
BUILDING C++ INTERFACE
APPLICATIONS

RELEASE 5.1

March 1998

ObjectStore Building C++ Interface Applications

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-BAP-510

Release 5.1 iii

Contents

Preface . xi

Chapter 1 Overview of Building an Application 1

General Instructions for Building Applications 2

Flow Chart for Building Applications . 4

Third-Party Compilers You Can Use . 5

Third-Party Libraries and Applications. 6

Virtual File Systems . 7

ObjectStore Server and the Build Process 9

ObjectStore/Single. 10

Chapter 2 Working with Source Files . 13

Overview of Source Files . 14

ObjectStore Header Files . 15

Instantiation Problem with Template Collection Classes . . 16

os_Collection_declare() Macro. 16

os_Collection_declare_no_class() Macro 17

os_Collection_declare_ptr_tdef() Macro 17

Required Order of Include Statements. 17

Determining the Types in a Schema . 19

Which Types to Mark . 19

Which Types Are Reachable . 19

If You Are Not Sure a Type Is Reachable 20

Choosing Whether to Mark Types or Specify -mrscp 20

Ensuring a Complete Schema Source File 21

Contents

iv ObjectStore Building C++ Interface Applications

Creating Schema Source Files . 22

Schema Source File Format . 22

Placing Calls to OS_MARK_SCHEMA_TYPE in a Function 23

Schema Source File Examples . 24

Schema Source File Must Be Compilable 25

OS/2 Notes . 25

When You Modify a Source File . 27

Chapter 3 Generating Schemas . 29

Overview of Schema Generation . 30

Application Schemas . 30

Component Schemas . 31

Library Schemas . 31

Compilation Schemas . 31

Database Schemas . 32

Keeping Database Schemas and Application Schemas
Compatible . 33

Schemas Are Platform Specific . 33

Generating an Application or Component Schema 35

Invoking ossg to Generate an Application Schema 36

Changing the Default Preprocessor . 46

OS/2 Platforms Have an Additional ossg Option 47

Using a Temporary File to Send Arguments to ossg 47

Specifying ObjectStore Library Schemas 48

Specifying Remote Library Schemas . 48

How Long Does Schema Generation Take? 48

If You Omit a Required Library Schema 49

Example of Using the -runtime_dispatch Option. 50

Using the Same Application Schema for
Multiple Applications . 51

Examples of Generating an Application Schema 51

Contents

Release 5.1 v

Generating a Library Schema. 53

Invoking ossg to Generate a Library Schema 53

Using Multiple Schema Source Files to Create a
Library Schema . 53

If Not Creating a Library Schema . 54

Generating a Compilation Schema . 55

Why Generate a Compilation Schema? 55

Invoking ossg to Generate a Compilation Schema 56

Using a Compilation Schema to Generate an Application
Schema . 56

Hiding Code from the Schema Generator 57

Unsupported Types. 58

Limited Support for long long Data Type 58

Support for wchar_t Types . 58

Restricting Use of Template Classes and Collections. 59

Correcting Schema-Related Errors . 60

Type Mismatch Errors. 60

Persistent Allocation Errors . 60

ossg Run-Time Errors . 61

Metaschema Mismatch Errors . 61

Schema Neutralization Errors . 62

Missing Virtual Function Table Pointer Problems 62

Handling Pragma Statements in Source Code 63

Utilities for Working with Schemas . 64

Comparison of ossg Command Lines 65

Comparison of Kinds of Schemas . 66

Deploying Products with Protected Databases 68

Using Rogue Wave with Solaris Sun C++ 69

ossg Troubleshooting Tips . 70

Contents

vi ObjectStore Building C++ Interface Applications

Chapter 4 Compiling, Linking, and Debugging Programs . . 73

Using Standard Template Libraries . 74

How to Store STL Types Persistently . 74

Microsoft Visual C++ Restriction. 74

Moving an Application and Its Schema 75

Syntax . 75

Description . 75

Working with Virtual Function Table (VTBL) Pointers and
Discriminant Functions. 77

Relocation . 78

Missing VTBLs. 79

Symbols Missing When Linking ObjectStore Applications. 79

Run-Time Errors from Missing VTBLs. 80

AIX C Set ++ — Virtual Function Table Pointers 82

Using new and delete Operators with cfront 84

Debugging Applications . 85

Dependency of Object Files on Header Files 86

Retrofitting Makefiles . 87

UNIX. 88

Linking with ObjectStore Libraries . 88

Examples of Passing Libraries to the Linker. 90

DEC C++ 64-Bit Pointer Considerations. 91

Troubleshooting Errors . 101

HP Requires Linker Options . 102

+eh Mode Supported . 102

HP aC++ Source Files . 102

HP C++ Compiler Messages. 103

SGI IRIX Compiler Option . 103

Sun C++ Compiler Options. 103

Solaris 2 Linking . 104

Sample Makefile Template . 105

Using Signal Handlers . 106

Makefile for Building from Compilation Schemas 107

Establishing Fault Handlers in POSIX Thread Environments . . . 107

Contents

Release 5.1 vii

Virtual Function Table Pointers . 108

Debugging Applications . 108

Solaris C++ Search Paths . 109

SGI Delta C++ Compiler . 109

Windows . 110

Linking with ObjectStore Libraries . 110

Use Custom Build to Run ossg . 110

Ensure That You Include Required Files 110

Make and Compiler Options . 111

Use the Standard Run-Time Library on Windows NT 111

Linking Your Files. 113

Sample Makefile . 114

Sample Makefile for an Application That Uses Collections and
Queries . 115

Specifying Environment Variables . 115

Debugging Your Application . 116

Abnormal Application Exit . 117

Building ObjectStore/Microsoft Foundation Class
Applications . 117

Class os_CString . 119

Generating MFC Applications Using ObjectStore
AppWizards . 119

Using the Visual C++ Integrated Development Environment
(IDE) . 121

Using ObjectStore Within a DLL . 121

Building Applications on Machines Remote from the Server . 122

Porting ObjectStore Applications to Windows Platforms 123

Windows DEBUG and DDEBUG Builds of ObjectStore 124

Installing DEBUG.ZIP or DDEBUG.ZIP . 125

Contents

viii ObjectStore Building C++ Interface Applications

OS/2 . 127

Using Compiler Options . 127

Linking Your Files . 128

Sample Makefile Without Library Schemas 129

Sample Makefile for an Application That Uses Collections and
Queries . 129

Debugging Your Application. 130

Pass Source Files to ossg. 131

Building Applications on Machines Remote from the Server. 131

Chapter 5 Building Applications for Use on
Multiple Platforms. 133

General Instructions . 134

Which Platforms Can Be Heterogeneous? 136

When Is a Schema Neutral? . 138

What Causes Data Formats to Vary? . 138

How Can You Create Identical Data Formats? 139

Restrictions . 140

Virtual Base Classes. 140

Primitive Data Types . 140

64-Bit Pointers . 140

Floating-Point Data Conversion . 141

Pointers to Members . 141

Base Class Initialization Order . 141

Parameterized Classes . 141

Sizes for Data Types. 143

General Restriction . 144

ossg Neutralization Options. 145

Contents

Release 5.1 ix

Neutralizing the Schema . 148

When to Use Neutralization Options . 149

Additional Neutralization Considerations 149

Updating a Database Schema to Be Neutral 150

Benefits of Compiler Groups . 150

Command Line and Neutralization Examples 150

Using a Makefile to Obtain Neutralization Instructions 154

Building a Heterogeneous Application from a
Neutral Schema. 155

Neutralizing enums . 155

Listing Nondefault Object Layout Compiler Options 156

Compiler Option File Format . 156

Overriding Options Within the Compiler Option File 159

Sample Compiler Option File . 160

Compiler Option File Example . 160

Compiler Options That Aid Neutralization 160

Compiler Option Files for Architecture Sets 161

Description of Schema Generator Instructions 162

Base Class Padding Macros . 162

Dynamically Defined Padding Macros. 163

Member Padding Macros . 163

Virtual Base Templates . 164

Database Growth Resulting from Padding 165

Endian Types for ObjectStore Platforms 166

Contents

x ObjectStore Building C++ Interface Applications

Chapter 6 Working with ObjectStore/Single 167

ObjectStore/Single Features. 168

ObjectStore/Single API. 168

ObjectStore/Single Utilities. 168

Dynamic Library Load Path . 169

Application Development Sequence 170

Server Log Propagation . 171

Server Log Functions . 171

Log File Guidelines . 172

When to Intervene . 172

Full ObjectStore osserver Role . 173

Remote Access . 174

Accessing Server Logs and Cache Files Through NFS. 174

Packaging ObjectStore/Single Applications. 175

Cache and Server Log Files . 175

Additional Considerations . 175

Cache File Considerations . 176

Server Log File Considerations . 176

What Should You Tell Your Customers? 176

Packaging an ObjectStore/Single Application 177

Packaging with a VAR Product. 177

Index. 179

Release 5.1 xi

Preface

Purpose ObjectStore Building C++ Interface Applications provides
information and instructions for generating schemas, compiling,
linking, and debugging. This is for applications that use the
ObjectStore C++ application programming interface (API). This
book describes ObjectStore Release 5.1.

Audience This book is for experienced C++ programmers who know how to
build C++ applications on their platforms. Programmers who will
be using makefiles are expected to be familiar with them.

How This Book Is Organized

The first half of this book provides information that applies to all
ObjectStore platforms. The second half contains platform-specific
chapters. For complete information, you must read the general
chapters along with the chapter for your platform.

Notation Conventions

This document uses the following conventions:

Convention Meaning

Bold Bold typeface indicates user input or
code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Preface

xii ObjectStore Building C++ Interface Applications

ObjectStore Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
on-line in Web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a Web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.odi.com and its Internet

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You
can specify only one of the enclosed
items. Vertical bars represent OR
separators. For example, you can specify
a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system
named inside the circle supports or does
not support the feature being discussed.

Convention Meaning

UNIX UNIX

Preface

Release 5.1 xiii

address is 198.3.16.26. You can use ftp to retrieve the FAQs from
there. Use the login name odiftp and the password obtained from
patch-info . This password also changes monthly, but you can
automatically receive the updated password by subscribing to
patch-info . See the README file for guidelines for using this
connection. The FAQs are in the subdirectory ./FAQ. This
directory contains a group of subdirectories organized by topic.
The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.

Preface

xiv ObjectStore Building C++ Interface Applications

Release 5.1 1

Chapter 1
Overview of Building an
Application

This chapter provides an overview of building an ObjectStore
application. The basic steps are the same, regardless of the
compiler or platform you use.

The topics presented in this chapter are

General Instructions for Building Applications 2

Flow Chart for Building Applications 4

Third-Party Compilers You Can Use 5

Third-Party Libraries and Applications 6

Virtual File Systems 7

ObjectStore Server and the Build Process 9

ObjectStore/Single 10

General Instructions for Building Applications

2 ObjectStore Building C++ Interface Applications

General Instructions for Building Applications

An ObjectStore application is a C++ program that uses
ObjectStore. For an application to use ObjectStore, you perform
the following steps. These instructions assume that you are using
a makefile to build your application.

1 Modify the source.

Modify your application source code to make ObjectStore API
calls. See the ObjectStore C++ API User Guide for information
about using ObjectStore APIs. Note that you must modify your
makefile to find ObjectStore header files. See ObjectStore
Header Files on page 15.

2 Create the schema source file.

The schema source file is a C++ file with a specified format
used as input to the schema generator (ossg). The schema
source file includes the files that define

- Classes that have instances stored by the application in
persistent memory.

- Classes that have instances read by the application from
persistent memory. You can include the type itself, or the
base types of the class.

- Classes that appear in library interface query strings or
index paths.

See Determining the Types in a Schema on page 19 for details.

3 Generate schema with ossg .

Modify your makefile to run the ObjectStore schema generator
(ossg). The input for this step includes

- Schema source file

- ObjectStore library schemas

The output from this step is the

- Application schema database

- Application schema source file

If you are using Visual C++, the output is an object file referred
to as the application schema object file. This file records the

Chapter 1: Overview of Building an Application

Release 5.1 3

location of the application schema database along with the
names of the application’s virtual function dispatch tables, the
names of discriminant functions, and the definitions for any
get_os_typespec() member functions.

See Chapter 3, Generating Schemas, on page 29, for further
information.

4 Compile the application schema source file.

See Compiling, Linking, and Debugging Programs on page 73.
Make sure your makefile enables you to compile the
application schema source file. This creates the application
schema object file.

When you use Visual C++, the schema generator creates the
object file directly. On all other platforms, you must compile
the application schema source file yourself.

5 Link.

Make sure your makefile is modified to link the following (to
create the executable):

- Application object files

- Application schema object file

- Application libraries

- ObjectStore libraries

- System libraries

Flow Chart for Building Applications

4 ObjectStore Building C++ Interface Applications

Flow Chart for Building Applications

The workflow for building an ObjectStore application on one
platform appears below. An understanding of how to build on
one platform is essential to an understanding of how to build for
multiple platforms. See Chapter 5, Building Applications for Use
on Multiple Platforms, on page 133.

Run CC

Run CC

Your Application Sources

Application.cc

 Run ossg

Object File

Link Objects and
Libraries

 Executable

Object File

App. Schema DB

ObjectStore-Specific
Build Process

Schema Source File

App. Headers

Typical Build
Process

Chapter 1: Overview of Building an Application

Release 5.1 5

Third-Party Compilers You Can Use

Third-party compilers you can use include those in the following
list. Consult the ObjectStore C++ Interface Release Notes, Platforms
and Compilers in Chapter 1 for the specific compiler version
numbers supported by this release of ObjectStore.

• AIX C Set ++

• Digital UNIX DEC C++

• HP–UX HP C++

• IBM VisualAge C++ for OS/2

• SGI CC and NCC C++

• Sun SPARCompiler C++

• Solaris 2 Intel ProCompiler C++

• Microsoft Visual C++ 32-bit

Third-Party Libraries and Applications

6 ObjectStore Building C++ Interface Applications

Third-Party Libraries and Applications

If you use a third-party library or application and you want to use
ObjectStore to store its types persistently, you must do one of the
following:

• If it exists, obtain the vendor’s version of the library or
application and header files that use the ObjectStore API.

