, but cannot confirm as actually being a problem. This
option applies only to the name that immediately follows it.
Specify a fully qualified class name. If the postprocessor is
renaming the class, it does not matter whether you specify the
old name or the new name. If you specify -verbose in the same
command, this option takes precedence for the specified class.

{ -qf | -quietfield }
member_name

Causes the postprocessor to refrain from displaying warnings
for the specified class field. A warning message provides
information about something that the postprocessor recognizes
as a possible problem, but cannot confirm as actually being a
problem. This option applies only to the name that immediately
follows it. Specify a fully qualified class field name. If the
postprocessor is renaming the class, it does not matter whether
you specify the old name or the new name. If you specify
-verbose in the same command, this option takes precedence for
the specified class field.

Option Description
386 ObjectStore Java API User Guide

Chapter 13: Tools Reference
-summary gen_class_name Causes the postprocessor to generate a class with the name gen_
class_name. This generated class extends the
COM.odi.PersistentTypeSummary class. The gen_class_
name.getPersistentClasses() method returns a list of the classes
that were made persistence-capable in this execution of the
postprocessor. The generated class has a no-argument
constructor that passes arrays to the PersistentTypeSummary
class constructor. To identify persistence-capable classes in
libraries and include them in this summary, specify the
-includesummary option.

{ -tf | -transientfield }
qualified_field_name

Causes the postprocessor to treat the specified field as though it
has a transient modifier, even if it does not. This is typically
useful when a field should not be stored in a database, but it must
be available for object serialization.

{ -tp | -translatepackage }
orig_pkg_name
new_pkg_name

Renames classes that belong to orig_pkg_name so that they
belong to new_pkg_name. The original .class files remain in the
original location and the postprocessor does not annotate them.
For example, suppose the postprocessor makes a class named
a.b.C persistent with -tp a.b a.b.x. The persistent class has the
name a.b.x.C.

A package specification of "." implies the default unnamed
package. For example, the option -tp . persist causes the
unpackaged class name C to be renamed persist.C.

orig_pkg_name must exactly match the package name of the class
being annotated. For example, for a file named a.c.D, a
specification of -tp a a.b does not translate the package name.
The package of a.c.D is a.c, not a.

The postprocessor changes the package name of all classes in the
original package that it can locate through the CLASSPATH
environment variable or, if it is specified, the -classpath option.

{ -v | -verbose } Causes the postprocessor to write descriptions of its actions to
standard output. This option cancels a previous -quiet option, if
you specified one.

Option Description
Release 3.0 387

osjcfp: Running the Postprocessor
You can specify any number of class names, .class files, .jar files,
or .zip files on the command line. The postprocessor recognizes
files as follows:

Because the postprocessor recognizes name.class as well as name,
you can run a command such as

osjcfp -dest osjcfpout *.class

You do not need to derive qualified class names from the file
paths.

File Name Recognized As

name.class Explicit file name for a class file.

name.zip Explicit file name for a class .zip file. The
postprocessor processes all .class files in the .zip
file according to the persistence mode that is in
effect when the postprocessor encounters the name
of the .zip file. The postprocessor places each file
from the .zip file in the package-relative
subdirectory of the destination directory. A .zip file
allows the postprocessor to process multiple files
without the specification of each one on the
command line. Also, you can simply specify a .zip
file. You do not need to unzip the file before
processing the .class files.

name.jar Explicit file name for a class .jar file. The
postprocessor treats the file the same way that it
treats a .zip file.

name Qualified class name delimited by ".". The
postprocessor uses the CLASSPATH environment
variable or the specification for the -classpath
option to locate the .class file, which can be in a .zip
file or .jar file.
388 ObjectStore Java API User Guide

Chapter 13: Tools Reference
osjcgen: Generating Peer Classes

To map C++ classes to Java peer classes, run the peer generator
tool (osjcgen).

Additional information about the peer class generator is in the
book Developing ObjectStore Java Applications That Access C++.

Description of Command Line Format

The command line format appears below. It shows the different
components in the command line on different lines only for
clarity.

osjcgen -package destination_package
-native_interface interface_type
-schema mapping_schema_database
-classdir target_dir -libdir target_dir [options] class_list

-package
destination_package

Identifies the package in which the peer generator creates peer
classes. Required.

-native_inteface
native_interface

Specifies the virtual machine interface for which the tool should
generate C++ glue code. Specify jni for the Sun VM or ms_raw
for the Microsoft VM.

-schema
mapping_schema_database

Identifies the mapping schema database from which the tool
extracts type definitions. Required.

You must have specified the -store_member_functions (-smf) and
-store_function_parameters (-sfp) options when you ran ossg to
create this schema. If you did not, the tool cannot define peer
methods. These options cause additional information to be
stored in the schema database. osjcgen needs this information to
correctly process member functions.

The mapping schema database you specify is not the application
schema database that the application uses.

If the C++ code for which you want to define peer classes does
not define methods, you need not specify the -smf and -sfp
options when you run ossg.
Release 3.0 389

osjcgen: Generating Peer Classes
Description of Additional Options

The following table describes the additional options you can
specify on the osjcgen command line. These options can precede,
follow, or be interspersed with the required osjcgen options.

-classdir target_dir Specifies the directory relative to which the tool writes the peer
classes and other generated Java files. For example, if the
specified destination_package is MyPkg and the specified target_dir
is MyDir, the tool creates the peer classes in MyDir/MyPkg. The
directory you specify must exist. If the directory you specify
does not contain a subdirectory with the name of the package,
the tool creates this subdirectory. Required.

-libdir target_dir Specifies the directory in which the tool creates the C++ files. In
the directory you specify, the tool creates a directory that has the
name you specify for destination_package. The tool places the
C++ files in this package subdirectory of the directory you
specify with the -libdir option. The directory you specify must
exist. Required.

options Any of the options described in the next table. Optional.

class_list Lists the names of the classes and structs for which you want the
tool to generate peer classes. The tool places each peer class in
the specified destination package. You can intersperse class
name specifications with the options described in the next table.
Required.

Do not specify enums. If a peer method accepts or returns an
enum, the tool automatically generates the peer class for the
enum.

-boolean typedef_name Indicates that the specified typedef name identifies a boolean
data type. You can specify this option multiple times.

-classpath class_path Instructs the tool to use the class_path you specify rather than
the setting for the CLASSPATH environment variable. When you
specify this option, it affects only the lookup of classes by the
peer generator tool. It has no effect on the execution of the peer
generator tool itself.

-full Turns off the -leaf option. The tool generates complete peer
classes for types specified subsequently. The -full option is in
effect by default.
390 ObjectStore Java API User Guide

Chapter 13: Tools Reference
-import package Specifies a package name in which to look for a peer class before
creating it. For example, suppose you want to generate a peer
class for the C++ class X. The tool looks in the package specified
with the -import option for a Java version of X. If such a version
is found, the tool does not generate a new peer class for X. The
application can use the existing peer class. You can specify this
option multiple times.

@input_file You can use the @input_file option to specify a file that contains
arguments for the peer generator tool. The tool inserts the
contents of the specified file in the command line before it begins
to execute the command line. You can specify this option
multiple times. An input file cannot itself include the @input_file
option. If it does, the tool treats it as the name of a class, which is
not found.

-leaf Instructs the tool to generate a minimal definition for the peer
classes of types specified after this option and before any -full
option. When the tool generates a leaf peer class, the application
cannot access C++ data or function members or any C++ base
classes. The tool defines the Java peer class to inherit directly
from CPlusPlus. It does not copy the inheritance structure from
the C++ class. This option is useful when you want to prune a
type graph to reduce the size of the interface code.

-map C++_name
Java_peer_name

Allows you to specify the name of the Java peer class that you
want to identify a particular C++ class. When you specify this
option, you need not rely on the default name mapping rules.
This option is particularly useful for naming template classes.
You can specify the -map option as many times as you need to.
Follow each specification with

1 The name of a C++ class. You must also specify the name of
the C++ class in the list of classes for which you want to
generate peer classes.

2 The name of the Java peer class that you want to represent the
C++ class. This can be a fully qualified class name or an
unqualified class name. If it is unqualified, the peer generator
tool places the Java peer class in the package you specify on
the command line.
Release 3.0 391

osjcgen: Generating Peer Classes
-map_existing
C++_name
Java_peer_name

Allows you to specify the name of an existing Java peer class
that you want to identify a particular C++ class. This option is
the same as the -map option, except that the Java peer class
already exists or will exist. Consequently, the peer generator
tool does not generate any peer code for the Java peer type. In a
separate run of the peer generator tool, or manually, you must
create the Java peer type. See the documentation for -map for
additional details.

-nosynchronize Turns off automatic synchronization of peer methods. If you
specify this option, your application is responsible for ensuring
that only one thread at a time per session is accessing
ObjectStore. Failure to prevent concurrent access to OSJI and
peer method entry points can cause OSJI to fail.