• Obtain the source code for the library or application and
modify its calls where appropriate.

If the library provides the ability to write custom allocators,
implement allocators that do persistent allocation.

When using a third-party library or application with an
ObjectStore application, you must ensure that all persistent data is
read/written inside a transaction.

Chapter 1: Overview of Building an Application

Release 5.1 7

Virtual File Systems

This section describes the use of ObjectStore with virtual file
systems such as MVFS (part of ClearCase from Rational Software
Corp.).

A virtual file system provides a user with a logical view of a file
system. When you use a virtual file system, it appears as if all
sources and executables reside in the current directory path, when
only local modifications actually reside there. The purpose of a
virtual file system is to hide the actual locations of files from users.

When you use ObjectStore with a virtual file system, you must
specify pathnames that would work without the virtual file
system. This is usually some kind of absolute pathname.

This requirement applies to any ObjectStore database stored
under a virtual file system and includes any file that the Server
must access. The Server must be able to access whatever
pathname is provided. This can be a virtual file system pathname
if the Server is running under a virtual file system.

You can run ObjectStore clients and utilities in directories where
ObjectStore can find all files. However, the opening of a database
is always performed by the Server. In a virtual file system, the
Server cannot determine where a file actually resides unless you
specify the true location.

You can run the Server under a virtual file system if there is only
one view of the virtual file system and the view is shared by all
users. It is not possible for the Server to recognize more than one
view. In some virtual file systems, machines and users can have
their own views.

You can maintain schema databases in a virtual file system
because the schema generator embeds the absolute pathname of
the schema in the database. However, when you generate schema
databases you must specify pathnames that the Server can use.

Some virtual file systems, such as ClearCase, provide a way to
return an absolute (nonvirtual) pathname for a given element in a
virtual file system. This pathname can enable the ObjectStore
Server to locate the element. It does mean the loss of the ability to

Virtual File Systems

8 ObjectStore Building C++ Interface Applications

use relative names (such as eng_1.ldb in the following example) as
arguments to ObjectStore utilities.

Example Here is an example of the type of message you might receive when
ObjectStore cannot find a file. Notice that the file appears to be
there.

> pwd
/home/clients/libschemas
> ls
test_1.ldb
eng_1.ldb
qa_1.ldb
> ossize eng_1.ldb

ossize: The database was not found
<err-0025-0351>The database
"/home/clients/libschemas/eng_1.ldb"
does not exist (err_database_not_found)

>

Chapter 1: Overview of Building an Application

Release 5.1 9

ObjectStore Server and the Build Process

The ObjectStore Server is involved in the build process only
during schema generation. That is, the Server is involved only
when you invoke ossg to generate an application, library, or
compilation schema.

ObjectStore/Single

10 ObjectStore Building C++ Interface Applications

ObjectStore/Single

ObjectStore/Single is a stand-alone version of ObjectStore. It is a
form of the ObjectStore client tailored for single-user
nonnetworked use. The functional capability of an
ObjectStore/Single application operating on file databases is
virtually identical to that of other ObjectStore clients, and
databases created with one kind of client are completely
compatible with the other. However, you cannot run an
application as both ObjectStore and ObjectStore/Single together
on one machine because you must select a library load path as
noted in the following discussion.

ObjectStore/Single includes the Server and Cache Manager
functionality as part of the same library as the client application
rather than as separate processes. Those who benefit from
ObjectStore/Single are application developers who develop
applications for a nonnetworked environment. Therefore it is
most useful for applications that have no requirement for

• Concurrency

• Networked Server

• Rawfs support

ObjectStore/Single uses the same APIs as enterprise ObjectStore,
and the rules for linking ObjectStore/Single applications are the
same as for full ObjectStore, minimizing compatibility concerns
for existing ObjectStore sites.

If you use dynamic library load paths, you can decide at execution
time whether an application should be an enterprise ObjectStore
or an ObjectStore/Single application. This allows you to develop
applications using full ObjectStore, but package the application
using ObjectStore/Single as a replacement. This replacement
eases integration of embedded applications.

A summary comparison of full ObjectStore and
ObjectStore/Single follows.

Full ObjectStore ObjectStore/Single

Installation requires root permission. Installation does not require root permission.

Chapter 1: Overview of Building an Application

Release 5.1 11

See Chapter 6, Working with ObjectStore/Single, on page 167, for
additional information about ObjectStore/Single.

Server is a separate process. Server functions are integrated in single
library.

Cache Manager is a separate process. Cache Manager functions are integrated in
single library.

Supports rawfs. Does not support rawfs.

UNIX platforms use OS_ROOTDIR/lib/libos
and libosdbu shared libraries.

Windows platforms use %OS_
ROOTDIR%\bin DLL s.

OS/2 uses %OS_ROOTDIR%\lib DLL s.

UNIX platforms use OS_
ROOTDIR/libsngl/libos and libosdbu shared
libraries.

Windows platforms use %OS_
ROOTDIR%\binsngl .

OS/2 uses %OS_ROOTDIR%\libsngl DLL s.

Transaction log files are automatically
created by Server during ObjectStore
installation.

User must specify transaction log files at each
invocation of an application.

Cache files are automatically created by
Cache Manager process.

User must specify and clean up cache files.

osserver process automatically manages
crash recovery and Server log propagation.

User must ensure that unpropagated data in
Server logs (for example, following a crash) is
applied to the database by either

• Restarting the application

• Running the osprop utility

Uses Server and Cache Manager parameter
files.

Does not use Server and Cache Manager
parameter files.

Full ObjectStore ObjectStore/Single

ObjectStore/Single

12 ObjectStore Building C++ Interface Applications

Release 5.1 13

Chapter 2
Working with Source Files

This chapter describes the source files you use to build
ObjectStore applications.

The topics discussed are

Overview of Source Files 14

ObjectStore Header Files 15

Instantiation Problem with Template Collection Classes 16

Determining the Types in a Schema 19

Creating Schema Source Files 22

When You Modify a Source File 27

Overview of Source Files

14 ObjectStore Building C++ Interface Applications

Overview of Source Files

You build an ObjectStore application from the following source
files:

• Source files that contain code that you write.

• Header files, provided with ObjectStore, that you include in
your source files.

• Header files that you write that define your persistent C++
classes.

• A schema source file that specifies your persistent classes for
the schema generator. You create this file according to
ObjectStore rules.

Building an ObjectStore application requires the generation of
schema information. This is information about the classes of
objects the application stores in or reads from persistent memory.
ObjectStore generates schema information according to the
schema source file that you create. See Creating Schema Source
Files on page 22.

Chapter 2: Working with Source Files

Release 5.1 15

ObjectStore Header Files

ObjectStore provides header files that you must include in your
source code. The ObjectStore features you use determine which
header files to include. Be sure to include the files in the given
order. You must always include ostore/ostore.hh .

If You Use This Feature Include These Header Files

Any ObjectStore feature ostore/ostore.hh

Collections ostore/ostore.hh, ostore/coll.hh

Compactor ostore/ostore.hh, ostore/compact.hh

Database utilities ostore/ostore.hh, ostore/dbutil.hh

Metaobject protocol ostore/ostore.hh, ostore/mop.hh

Relationships ostore/ostore.hh, ostore/coll.hh, ostore/relat.hh

Schema evolution ostore/ostore.hh, ostore/manschem.hh,
ostore/schmevol.hh

Instantiation Problem with Template Collection Classes

16 ObjectStore Building C++ Interface Applications

Instantiation Problem with Template Collection
Classes

Most AT&T cfront 3.0.1-based compilers have a problem correctly
instantiating ObjectStore template collection classes. This is
particularly true for HP C++. The problem manifests itself as an
error report indicating that one of the following template
collection classes is undefined at the time of instantiation:

os_Collection< your_class*>
os_Set< your_class*>
os_Bag< your_class*>
os_List< your_class*>
os_Array< your_class*>
os_Cursor< your_class*>

The problem occurs even if you reference only one of the
parameterized types in your application.

ObjectStore defines three preprocessor macros to help you work
around this problem:

os_Collection_declare

os_Collection_declare_no_class

os_Collection_declare_ptr_tdef

Use these macros to declare the more common cases of
ObjectStore template collection class forward definitions. Doing
so works around the instantiation problem.

os_Collection_declare() Macro

The os_Collection_declare macro declares ObjectStore template
collection classes that are parameterized by nontemplate classes.
For example, if you intend to use os_List<Person*> in your
application, you would use a statement of the following form in
your source code:

os_Collection_declare(Person);

The macro automatically provides a forward definition of the
class Person . There is no need for you to provide a full definition
of the class Person at the point in the module where you use the
os_Collection_declare preprocessor macro.

Chapter 2: Working with Source Files

Release 5.1 17

os_Collection_declare_no_class() Macro

Because os_Collection_declare is a text-substitution-based
preprocessor macro, you cannot use it to work around the
instantiation problem for ObjectStore template collection class
parameters that are themselves template class instantiations.

In these cases, you must provide a forward definition of the
template class and a typedef and use the os_Collection_declare_
no_class preprocessor macro instead. For example:

template <int size> class Fixed_Array;
typedef Fixed_Array<5> Fixed_Array_5;
os_Collection_declare_no_class(Fixed_Array_5);

You also use the os_Collection_declare_no_class preprocessor
macro to predeclare an ObjectStore template collection class
parameterized by a fundamental type. For example, if you intend
to use an os_Array<int*> in your application, you would include a
statement of the following form in your source module:

os_Collection_declare_no_class(int);

os_Collection_declare_ptr_tdef() Macro

The os_Collection_declare_ptr_tdef preprocessor macro allows
you to predeclare an ObjectStore template collection class
parameterized by a typedef that names a pointer type. For
example, you might define a typedef such as the following:

class Person;
typedef Person * pPerson;

To provide the necessary work-around declarations for the
ObjectStore template collection class os_Set<Person*> , you can
use a statement of the following form:

os_Collection_declare_ptr_tdef(pPerson);

Required Order of Include Statements

You must ensure that invocations of these macros appear in your
source module before <ostore/coll.hh> . The following code works:

#include <ostore/ostore.hh>
os_Collection_declare(Person);
os_Collection_declare(Employer);
#include <ostore/coll.hh>

Instantiation Problem with Template Collection Classes

18 ObjectStore Building C++ Interface Applications

The following code does not work:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
os_Collection_declare(Person);
os_Collection_declare(Employer);

ostore/semoptwk.hh If your ObjectStore C++ application uses ObjectStore template
collection classes and includes ostore/mop.hh or
ostore/schmevol.hh or both, then you must also include
ostore/semoptwk.hh . This header file provides invocations of the
os_Collection_declare macro for types used in ostore/mop.hh and
ostore/schmevol.hh .

As with your own invocations of the os_Collection_declare macro,
the inclusion of ostore/semoptwk.hh must precede the inclusion of
ostore/coll.hh in your source module. Also, if you include
schmevol.hh or mop.hh , include them before coll.hh . For example:

#include <ostore/ostore.hh>
os_Collection_declare(Person);
os_Collection_declare(Employer);
#include <ostore/semoptwk.hh>
#include <ostore/schmevol.hh>
#include <ostore/coll.hh>

If you are not using ObjectStore template collection classes, it is
not necessary for you to explicitly include ostore/semoptwk.hh
even if your application uses ostore/mop.hh or ostore/schmevol.hh
or both. Similarly, it is not necessary for you to explicitly include
ostore/coll.hh , even though the schema evolution and metaobject
protocol interfaces use ObjectStore template collection classes.
When you are not using ObjectStore template collection classes in
your application, the existing structure of the ostore/mop.hh and
ostore/schmevol.hh header files is sufficient.

With Visual C++, there are additional considerations for building
applications that use collections. See Symbols Missing When
Linking ObjectStore Applications on page 79.

Chapter 2: Working with Source Files

Release 5.1 19

Determining the Types in a Schema

The schema source file determines the types that are in a schema.
In the schema source file, you use a macro to mark the types to be
included in the schema. After you run the schema generator, not
only are these types in the schema, but any types that are reachable
(defined below) from these types are also in the schema.

In other words, the types that you mark plus the types reachable
from those types equal the types represented in the schema.

The types that you mark are the types on which you can perform
persistent new . However, if you specify the -make_reachable_
source_classes_persistent (-mrscp) option when you generate the
schema, you can also perform persistent new on types in the
schema source file that you did not mark. See -mrscp on the next
page. See also Generating an Application or Component Schema
on page 35.

Which Types to Mark

As a minimum, you should mark the following types:

• Classes on which the application might perform persistent new
to create a direct instance of the class.

• Classes that have instances read by the application from
persistent memory. You can mark the type itself or the base
types of the class.

• Classes appearing in a query string or index path.

It is not necessary to mark ObjectStore classes except for collection
classes.

Which Types Are Reachable

Type T is directly reachable from class C in each of these
situations:

• T is in the definition of a member of C.

• T is a base class of C.

• C is a base class of T.

• T is nested in C.

Determining the Types in a Schema

20 ObjectStore Building C++ Interface Applications

• C is a template instantiation and T is an actual template
parameter.

• C is a template instantiation and T is the class template for C.

• C is a class template and T is a formal template parameter.

Furthermore, a type that is directly reachable from a directly
reachable type is considered to be reachable from the original
type. For example, if T is directly reachable from C, and X is
directly reachable from T, then X is reachable from C. There are no
limits on the chain of reachability.

If You Are Not Sure a Type Is Reachable

When you want a type to be in the schema but you are not sure if
the type is reachable, you can do either of the following:

• Mark it.

• Do not mark it. Run the schema generator. Then use the
osexschm utility to determine if the type is in the schema. If it
is not, you must mark it. For information about osexschm , see
ObjectStore Management, Chapter 4, osexschm: Displaying Class
Names in a Schema.

Choosing Whether to Mark Types or Specify -mrscp

If you mark a type, then you can perform a persistent new on that
type. If you specify -mrscp (the shortened form of -make_
reachable_source_classes_persistent) when you generate the
schema, you can perform a persistent new on any type defined in
the schema source file. Since the end result is the same, how do
you choose whether to mark a particular type or to allow it to be
persistently stored only through specification of -mrscp ?

For each type that you mark, the schema generator does a certain
amount of processing so that the type can be persistently stored.
For each type that is reachable, but that is not itself marked, the
schema generator does less processing, and the processing is not
sufficient to allow persistent storage.

Suppose you specify -mrscp at schema generation time and then
during execution you persistently store a type that you did not
mark. At run time, additional processing is required so that you
can persistently store such a type.

Chapter 2: Working with Source Files

Release 5.1 21

The benefit of specifying -mrscp is that it allows you to perform a
persistent new for a type that you did not explicitly mark. The
drawback is greater execution time and executable size overhead.

You should mark types that you persistently store. You can
specify -mrscp in case you forget to mark a type that you
persistently store.

Ensuring a Complete Schema Source File

Omissions in the schema source file can cause run-time errors. For
example, you might try to persistently store a type that you did
not mark or that is not in the schema. To avoid this, use the
osexschm utility to ensure that all relevant types are in the
schema.

Creating Schema Source Files

22 ObjectStore Building C++ Interface Applications

Creating Schema Source Files

The schema source file specifies the C++ classes that your code
reads from or writes to persistent memory. You create the schema
source file according to a specified format. The schema source file
can contain only valid C++ code. It is good practice to compile
your schema source file to verify that it is compilable, but
compilation is not required.

When you run the schema generator, you specify the name of the
schema source file. Your executable program does not include the
schema source file. The schema source file is only for input to the
schema generator (ossg).

Schema Source File Format

Before you create the schema source file, determine the types in
your application that you are going to mark in the schema source
file. Use the information in Determining the Types in a Schema on
page 19 to help you decide. Then follow these steps to create a
schema source file. See Schema Source File Examples on page 24
for sample code.

1 Create a text file.

2 In the text file, specify #include to include ObjectStore header
files required by the features you use. The required order is on
page 15.

3 Specify #include to include the manschem.hh file provided with
ObjectStore.

4 Specify #include to include the files that define the following
types:

- The types that you are going to mark

- Any types embedded in types that you are going to mark

You are not required to include the definitions for all reachable
types. However, not including the class definition for a type
that is in the application schema means that

- ObjectStore cannot check the class for compatibility with a
database class definition (if one exists).

Chapter 2: Working with Source Files

Release 5.1 23

- ObjectStore cannot make virtual function table pointers
(vftbls) and discriminant functions available for the class.

- Specifying the -mrscp option does not allow you to
persistently allocate that type. The definition of the class
must be in the schema source file or included directly or
indirectly in the schema source file for -mrscp to allow that
type to be persistently allocated.

For efficiency, create header files that contain only class
definitions and include the header files in the schema source
file. This speeds schema generation because there is nothing
extra for the schema generator to examine.

5 Mark certain included types with a call to the macro OS_
MARK_SCHEMA_TYPE .

Use the information on the previous pages to determine which
types to mark. The order in which you mark types does not
matter.

Each call is on its own line and has the format

OS_MARK_SCHEMA_TYPE(type-name);

OS_MARK_SCHEMA_TYPE is a preprocessor macro. For
additional information about OS_MARK_SCHEMA_TYPE() and
OS_MARK_SCHEMA_TYPESPEC() , see ObjectStore C++ API
Reference, Chapter 4, System-Supplied Macros.

6 Mark parameterized types with multiple arguments with a call
to the macro OS_MARK_SCHEMA_TYPESPEC .

This macro is similar to OS_MARK_SCHEMA_TYPE in syntax
and function, except that you must enclose the type and its
arguments in parentheses.

Each call is on its own line and has the format

OS_MARK_SCHEMA_TYPESPEC((type-name<x,y>));

7 Save the schema source file.

Placing Calls to OS_MARK_SCHEMA_TYPE in a Function

In previous releases of ObjectStore, you were required to place the
calls to OS_MARK_SCHEMA_TYPE or OS_MARK_SCHEMA_
TYPESPEC in a dummy function.

Creating Schema Source Files

24 ObjectStore Building C++ Interface Applications

This practice is now discouraged, and becomes obsolete in a
future release. Since the default behavior is -skip_function_body_
parsing (the -sfbp option), ossg does not see these marked types
and prints a warning.

You can override the default using the -parse_function_bodies
(-hpfb) option, but in general, placing calls to OS_MARK_
SCHEMA_TYPE in a function is not good practice.

Schema Source File Examples

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>
#include "ticket.hh" /*defines class ticket*/
#include "passenger.hh" /*defines class passenger*/
#include "schedule.hh" /*defines class schedule*/
OS_MARK_SCHEMA_TYPE(schedule);
OS_MARK_SCHEMA_TYPE(ticket);
OS_MARK_SCHEMA_TYPE(passenger);

As required, the ostore.hh and manschem.hh files are included.
The coll.hh file is included because the application uses
collections. For each marked type, the file in which it is defined is
included. In this example, three classes, schedule , ticket , and
passenger , need to be marked. Each included class is marked on
its own line with a call to the OS_MARK_SCHEMA_TYPE macro.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/dbutil.hh>
#include <ostore/manschem.hh>
#include "schmdefs.hh"
OS_MARK_SCHEMA_TYPE(drawing);
OS_MARK_SCHEMA_TYPE(view);
OS_MARK_SCHEMA_TYPE(layer);
OS_MARK_SCHEMA_TYPE(coordinates);

This schema source file includes the always required ObjectStore
header files (ostore.hh and manschem.hh) along with the coll. hh
and dbutil.hh header files, since the application uses collections
and database utilities. It then includes the schmdefs.hh file that, in
this example, contains the definitions of all classes in the
application. The classes defined in schmdefs.hh that need to be
marked are drawing , view , layer , and coordinates . Each of these
classes is marked on its own line with a call to the OS_MARK_
SCHEMA_TYPE macro.

Chapter 2: Working with Source Files

Release 5.1 25

Schema Source File Must Be Compilable

The schema source file can contain only valid C++ code.
However, you should not use the schema generator to find errors
in your schema source file. It is good practice to make sure that
your schema source file compiles before you use it as input to
ossg .

This is true even if you are using a C compiler. If you have valid
C code that is invalid C++ code, you must modify it or hide it from
the schema generator. For example, here is a valid C struct
definition:

struct class
{
};

This is invalid C++ because class is a reserved keyword in C++.
To hide such code, use comments or the _ODI_OSSG_ macro. See
Hiding Code from the Schema Generator on page 57 for more
information about using this macro.

If you are generating persistent C types, for example, struct s, and
compiling them using a C compiler, then you must include those
C types in the schema source file.

Most C constructs (including struct definitions) are valid C++
constructs, but some are not. If invalid C++ constructs appear in
your included header files, you might have to use preprocessor
directives to ensure that they are not visible in the schema source
file. For example, specify the following in the schema source file
to isolate the invalid code:

#ifndef _ _ cplusplus
/* invalid C++ code */

#endif

OS/2 Notes

Create a schema header file, also called a class definition file. In
this file, place the definitions for all classes that you want in the
application schema. While only one schema header file is allowed,
it can contain #include statements for files that actually contain the
class definitions. Include the schema header file in the schema
source file. When you invoke ossg to generate the application

Creating Schema Source Files

26 ObjectStore Building C++ Interface Applications

schema, you specify the -cd option with the name of this class
definition file.

The reason for the class definition file is that the icc compiler does
not make public a number of symbols that ObjectStore needs to
link your persistent data to your program at run time. However,
these symbols are available to files that include the class
definitions. So the application schema source file produced by the
schema generator must include the class definitions for all
persistent classes your application might need. Therefore, an
OS/2 schema source file contains

• #include <ostore/ostore.hh>

• #include <ostore/manschem.hh>

• #include schema_header_file

• OS_MARK_SCHEMA_TYPE call for each type you want to mark

Sample OS/2 schema
source file

For example, suppose an application’s classes are defined in

• mydefs1.hh

• mydefs2.hh

• mydefs3.hh

You must create a single header file that contains

#include "mydefs1.hh"
#include "mydefs2.hh"
#include "mydefs3.hh"

If you name this header file alldefs.hh , you must pass -cd
alldefs.hh to ossg . The schema source file would look something
like this:

#include <ostore/ostore.hh>
#include <ostore/manschem.hh>
#include "alldefs.hh"
OS_MARK_SCHEMA_TYPE(foo)
OS_MARK_SCHEMA_TYPE(bar)

The schema generator then marks the schema types in the usual
way. In addition, it places code in the generated file that arranges
for vtbls for all the affected classes to be defined in the schema
object file. This means they are accessible to ObjectStore at
application run time. (Other platforms provide mechanisms for
explicitly instantiating vtbls.)

Chapter 2: Working with Source Files

Release 5.1 27

When You Modify a Source File

Suppose you have already generated the schema for your
application, and then you modify a type description. You must
regenerate the application schema after changing

• A class that is marked in the schema source file

• A class that is reachable from a marked class

You must also regenerate the application schema when you add a
library that has a library schema to your application. If you delete
a library, you should regenerate the schema to remove the clutter.

You can set up rules in a makefile to automatically regenerate
schema when required. Changes to source files have the same
compiling and linking implications as they would in any other
application.

If you make an incompatible change to the schema, and the old
definition is present in the schema database you are regenerating,
schema generation fails with an error message identifying the
incompatible change. You can choose from three methods for
handling this situation:

• When the incompatible change is intentional, and you do not
need to access databases with the old definitions, delete the
schema database and rerun ossg for successful schema
generation.

• When the incompatible change was unintentional, and
undesirable, reverse the changes to the source files and rerun
ossg for successful schema generation.

• When the incompatible change is necessary and you need to
access old databases created with older revisions of your
schema, see Chapter 8, Schema Evolution, in ObjectStore
Advanced C++ API User Guide for specific details.

When You Modify a Source File

28 ObjectStore Building C++ Interface Applications

Release 5.1 29

Chapter 3
Generating Schemas

This chapter provides instructions for using the schema generator
to generate application, component, library, and compilation
schemas.

Caution Be sure you can successfully compile your code before you
generate a schema. You should not use the schema generator to
validate your code.

The topics discussed in this chapter are

Overview of Schema Generation 30

Generating an Application or Component Schema 35

Generating a Library Schema 53

Generating a Compilation Schema 55

Hiding Code from the Schema Generator 57

Unsupported Types 58

Restricting Use of Template Classes and Collections 59

Correcting Schema-Related Errors 60

Handling Pragma Statements in Source Code 63

Utilities for Working with Schemas 64

Comparison of ossg Command Lines 65

Comparison of Kinds of Schemas 66

Deploying Products with Protected Databases 68

Using Rogue Wave with Solaris Sun C++ 69

ossg Troubleshooting Tips 70

Overview of Schema Generation

30 ObjectStore Building C++ Interface Applications

Overview of Schema Generation

A schema contains information about a set of classes. ObjectStore
defines these kinds of schemas:

• Application schemas

• Component schemas

• Library schemas

• Compilation schemas

• Database schemas

You use the ObjectStore schema generator to generate application,
component, library, and compilation schemas. ObjectStore creates
database schemas.

ObjectStore stores each application, component, library, and
compilation schema in its own ObjectStore database. ObjectStore
stores database schemas in the associated database or in a
separate database that you specify.

Each schema database must be accessible to an ObjectStore Server.

Application Schemas

An application schema contains descriptions of

• Classes the application stores in or reads from persistent
memory

• Classes that a library that your application links with stores in
or reads from persistent memory

ObjectStore uses the application schema during run time to

• Determine the layout of objects being transferred between the
database and the application

• Validate the database schema to ensure that the application
schema matches the database schema

For simple applications, you can use a single invocation of ossg to
generate an application schema. In more complex applications,
you might need to use library schemas to store schema
information before constructing the application schema.

Chapter 3: Generating Schemas

Release 5.1 31

Component Schemas

A component schema is a type of application schema that can be
loaded and unloaded dynamically at run time. Typically, a
component schema is also a self-contained schema associated
with a DLL.

The rules for generating and using component schemas are
identical to those for application schemas, with these differences:

• Multiple component schema can be in effect at the same time in
a single program.

• Batch schema installation is not supported. You must use
incremental schema installation with component schema.

Library Schemas

If your application uses a library that stores or retrieves persistent
data, and the library does not supply its own component schema,
use the schema generator to create a library schema for that
library. When you generate the application schema, you specify
the library schema. This allows the schema generator to generate
an application schema that contains information for all
persistently used types.

It is particularly important that a library schema contain
definitions of persistently allocated types that users of the library
do not have access to.

In addition to the library schemas you create, ObjectStore
provides library schemas for its libraries that use persistent data.
If you link your application with an ObjectStore library that has a
library schema, you must specify that library schema when you
generate the application schema. See Specifying ObjectStore
Library Schemas on page 48.

Compilation Schemas

A compilation schema works like a library schema. A compilation
schema contains information about the application’s persistent
types, but does not contain information about any persistent types
used by any libraries that the application links with. Earlier
releases of ObjectStore on some platforms required a compilation
schema before you could generate an application schema. With
ObjectStore Release 5.0 and later, you still can create a compilation

Overview of Schema Generation

32 ObjectStore Building C++ Interface Applications

schema and generate the application schema from the
compilation schema, but it is no longer required.

Database Schemas

ObjectStore creates a database schema from the application and
component schemas of all applications that allocate objects in the
database. The database schema consists of the definitions of all
types of objects that have ever been stored, or are expected to be
stored, in the database.

Normally, ObjectStore stores a database schema in segment 0 of
the database. (In each database, segment 0 is a special segment
that is reserved for ObjectStore use.)

You can, however, specify an alternative database to contain the
database schema. You do this when you create the database. The
database whose schema is stored in another database is referred
to as a remote schema database. The database that contains the
schema belonging to the remote schema database is referred to as
the schema database. The schema for a remote schema database
resides in segment 0 of the schema database.

An application augments a database schema through batch (the
default) or incremental schema installation.

With batch schema installation, the first time an application
accesses a database, each class in the application’s schema that can
be persistently allocated is added to the database’s schema (if it is
not already present in the database schema). Subsequent
execution of the application does not install schema in that
database unless the application’s schema changes (as evidenced
by a change in the internally stored date of the application schema
database).

With incremental schema installation, a class is added to a
database’s schema only when the first instance of that class is
allocated in the database. You can specify incremental schema
installation for a particular database in your source code.