-oldtemplates Causes the peer generator to map some C++ characters to Java
equivalents used in previous releases of ObjectStore. In
Developing ObjectStore Java Applications That Access C++, Chapter
2, Rules for Template Name Flattening shows which C++
characters are invalid in Java and which Java equivalents they
are mapped to.

-synchronize Turns on automatic synchronization of peer methods. This is the
default.

-suppress
package.class.method

Suppresses generation of the specified peer method. You should
not need to specify this option frequently. However, if
generated code for a particular method causes a problem for the
compiler, this option allows you to prevent generation of that
code.

You must specify the package name, the class name, and the
method name. Use this option in the following manner:

1 Run osjcgen without specifying this option.

2 Try to compile the generated code.

A particular peer method causes a problem.

3 Run osjcgen again and specify the same classes, but suppress
generation of the peer method that causes the problem.

4 Determine how to work around the lack of the suppressed
peer method.

If it is not possible to work around the method that is causing the
problem, you must redefine the C++ method into a form that
does not cause a problem when it is mapped to a peer method.
392 ObjectStore Java API User Guide

Chapter 13: Tools Reference
Example of Running the Peer Generator Tool

The following example generates a Java peer class for the CPerson
class. If it does not already exist, the tool creates the MyPkg
subdirectory in the MyDir directory. The tool puts the Java peer
class in the MyPkg package/subdirectory. The mapping schema
database that the tool uses to generate the peer class is
CPerson.jadb. The tool places the generated C++ files (and the
generated Java files) in the MyDir/MyPkg directory.

osjcgen -package MyPkg
-native_interface jni
-schema CPerson.jadb
-classdir MyDir

- libdir MyDir
CPerson

If you specify

-libdir SomeOtherDir

the tool places the generated Java files in MyDir/MyPkg and the
generated C++ files in SomeOtherDir/MyPkg.

Caution If the tool generates files that have the same pathnames as your
C++ source files, the tool overwrites the C++ source files without
warning you. This can happen if you create your C++ source files
in the package and directory that you specify with the -package,
-classdir, and/or -libdir options to osjcgen.

For example, suppose you have the CPerson.cc C++ file in the
/MyDir/MyPkg directory. When you run osjcgen, you specify the
following on one line:

osjcgen
-package MyPkg
-native_inteface jni
-schema CPerson.jadb
-classdir MyDir
-libdir MyDir

CPerson

The peer generator tool generates these files:

/MyDir/MyPkg/CPerson.java
/MyDir/MyPkg/CPersonU.java
/MyDir/MyPkg/CPersonClassInfo.java
/MyDir/MyPkg/CPerson.cc
/MyDir/MyPkg/CPersonU.cc
Release 3.0 393

osjcgen: Generating Peer Classes
An explanation of these files appears in Developing ObjectStore Java
Applications That Access C++, Chapter 2, Overview of Tool Output.
But as you can see, the tool would overwrite your CPerson.cc
source file. On Solaris, you can work around this by specifying
.CC instead of .cc in the C++ file name. On Windows, you can
work around this by specifying .cpp instead of .cc in the C++ file
name. Alternatively, you can either specify different directories
for -classdir and/or -libdir, or you must not create C++ source files
in the Java package subdirectory.
394 ObjectStore Java API User Guide

Chapter 13: Tools Reference
osjcheckdb: Checking References in a Database

The osjcheckdb utility or the Database.check() method checks the
references in a database. This tool scans a database and checks that
there are no references to destroyed objects. You can fix references
to destroyed objects by finding the objects that contain the
dangling references and overwriting the invalid references with
something else, such as a null value. In addition to finding
references to destroyed objects, the tool performs various
consistency checks on the database.

If the tool does not find any problems, it does not produce any
output.

Check paths Before you invoke osjcheckdb from the command line, ensure that
tools.zip or tools.jar is in your CLASSPATH variable. Also ensure
that the distribution bin directory that contains osjcheckdb is in
your PATH variable. The format for invoking this tool from the
command line is

Command line osjcheckdb database_name1.odb ...

You can specify one or more databases. Separate multiple
specifications with a space. If osjcheckdb cannot check a database
that you specify, it displays a message about the inaccessible
database and continues to the next database.

Be sure to specify the name of the .odb file of the database.

The tool displays messages about any errors that it finds.
Release 3.0 395

osjcheckdb: Checking References in a Database
API The function signature for invoking the API for this tool is

Database.check(java.io.PrintStream)

When ObjectStore executes this method, it operates on the
committed contents of the database and on any changes that have
been saved as a result of ObjectStore.evict() or
ObjectStore.evictAll(). ObjectStore does not operate on any
changes that have been made but not committed or evicted.

The method writes any errors it finds to the argument stream. It
also returns a Boolean value, which is true if the references are
valid and false if there are any bad references.

The osjgcdb tool requires

• The tools.zip or tools.jar in your CLASSPATH environment
variable.

• The ObjectStore bin directory in your PATH environment
variable.
396 ObjectStore Java API User Guide

Chapter 13: Tools Reference
osjshowdb: Displaying Information About a
Database

The osjshowdb utility displays information about one or more
databases. This utility is useful when you want to know how
many and what types of objects are in a database. You can use this
utility to verify the general contents of the database.

This utility displays the following information:

• Name of the database

• Size of each segment

• Name and number of each type of object in the database

• Total size in bytes occupied on the disk by each type of object

• Number of destroyed objects

-showObjs option If you specify the -showObjs option, the osjshowdb utility also
displays the following information for each object:

• oid, which is an internal representation of its location in the
database

• Type

• Number of bytes it occupies on the disk

• If it is an array, the number of elements in the array

-showData option Specify the -showData option with osjshowdb to display string
values as well as the references an object contains. When you
specify the -showData option, it implies the -showObjs option.

Path variables Before you invoke osjshowdb from the command line, ensure that
tools.zip or tools.jar is in your CLASSPATH environment variable.
Also ensure that the distribution bin directory that contains
osjshowdb is in your PATH variable.
Release 3.0 397

osjshowdb: Displaying Information About a Database
Command line To execute the osjshowdb utility, use this format:

osjshowdb [-showData] [-showObjs] db1.odb [db2.odb]...

You can specify one or more databases.

When the utility displays java.lang.String objects, the number of
elements is the number of characters in the string. The total bytes
indicates the number of bytes that the data occupies on the disk.

There are some internal structures in the database that are not
included in the calculations performed by the osjshowdb utility.
Consequently, the total number of bytes as indicated in the output
from osjshowdb is never equal to the actual size of a segment.

API The API for the osjshowdb utility is Database.show().

When ObjectStore executes this method, it operates on the
committed contents of the database and on any changes that have
been saved as a result of ObjectStore.evict() or
ObjectStore.evictAll(). ObjectStore does not operate on any
changes that have been made but not committed or evicted.

Sample output
customers.odb Here is some sample output from the osjshowdb utility for the

customers and problems databases produced by the tracker demo.

osjshowdb -showObjs customers.odb
Name: customers.odb

There are 2 roots:

 Name: _DMA_Database_header Type: _DMSS_Database_header
 Name: customers Type: COM.odi.coll.imp.DictPeer_String

Destroyed Objects: 4

Segment: 0
Size: 48128 (47 Kbytes)

Total
OID Data Offset Elements Bytes Type

Count Tot Size Type
(bytes)

Segment: 2
Size: 8192 (8 Kbytes)

 Total
OID Data Offset Elements Bytes Type

<1|2|256> 256 24 COM.odi.coll.imp.DictPeer_String
398 ObjectStore Java API User Guide

Chapter 13: Tools Reference
<1|2|452> 452 18 32 java.lang.String
<1|2|520> 520 32 396 java.lang.Object[]
<1|2|928> 928 16 COM.odi.util.OSVectorEntry
<1|2|944> 944 1 20 COM.odi.util.OSVectorEntry[]
<1|2|1008> 1008 17 32 java.lang.String
<1|2|1040> 1040 36 COM.odi.demo.tracker.Customer
<1|2|1076> 1076 32 396 java.lang.Object[]
<1|2|1480> 1480 16 COM.odi.util.OSVectorEntry
<1|2|1496> 1496 1 20 COM.odi.util.OSVectorEntry[]
<1|2|1528> 1528 44 60 java.lang.String
<1|2|1588> 1588 36 COM.odi.demo.tracker.Customer

Count Tot Size Type
(bytes)

1 24 COM.odi.coll.imp.DictPeer_String
2 56 COM.odi.demo.tracker.Customer
2 56 java.lang.String

Segment: 4
Size: 4096 (4 Kbytes)

 Total
OID Data Offset Elements Bytes Type

Count Tot Size Type
(bytes)
Release 3.0 399

osjshowdb: Displaying Information About a Database
problems.odb osjshowdb -showObjs problems.odb
Name: problems.odb

There are 3 roots:

 Name: _DMA_Database_header Type: _DMSS_Database_header
 Name: problems Type: COM.odi.coll.imp.DictPeer_String
 Name: reportSegmentId Type: java.lang.Integer

Segment: 0
Size: 54272 (53 Kbytes)

 Total
OID Data Offset Elements Bytes Type

Count Tot Size Type
(bytes)

Segment: 2
Size: 8192 (8 Kbytes)

 Total
OID Data Offset Elements Bytes Type

<2|2|256> 256 24 COM.odi.coll.imp.DictPeer_String
<2|2|452> 452 18 32 java.lang.String
<2|2|484> 484 36 COM.odi.demo.tracker.Problem
<2|2|520> 520 32 396 java.lang.Object[]
<2|2|928> 928 16 COM.odi.util.OSVectorEntry
<2|2|944> 944 1 20 COM.odi.util.OSVectorEntry[]
<2|2|1008> 1008 17 32 java.lang.String
<2|2|1040> 1040 36 COM.odi.demo.tracker.Problem
<2|2|1076> 1076 32 396 java.lang.Object[]
<2|2|1480> 1480 16 COM.odi.util.OSVectorEntry
<2|2|1588> 1588 36 COM.odi.demo.tracker.Problem

Count Tot Size Type
(bytes)

1 24 COM.odi.coll.imp.DictPeer_String
3 108 COM.odi.demo.tracker.Problem
2 64 COM.odi.util.OSVector
2 32 COM.odi.util.OSVectorEntry
2 40 COM.odi.util.OSVectorEntry[]
3 124 java.lang.String

Segment: 4
Size: 4608 (5 Kbytes)

Total
OID Data Offset Elements Bytes Type

<1|4|1616> 1616 8 java.lang.Integer

Count Tot Size Type
(bytes)

1 8 java.lang.Integer
400 ObjectStore Java API User Guide

Chapter 13: Tools Reference
Segment: 6
Size: 9216 (9 Kbytes)

Total
OID Data Offset Elements Bytes Type

<1|6|288> 288 38 52 java.lang.String
<1|6|340> 340 20 COM.odi.demo.tracker.Report
<1|6|360> 360 32 396 java.lang.Object[]
<1|6|768> 768 16 COM.odi.util.OSVectorEntry
<1|6|784> 784 1 20 COM.odi.util.OSVectorEntry[]
<1|6|816> 816 100 116 java.lang.String
<1|6|932> 932 20 COM.odi.demo.tracker.Report
<1|6|952> 952 25 40 java.lang.String
<1|6|992> 992 20 COM.odi.demo.tracker.Report
<1|6|1012> 1012 12 28 java.lang.String
<1|6|1040> 1040 20 COM.odi.demo.tracker.Report
<1|6|1092> 1092 78 92 java.lang.String
<1|6|1184> 1184 20 COM.odi.demo.tracker.Report
<1|6|1204> 1204 32 396 java.lang.Object[]
<1|6|1608> 1608 16 COM.odi.util.OSVectorEntry
<1|6|1624> 1624 20 COM.odi.util.OSVectorEntry[]
<1|6|1656> 1656 80 96 java.lang.String
<1|6|1752> 1752 20 COM.odi.demo.tracker.Report
<1|6|1772> 1772 56 72 java.lang.String
<1|6|1844> 1844 20 COM.odi.demo.tracker.Report
<1|6|1864> 1864 76 92 java.lang.String
<1|6|1956> 1956 20 COM.odi.demo.tracker.Report
<1|6|2008> 2008 62 76 java.lang.String
<1|6|2084> 2084 20 COM.odi.demo.tracker.Report
<1|6|2104> 2104 32 396 java.lang.Object[]
<1|6|2512> 2512 16 COM.odi.util.OSVectorEntry
<1|6|2528> 2528 1 20 COM.odi.util.OSVectorEntry[]
<1|6|2560> 2560 109 124 java.lang.String
<1|6|2684> 2684 20 COM.odi.demo.tracker.Report

Count Tot Size Type
(bytes)

10 200 COM.odi.demo.tracker.Report
3 96 COM.odi.util.OSVector
3 48 COM.odi.util.OSVectorEntry
3 60 COM.odi.util.OSVectorEntry[]
3 1188 java.lang.Object[]

10 788 java.lang.String
Release 3.0 401

osjuphsh: Upgrading String Hash Codes in Databases
osjuphsh: Upgrading String Hash Codes in
Databases

The osjuphsh utility is the command line utility for upgrading
databases to use the correct String hash code. Invoke this tool with
the following format:

osjuphsh [options] database_name

For example:

osjuphsh db.odb

Execution of this command is the same operation as a call to the
COM.odi.Upgrade.upgradeDatabaseStringHash() method on the
db.odb database with the upgradeObjects argument set to true and
the multipleTransactions argument set to false.

The options you can specify are:

Option Description

-skipobjects Specifies that the database contains no objects
that depend on String.hashCode().

-multitrans Specifies that each object should be upgraded in a
separate transaction.

-verbose Specifies that verbose information about the
upgrade should be displayed. This includes
displaying information about databases that do
not require upgrading.
402 ObjectStore Java API User Guide

Chapter 13: Tools Reference
osjversion: Obtaining ObjectStore Version
Information

You can use the osjversion utility to display the version number
and the build date for the version of ObjectStore you are running.
This command is in the bin subdirectory of the installation
directory. You must include bin in your path to run osjversion. For
example:

% osjversion

Java interface Release 3.0 to ObjectStore Release 5.1, 98-09-22
10:07:16 on buildhost

%

This command is useful when you want to ensure that you have
the right version in your path.

You can also run the unzip -z command against any ObjectStore
.zip file. Doing so allows you to see what version of ObjectStore
the .zip file contains. For example:

% unzip -z osji.zip

Archive: osji.zip Java interface 3.0 to ObjectStore Release 5.1.
98-04-22 10:07:56 on buildhost,

Copyright 1996, 1997, 1998 Object Design, Inc. All rights reserved.

%

The osjversion utility checks what is available through the PATH
environment variable. To check what is available through the
CLASSPATH variable, you can write a program like the following.

import COM.odi.ObjectStore;
class OSVersion {

public static void main (String[] args) {
ObjectStore.initialize(null,null);
System.out.println(ObjectStore.releaseName());

}
}

Release 3.0 403

osjversion: Obtaining ObjectStore Version Information
404 ObjectStore Java API User Guide

Appendix
Packaging Your
Application for End Users

When you package your application for delivery to end users, the
package must include two class files for each persistence-capable
class in your application:

• The annotated class file

• The corresponding ClassInfo class file

For example, if you have a persistence-capable class called Person,
in the App package, you must provide users with

• The annotated App\Person.class file

• The App\PersonClassInfo.class file

There is no corresponding ClassInfo file for persistence-capable
interfaces.

You can zip these files with the rest of your package. You do not
need to send the unannotated version of your persistence-capable
classes. The annotated version can be used in a transient context.

For persistence-aware classes, you must provide the annotated
class file. There is no corresponding ClassInfo class file.

Library providers If you are providing a library that contains persistence-capable
classes, you must also provide the PersistentTypeSummary object
that identifies those classes. ObjectStore uses the summary object
to install schema information for your library at run time. This
allows users to install a new version of a library without having to
rebuild the application type summary.
Release 3.0 405

406 ObjectStore Java API User Guide

Glossary

active persistent
object

An active persistent object starts as an exact copy of the object that
it represents in the database. ObjectStore initializes a hollow
object so that it becomes an active object. This happens when an
application calls the ObjectStore.fetch() or ObjectStore.dirty()
method. If an application calls the ObjectStore.dirty() method (as
opposed to the ObjectStore.fetch() method) on a hollow object, the
resulting active object can be modified.

Consequently, an active object is not necessarily identical to the
object in the database that it represents. An application can read
or update an active persistent object; a persistent object must be
active for an application to read or update it.

batch A batch is a set of files that must be postprocessed together. Often,
this is all the files in your application. In more complex
applications, there might be multiple batches that each contain a
library and a batch of files that you write, which reference the
libraries.

database Persistent storage is organized into databases. Before a persistent
object can be created, the database in which it is to be stored must
exist, and this database must be opened by the process performing
the creation. The database must also be opened by any processes
accessing the object. A single application can open several
databases at once. A single database can be accessed by many
applications at once.
Release 3.0 407

Glossary
deadlock A simple deadlock occurs when one transaction holds a lock on a
data item that another transaction is waiting to access, while at the
same time the second transaction holds a lock on a data item that
the first transaction is waiting to access. Neither process can
proceed until the other does. ObjectStore detects and breaks
deadlocks by aborting one of the transactions involved.

hollow persistent
object

A hollow persistent object contains fields that are identical to the
fields of the object in the database that the persistent object
represents, but the fields have default values.

persistence-aware If the methods of a class can operate on persistent objects but an
instance of the class cannot itself be stored in a database, the class
is persistence-aware.