The following table is a simple comparison of batch and
incremental schema installation:

Batch Schema Installation Incremental Schema Installation

Schema is larger. Schema is smaller.

Chapter 3: Generating Schemas

Release 5.1 33

Keeping Database Schemas and Application Schemas Compatible

Each ObjectStore database has its own database schema. Each
With the exception of component schema, anObjectStore
application is associated with one application schema or multiple
component schemas. Many users can share an application schema
and use it with different applications. When an application opens
a database, the application’s schema must be compatible with the
database’s schema. Compatibility means that if a class exists in
both schemas,

• Its data members must have identical definitions and ordering
in each schema.

• Both class definitions must either define at least one virtual
function, or virtual functions must be absent from both
definitions.

ObjectStore flags differences as schema validation exceptions.

Multiple Component
Schemas

Multiple component schemas can be used in one application.

If two program schemata that are loaded into the same complete
program schema define types with the same name, the type
definitions must be identical.

This is only checked for types that appear in the schema of a
database that is in use. An error will show up as a schema
validation error.

When a new type is installed into a database schema, it will be
validated against all program schemata and a schema validation
error will be signaled if there are multiple inconsistent definitions.

Schemas Are Platform Specific

After you generate a schema, you can use it only on the platform
on which you generated it. If you try to generate an application

Administrative work is done
at the beginning.

Administrative work is done in
steps; there is potential for
concurrency conflict because each
incremental schema installation
modifies some pages and so uses
some write locks.

Batch Schema Installation Incremental Schema Installation

Overview of Schema Generation

34 ObjectStore Building C++ Interface Applications

schema from one or more schemas that were built on other
platforms, ossg aborts the process and displays a message
indicating why. If you want to use a library schema on multiple
platforms, you must generate it on each platform on which you
want to use it.

Consider that an application schema corresponds to an
executable, a component schema corresponds to a DLL, a library
schema corresponds to a library, and a compilation schema
corresponds to an object file. Just as executables, libraries, and
object files are platform specific, so are their accompanying
schema databases.

Chapter 3: Generating Schemas

Release 5.1 35

Generating an Application or Component Schema

Input To generate an application schema, specify your schema source
file as input to ossg . If you are linking with libraries that have
library schemas, you must also specify those library schemas as
input to ossg . This procedure is also true for component schema.

Output The output from ossg is

• Application schema database. The schema generator creates
the application schema and stores it in an ObjectStore database.

• Intermediate schema source file. This file records the location of
the application schema database along with the names of the
application’s virtual function dispatch tables, the names of
discriminant functions, and the definitions for any get_os_
typespec() member functions.

You must compile this file and then link the resulting object file
with your application. (Chapter 4, Compiling, Linking, and
Debugging Programs, on page 73, provides the details for
linking.)

When you use ossg on Windows platforms, the schema
generator creates the application schema object file directly.

Following is an illustration of the application schema generation
process, extending to just before the link step.

Generating an Application or Component Schema

36 ObjectStore Building C++ Interface Applications

Invoking ossg to Generate an Application Schema

The ossg command syntax for generating application, library, and
compilation schemas appears below. Portions of the command
line are on different lines only to make them more
understandable.

ossg [neutralizer_options] [additional_app_options] [{-assf
app_schema_source_file | -asof app_schema_object_file.obj}]
-asdb app_schema_db schema_source_file [lib_schema_db1 ... lib_
schema_dbn]-cd class_definition_file

ossg [neutralizer_options] [additional_options] -lsdb lib_schema_db
schema_source_file

ossg [neutralizer_options] [additional_options] -csdb comp_schema_db
schema_source_file

neutralizer_options: [-arch setn...] [{-padm | -padc}] [-ostyp]
[-nout file_name][{-showd | -showw}] [-nor] [-sopt]

additional_app_options: [{ -mrlcp | -mrscp }] [-rtdp]
[-no_weak_symbols][-weak_symbols [additional_options]

additional_options: [-no_default_includes] [-mrscp]
additional_options: [-smf] [{-sfbp | -pfb}]

ossg [compilation_options] [neutralizer_options] [-cpp_fixup]

ossg

Application Schema
Database

Schema Source File Library Schemas
(optional)

Application Schema
Object File

C++ compiler

Intermediate Source

Windows

File

Unix

Chapter 3: Generating Schemas

Release 5.1 37

[-final_asdb final_app_schema_db]
[-E schema_source_file]

compilation_options Specifies any options that would be passed to the
compiler if you were compiling a schema source file
instead of generating schema from it. You should
include any preprocessor options such as include file
paths and macro definitions, as well as compiler options
that might affect object layout, such as packing options
(for example, /Zp4 for Visual C++). Optional.

If you specify the /I , -I (uppercase I), /D, or -D option, do
not include a space between the option and the
argument. For example, on OS/2 the following is
correct:

ossg /I$(OS_ROOTDIR)\include ...

On UNIX, do not specify the -o option on the ossg
command line.

On Windows, do not specify /Tp on the ossg command
line.

On OS/2, when you specify any option that takes an
argument do not put a space between the option and the
argument.

neutralizer_options Include any of the options in ossg Neutralization
Options on page 145. These options allow you to
neutralize a schema for a heterogeneous application.
You can include them in any order.

Optional. The default is that neutralization is not done.
-arch set n The schema that is generated or updated will be

neutralized to be compatible with the architectures in
the specified set. See ossg Neutralization Options on
page 145 for explanations of the set options.

Required when you are neutralizing schema. No
default.

Generating an Application or Component Schema

38 ObjectStore Building C++ Interface Applications

-cpp_fixup Allows preprocessor output to contain spaces inside
C++ tokens. Specify this option if your preprocessor
inserts a space between consecutive characters that form
C++ tokens. For example, if your preprocessor changes
:: to : : , you can specify this option so that the schema
generator allows the inserted space and correctly reads
the preprocessor output.

You might generate an application schema from a
compilation schema and library schemas. In this case,
you do not need this option because there is no source
code input to the schema generator, which means that
the preprocessor is not involved.

Optional. The default is that ossg does not allow a space
in a C++ token such as :: or .*.

-E schema_source_file The -E option causes ossg to preprocess the input file
and send the preprocessed output to standard output.

This option is useful for debugging ossg parsing
problems, because it allows you to see the results of any
preprocessing that might have occurred without
generating the schema. It is also useful when you report
ossg problems to Technical Support because it allows
the problem to be reproduced by Object Design without
the need to package all your application’s include files.

When specifying the -E argument, if you also specify
schema databases on the same command line, a
warning is issued:

<warn-0038-0006> The option -E which generates a
preprocessed source has been specified. No schema will be
generated from this command.

Chapter 3: Generating Schemas

Release 5.1 39

-final_asdb final_app_schema_db Specifies a location for the application schema database
that is different from the location you specify with the
-asdb option. The schema generator writes the location
you specify with the -final_asdb option into the
application schema source file (application schema
object file for Visual C++). Use this option when you
cannot specify the desired location with the -asdb
option. The -asdb option is still required and that is
where the schema generator places the application
schema.

This option is useful when you plan to store the
application schema database as a derived object in a
ClearCase versioned object base (VOB). The schema
generator cannot place the application schema database
directly in a ClearCase VOB. If you specify the -final_
asdb option with the desired location, you avoid the
need to run the ossetasp utility, which patches an
executable so that it looks for its application schema in a
database that you specify.

You can also use this option to specify a relative path.

After you run ossg with the -final_asdb option,
remember to move the application schema to the
database you specify with -final_asdb .

You must specify an absolute pathname with -final_
asdb .

Optional. The default is that the schema generator
writes the pathname that you specify for -asdb in the
application schema source file (object file for Visual
C++).

Note: This option works for component schemas that
are generated with -asdb , as well.

Generating an Application or Component Schema

40 ObjectStore Building C++ Interface Applications

-mrlcp or -make_reachable_library_
classes_persistent

Causes every class in the application schema that is
reachable from a persistently marked class to be
persistently allocatable and accessible.

This option is supplied for compatibility purposes only.
The use of the -mrlcp option is discouraged. Specify
-mrscp instead.

When you specify this option, you cannot neutralize the
schema for use with a heterogeneous application. If you
are building a heterogeneous application, you must
either mark every persistent class in the schema source
file or specify the -mrscp option.

If you do not mark any types in the schema source file
and you specify -mrlcp when you run ossg , then the
application schema does not include any types. You
must mark at least one type for there to be any reachable
types.

Optional. The default is that only marked classes are
persistently allocatable and accessible.

See also Determining the Types in a Schema on page 19.

Chapter 3: Generating Schemas

Release 5.1 41

-mrscp or -make_reachable_source_
classes_persistent

Causes every class that is either

• Defined in the schema source file

• Reachable from a persistently marked class

to be persistently allocatable and accessible.

The difference between -mrscp and -mrlcp is that when
you specify -mrscp, it applies to the schema when ossg
is translating from source to schema. This allows the
schema generator to recognize which types you plan to
allocate persistently. The -mrlcp option applies to the
application schema after the merging of constituent
schemas.

The benefit of specifying the -mrscp option is that it
allows you to perform a persistent new for a type that
you did not explicitly mark in the schema source file.
The drawback is greater execution time and executable
size overhead.

If you do not mark any types in the schema source file
and you specify -mrscp when you run ossg , then the
application schema does not include any types. You
must mark at least one type for there to be any reachable
types.

Optional. The default is that only marked classes are
persistently allocatable and accessible.

See also Determining the Types in a Schema on page 19.

Generating an Application or Component Schema

42 ObjectStore Building C++ Interface Applications

-no_default_includes or
-I-

When you specify this option, ossg does not
automatically specify any include directories to the C++
preprocessor. However, the preprocessor can have
default include directories built in. If there are any
directories that are built into the preprocessor, ossg
does check these built-in directories. Typically, the
preprocessor uses built-in include paths to find
standard include files such as stdio.h .

When you specify this option, you must explicitly
specify directories that contain included files.

For example, on some UNIX systems, when you do not
specify this option, the C++ preprocessor looks for
include files in the /usr/include directory.

Note that if you want the schema generator to pass the
ObjectStore include directory to the preprocessor as a
directory for finding included files, you must always
specify it. For example:

UNIX: -I$OS_ROOTDIR/include

Windows and OS/2: -I%OS_ROOTDIR%\include

The -I- option is the letter I as in Include. Specifying -I- is
the same as specifying -no_default_includes .

Optional. The default is that the preprocessor checks
default directories for included files.

-nor A neutralizer option that prevents the schema generator
from instructing you to reorganize your code as part of
neutralization. This is useful for minimizing changes
outside your header file, working with unfamiliar
classes, or simply padding formats.

See ossg Neutralization Options on page 145 for more
information.

-neutral_info_output filename or
-nout filename

A neutralizer option that indicates the name of the file
to which neutralization instructions are directed.

Optional. Default is that the schema generator sends
output to stderr .

Chapter 3: Generating Schemas

Release 5.1 43

-no_weak_symbols Default. Notifies you of missing vftbls and
discriminants, allowing you to check whether a
referenced vtbl or discriminant function symbol is
undefined.

If you specify -rtdp maximal -no_weak_symbols , the
linker outputs messages about what is missing. You can
use this information to determine which additional
classes you need to mark. These missing symbols are
only a hint about what you might consider marking.
They might also be the result of a link line error.

Specify the option -weak_symbols to suppress this
behavior.

-pad_maximal or -padm |
-pad_consistent or -padc

Neutralizer options that indicate the type of padding
requested. See ossg Neutralization Options on page 145
for additional information.

Optional. Default is -padc .
-parse_function_bodies or -pfb This option ensures that any types that are marked

inside a function are parsed by ossg. If you do not
explicitly use this option and you have any types
marked inside functions, an error is reported. See ossg
Troubleshooting Tips on page 70 for further
information.

Optional. The default is that the -sfbp option is set.

Generating an Application or Component Schema

44 ObjectStore Building C++ Interface Applications

-runtime_dispatch or -rtdp
{minimal | derived | full | maximal }

Specifies the classes for which the schema generator
makes vftbls and discriminant functions available.

minimal specifies marked classes, classes embedded in
marked classes, and base classes of marked classes.

derived specifies the minimal set plus classes that derive
from marked classes and classes embedded in the
derived classes.

full specifies the derived set plus the transitive closure
over base classes, derived classes, and classes that are
the targets of pointers or references. The full
specification does not include nested classes or
enclosing classes unless they meet one of the previous
criteria.

maximal specifies the full set plus nested types. In
previous ObjectStore releases, this was the default. If
your application used an earlier release of ObjectStore
and you do not specify this option, you might need to
mark classes that you did not previously mark.

See Example of Using the -runtime_dispatch Option on
page 50.

Optional. The default is derived .
-show_difference or -showd |
-show_whole or -showw

Neutralizer options that indicate the description level of
the schema neutralization instructions. Optional.
Default is -show_whole .

-skip_function_body_parsing or
-sfbp

Optional. Specifies that code within function bodies is
not parsed. By default this option is in effect.

-schema_options option_file or
-sopt

A neutralizer option that specifies a file in which you list
compiler options being used on platforms other than the
current platform. See Listing Nondefault Object Layout
Compiler Options on page 156 for further information.

Chapter 3: Generating Schemas

Release 5.1 45

-store_member_functions or -smf Causes ossg to create an instance of os_member_
function for each member function in each class in the
schema source file. It then puts these instances in the list
of class members, which includes member types and
member variables.

This is useful when you intend to use the MOP to
inspect the member functions. If you are not planning to
inspect member functions, you should not specify this
option, because it wastes disk space.

This also means that additions and deletions of member
functions are schema changes and affect validation.

When you generate an application schema, you might
specify a library or compilation schema. If you want to
capture the member functions from the library or
compilation schema, you must have specified the -
store_member_functions option when you generated the
library or compilation schema. You must also specify
the -store_member_functions option when you generate
the application schema.

Optional. The default is that ossg generates a schema
that includes member types and member variables, but
not member functions.

-weak_symbols Suppresses notification about missing vftbls and
discriminants. This option overrides the default
behavior described at -no_weak_symbols on page 43.

-assf app_schema_source_file or
-asof app_schema_object_file.obj

Specifies the name of the application schema source file
or application schema object file to be produced by
ossg . For all compilers except Visual C++, the schema
generator produces a source file that you must compile.
When you use Visual C++, the schema generator
directly produces the object file.