When a method accesses fields in a persistent object, ObjectStore
checks to ensure that the data has been read from the database.
This checking is done by calls to the ObjectStore.fetch()
andObjectStore.dirty() methods. A persistence-aware class
includes the annotations that call the fetch() and dirty() methods. It
does not include the other annotations required for a class to be
persistence-capable. Normally, you run the class file
postprocessor to annotate a class so that it is persistence-aware.
Occasionally, you manually annotate the class yourself.

persistence-capable A persistence-capable object has the capacity to be stored in a
database. If you can store the instances of a class in a database, the
class is persistence-capable and the instances of the class are
persistence-capable objects.

The definition of a persistence-capable class includes specific
annotations required by ObjectStore. After you compile class
definitions, you run the ObjectStore class file postprocessor on the
compiled classes to add the annotations that make the classes
persistence-capable.

Some Java-supplied classes are persistence-capable. Others are
not persistence-capable and cannot be made persistence-capable.
A third category of classes can be made persistence-capable, but
there are important issues to consider when you do so. Be sure to
read Java-Supplied Persistence-Capable Classes on page 360.
408 ObjectStore Java API User Guide

Glossary
persistent object A persistent object is a representation of an object that is stored in
a database.

After an application retrieves an object from the database, the
application works with the persistent object in the Java
environment. A persistent object always exists in one of three
states:

• Hollow

• Active

• Stale

session A session allows the use of the ObjectStore API. ObjectStore uses
the abstract COM.odi.Session class to represent sessions.

Your application must create a session. After a session is created,
it is an active session. A session remains active until your
application or ObjectStore terminates it. After a session is
terminated, it is never used again. You can, however, create a new
session.

A session consists of a set of persistent objects, and a set of
ObjectStore API objects, such as a Transaction, Databases, and
Segments.

In a single Java VM,

• PSE allows one session at a time.

• PSE Pro allows multiple concurrent sessions.

• ObjectStore allows one session at a time. In a future release,
ObjectStore will allow multiple sessions.

If you are using PSE or ObjectStore, separate Java virtual
machines can each run their own session at the same time. If you
are using PSE Pro, separate Java virtual machines can each run
multiple sessions at the same time. See How Sessions Keep
Threads Organized on page 28.
Release 3.0 409

Glossary
stale persistent object A stale persistent object is no longer valid. Its fields have default
values and it should not be used.

A persistent object might become stale after an application
commits or aborts a transaction in which the active or hollow
persistent object was accessible. When an application calls the
ObjectStore.destroy() method, the target of the destroy method
becomes stale.

An application must not try to read or update a stale object.

transitive persistence When an application commits a transaction, it stores in the
database any transient objects that can be transitively reached
from any persistent objects. This is the process of transitive
persistence.
410 ObjectStore Java API User Guide

Release 3.0
Index
A
AbortException 120
aborting transactions 120

default effects on persistent objects 179
setting default object state 171
setting objects to default state 171
specifying a particular object state 171

abstract classes 308
accessing persistent objects

committing transactions 153
default effects of methods 179
dirty() 294
evicting objects 162
fetch() 294
optimizing 280
procedure 137
root, obtaining 138
saving changes by committing

transaction 153
saving changes through eviction 162

active persistent objects
aborting transactions 172
committing transactions 157
default effects of methods 179
definition 12
evicting 166

adding thread to session 46
aggregations, very large 198

annotations
automatic 235
customizing 275
description 238
manual 289
superclass modifications 259
you must add 285

applicationName property 58
applications

complex, finding right class files 255
failure 4
required components 20

architecture 6
archive logging 2
-arraydims option 282
arrays

optimizations 384
passing 286

AuthenticationFailureException 60

B
bad command or file name error

message 263, 375
batch

definition 239
postprocessing two 240
postprocessor requirement 244

batch schema installation
411

Index
advantage 334
database, creating with 337
identifying application types 335
installing application types 338
introduction 333
procedure 334

-boolean option 390
BrokenServerException 120

C
C++ applications 2
C++ database garbage collection 84
Cache Manager description 6
cache size 58
cacheSize property 58
changing classes

schema evolution 86
checkpoint 325
Class could not be found error 246
class files

annotated
finding 254
locations 261
managing 252

applications, complex 255
compile unannotated 253
inner 251
nested 251
referring to persistent and transient

versions 271
ClassCastException troubleshooting 65
-classdir option 389
ClassInfo class

-classinfosuffix option 381
create() 297
getClassDescriptor() 297
getFields() 297
subclass, defining 295

-classinfosuffix option 381
ClassNotRegisteredException 237
CLASSPATH

alternatives 256
class files, locating 253
-classpath 247
requirements 243

-classpath option 381
clearContents()

manual annotations 293
postprocessor 275

client description 6
clustering 318
collections

adding indexes 223
advantages 201
alternative, selecting best 205
bags 195
built-in types, storing 233
choosing 205
comparison 205
creating 207
hash code requirements 231
implemented interfaces 193
inserting objects during

construction 265, 384
introduction 192
iterating 208
JDK1.2 hashCode() 194
lists 201
maps 206
navigating 208
OSHashBag 195
OSHashMap 195
OSHashSet 196
OSHashtable 197
OSTreeMap 198
OSTreeSet 199
OSVector 200
OSVectorList 201
postprocessing 194
postprocessor optimization 265
querying 210
relative size 205
412 ObjectStore Java API User Guide

Index
sets 196
third-party 234

COM.odi.applicationName property 58
COM.odi.cacheSize property 58
COM.odi.disableWeakReferences

property 59
COM.odi.gc.lockTimeOut property 83
COM.odi.gc.reachableObjects property 84
COM.odi.gc.reclaimedObjects property 84
COM.odi.gc.retries property 83
COM.odi.gc.retryInterval property 83
COM.odi.gc.transactionPriority

property 83
COM.odi.migrateUnexportedStrings

property 59
COM.odi.ObjectStore.library 60
COM.odi.product property 60
COM.odi.Session class 28
COM.odi.stringPoolSize property 64
COM.odi.trapUnregisteredType

property 65
COM.odi.user 60
COM.odi.util.query.Query class 211
committing transactions

after evicting objects 169
default effects on persistent objects 179
failures 117
introduction 116
RETAIN_HOLLOW 156
RETAIN_READONLY 157
RETAIN_STALE 154
RETAIN_UPDATE 160
saving changes 153
situations to avoid 130

concurrency control
access, preventing 328
batch schema installation 333
conflicts, handling 331
locking objects 328
multiversion 320

consistent state 124

constructors, postprocessor
optimization 265

cooperating threads 48
-copyclass option 248
copying

classes without annotating 248
databases 80

copying data among PSE, PSE Pro, and
ObjectStore databases 60

creating database roots 131
creating databases 68
creating external references 142
creating notifications 347
creating sessions 32

D
database

open types 75
Database class

description 68
identity 70

database roots
changing referred to object 134
creating 131, 132
destroying 134
how many 135
null values 133
primitive values 133

Database.close() 77
Database.create()

batch schema installation 337
default schema installation 69
example 69

Database.createRoot() 132
Database.createSegment() 72
Database.destroy() 95
Database.destroyRoot() 134
Database.evolveSchema() 88
Database.GC() 82
Database.getOpenMode() 97
Database.getPath() 97
Release 3.0 413

Index
Database.getSizeInBytes() 97
Database.isOpen() 96
Database.open() 74
Database.setRoot() 134
databases

closing 74
consistent state 124
copying 80
copying data among PSE, PSE Pro, and

ObjectStore 60
creating 69
creating roots 131
destroying 95
destroying objects 173
displaying information about 397
exporting objects 101
garbage collection 82
identity 77
information about, displaying 98
information about, obtaining 96
locking with acquireLock() 328
managing 67
moving 80
MVCC, open for 322
names 70
objects, migrating 99
objects, storing 128
open modes 79
open types 79
open? 96
opening 74
opens, automatic 79
pathname of 97
persistent garbage collection 82
platforms 68
read-only, open for? 97
references, checking 395
roots, how many 135
schema evolution 86
segments 72
size of 97

transient 73
update, open for? 97

dead objects 397
DeadlockException 120
deadlocks

aborting transactions 123
description 120
retrying aborted transactions 121

debugger 264
deepFetch() method

description 158
serialization 369

-dest option 382
destination directory

about 246
requirement 244

destroying
cleaning up

ObjectNotFoundExceptions 178
database roots 134
databases 95
objects in the database 173
objects referred to by other objects 178
persistent objects, default effects 179
preDestroyPersistent() hook

method 174
dirty()

background 310
manual annotations 294

disableWeakReferences property 59
disk space

copy of object in database 147
duplicates

postprocessor, file specifications for 249
strings 361

E
enums, specification 390
environment variables

OS_JAVA_VM 375
OSJCFPJAVA 375
414 ObjectStore Java API User Guide

Index
evicting objects
all 167
persistent objects, default effects on 179
persistent objects, references to 163
RETAIN_HOLLOW 165
RETAIN_READONLY 166
RETAIN_STALE 164
threads, cooperating 168
transactions, committing 169
transactions, outside 169

evolveSchema() 88
evolving schema

introduction 86
when required 87

examples
annotations, manual 298
batch schema installation 338
before running a program 24
code for people demo 21
compiling 25
general use 19
getFields() 312
hook methods 277
identity 148
indexes on collections 224
persistence mode options, multiple 249
postprocessing batches 240
postprocessor command line 244
querying utility collections 212
running a program 26
running peer generator tool 393
running postprocessor 245
schema evolution, serialization 92
serializing 369
transient-only fields 304

exporting
peer objects 101
primary objects 101

external references
creating 142
encoding as strings 146

introduction 141
nonexported objects 143
obtaining objects 144
reusing 145
transactions 146