Required. No default.

Generating an Application or Component Schema

46 ObjectStore Building C++ Interface Applications

Changing the Default Preprocessor

Except on OS/2, you can use the OS_OSSG_CPP environment
variable to specify a C preprocessor other than the configured
default. The following table shows the default preprocessor on
each platform:

-asdb app_schema_db.adb Specifies the name of the application schema database
to be produced by ossg . If the schema database exists
and is compatible with the type information in the input
files, the database is not modified.

This pathname must be local to a host running an
ObjectStore Server.

The pathname should have the extension . If you want
to specify an existing application schema database with
ossg , the application schema must have .adb as its
extension.

Required. No default.
schema_source_file Specifies the C++ source file that designates all the types

you want to include in the schema. It should include all
classes that the application uses in a persistent context.

No default. Required except in two cases:

• When you generate an application schema from a
compilation schema as described on page 56

• If you specify one or more library schemas that
contain all the persistent types that your application
uses

lib_schema.ldb ... Specifies the pathname of a library schema database.
The name must end in .ldb . This can be an ObjectStore-
provided library schema or a library schema that you
created with ossg .

The schema generator reads schema information from
the library schema database specified and modifies the
application schema database to include the library
schema information. You can specify zero or more
library schema databases.

Optional. The default is that library schemas are not
included.

OS/2 icc

Chapter 3: Generating Schemas

Release 5.1 47

OS/2 Platforms Have an Additional ossg Option

On OS/2 platforms, when you invoke ossg, you must specify the
-cd option with the name of the class definition file for the
application. The class definition file, also called the schema header
file, contains the definitions for all classes that you want in the
schema. While only one class definition file is allowed, it can
contain #include statements for files that actually contain the class
definitions. You must include the class definition file in the
schema source file.

The reason for this option is that the icc compiler does not make
public a number of symbols that ObjectStore needs to link your
persistent data to your program at run time. However, these
symbols are available to any file that includes your class
definitions. Consequently, the application schema source file
produced by the schema generator must include the class
definitions for all persistent classes your application might need.
For example:

ossg -assf osschema.cpp -cd schmdefs.hh -asdb myschema.adb \
myschema $(OS_ROOTDIR)\lib\os_coll.ldb

Using a Temporary File to Send Arguments to ossg

You can specify the following option on an ossg command line:

@filename

It does not matter what kind of schema you are generating.

When the schema generator encounters this option, it reads
additional options and arguments from filename. Note that the
command line passed to the compiler for preprocessing is the
fully expanded command line, so those options that are passed to
the compiler must still meet command-line length restrictions.

Be sure that you do not insert a space between @ and filename. You
can specify this option on any platform.

On OS/2 and Windows NT, this is commonly used to avoid
problems with the length of a command line in Microsoft’s nmake
program. The usual nmake syntax is

UNIX cpp

Windows cl

Generating an Application or Component Schema

48 ObjectStore Building C++ Interface Applications

ossg -other-args @<<
$(LONG_ARGS1)
$(LONG_ARGS2)
<<

Specifying ObjectStore Library Schemas

ObjectStore provides library schemas for the ObjectStore libraries
that store or retrieve persistent data. If you will be linking your
application with an ObjectStore library that has a schema, you
must specify that library schema when you generate the
application schema. The following table shows when to specify an
ObjectStore-provided library schema. When you specify a library
schema, you must always specify the full path. For example,
$(OS_ROOTDIR)/lib/liboscol.ldb on UNIX and $(OS_
ROOTDIR)\lib\os_coll.ldb on Windows and OS/2.

Specifying Remote Library Schemas

A client that uses a remote Server uses ObjectStore library
schemas that are stored on the remote Server. Consequently,
when generating the application schema, be sure to specify
absolute pathnames for library schemas.

How Long Does Schema Generation Take?

The time it takes to generate an application schema is difficult to
predict. There are many variables that affect how long schema
generation takes, such as the platform and the size of the schema.
Usually, the time to generate your schema is comparable to the
time to compile the equivalent source code.

For This Feature Specify This Library Schema Link with This Library

UNIX Windows or OS/2 UNIX Windows or OS/2

Collections liboscol.ldb os_coll.ldb -loscol ostore.lib

Compactor liboscmp.ldb oscmpct.ldb -loscmp ostore.lib

Queries libosqry.ldb osquery.ldb -losqry ostore.lib

Schema evolution libosse.ldb
libosqry.ldb
liboscol.ldb

ossevol.ldb
osquery.ldb
os_coll.ldb

-losse
-losqry
-loscol

ostore.lib

Chapter 3: Generating Schemas

Release 5.1 49

If You Omit a Required Library Schema

If you generate an application schema without specifying a
required library schema, you might not notice the omission until
the application fails with a message indicating that classes are
missing from the application schema.

If the collections library schema is required, and you omit it, the
linker typically displays a message indicating that there are
missing get_os_typespec functions. If os_tinyarray::get_os_
typespec() is among them, this probably indicates that you failed
to include the collections library schema while building the
application schema.

If the types in a library are not persistently used,

• It might not matter if the corresponding library schema is not
specified when the application schema is generated. For
example, there might be types that are persistent in some
situations but not in others. Also, if there are get_os_typespec()
functions, the library schema is required. Consequently, Object
Design recommends that you always specify a library schema
when you use a type in that library, whether or not the types
are persistently used.

• The database schema might be larger than necessary when
batch schema installation is used.

Missing collections
class library example

Here is an example that shows what happens when there is a
missing collections library schema. The exact mode of failure
differs on each platform. This example was generated on Sun
using the ProCompiler.

Here is a trivial application:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
main ()
{

OS_ESTABLISH_FAULT_HANDLER
objectstore::initialize();
os_collection::initialize();
OS_END_FAULT_HANDLER

return 0;
}

As you can see, it does not do much, but it does make a reference
to the collections library. Because this application does not

Generating an Application or Component Schema

50 ObjectStore Building C++ Interface Applications

persistently create or access any types, the schema source file is
trivial:

Schema source file #include <ostore/ostore.hh>
#include <ostore/manschem.hh>

Build the application schema with the usual command (forgetting
to explicitly include the collections library schema):

ossg -assf os_nullschm.cc -asdb nullschm.adb nullschema.cc

Compile the application (test.cc) and the application schema
source file (os_nullschm.cc) and link the application as shown. As
you can see, there are a large number of undefined get_os_
typespec functions that are missing (about 100 lines of messages
are not shown) because the collections library schema was not
included while ossg was building the application schema.

Running the
ProCompiler

CC -pta -vdelx -mt -o test test.o os_nullschm.o -loscol -los -losthr
Undefined first referenced
 symbol in file
static _RH_ref<_RH_ref_slot_SHV>::get_os_typespec(void)
...
...

The exact message varies depending on which compiler you are
using, but the elements common among the messages are the
undefined get_os_typespec functions.

Example of Using the -runtime_dispatch Option

The -runtime_dispatch (-rtdp) option specifies the set of classes for
which the schema generator makes vftbls and discriminant
functions available. For example, suppose you define the
following classes:

class A {
public:

class B { public: G* gp; };
E* ep;

};
class C : public A { };
class D : public A { };
class E { };
class F : public D { public: E e; };
class G { public: E e; }
class H { };

If you mark class D, the following classes are in the set (that is,
their vftbls and discriminant functions are available). Note that

Chapter 3: Generating Schemas

Release 5.1 51

class H is not reachable from class D and consequently is not in the
set unless you explicitly mark it.

Using the Same Application Schema for Multiple Applications

Multiple applications can share a single application schema. You
can set this up by following these steps:

1 Generate the application schema that you want the
applications to share.

2 Compile the application schema source file produced by the
schema generator. (If you are using Visual C++, the compiler
directly produces the application schema object file.)

3 Link the application schema object file into each application
that you want to use this schema. When applications share an
application schema object file, they consequently share the
application schema.

When the first application accesses the database, ObjectStore
validates the application schema. When subsequent applications
access the database, ObjectStore does not need to perform
validation and access is faster.

Examples of Generating an Application Schema

UNIX ossg -assf myschema.cc -asdb myschema.adb schema_source.cc

The -assf option indicates the name of the application schema
source, myschema.cc . You must specify a name for the application
schema source file. There is no default. The -asdb option indicates
the name of the database (myschema.adb) to contain the
application schema. The schema source file is schema_source.cc .

ossg -mrscp -assf myassf.c -asdb my.adb mine.c my.ldb your.ldb

The -mrscp option is included, so all classes that are defined in the
schema source file and that are reachable from marked classes are
persistently allocatable and accessible. This is true even if they are

Option Specified Classes in the Set

Minimal A and D
Derived A, D, E and F
Full A, C, D, E and F
Maximal A, B, C, D, E, F and G

Generating an Application or Component Schema

52 ObjectStore Building C++ Interface Applications

not marked in the schema source file. The -assf option indicates
that myassf.c is the name of the application schema source file to
be produced by ossg . The -asdb option indicates that my.adb is the
name of the application schema database to be generated. The
schema source file is mine.c . The application schema is generated
with the my.ldb and your.ldb library schema databases and
consequently will include the types in those libraries.

Windows ossg -asof jetsch.obj -asdb jetsch.adb jetsch.cc \ %OS_
ROOTDIR%\lib\os_coll.ldb

Since this is a Windows platform, the schema generator directly
produces the application schema object file. The -asof option
indicates the name of the application schema object file, jetsch.obj .
The -asdb option indicates that the application schema database to
be generated by ossg is jetsch.adb . The schema source file is
jetsch.cc . Because this application uses ObjectStore collections,
the collections library schema, lib\os_coll.ldb , is specified.

OS/2 ossg -assf paris.cc -asdb paris.adb paris_sch_source.cc\
-cd paris.hh %OS_ROOTDIR%\lib\oscmpct.ldb

On OS/2, you must specify the -cd option with the name of the
class definition file. The application schema source file that ossg
produces will be named paris.cc . The application schema
database will be in paris.adb . The schema source file is paris_sch_
source.cc . The class definition file is paris.hh . The application uses
the compactor feature, so you must specify the library schema for
the compactor library, oscmpct.ldb .

Chapter 3: Generating Schemas

Release 5.1 53

Generating a Library Schema

If you create a library that allocates or reads persistent data, you
should create a library schema. A library schema contains
descriptions of the types that the library stores or retrieves in a
persistent context.

You specify the library schema when you generate the application
schema for applications that use the library. ObjectStore adds the
types defined in the library schema to the application schema.

In addition to the library schemas you create, there are library
schemas that ObjectStore provides. Specifying ObjectStore
Library Schemas on page 48 describes library schemas provided
with ObjectStore.

Makefiles A makefile that generates a library schema is almost the same as a
makefile that generates an application schema. The major
differences are that when you want to generate a library schema
you

• Specify the -lsdb option on the ossg command line. Do not
specify the -asdb option.

• Do not specify the -assf or -asof option. Generating a library
schema does not involve generating the application schema
source (or object) file.

For an example of a makefile that generates an application
schema, see the section discussing your platform in Chapter 4,
Compiling, Linking, and Debugging Programs, on page 73.

Invoking ossg to Generate a Library Schema

Refer to Invoking ossg to Generate an Application Schema on
page 36 for the forms of the ossg command to generate a library
schema. On OS/2, the -cd option is only required when you
generate an application schema.

Using Multiple Schema Source Files to Create a Library Schema

You can create a library schema from multiple schema source
files. To do this, you incrementally build the library schema from
one schema source file at a time. For example, to include

Generating a Library Schema

54 ObjectStore Building C++ Interface Applications

information from the schema source files s1.cc and s2.cc in the
library schema foo.ldb , you would use two commands:

ossg -lsdb foo.ldb s1.cc
ossg -lsdb foo.ldb s2.cc

This creates the foo.ldb library schema. It contains the types
marked in each of the schema source files s1.cc and s2.cc .

If you modify a source file from which you created a library
schema and run ossg again, the schema generator adds to the
library schema. It does not overwrite the existing library schema.
If you do not want to add to the existing library schema, you must
remove the old schema or specify a name for a new library
schema.

For example, if you modify s1.cc after you create foo.ldb and then
you run ossg again, ossg adds to foo.ldb . It does not overwrite
foo.ldb .

Example ossg -lsdb part.ldb partschm.cc

This command creates the part.ldb library schema and stores it in
an ObjectStore database. The part.ldb library schema contains
descriptions of the types marked in the partschm.cc schema
source file. When you generate an application schema for an
application that will link with the part library, you must specify
the part.ldb library schema.

If you specify neutralization arguments when you generate a
library schema, you must specify the same neutralization
arguments each time you run ossg to update that library schema.

If Not Creating a Library Schema

Your application needs access to all types that are persistently
allocated. These should be marked either in the application
schema or the library schema. If they are not marked in one or the
other, providing access to the necessary header files can be quite
complex.

Chapter 3: Generating Schemas

Release 5.1 55

Generating a Compilation Schema

When the schema generator generates an application schema, it
internally creates a compilation schema first and then builds the
application schema from the compilation schema.

A compilation schema contains information about the classes in
your application’s source files that are read from or written to
persistent memory. A compilation schema differs from an
application schema in that the compilation schema does not
include information about the classes used by libraries your
application links with.

You can use ossg to explicitly generate a compilation schema
before you generate the application schema.

A makefile that generates a compilation schema is almost the
same as a makefile that generates an application schema. The
major differences are that when you want to generate a
compilation schema you

• Specify the -csdb option on the ossg command line. Do not
specify the -asdb option.

• Do not specify the -assf or -asof option. Generating a
compilation schema does not involve generating the
application schema source (or object) file.

For an example of a makefile that generates an application
schema, see the section for your platform in Chapter 4, Compiling,
Linking, and Debugging Programs, on page 73.

Why Generate a Compilation Schema?

There is no requirement for you to generate a compilation schema.
However, you might want to generate a compilation schema in
the following situations:

• When building a very large application. You can split the
schema source file into multiple files so that you need not
regenerate the entire schema when one type description
changes.

• When performing schema evolution. See ObjectStore C++ API
User Guide, Chapter 8, Schema Evolution, Generating a
Compilation Schema for additional information.