ExternalReference class 141

F
failover 2
FAQs xxii
fetch()

background 310
manual annotations 294

Field class 311
fields in manual annotations 314
file name too long 381
final fields

initialization 274
postprocessor handling of 261

finalize() method
annotations 264
avoiding 182

flushContents()
background 311
manual annotations 292
postprocessor 275

-force option 382
free variables 218
-full option 390

G
garbage collection

active objects from commit() 157
active objects from evict() 166
C++ databases 84
databases 82
hollow objects from commit() 156
hollow objects from evict() 165
osgc utility 84
persistent, overview 81
Release 3.0 415

Index
properties 83
segments 82
stale objects from commit() 154
stale objects from evict() 164
strings 82
tombstones 82
weak references 152

GenericObject class
description 310
getting field values 313
setting field values 313

get.PersistentClasses() method 335
getFields()

background 311
example 312

global sessions 33

H
hash tables

references to destroyed objects 178
-hashcode postprocessor option 382
hashCode()

arrays 233
problems 260
providing 232
requirements 231

hollow object constructors
creating 279
transient nonstatic fields 287

hollow persistent objects
aborting transactions 172
default effects of methods 179
definition 11
evict() 165
transactions, committing 156

hook methods 275

I
identity

databases 77

Java wrapper classes 361
persistent objects 148

-includesummary option
description 382
how to use 335

incremental schema installation 333
-indexablefield option

description 383
IndexDescriptor class 228
IndexDescriptorSet class 228
IndexedCollection interface 223
indexes

adding to collections 223
background 222
dropping 224
example 224
introduction 222
managing 227
modifying 225
optimizing queries 228
updating 226

info segment 56
initializeContents()

background 310
manual annotations 292
postprocessor 275

initializing API
creating nonglobal session 35
specifying properties 57

initializing objects, definition 11
initializing transient fields 274
inner classes 251
-inplace postprocessor option 383
input file for postprocessor 284
input file option 390
installing application types 338
installing schema information 333
interfaces

annotations 290
interoperability between PSE, PSE Pro, and

ObjectStore 60
416 ObjectStore Java API User Guide

Index
interoperability, specifying enums 390
iterators 208

J
jar files 250
Java executables 263
Java Remote Method Interface 158
Java-supplied classes 360
JDK 1.2

compatibility 203
hashCode() 194
unsupported operation 203

L
large aggregations 198
Lea, Doug, collections library 234
-leaf option 390
-libdir option 389
libraries

application types, identifying in 335
ObjectStore 60
postprocessing existing 240
providing type summaries 405
third-party collections 234
type summaries, providing 336

ListIterator class 208
locking

databases 328
objects 328
peer objects 330
segments 328
and transaction length 318
wait time, reducing 318

locks
acquiring 328
converting read to write 56
MVCC, obtaining 320
releasing 330
timeouts 319
types 329

long file names 381

M
manual annotations

abstract classes 308
application types, identifying 340
background for accessing fields 309
background for creating fields 309
ClassInfo subclass definition 295
example 298
fields, accessing 314
fields, creating 314
fields, transient-only 303
initializeContents() 292
methods, required 292
persistence-aware classes 307
postprocessor conventions 307
procedure 290

mapping schema database
-schema option 389

maps
description 206
OSHashMap 195
OSTreeMap 198
querying 202

media failure 4
migrating

objects 99
PSE to ObjectStore 60
unexported strings 59

-modifyjava option 384
moving

databases 80
objects into a database 129
objects to another segment 103

multiversion concurrency control
databases, multiple 321
databases, opening 322
locks, obtaining 320
serializability 321
snapshots 320
Release 3.0 417

Index
MVCC
See multiversion concurrency control

N
native methods

capability for persistence 363
postprocessing 286

-native_interface option 390
nested classes 251
nested transactions 114
-noarrayopt option 384
-nodefaulthashcode postprocessor

option 384
-noinitializeropt option 384
noncooperating threads 49
nonexported objects 161
nonglobal sessions 34
nonpersistent methods 285
-noopt option 385
notation conventions xxi
-nothisopt option 385
notification facility

background 342
introduction 341
managing 355
performance 356
process flow 343
queue 355
security 346

Notification() 347
Notification.getData() 354
Notification.getKind() 354
Notification.getMessage() 354
Notification.getObject() 354
Notification.getPendingNotifications() 355
Notification.getQueueOverflows() 355
Notification.getQueueSize() 355
Notification.notifyImmediate() 352
Notification.notifyOnCommit() 352
Notification.receive() 353
Notification.subscribe() 350

Notification.unsubscribe() 351
notifications

creating 347
definition 342
reading 354
retrieving 353
sending 352
subscribing 350
threads 344
transactions 345

-nowrite option 283, 385
null values

maps 206
queries 220

O
object table 152
objects

destroying 173
evicting, See evicting objects
external references 141
identity 148
is it persistent? 138
listing in a segment 139
retrieving 137
storing 128
updating 147

ObjectStore
code example of use with PSE 63
copying data to PSE 60
general description 2
process architecture 6
what it does 4

ObjectStore library property 60, 64, 65
ObjectStore utility collections

hash code method requirements 231
ObjectStore.deepFetch() 369
ObjectStore.destroy() 173
ObjectStore.dirty() 294
ObjectStore.evict() 162
ObjectStore.evict(RETAIN_HOLLOW) 165
418 ObjectStore Java API User Guide

Index
ObjectStore.evict(RETAIN_
READONLY) 166

ObjectStore.evict(RETAIN_STALE) 164
ObjectStore.evictAll() 167
ObjectStore.export() 100
ObjectStore.fetch() 294
ObjectStore.getAutoOpenMode() 79
ObjectStore.INSTALL_SCHEMA_

BATCH 337
ObjectStore.INSTALL_SCHEMA_

INCREMENTAL 337
ObjectStore.migrate() 99
ObjectStore.MVCC 75
ObjectStore.READONLY 75, 110
ObjectStore.RETAIN_HOLLOW

aborting transactions 172
committing transactions 156
evicting objects 165

ObjectStore.RETAIN_READONLY
aborting transactions 172
committing transactions 157
evicting objects 166

ObjectStore.RETAIN_STALE
aborting transactions 171
committing transactions 154
evicting objects 164

ObjectStore.RETAIN_UPDATE
aborting transactions 172
committing transactions 160

ObjectStore.setAutoOpenMode() 79
ObjectStore.UPDATE 75

starting transaction 110
ObjectStoreConstants.MVCC 75
ObjectStoreConstants.READONLY 75
ObjectStoreConstants.UPDATE 75
ODMG binding 3
-oldtemplates option 392
online backup 2
optimizations, postprocessor

descriptions 265
disabling 265

-optimizeclassinfo option to osjcfp 251, 385
OS_JAVA_VM environment variable 375
oscopy utility 80
osgc utility

C++ databases 84
Java databases 84

OSHashBag collection 195
OSHashMap collections 195
OSHashSet collections 196
OSHashtable collections

description 197
JDK 1.2 compatibility 204
lazy allocation 197

osjcfp 235
See postprocessor

OSJCFPJAVA environment variable 263,
375

osjcgen utility 389
osjcheckdb utility 395
osjgcdb utility 84
osji.zip file 24
osjshowdb utility 98, 397
osjversion utility 403
osmv utility 80
OSTreeMap collections 198
OSTreeSet collections 199
OSVector collections

description 200
JDK 1.2 compatibility 204

OSVectorList collections 201

P
package names

postprocessed classes 268
renaming 288

-package option 389
password property 60
patch updates xxii
PATH requirements 243
peer generator tool

class list 390
Release 3.0 419

Index
example of running 393
input files 390
options 389
running 389

peer objects
definition 15
exporting 101

performance
cross-segment references 99
Java-supplied classes 364
lazy hash table allocation 197
lazy vector allocation 200
notification facility 356