Generating a Compilation Schema

56 ObjectStore Building C++ Interface Applications

Invoking ossg to Generate a Compilation Schema

Use the syntax described in Invoking ossg to Generate an
Application Schema on page 36 to create a compilation schema.
On OS/2, the -cd option is not required when you generate a
compilation schema.

Example ossg -csdb my.cdb myschema.cc

The name of the compilation schema that ossg produces is
my.cdb . The schema source file is myschema.cc .

Using a Compilation Schema to Generate an Application Schema

To generate an application schema from a compilation schema,
specify the name of a compilation schema in place of the schema
source file when you invoke ossg . For example:

ossg -assf engine_schema.cc -asdb engine.adb libmine.cdb

On Windows, you would enter

ossg -asof engine_schema.obj -asdb engine.adb libmine.cdb

OS/2 On OS/2, you must specify the -cd option when you generate an
application schema from a compilation schema. See OS/2
Platforms Have an Additional ossg Option on page 47.

Chapter 3: Generating Schemas

Release 5.1 57

Hiding Code from the Schema Generator

You can use the _ODI_OSSG_ cpp macro to hide code from the
schema generator. This is useful

• When your source files include code that is

- Compiler specific (not ANSI C++)

- Not compilable by ossg ; for example, code that has an error
but the code is not pertinent to schema generation

• To speed up ossg

Specify the _ODI_OSSG_ macro in a directive in your source code.
For example:

#ifndef _ODI_OSSG_
/* code you do not want the schema generator to see */
#endif

When you run the schema generator, ossg passes your code to the
C preprocessor (cpp) before it generates the schema. When ossg
does this, it also passes a definition for _ODI_OSSG_ to cpp .
Consequently, _ODI_OSSG_ is always defined. The result is that
cpp removes the code between the two directives (#ifndef _ODI_
OSSG_ and #endif) from the code that it passes back to the schema
generator. The schema generator never operates on the code
between the directives.

Unsupported Types

58 ObjectStore Building C++ Interface Applications

Unsupported Types

The following paragraphs describe types unsupported in
ObjectStore Release 5.1.

Limited Support for long long Data Type

A long long is an int type with a length of 64 bits. DEC C++ ,
SPARCompiler C++, and SGI C++ treat long long as a new type.

On platforms that support long long , the schema generator
recognizes this type in a source fed through it. On platforms that
do not support long long , the schema generator signals an error
when it encounters this type.

However, you cannot perform a persistent new for an object that
includes the long long type. In other words, you cannot mark a
type in the schema source file that includes a long long member.
An error occurs during schema generation if you do.

Support for wchar_t Types

The schema generator does not fully support the wchar_t type.
Consequently, Object Design discourages the use of this type.

You can persistently store an object that has a wchar_t member
type. However, code that requires implicit conversions or type
promotions that involve wchar_t is not guaranteed to be
recognized by the schema generator. You might need to
conditionalize such code so that the schema generator ignores it.

You cannot neutralize a schema that includes the wchar_t type.
The schema generator treats wchar_t types in the same manner as
the architecture/compiler platform for which it is generating
schema. Different platforms treat this type in different ways.

Schema evolution and queries of classes containing wchar_t types
are not supported.

Chapter 3: Generating Schemas

Release 5.1 59

Restricting Use of Template Classes and
Collections

There are two ObjectStore preprocessor macros that you can pass
to ossg to restrict the use of ObjectStore template classes and
collections.

• _ _NO_TEMPLATES_ _

• OS_NO_COLLECTION_TEMPLATES

ObjectStore header files contain numerous definitions and uses of
template classes. Specify one of these macros on the ossg
command line when you do not want ObjectStore to define class
templates.

The use of these macros does not affect your ability to define and
use your own template classes. These macros hide only the
definitions of ObjectStore templates.

_ _NO_TEMPLATES_ _ When you specify _ _NO_TEMPLATES_ _ on the ossg command
line, before the specification of any ObjectStore include files,
template classes normally defined by ObjectStore are not
available for use by your application. These templates include
collection templates, reference templates, and relationship
templates. The advantage of this is that compilation time is faster.
The disadvantage is that you need to use the generic versions of
the classes, which do not provide the security of type safety.

OS_NO_COLLECTION_
TEMPLATES

When you specify OS_NO_COLLECTION_TEMPLATES on the ossg
command line, your application can use parameterized references
and relationships but not parameterized collections.

It is not possible to allow the use of collections without allowing
the use of template classes.

Caution The mop.hh and schmevol.hh header files use template classes
unconditionally. Do not specify the _ _NO_TEMPLATES_ _ macro
or the OS_NO_COLLECTION_TEMPLATES macro when your
application uses the MOP or schema evolution.

Correcting Schema-Related Errors

60 ObjectStore Building C++ Interface Applications

Correcting Schema-Related Errors

This section presents information about schema-related errors
that you might need to resolve:

• Type mismatch errors

• Persistent allocation errors

• ossg run-time errors

• Metaschema mismatch errors

Type Mismatch Errors

The most common schema-related error can occur when an
attempt is made to reconcile type definitions from different
sources. This can happen when ObjectStore builds any kind of
schema.

Similarly, you might get an exception when an application is run
against a database, if the class definitions in the application
schema are incompatible with class definitions already present in
the database schema. When this happens, you might have to
either change the application to match the database or evolve the
schema database.

When an error occurs due to a type mismatch, the easiest way to
get more information about the mismatch is to use the osexschm
utility. See ObjectStore Management, Chapter 4, osexschm:
Displaying Class Names in a Schema.

Persistent Allocation Errors

The following exceptions might occur at run time:

<err-0025-0022> Persistent new requested for type "XXX", which has not
been marked as a legitimate type for persistent new.
<err-0025-0021> Persistent new requested for type "XXX", which was not
found in the application schema.

ObjectStore detects these errors when the application attempts to
persistently allocate a class that was not part of its application
schema or a class that was not marked. Common sources of this
error are

• The persistent allocation was done in a library and the library
schema was not supplied to ossg .

Chapter 3: Generating Schemas

Release 5.1 61

• ossg was not used.

• ossg was used, but the type was not marked with a call to the
OS_MARK_SCHEMA_TYPE macro.

Use the osexschm utility to establish the absence of the class in the
appropriate schema. See ObjectStore Management, Chapter 4,
osexschm: Displaying Class Names in a Schema.

ossg Run-Time Errors

When the schema generator builds an application schema, errors
can occur at link time if the class definitions present in the
compilation and library schemas are not compatible.

When the schema generator builds a compilation schema, errors
can occur because a class definition used in a persistent context in
one file differs from the class definition of a class with the same
name in another file. This situation normally causes a compile-
time error.

For library and compilation schemas, you can determine how
ossg handles type-mismatch errors during schema generation.
Set the environment variable OS_COMP_SCHEMA_CHANGE_
ACTION to one of the following values:

Metaschema Mismatch Errors

The metaschema consists of class definitions internal to
ObjectStore that are used to describe user classes. A metaschema
mismatch usually indicates an incorrectly built program or
database, where the program, libraries, and databases do not
correspond to the same ObjectStore release of the software. For
this reason, you are most likely to see these errors at ObjectStore
release boundaries.

warn Reports a warning. The new type definition replaces
the previous definition in the compilation schema.
Default.

silent Not reported. The new type definition replaces the
previous definition in the compilation schema.

error Reports an error. The schema generation is eventually
terminated, and the compilation schema remains
unchanged.

Correcting Schema-Related Errors

62 ObjectStore Building C++ Interface Applications

Schema Neutralization Errors

For information about handling schema neutralization errors, see
ossg Neutralization Options on page 145.

Missing Virtual Function Table Pointer Problems

For information about missing virtual function tables, see Run-
Time Errors from Missing VTBLs on page 80.

Chapter 3: Generating Schemas

Release 5.1 63

Handling Pragma Statements in Source Code

The schema generator recognizes the #pragma statements that it
encounters in your schema source files and interprets them as the
compiler would in most cases. However, for pragma statements
that occur inside a class definition, ossg does not usually treat
them as the compiler would.

In particular, a #pragma statement that is nested in a class does not
take effect until the start of the next nonnested class. For
nonpersistent classes, this might not be a problem. For persistent
classes, be sure that all #pragma statements that affect structure
layout occur outside the class. Otherwise, the object layout
defined by the compiler and the ObjectStore schema might be
inconsistent.

Utilities for Working with Schemas

64 ObjectStore Building C++ Interface Applications

Utilities for Working with Schemas

The following ObjectStore utilities help you manage schemas:

• osexschm lists the classes in an application, component,
compilation, database, or library schema.

• osscheq compares schemas.

• ossetasp patches an executable to use a specified application or
component schema database. This utility is described on
page 75. OS/2 does not support this utility.

• ossetrsp sets the pathname of a remote schema database.

• ossevol updates a database schema to reflect modifications to
your application or component schema.

Information about all these utilities appears in ObjectStore
Management, Chapter 4, Utilities.

Chapter 3: Generating Schemas

Release 5.1 65

Comparison of ossg Command Lines

Each time you run ossg , you can generate one kind of schema.

After you generate a compilation schema, you can use the
compilation schema to generate the application schema. In this
scenario, the name of the compilation schema replaces the name
of the schema source file in the ossg command syntax for
generating an application schema. The syntax is

ossg { -assf app_schema_source_file | -asof app_schema_object_
file.obj }
-asdb app_schema_database.adb comp_schema.cdb

Conventions for
application schema
source file names

In previous releases of ObjectStore, .os_schema.cc and .os_
schema.o were often used as the names for the application schema
source file and the application schema object file. This was always
a convention and not a requirement. The initial dot hid the files
from directory listings.

This convention is not observed in Release 5.1. The Release 5.1
convention is to use names without the initial dot. Again, this is a
convention and not a requirement.

Kind of Schema Syntax for ossg Command

Application ossg [compilation_options] [neutralizer_options]
[-cpp_fixup] [-final_asdb final_app_schema_db]
[{ -mrlcp | -mrscp }] [-no_default_includes] [-no_weak_symbols]
[-rtdp {minimal | derived | full | maximal }]
[-store_member_functions]
{ -assf app_schema_source_file or -asof app_schema_object_file.obj }
-asdb app_schema_database schema_source_file
[lib_schema.ldb ...]

On OS/2, you must also specify

-cd class_definition_file

Library ossg [compilation_options] [neutralizer_options] [-cpp_fixup] [-mrscp]
[-no_default_includes] [-store_member_functions]
-lsdb lib_schema.ldb schema_source_file

Compilation ossg [compilation_options] [neutralizer_options] [-cpp_fixup] [-mrscp]
[-no_default_includes] [-store_member_functions]
-csdb comp_schema.cdb schema_source_file

Comparison of Kinds of Schemas

66 ObjectStore Building C++ Interface Applications

Comparison of Kinds of Schemas

Kind of Schema What Does It Contain? How Is It Generated? When Is It Used?

Application

You specify a
database in
which to store it.

Definitions of classes
the application stores
in or reads from
persistent memory,
and classes persistently
used by libraries the
application links with.

Specify the -asdb
option when invoking
ossg . Naming
convention
recommended for an
application schema:
yourchoice.adb1

ObjectStore uses the
application schema
during run time to
determine the layout of
objects being transferred
between the database and
the application.

Component

Library

You specify a
database in
which to store
it.1

Definitions of types
that the library stores
or retrieves in a
persistent context.

Specify the -lsdb option
when invoking ossg .
Naming convention
required for a library
schema: yourchoice.ldb

You can specify a library
schema when you
generate an application
schema for an
application that uses the
corresponding library.
ObjectStore adds the
types defined in the
library schema to the
application schema.

Database

ObjectStore
stores it in the
database itself or
in a remote
database if you
specify one
when you create
the database.

Definitions of all C++
types that have ever
been, or are expected to
be, stored in the
database.

ObjectStore creates a
database schema from
application schemas of
the applications that
access the database. An
application augments
a database schema
through batch (the
default) or incremental
schema installation.

When an application
accesses a database,
ObjectStore checks to
make sure that the
definitions of classes that
are in both the
application schema and
the database schema are
the same.

Chapter 3: Generating Schemas

Release 5.1 67

1 If you want to specify an existing application schema database
with ossg , Object Design recommends that the application
schema have .adb as its extension.

Compilation

You specify a
database in
which to store
it.1

Definitions of classes
the application stores
in or reads from
persistent memory. (It
does not include
classes used by
libraries the
application links with.)

Specify the -csdb
option when invoking
ossg . Explicitly
creating a compilation
schema is optional.
Naming convention
recommended for a
compilation schema:
yourchoice.cdb

If you explicitly create a
compilation schema, you
specify it to generate the
application schema.
ObjectStore always
creates a compilation
schema, and uses it to
create the application
schema.

Kind of Schema What Does It Contain? How Is It Generated? When Is It Used?

Deploying Products with Protected Databases

68 ObjectStore Building C++ Interface Applications

Deploying Products with Protected Databases

If you want to restrict access to a database’s data and metadata,
you can use ObjectStore’s schema protection facility. This facility
allows you to associate a schema key (a pair of integers) with a
database. After you associate a database with a schema key, an
application must supply the key to access data in the database. A
database with a schema key is considered to be a protected
database. See ObjectStore C++ API User Guide, Chapter 7,
Database Access Control, Schema Keys.

When you deploy a product that generates a schema for a
protected database, you must write an application that does the
following:

1 Programmatically sets the environment variables OS_
SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH to the correct
schema key. See ObjectStore Management, OS_SCHEMA_KEY_
LOW.

2 Spawns a child process that

- Inherits the settings for the OS_SCHEMA_KEY_LOW and OS_
SCHEMA_KEY_HIGH variables

- Generates a schema for the protected database

The reason your application must include these characteristics is
that the schema generator is not a database utility that you can call
programmatically.