-persistaware option 248
-persistcapable option 248
persistence

how objects become persistent 129
Java-supplied classes 360
manual annotations 303
postprocessor 235
transitive 129

persistence mode options 248
persistence-aware classes

creating 257
definition 14
manual annotations 307

persistence-capable classes
abstract 308
annotations 238
definition 10
generating, automatically 235
generating, manually 289
Java-supplied 360
subclasses 286
superclasses 259
transient fields 273
transient versions 246
using as transient 371

persistent objects
active after evict() 166
associated session 43

definition 10
destroying 173
evicting all 167
exporting 101
external references 141
garbage collection 81
hollow after abort() 172
hollow after commit() 156
hollow after evict() 165
identity 148
is this object persistent? 138
migrating 99
multiple representations 53
nonexported 161
object state, specifying 147
readable after abort() 172
readable after commit() 157
retrieving 137
serializing 369
stale after abort() 171
stale after commit() 154
stale after evict() 164
transient fields 180
updatable after abort() 172
updatable after commit() 160
UPDATE transaction 111

Persistent.preDestroyPersistent() 174
PersistentTypeSummary class 335
postInitializeContents() 276
postprocessor

annotated class files, location 261
annotated class files, managing 252
annotated classes, previously 250
annotated classes, subclasses 286
applications, complex 255
array dimensions 282
batches 239
Class could not be found error 246
CLASSPATH requirements 243
command line, sample 244
consistency 259
420 ObjectStore Java API User Guide

Index
conventions 307
customizing 275
debugger 264
destination directory background 246
destination directory requirement 244
duplicate file specifications 249
errors and warnings 261
example of multiple persistence

modes 249
example of running 245
file name interpretation 247
file not found 249
final fields 261
hollow object constructor 279
hook methods, sample 277
how it works 258
input file 284
introduction 237
Java classes, modifying 384
limitations 288
new packages 268
nonpersistent classes 266
nonpersistent methods 285
objects, optimizing retrieval of 280
optimizations 265
optimizations can cause problems 183
PATH requirements 243
persistence mode options 248
persistence-aware classes 257
preparations 243
preventing generation of ClassInfo 385
processing order 247
running 242, 381
static fields 262
superclasses, modifications 259
testing 283
transient classes 271
transient fields 273
-translatepackage option 269
zip files 250

preClearContents() 276

preFlushContents() 276
primary keys 205
primary objects 14
product property 60
propagation, transaction log 324
properties

COM.odi.applicationName 58
COM.odi.cacheSize 58
COM.odi.disableWeakReferences 59
COM.odi.migrateUnexportedStrings 59
COM.odi.ObjectStoreLibrary 60, 64, 65
COM.odi.password 60
COM.odi.product 60
COM.odi.user 60
garbage collection 83
parameter 57
system 57
trapUnregisteredType 65

PSE
code example of use with OSJI 63
copying data to ObjectStore 60
using with OSJI 60

Q
queries

creating 211
example 212
executing 219
expressions 211
free variables 218
indexes 222
introduction 210
limitations 221
literals 211
maps 202
names 211
null values 220
operators 213
optimizing for indexes 228
String literals 214
syntax 213
Release 3.0 421

Index
unsupported 213
-quiet option 386
-quietclass option 386
-quietfield option 386

R
reachability 130
read locks 56
reading notifications 354
read-only

database open type 75
receiving notifications 350
recovery 4
reducing size of application 251
references

checking 395
cross-segment 99
destroying sources 174
destroying targets 178
external 141
from evicted objects 163
to transient instances 272

registering classes
manual annotation 290
postprocessor 237

remote machines 2
Remote Method Invocation. see RMI
RestartableAbortException 120
restarting aborted transactions 121
RETAIN constants. see ObjectStore.RETAIN
retaining objects

abort transaction 170
commit hollow 156
commit read-only 157
commit update 160
default abort retain state 171
evict active 166
evict hollow 165
eviction 162
nonexported 161
retain argument 153

retrieving notifications 353
RMI

preparing to serialize 158
serializing for 369
using persistence-capable classes 371

S
saving modifications

committing transactions 153
evicting objects 162

schema evolution
needed when 87
preparation 88
procedure 86
serialization sample code 92
superclasses 89

schema information 333
-schema option 389
schema segment 56
security, notifications 346
Segment.GC() 82
segments

cross references 99
description 72
garbage collection 82
listing 73
locking 328
objects, iterating through 139
objects, wrong placement of 103
situations to avoid 130
storing objects in particular ones 129
transient 73

sending notifications 352
serializability 321
serialization

persistent objects 369
sample code for schema evolution 92

Server description 6
ServerRefusedConnectionException 120
ServerRestartedException 120
Session.createGlobal() 33
422 ObjectStore Java API User Guide

Index
Session.getGlobal() 33
Session.getName() method 34
Session.join() 46
Session.leave() 50
Session.terminate() 39
sessions

associated objects 43
calls that imply 44
creating 32
definition 28
global session 33
is one active? 40
join rules 43
joining threads automatically 42
metaobjects 55
names 34
nonglobal 34
nonimplying calls 45
objects, copies of 29
obtaining 40
properties, specifying 57
shutting down 39
threads 41
threads not associated 51
threads, explicitly adding 46
threads, relationship to 41
threads, removing 50
transactions 37

setting transient fields 276
sharing data among PSE, PSE Pro, and

ObjectStore 60
shutting down sessions 39
smaller footprint 251
stale persistent objects

aborting transactions 171
attempts to access 179
committing transactions 154
definition 13
evict() 164

static fields
postprocessor handling 262

session ownership 54
storing external references 142
storing objects

has this object been stored? 138
how objects become persistent 129
in particular segments 129
procedure 128

string pool size 64
strings

destroying 368
garbage collection 82
making them persistent 366
pool size 64
queries 214
unexported, migrating 59

stublib.zip 371
subscribing to receive notifications 350
-summary option

description 387
how to use 335

superclasses
abstract 308
modifications for persistence 259
persistence-aware classes 257
schema evolution 89

support xxii
-suppress option 392
suppressing generation of methods 392
synchronization 154
system crash 4
system properties 57

T
technical support xxii
terminating sessions 39
testing postprocessor 283
third-party collections 234
threads

already initialized? 52
committing a transaction, effect of 55
cooperating 48
Release 3.0 423

Index
joined to session? 52
joining session explicitly 46
joining session, automatically 42
noncooperating 49, 51
not joined to session 51
notifications 344
objects, evicting 168
persistent objects, access to 53
removing from session 50
sessions 41
synchronizing 50
transaction boundaries 126

tombstones
destroyed objects 173
persistent garbage collection 82

tools.zip file 24
Training xxiii
Transaction class description 110
Transaction.abort()

example 171
general discussion 118
retain 119

Transaction.abort(RETAIN_
HOLLOW) 172

Transaction.abort(RETAIN_
READONLY) 172

Transaction.abort(RETAIN_STALE) 171
Transaction.abort(RETAIN_UPDATE) 172
Transaction.begin() 110
Transaction.commit()

general discussion 116
saving modifications 153

Transaction.commit(retain)
general discussion 116
specifying object state 153

Transaction.current() 114
Transaction.setDefaultAbortRetain() 171
transactions

aborted, retrying 121
aborting 118, 120
aborting to cancel changes 170

boundaries, determining 124
checkpoint 325
committing

description 116
setting object state 153
situations to avoid 130

deadlocks 120
ending 115
evicting objects outside 169
external references 146
length 318
multiversion concurrency control 320
nested 114
notifications 345
priority 332
RETAIN_HOLLOW 156
RETAIN_READONLY 157
RETAIN_STALE 154
RETAIN_UPDATE 160
sessions 37
starting 110
Transaction object, obtaining 114
update and read-only 111

transient and persistence-capable versions
of same class 271

transient database 73
transient fields

annotations, manual 303
annotations, preventing 281
initialization 274
persistence-capable classes,

behavior 180
postprocessor 273
read-only transactions 276

transient instance of persistence-capable
class 272

transient objects 15
transient segment 73
transient version of class file 246
transient views of collections 202
transitive persistence

becoming persistent 129
424 ObjectStore Java API User Guide

Index
definition 15
trapping unregistered types 65
trapUnregisteredType property 65
troubleshooting

access not allowed 265
authentication required 60
bad command or file name 263, 375
class could not be found 246
ClassCastException 65, 184
destroyed objects, references to 178
OutOfMemoryError

postprocessor 250
storing large objects 136

retaining for read or update 158
trapping unregistered types 65
UnregisteredTypeException 184

two sessions
static variables 54
two object copies 29

U
unexported strings property 59
Unicode strings 362
unknown types 184
unregistered type property 65
UnregisteredType class 184
UnregisteredTypeException 184
update

database open type 75
updating objects 147
upgrading PSE to ObjectStore 60
user property 60
UTF8 encoding 362
utilities

garbage collection 84
osjcfp 235
osjcheckdb 98, 395
osjshowdb 98, 397
osjversion 403

V
variable initializers 304
-verbose option 387
version information 403
very large aggregations 198
views of maps 202

W
weak references 59, 152
weak references property 59
wrapper classes

identity 361
persistence-capable 360
queries 214

write locks 56
Release 3.0 425

Index
426 ObjectStore Java API User Guide

	Java API User Guide
	ObjectStore Java API User Guide
	Preface
	How This Book Is Organized
	Documentation Conventions
	Internet Sources of More Information
	Support
	Training
	Your Comments

	Chapter 1
	Introducing ObjectStore
	What Is ObjectStore?
	What ObjectStore Does
	Benefits of Using ObjectStore
	Description of ObjectStore Process Architecture
	Definitions of ObjectStore Terms
	Session
	Persistence-Capable
	Persistent Object
	Persistence-Aware
	Primary Object
	Peer Object
	Transient Object
	Transitive Persistence
	Annotations
	Database Roots

	Prerequisites for Using the ObjectStore Java Interface

	Chapter 2
	Example of Using ObjectStore
	Overview of Required Components
	Sample Code
	Before You Run the Program
	Adding An Entry to CLASSPATH
	Compiling the Program
	Running the Postprocessor

	Running the Program

	Chapter 3
	Using Sessions to Manage Threads
	How Sessions Keep Threads Organized
	What Is a Session?
	How Are Threads Related to Sessions?
	What Is the Benefit of a Session?
	What Kinds of Sessions Are There?

	Creating Sessions
	Creating Global Sessions
	Creating Nonglobal Sessions
	Creating a Nonglobal Session with ObjectStore.initialize()

	Working with Sessions
	Sessions and Transactions
	Shutting Down Sessions
	Obtaining a Session
	Determining If a Session Is Active

	Associating Threads with Sessions
	Automatically Joining Threads to a Session
	Associating a Persistent Object with a Session
	Rules for Automatically Joining a Thread to a Session
	Examples of Calls That Imply Sessions
	Examples of Calls That Do Not Imply Sessions
	Explicitly Associating Threads with a Session

	Working with Threads
	Cooperating Threads
	Noncooperating Threads
	Synchronizing Threads
	Removing Threads from Sessions
	Threads That Create a Session
	Other Threads
	Determining If ObjectStore Is Initialized for the Current Thread

	Which Threads Can Access Which Persistent Objects?
	Multiple Representations of the Same Object
	Example of Multiple Sessions
	Application Responsibility
	Effects of Committing a Transaction
	API Objects and Sessions

	Description of Concurrency Rules
	Granularity of Concurrency
	Converting Read Locks to Write Locks

	Description of ObjectStore Properties
	About Property Lists Relevant to ObjectStore
	Description of COM.odi.applicationName
	Description of COM.odi.cacheSize
	Description of COM.odi.disableWeakReferences
	Description of COM.odi.migrateUnexportedStrings
	Description of COM.odi.ObjectStoreLibrary
	Description of COM.odi.password and COM.odi.user
	Description of COM.odi.product
	Description of COM.odi.stringPoolSize
	Description of COM.odi.trapUnregisteredType

	Chapter 4
	Managing Databases
	Creating a Database
	Method Signature for Creating a Database
	Example of Creating a Database
	Result of Creating a Database
	Specifying a Database Name in Creation Method
	When the Database Already Exists
	Discussion of Installing Schema upon Database Creation

	Creating Segments
	Storing Objects in a Particular Segment
	Determining If a Database or Segment Is Transient
	Iterating Through the Segments in a Database

	Opening and Closing a Database
	Opening a Database
	Possible Open Modes
	Opening the Same Database Multiple Times
	Closing a Database
	Automatic Opens of a Database
	Objects in Closed Databases

	Moving or Copying a Database
	Performing Garbage Collection in a Database
	Background About the Persistent Garbage Collector
	API for Collecting Garbage in a Database
	API for Collecting Garbage in a Segment
	Command Line Utility for Collecting Garbage
	Running osgc on C++ Databases or Segments

	Schema Evolution: Modifying Class Definitions of Objects in a Database
	When Is Schema Evolution Required?
	Preparing to Use the Schema Evolution API
	Using the Schema Evolution API
	Considerations for Using Serialization to Perform Schema Evolution
	Steps for Using Sample Schema Evolution Serialization Code
	Sample Code for Using Serialization to Perform Schema Evolution

	Destroying a Database
	Obtaining Information About a Database
	Is a Database Open?
	What Kind of Access Is Allowed?
	What Is the Pathname of a Database?
	What Is the Size of a Database?
	Which Session Is the Database or Segment Associated With?
	Which Objects Are in the Database?
	Are There Invalid References in the Database?

	Implementing Cross-Segment References for Optimum Performance
	Procedure for Defining Cross-Segment References
	Exporting Objects
	How Many Exported Objects Are Needed?
	Explicitly Migrating Exported Objects

	Database Operations and Transactions
	Upgrading Databases for Use with the JDK 1.2

	Chapter 5
	Working with Transactions
	Starting a Transaction
	Calling the begin() Method
	Allowing Objects to Be Modified in a Transaction
	Difference Between Update and Read-Only Transactions

	Working Inside a Transaction
	Obtaining the Session Associated with the Current Transaction
	Transaction Already in Progress
	Obtaining Transaction Objects
	Performing a Transaction Checkpoint
	Setting a Transaction Priority

	Ending a Transaction
	Committing Transactions
	What Can Cause a Transaction Commit to Fail?
	Aborting Transactions

	Handling Automatic Transaction Aborts
	Results of Transaction Abort
	Description of Transaction Abort Exceptions
	Restarting Aborted Transactions
	Handling Deadlocks

	Determining Transaction Boundaries
	Inconsistent Database State
	Combining Transactions
	Multiple Cooperating Threads
	Performance Considerations

	Chapter 6
	Storing, Retrieving, and Updating Objects
	Storing Objects
	How Objects Become Persistent
	Storing Objects in a Particular Segment
	What Is Reachability?
	Situations to Avoid
	Storing Java-Supplied Objects

	Working with Database Roots
	Creating Database Roots
	Retrieving Root Objects
	Roots with Null Values
	Using Primitive Values as Roots
	Changing the Object Referred To by a Database Root
	Destroying a Database Root
	Destroying the Object Referred To by a Database Root
	How Many Roots Are Needed in a Database?

	Troubleshooting OutOfMemoryError
	Retrieving Persistent Objects
	Steps for Retrieving Persistent Objects
	Obtaining a Database Root
	Determining Which Database Contains an Object
	Determining Whether an Object Has Been Stored
	Iterating Through the Objects in a Segment
	Locking Objects

	Using External References to Stored Objects
	Creating External References
	Using the No-Arguments Constructor
	Caution About Creating External References to Nonexported Objects
	Obtaining Objects from External References
	Determining Whether Two External References Refer to the Same Object
	Reusing External Reference Objects
	Encoding External References as Strings
	External References and Transactions

	Updating Objects in the Database
	Background for Specifying Object State
	About Object Identity
	About the Object Table

	Committing Transactions to Save Modifications
	Making Persistent Objects Stale
	Making Persistent Objects Hollow
	Retaining Persistent Objects as Readable
	Retaining Persistent Objects as Writable
	Caution About Retaining Nonexported Objects

	Evicting Objects to Save Modifications
	Description of Eviction Operation
	Setting the Evicted Object to Be Stale
	Setting the Evicted Object to Be Hollow
	Setting the Evicted Object to Remain Active
	Summary of Eviction Results for Various Object States
	Evicting All Persistent Objects
	Evicting Objects When There Are Cooperating Threads
	Committing Transactions After Evicting Objects
	Evicting Objects Outside a Transaction

	Aborting Transactions to Cancel Changes
	Setting Persistent Objects to the Default State
	Setting the Default Abort Retain State
	Specifying a Particular State for Persistent Objects

	Destroying Objects in the Database
	Calling ObjectStore.destroy()
	Destroying Objects That Refer to Other Objects
	Destroying Objects That Are Referred to by Other Objects

	Default Effects of Various Methods on Object State
	Transient Fields in Persistence-Capable Classes
	Behavior of Transient Fields
	Preventing fetch() and dirty() Calls on Transient Fields
	Background Information About Access to Transient Fields