Chapter 3: Generating Schemas

Release 5.1 69

Using Rogue Wave with Solaris Sun C++

When you use Sun C++ on a Solaris 2 system, you might
encounter the following problem when you try to generate a
schema and your schema source file includes Rogue Wave header
files.

ossg -csdb fiddle:/home/bow/aa.cdb -I$OS_ROOTDIR/include
a.cc" /opt/SUNWspro/SC3.0.1/include/CC/rw/tislist.h" , line 216: Error:
Trying to open encrypted file
" /opt/SUNWspro/SC3.0.1/include/CC/rw/tislist.cc" while
preprocessing." /opt/SUNWspro/SC3.0.1/include/CC/rw/tislist.h" , line
216: Error: Could not open include file "
rw/tislist.cc" ." /opt/SUNWspro/SC3.0.1/include/CC/rw/tpslist.h" , line 244:
Error: Trying to open encrypted file
" /opt/SUNWspro/SC3.0.1/include/CC/rw/tpslist.cc" while

preprocessing." /opt/SUNWspro/SC3.0.1/include/CC/rw/tpslist.h" , line
244: Error: Could not open include file "
rw/tpslist.cc" .

The Sun C++ 4.0.1 package includes Rogue Wave header files.
However, the template functions are in encrypted form in
accompanying .cc files. If you include the .hh file in a compilation,
everything works fine. If you include the .hh file in a schema
source file, the schema generator tries to preprocess the source file
using CC. But if you do not have a source license, the encrypted
source file causes an error.

There are two work arounds for this:

• Buy a Rogue Wave source license.

• Modify the schema source file to avoid including the encrypted
sources, which are not needed anyway. In the schema source
file, include the following two lines before including any other
header files:

#include <rw/compiler.h>
#undef RW_COMPILE_INSTANTIATE

These two lines cause only the class declarations to be seen and
not the member functions.

ossg Troubleshooting Tips

70 ObjectStore Building C++ Interface Applications

ossg Troubleshooting Tips

The following information provides guidelines for avoiding
problems when using ossg .

Precompile Do not use ossg to find syntax and semantic errors in your source
files. Compile your sources with the compiler before running ossg
over your source files.

Member function
declarations

Function declarations can be complex. For example, are template
functions instantiated using inheritance or nesting? ossg never
needs to see nonmember functions. There are only three
circumstances requiring ossg to see and process member function
declarations:

• If a class has at least one virtual member function, ossg needs
to see at least one virtual member function declaration so that
it can install virtual function table (vtbl) information in the
schema correctly.

• If there are discriminant functions (for unions) ossg must see
them so they can be installed in the schema.

• If the -store_member_functions option of ossg is specified, the
member function declarations must be visible to ossg .

If none of these conditions apply, functions (including member
functions) can be hidden from ossg using conditional compilation
or exclusion.

Skip function body
parsing

In ObjectStore 5.0 and subsequent releases, by default ossg skips
all function body parsing and processing (the -sfbp option is the
default). If function bodies are not parsed, ossg 's process time and
use of heap storage during execution will decrease from previous
releases. The only reason to process function bodies is if a user has
marked types for persistent new inside function bodies. If a user
has done so, ossg will not see those types and will issue the
following warning:

<warn-0038-0003>One or more types have been marked in a function
body, but function bodies are not being parsed. These types will not be
marked in the schema. Please move the marking of all types outside of
function bodies (preferred) or specify -parse_function_bodies.

Chapter 3: Generating Schemas

Release 5.1 71

The two options available to the user in this case are to move the
OS_MARK_SCHEMA_TYPE macros outside function bodies or to
specify the -parse_function_bodies option.

Modularize schema
information

Just as it is good programming practice to modularize code, it is
preferable to separate schema information into separate
compilation or library schemas that can be combined as needed to
create application schemas for specific applications.

Swap space Parsing and analysis of C++ code can be very complex. For
generation of schema, ossg sometimes uses large amounts of
swap space, so Object Design recommends that you make a large
amount of swap space available when running ossg .

What to send to
Technical Support

When a problem occurs during schema generation (such as syntax
errors, semantic errors, or any other errors), you should send the
following to Object Design Technical Support :

• A copy of the problem code in the form of preprocessed source

• The error information

• Platform and release information

This information will probably be needed to diagnose the
problem. To produce the preprocessed source, run ossg over the
source (as if you were generating schema), using the -E option and
redirecting the output to a file. Since you are not generating
schemas, ossg will ignore all schema generation-related options
and only use the pertinent options such as -I and -D.

For example:

ossg -E -D... -I... source.cc > source.ii

ossg Troubleshooting Tips

72 ObjectStore Building C++ Interface Applications

Release 5.1 73

Chapter 4
Compiling, Linking, and
Debugging Programs

This chapter provides information about compiling, linking, and
debugging your application.

The earlier topics address all platforms. The last three topics are
each dedicated to a specific platform or group of platforms.

Using Standard Template Libraries 74

Moving an Application and Its Schema 75

Working with Virtual Function Table (VTBL) Pointers and
Discriminant Functions 77

Missing VTBLs 79

Using new and delete Operators with cfront 84

Debugging Applications 85

Dependency of Object Files on Header Files 86

Retrofitting Makefiles 87

UNIX 88

Windows 110

OS/2 127

Using Standard Template Libraries

74 ObjectStore Building C++ Interface Applications

Using Standard Template Libraries

In the ObjectStore development environment, you use the schema
generation utility ossg to create schema for the classes that need
to be stored persistently. The front end of ossg is actually a C++
language parser. As input, it takes a source file that includes C++
header files, which in turn define the layout of the application
objects. You must inform ossg which of those classes you want to
mark so that you can create persistent instances of them at a later
time.

ObjectStore can now be used to store STL objects persistently.
There are a number of STL class library implementations available
that can be used with ObjectStore. For example, ObjectSpace,
Rogue Wave, and Visual C++ offer such implementations.

How to Store STL Types Persistently

In order to store STL types persistently, take the following steps:

1 Include the STL header files as well as the ObjectStore headers
in the schema source file, and then mark the STL types. See
Creating Schema Source Files on page 22.

2 Provide an STL allocator for persistent storage. The ObjectStore
distribution does not include allocators, but does include an
example that shows you how to create your own.

An example of an STL allocator using ObjectStore is also included
in the directory $OS_ROOTDIR/examples/stl . Also see the
discussion of standard template libraries in Persistent new and
delete in Chapter 2, Persistence, of the ObjectStore C++ API User
Guide.

Microsoft Visual C++ Restriction

ObjectStore Release 5.1 supports ObjectSpace STL, but does not
yet support Visual C++ version 5.0 STL.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 75

Moving an Application and Its Schema

The ossetasp utility patches an executable so that it looks for its
application schema in a database that you specify.

Syntax

ossetasp -p executable
ossetasp executable database

Description

When the schema generator generates an application schema,
ObjectStore stores the actual string given as the -asdb argument to
ossg (or the -final_asdb argument, if specified). When the
application starts, it uses that string to find the application schema
database.

When you move or copy an ObjectStore application to a machine
that is not running a Server, leave the application schema
database on the Server host. Normally, the application schema
database must be local to the Server.

After you copy or move an application to another machine, you
must patch the executable so that it can find the application
schema database. Run the ossetasp utility with the absolute
pathname of the application schema database. Be sure to specify
the name of the Server host.

A locator file allows a database and its application schema to be
on a machine other than the Server host. See ObjectStore
Management, Chapter 5, Using Locator Files to Set Up Server-
Remote Databases.

OS/2

-p Instructs ossetasp to display the pathname of the
specified executable’s application schema
database. Do not specify database in the command
line when you include -p.

executable Specifies the pathname of an executable. On
Windows systems, this can also be the pathname of
a DLL.

database Specifies the pathname of an application schema
database. ObjectStore patches the specified
executable so it uses this application schema.

Moving an Application and Its Schema

76 ObjectStore Building C++ Interface Applications

Windows NT On Windows NT systems, you can run the ossetasp utility on any
executable or DLL that contains schema (that is, that has a schema
object file produced by ossg linked into it).

Restrictions This utility is available on all platforms except OS/2. On OS/2, as
well as on all other platforms, you can use objectstore::get_
application_schema_pathname() . See theObjectStore C++ API
Reference, Chapter 2, Class Library, for details.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 77

Working with Virtual Function Table (VTBL) Pointers
and Discriminant Functions

There are two special cases in which ObjectStore needs to know,
at run time, the locations of information in your application
program’s executable:

• Virtual function tables (vtbls)

• Union discriminant functions

Vtbls When you declare a class to have virtual functions or, in some
cases, to have virtual base classes, it acquires an invisible data
member, the virtual function table pointer. (Virtual function table is
usually abbreviated as vtbl, pronounced veetable. On some
platforms vtbls are called vfts for virtual function tables. Vtbl and
vft indicate the same thing.) The vtbl points to a table of function
pointers that the application uses to dispatch calls to virtual
functions. The C++ compiler arranges for the correct function
pointers to be placed in the virtual function table.

Persistent storage When you persistently store an object belonging to a class with
virtual functions, ObjectStore cannot store the vtbl pointer
literally, since it is a pointer to the text or data segment of the
current executable — a transient pointer. When the same program
is run another time, or a different program opens the database, the
vtbl might have a different location.

Discriminants For some union types used persistently, ObjectStore requires that
you provide an associated discriminant function, which indicates
the field of the union currently in use. The function is used by the
application at run time when a union is brought into virtual
memory from persistent storage. (See Discriminant Functions in
the ObjectStore Advanced C++ API User Guide for additional
information about discriminant functions.) To handle a
discriminated union, ObjectStore must know the address of the
union discriminant function for the union. This is similar to the
way that ObjectStore handles vtbls.

Working with Virtual Function Table (VTBL) Pointers and Discriminant Functions

78 ObjectStore Building C++ Interface Applications

Relocation

When ObjectStore reads in an object with virtual functions, it
supplies an appropriate vtbl pointer from the current application.
This is called vtbl relocation.

When your application references a persistent object of a class
with virtual functions, ObjectStore must fill in the vtbl pointer in
the object. To fill in the vtbl pointer, ObjectStore must know the
address of the vtbl for the class. Virtual function tables are not
stored in databases; they are part of your executable.

During relocation, ObjectStore might need vtbls and discriminant
functions. It finds them in tables that map class names to
references to both vtbls and discriminant functions. The schema
generator generates a C++ source file (or object file for Visual
C++) containing these tables that relate your schema to your
application.

These tables are filled in during application link or postlink or at
program start-up time, or some combination of these, depending
on the platform. At each of these steps, the referenced vtbls and
discriminants are searched for in the executable and, if found, are
entered into the tables. At run time, ObjectStore can use these
tables to find items for relocation.

On cfront platforms, the os_postlink executable performs this job.
On other platforms, the compiler does it. On some platforms, this
search might be done at run time based on the currently available
DLLs.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 79

Missing VTBLs

Depending on your platform, missing vtbls can cause errors at
compile time or at run time. It is better to find such errors at
compile time. By default ossg reports these errors at compile time.
An optional ossg flag, -weak_symbols , can be used to suppress the
default behavior. See Chapter 3, Generating Schemas, on page 29,
for detailed information about ossg syntax.

Symbols Missing When Linking ObjectStore Applications

Sometimes when linking, particularly with optimizations
enabled, you are told that various symbols required by the
application schema object file are missing. These symbols on non-
Windows platforms (including OS/2) begin with __vtbl or __vft,
or end with __vtbl . On Windows the symbols begin with ??_7 .
This happens because ObjectStore needs access to the virtual
function tables (vfts) for some classes, and the C++ compiler does
not recognize these tables as being needed. The easiest way to get
these symbols is to add a nonstatic dummy function such as the
following

void foo_force_vfts(void*){
force_vfts(new A);
foo_force_vfts(new B);
...

}

Creating instances of a class causes the class’s vfts, as well as those
of bases that have out-of-line default constructors, to be created in
this file.

Abstract classes If one of your classes is abstract, a variant of the above approach
is needed, since you cannot allocate an abstract class. You can
provide an out-of-line constructor for the class, or you can allocate
a nonabstract derived class in such a way that inline constructors
are used for the abstract class. For example, if the original class
definitions were

class A {
virtual void foo() = 0;

};
class B : public A {

 virtual void foo();
};

Missing VTBLs

80 ObjectStore Building C++ Interface Applications

then class A might be missing its vft. However, an unoptimized
new B would call A’s inline default constructor, which would
reference the vft for A. But if class B had an out-of-line
constructor, this would not work. Then it would be easiest to
make an out-of-line constructor for A:

class A {
virtual void foo() = 0;
A(){}
friend void force_vfts(void*);
A(void*);

};
class B : public A {

virtual void foo();
};

and define A::A(void*){} in some file.

Instantiating
collection classes

If you are using a parameterized collection class, you must
instantiate the other collection classes because they have casts to
each other. A work around is to declare this and link it. For
example:

void foo_force_vfts(void*) {
foo_force_vfts(new os_Set< missing-type>);
foo_force_vfts(new os_List< missing-type>);
foo_force_vfts(new os_Array< missing-type>);
foo_force_vfts(new os_Bag< missing-type>);
foo_force_vfts(new os_Collection< missing-type>);

}

There are additional considerations for building applications that
use collections. See Instantiation Problem with Template
Collection Classes on page 16.

Run-Time Errors from Missing VTBLs

On some platforms (without weak symbol support), you find out
about the missing vtbls at link time. The vtbls are marked in the
schema output file, but are not marked in the application. This is
frequently the case for parameterized collections classes (os_Set ,
os_List , and so on).

Sometimes an executable does not have vtbls for all classes with
virtual functions in the schema. When a vtbl pointer for a class is
not available, ObjectStore fills in the vtbl pointer for the class’s
instance with a special vtbl that signals an error when any of the
virtual functions is called.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 81

No constructor Missing vtbls can occur when your application calls a virtual
function on an instance of a class for which no constructor call
appears in the source. Since a call to the class’s constructor does
not appear in the source, the linker does not recognize the class as
being used and does not link in its implementation. But an
ObjectStore application can use a class whose constructor it never
calls by reading an instance of the class from a database. To avoid
this situation, put a call to the class’s constructor inside a dummy
function that is never called.

Class not in schema Missing vtbls can also occur when the class is not included in the
application’s schema, either because its definition was not
included in the source or because the class was only reachable
from explicitly marked classes by means of void* pointers. In this
case, the solution is to include a definition of the class, or explicitly
mark it with OS_MARK_SCHEMA_TYPE() .

Inline virtual functions
when using noncfront
compilers

Noncfront compilers include C Set ++, DEC C++, SGI C++, Sun
C++, VisualAge C++, and Visual C++.