	Avoiding finalize() Methods
	Troubleshooting Access to Persistent Objects
	Handling Unregistered Types
	How Can There Be Unregistered Types?
	Can Applications Work When There Are Types Not Registered?
	What Does ObjectStore Do About Unregistered Types?
	When Does ObjectStore Create UnregisteredType Objects?
	Can Your Application Run with UnregisteredType Objects?
	Troubleshooting ClassCastExceptions Caused by Unregistered Types
	Troubleshooting the Most Common Problem

	Chapter 7
	Working with Collections
	Description of ObjectStore Utility Collections
	Introduction to COM.odi.util Interfaces and Classes
	Description of OSHashBag
	Description of OSHashMap
	Description of OSHashSet
	Description of OSHashtable
	Description of OSTreeMapxxx
	Description of OSTreeSet
	Description of OSVector
	Description of OSVectorList
	Advantages of Using ObjectStore Utility Collections
	Querying Collection Views of Map Entries
	Background About Utility Collections and JDK 1.2 Collections

	How to Choose a Collections Alternative
	Using ObjectStore Utility Collections
	Creating Collections
	Navigating Collections with Iterators
	Performing Collection Updates During Iteration

	Querying ObjectStore Utility Collections
	Creating Queries
	Description of Query Syntax
	Sample Program That Uses Queries
	Matching Patterns in Query Strings
	Using Free Variables in Queries
	Executing Queries
	Limitations on Queries

	Enhancing Query Performance with Indexes
	How Indexes Work
	Adding Indexes to Collections
	Dropping Indexes from Collections
	Sample Program That Uses Indexes
	Modifying IndexValues
	Managing Indexes and Index Values
	Optimizing Queries for Indexes
	Manipulating Indexes Outside the Query Facility

	Storing Objects as Keys in Persistent Hash Tables
	Requirements for Hash Code Methods
	Providing an Appropriate Persistent Hash Code Method
	Storing Built-In Types as Keys in Persistent Hash Tables

	Using Third-Party Collections Libraries

	Chapter 8
	Automatically Generating Persistence-Capable Classes
	Overview of the Class File Postprocessor
	Description of the Annotations
	Description of the Process
	Postprocessing a Batch of Files Is Important
	Manual Annotation

	Running the Postprocessor
	Preparing to Run the Postprocessor
	Requirements for Running the Postprocessor
	Example of Running the Postprocessor
	About the Postprocessor Destination Directory
	How the Postprocessor Interprets File Names
	Order of Processing
	How the Postprocessor Handles Duplicate File Specifications
	How the Postprocessor Handles Files Not Found
	Zip and Jar Files as Input to Postprocessor
	How the Postprocessor Handles Previously Annotated Classes
	Troubleshooting OutOfMemory Error
	How the Postprocessor Handles Inner Classes
	Creating Smaller Annotated Files

	Managing Annotated Class Files
	Ensuring That the Compiler Finds Unannotated Class Files
	Ensuring That ObjectStore Finds Annotated Class Files
	Using the Right Class Files in Complex Applications
	Alternatives for Finding the Right Files
	How the Postprocessor Determines Whether to Generate an Annotated Class File

	Creating Persistence-Aware Classes
	Specifying the Postprocessor Command Line
	No Changes to Superclasses

	How the Postprocessor Works
	Ensuring Consistent Class Files
	Modifications to Superclasses
	Effects on Inheritance
	Location of Annotated Class Files
	Postprocessor Errors and Warnings
	Handling of Final Fields
	Handling of Static Fields
	Which Java Executable to Use
	Line-Number and Local-Variable Information
	Using a Debugger
	Handling of finalize() Methods
	Description of Postprocessor Optimizations

	Including Transient and Already Annotated Classes
	Copying Classes to the Destination Directory
	Specifying Classes to Be Copied and Classes to Be Persistence-Capable
	When Can a Class Be Transient?

	Putting Processed Classes in a New Package
	Using the -translatepackage Option
	How the Postprocessor Applies the Option
	Updating References to New Package Name
	References to Transient and Persistent Versions of a Class
	References to Transient Instances of a Persistence-Capable Class

	Creating Persistence-Capable Classes with Transient Fields
	Transient Fields and Serialization
	Initialization of Some Transient Fields

	Customizing Updated Classes
	Implementing Customized Methods and Hook Methods
	Creating a Hollow Object Constructor

	Optimizing Operations That Retrieve Persistent Objects
	Procedure for Optimizing Operations
	Inlining Code
	Preventing Fetch of Transient Fields

	Specifying the Number of Array Dimensions in Persistence-Capable Classes
	Performing a Test Run of the Postprocessor
	Using an Input File
	Annotations You Must Add
	Interfacing with Nonpersistent Methods
	Interfacing with Native Classes
	Annotating Subclasses
	Passing Arrays
	Implementing the Hollow Object Constructor for Some Instance Fields
	Using the Java Reflection API with Persistence-Capable Objects

	Class File Postprocessor Limitations

	Chapter 9
	Manually Generating Persistence-Capable Classes
	Explicitly Defining Persistence-Capable Classes
	Implementing the IPersistent Interface
	Defining the Required Fields
	Defining Required Methods in the Class Definition
	Making Object Contents Accessible
	Defining a ClassInfo Subclass
	Example of a Manually Annotated Persistence-Capable Class

	Additional Information About Manual Annotation
	Defining a hashCode() Method
	Defining a clone() Method
	Working with Transient-Only and Persistent-Only Fields
	Defining Persistence-Aware Classes
	Following Postprocessor Conventions
	Annotating Abstract Classes
	Removing ClassInfo Classes From Existing Applications

	Creating and Accessing Fields in Annotations
	Making Persistent Objects Accessible
	Creating Fields
	Getting and Setting Generic Object Field Values
	Methods for Creating Fields and Accessing Them in Generic Objects

	Chapter 10
	Controlling Concurrency
	Reducing Wait Time for Locks
	Clustering
	Transaction Length
	Multiversion Concurrency Control (MVCC)
	Lock Timeouts
	Conflicts Caused by Schema Installation

	Using Multiversion Concurrency Control (MVCC)
	When Is MVCC Appropriate?
	How Does MVCC Work?
	Obtaining Read Locks
	Accessing Multiple Databases in a Transaction
	Serializability
	Opening a Database for MVCC Access
	Determining If a Database Is Opened for MVCC
	Updating the Snapshot
	Where to Find Additional Information

	Checkpoint: Committing and Continuing a Transaction
	Advantages of a Checkpoint
	Calling the checkpoint() Method

	Locking Objects, Segments, and Databases to Ensure Access
	Description of Acquire Lock Methods
	Locking Objects for Read or Write Access
	Specifying the Wait Time for a Lock
	Releasing Locks
	Locking Peer Objects
	Obtaining Information About Concurrency Conflicts
	Setting the Client Name
	Helping Determine the Transaction Victim in a Deadlock

	Installing Schema Information in Batch Mode
	Background About Schema Information
	Procedure for Installing Schema in Batch
	Identifying the Application Types
	Creating a Database with Batch Schema Installation
	Installing Application Types in the Database Schema
	If You Do Not Run the Postprocessor

	Chapter 11
	Using the Notification Facility
	Background About How Notification Works
	What Is a Notification?
	What Is the Flow of a Notification?
	Threads and Notifications
	Transactions and Notifications
	Security

	Creating Notifications
	Descriptions of Constructors
	Retaining References to Persistent Objects
	Maximum Data Lengths
	Restriction on data Argument Content

	Subscribing to Receive Notifications
	Discarding Subscriptions
	Unsubscribing from Notifications

	Sending Notifications
	Retrieving Notifications
	Reading Notifications
	Managing the Notification Process
	Notification Queue
	Performance Considerations
	Network Service

	Chapter 12
	Miscellaneous Information
	Java-Supplied Persistence-Capable Classes
	Description of Java-Supplied Persistence-Capable Classes
	Can Other Java-Supplied Classes Be Persistence-Capable?

	Description of Special Behavior of String Literals
	Example of String Behavior
	Destroying Strings

	Serializing Persistent Objects
	Using Persistence-Capable Classes in a Transient Manner
	Description of Java Persistent Storage Layouts
	Differences Between C++ and Java Interfaces to ObjectStore
	Timing of the Write Lock Acquisition
	Opening the Same Database Multiple Times

	Environment Variables

	Chapter 13
	Tools Reference
	osgc: Collecting Garbage in Databases
	osjbrowsedb: Browsing a Database
	osjcfp: Running the Postprocessor
	osjcgen: Generating Peer Classes
	Description of Command Line Format
	Description of Additional Options
	Example of Running the Peer Generator Tool

	osjcheckdb: Checking References in a Database
	osjshowdb: Displaying Information About a Database
	osjuphsh: Upgrading String Hash Codes in Databases
	osjversion: Obtaining ObjectStore Version Information

	Packaging Your Application for End Users
	Glossary
	Index