When you are using a noncfront compiler (except on OS/2), if all
virtual functions of a class are inline, either because they are
defined fully in the class specification or with the inline keyword,
the compiler treats the virtual function table as static. Because the
virtual function table is viewed as static, the vtbl pointers for such
a class are not available (that is, not seen globally, therefore not
available to ObjectStore) because the locations of the virtual
functions were not filled in by ossg .

The solution to this problem is to put an out-of-line virtual
function in each class with a missing vtbl. You can either modify
an inline function or you can add a trivial noninline function. To
determine which classes need an out-of-line virtual function, you
can run ossg with the -no_weak_symbols option. This identifies
missing vtbls at link time rather than at run time. For information
about this option, see page 43.

A class that meets the following conditions might also need the
addition of a noninline virtual function:

• Has at least one virtual base class

• Has at least one virtual function defined by a base class

• Does not define any virtual functions

Missing VTBLs

82 ObjectStore Building C++ Interface Applications

This is because the vtbl from the base class might become invalid
as a result of the derivation.

Visual C++ When you are using Visual C++, an alternative solution is to
export a class that has only inline virtual functions.

OS/2 On OS/2, correct vtbls are available for classes that have only
inline virtual functions because you run ossg with the -cd option.

-rtdp option Missing vtbls can also occur depending on what you specify for
the -rtdp option when you generate the schema.

To obtain a list of missing vtbls at run time, set the OS_TRACE_
MISSING_VTBLS environment parameter. See ObjectStore
Management, OS_TRACE_MISSING_VTBLS .

AIX C Set ++ — Virtual Function Table Pointers

When the ObjectStore client reads a page from the Server into
your application, it must store correct virtual function table
pointers to those objects that have virtual function tables (vfts). To
do this, the client must have the addresses of the vfts for the
classes in your schema.

ObjectStore derives these addresses as part of schema generation.
The application schema source file generated by ossg contains
extern declarations of the vft symbols. The schema generator
stores their addresses in a table when your program starts
execution.

Normally, vfts are declared extern in all modules that reference
them except in the module that defines the first noninline virtual
function. That module defines the vft as a global symbol.

However, there are several cases in which there is no module that
corresponds to the first noninline virtual function. For example,
all the class’s virtual functions can be inline. In these cases, C Set
++ generates a static vft in each module that allocates an object of
the class. In such a case, the application schema source file cannot
link to the vft, since it is static in some other module or modules.

You can tell if you have such classes with the -qinfo:vft argument
to C Set ++. If it informs you of any classes with static links, and if
you want to store them persistently, you must either add an out-
of-line virtual function to each such class, or use the command-
line arguments that control vft allocation to make the vfts

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 83

accessible. Aside from making ObjectStore work, it makes your
executable smaller. Here is an example of -qinfo:vft output:

class A {
public:

virtual foo():
int a;
A() {a=0;}

};

class B : public virtual A {
public:

virtual foo();
int b;
B() {b=1;}

};

class C : public B {
int c;
C() {c=2;}

};

int B::foo() {}

xlC_r -qinfo=vft -c x.C

"x.C" , line 29.1: 1540-017: (W) Return value of type " int" is expected.
"x.C" , line 1.1: 1540-281: (I) The virtual function table for "A" will be
defined where "A::foo()
"x.C" , line 10.1: 1540-280: (I) The virtual function table for "B" is defined
with "extern" links.
"x.C" , line 20.1: 1540-280: (I) The virtual function table for "C" is defined
with "extern" links.

The two C Set ++ arguments are -qvftable and -qnovftable .
-qvftable instructs C Set ++ to allocate global vfts for all classes
visible in the compilation unit. -qnovftable forces all vfts to be
referenced externally.

The simplest way to make C Set ++ work with ObjectStore is to
create an additional source file that includes the definitions for
classes that have static links. Compile it with -qvftable , and link it.
This does not avoid the extra static copies of the table in any
modules that allocate objects of this class, but it does allow the
application schema source file to link to them.

To avoid extra copies, you have to compile all ordinary sources
with -qnovftable , and then add -qvftable to the appropriate sources
so that each vft is defined exactly one time.

Using new and delete Operators with cfront

84 ObjectStore Building C++ Interface Applications

Using new and delete Operators with cfront

A design limitation of the C++ language fails to match
overloadability of the new operator with a corresponding
overloadability of the delete operator. Therefore, to make deletion
of persistent objects work transparently, ObjectStore must take
control of some of the internals of the C++ storage allocation run-
time environment, including _ _vec_delete .

Note that there is still a limitation that ObjectStore cannot
completely address — if a shared library that is not itself linked
with the ObjectStore library uses C++ allocation, it will not share
the copy of _new_handler provided by ObjectStore.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 85

Debugging Applications

In addition to native debuggers, alternatives for debugging
applications include

• Set the OS_TRACE_MISSING_VTBLS environment variable. If
you run the application with OS_TRACE_MISSING_VTBLS set,
ObjectStore catalogs vtbls that

- Were not found at initialization

- Might result in err_missing_vtbl errors later on

See ObjectStore Management, Chapter 3, OS_TRACE_MISSING_
VTBLS .

• Run the osverifydb utility after an application creates a
database. This allows you to check for invalid pointers.

• If the database information is incorrect, you can examine it with
the ObjectStore Inspector.

• If performance is the issue, you can use the ObjectStore
Performance Expert (OPE) as a debugging tool.

If you use schema protection, you can remove all symbol names
from your application so that use of a debugger does not display
the names of functions on the stack. This makes it harder for
someone to subvert schema protection by analyzing information
provided by the debugger.

Dependency of Object Files on Header Files

86 ObjectStore Building C++ Interface Applications

Dependency of Object Files on Header Files

You should maintain complete dependencies of object files on
header files. Object Design recommends automating this by using
a dependency generation tool in your makefiles.

In previous releases on some platforms, ObjectStore provided the
osmakedep command. This is no longer the case. Your compiler
vendor should supply you with a configuration management tool.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 87

Retrofitting Makefiles

When you use a makefile to build an ObjectStore application, if
you start with a makefile that you use for another application, be
sure to follow the instructions in this book for specifying libraries.
ObjectStore brings in certain system libraries that are not
explicitly specified.

If you copy an on-line version of an ObjectStore makefile from
ObjectStore documentation sources, make sure that you have tabs
at the beginning of appropriate lines and not spaces.

UNIX

88 ObjectStore Building C++ Interface Applications

UNIX

This section provides information for compiling and linking
ObjectStore applications on UNIX platforms. Unless a particular
UNIX platform is named in the heading, the material refers to all
UNIX platforms that support ObjectStore C++ interface Release
5.1.

Linking with ObjectStore Libraries

ObjectStore includes libraries that you must link with when you
build your application. Libraries allow multiple programs to
share code without redundantly compiling the source.
Applications use libraries by specifying them at link time.

Requirement You always link with the libos library. If you are using full
ObjectStore, you use $OS_ROOTDIR/lib/libos ; if you are using
ObjectStore/Single, you use $OS_ROOTDIR/libsngl/libos .

You must also link with either the libosthr or libosths libraries.
You must link with additional ObjectStore libraries according to
the features you use in your code, as shown in the following table.
If there is more than one library, you must specify them in the
order given. See Examples of Passing Libraries to the Linker on
page 90.

If Your Application Uses This Feature Link with These Libraries in This Order

Any ObjectStore feature libos {libosthr or libosths }

Collections liboscol libos {libosthr or libosths }

Compactor liboscmp libos {libosthr or libosths }

Database utilities:

• os_dbutil::osverifydb() liboscol libosmop libostcl libosdbu libos
{libosthr or libosths }

• All other os_dbutil methods libosdbu libos {libosthr or libosths }

MOP libosmop liboscol libos {libosthr or libosths }

Queries and indexes libosqry liboscol libos {libosthr or libosths }

Relationships liboscol libos {libosthr or libosths }

Schema evolution libosse libosqry liboscol libos {libosthr or
libosths }

C run-time library libos {libosthr or libosths}

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 89

Threads library The libosthr or libosths library is for threads. Be sure to use the
correct threads library for your platform:

If you have a real threads package, link with the libosthr library.
The libosths library is a stub threads library.

IRIX shared process
(sproc) restrictions

Use pthreads but not sproc s in ObjectStore Release 5 and later.
ObjectStore 5.0 for IRIX does not support concurrent ObjectStore
operations (for example, transactions) in more than one process in
a shared process group, where the processes are sharing virtual
memory. If you want your program to use ObjectStore 5.0, it is
best to restrict all ObjectStore operations to a single process in the
shared process group. If you want ObjectStore operations in a
number of the processes, the program must minimally ensure that

• All file descriptors are shared in the group.

• All accesses to ObjectStore using external interfaces, and
potential page faults, are single-threaded through a single
process at any given time.

C++ run-time library You must link libos before the C++ run-time library (often called
libC). On some platforms it is possible for the order to come out
wrong when you link with shared libraries that use shared
libraries. Linking with libos first prevents this problem.

Specifying libraries Use the -l (lowercase l as in link) option to pass library names to
the linker. When you specify an ObjectStore library, do not
include the lib portion of the library name. For example:

CC -L$(OS_ROOTDIR)/lib -o my_exec main.o os_schema.o foo.o
-los

Note that the -L$(OS_ROOTDIR)/lib option begins with an
uppercase L as in Library.

Exclusive libraries You cannot link with both libosse and liboscmp .

Platform Threads Library

AIX libosthr

Digital UNIX libosthr

HP–UX libosthr or libosths

IRIX libosths

Solaris 2 libosthr or libosths

UNIX

90 ObjectStore Building C++ Interface Applications

HP–UX and DCE This release of ObjectStore works with HP–UX 10. DCE, bundled
with HP–UX 10, provides thread support on HP–UX. If you use
threads and link with DCE, you must use libosthr instead of
libosths .

When using threads (libosthr), while ObjectStore is running in its
fault handler, DCE masks most signals. Therefore, when DCE is
linked into an ObjectStore application, ObjectStore’s fault handler
reenables the following signals:

• SIGHUP

• SIGINT

• SIGQUIT

• SIGBUS

• SIGSEGV

• SIGVTALRM

If an application wants to reenable a different set of signals, this
default behavior can be overridden using the following interfaces:

extern "C" void _ODI_set_reenable_mask(unsigned int new_mask);
extern "C" unsigned int _ODI_get_reenable_mask();

Consult Object Design Technical Support before using these
interfaces.

The mask is a bit vector of the signal values. A value of 1 indicates
that the corresponding signal is enabled when ObjectStore’s fault
handler is entered.

Note that _ODI_get_reenable_mask returns 0 if _ODI_set_
reenable_mask has not been called.

Also note that regardless of the reenable_mask value, ObjectStore
always reenables the signal being handled (SIGSEGV or SIGBUS).

Examples of Passing Libraries to the Linker

When building an application that uses compaction, MOP,
queries, and collections, specify ObjectStore libraries like this:

-loscmp -losmop -losqry -loscol -los {-losthr | losths}

When building an application that uses the schema evolution
feature, specify libraries like this:

-losse -losqry -loscol -los {-losthr | losths}

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 91

When building an application that uses database utilities, specify
the libraries like this:

-losdbu -los {-losthr | losths}

If you need all ObjectStore libraries and you need a stub threads
library because you do not have real threads, link with the
libraries in this order:

{-losse | -loscmp } -losmop -losqry -loscol -los -losdbu -losu -losths

If you need all ObjectStore libraries and you have a real threads
package, link with the libraries in this order:

{-losse | -loscmp} -losmop -losqry -loscol -los -losdbu -losu -losthr

DEC C++ 64-Bit Pointer Considerations

Since the Digital UNIX operating system environment supports
64-bit pointers, using this compiler with ObjectStore presents
unique decisions for application writers. Fortunately, ObjectStore
Release 5.1 and the DEC C++ 5.1 compiler include options that
offer alternatives depending on your particular application needs.

Usually, DEC C++ uses 64 bits for all pointers in generated code.
The eXtended Truncated Address Support Option (xtaso), and
other #pragma directives and compiler options, let code with 32-
bit pointers coexist within this 64-bit operating system
environment. If you use only -xtaso, and have 64-bit pointers in
the objects stored in your database, then your database will not be
heterogeneous.

Note that within a compilation unit, pragma statements allow the
user to switch between 32-bit and 64-bit classes selectively.
However, ossg deals with these pragma statements at the
granularity of a complete top-level class.

Software version
requirements

You must be running Digital UNIX version 4.0A and the DEC C++
compiler version 5.5-005 general release to take advantage of the
ObjectStore 5.0 and DEC 5.5 compiler features described here.
You should also install the DEC patch OSF360-350222. This patch
includes the previously required 350108 patch.

If you are uncertain what versions of software are running on
your system, check them with the following commands.

To determine the operating system version, enter

UNIX

92 ObjectStore Building C++ Interface Applications

uname -a

The response should be of the form

V3.2 148

where 148 corresponds to 3.2.C.

To determine the version of the compiler, enter

cxx -V | tail -1

The result should be of the form

DEC C++ V5.1-1

for DEC OSF/1 (Alpha) or greater.

How to use the -xtaso
option

Use of -xtaso options, pragma statements, and the -taso linker
option allows application programs that make intensive use of
memory to make efficient use of operating system resources. It
allows for the manipulation of objects containing 32-bit pointers.
This also enables the use of libraries, such as the ObjectStore
libraries, that were built using 32-bit pointers. ObjectStore
libraries were built in this manner to support heterogeneous
access to databases between this platform and those that do not
support 64-bit pointers. In order to use both 64-bit and 32-bit
pointers compatibly, it is necessary to limit the application to a 31-
bit virtual address space. It is important to select one of these -taso
options when using ObjectStore even if you want 64-bit pointers
to be the default, because you need to ensure that your
ObjectStore application uses 31-bit virtual address space. If you
do not specify the -taso option, this is not the case.

This means that when you write ObjectStore applications, you
need to use some of the methods described in this section to
accommodate 32- and 64-bit pointers. Specifically, the
considerations you must address are

• Header files

• System-defined function declarations with pointers in the
signature

• ObjectStore collections class libraries

The sections that follow describe techniques and methods you
should use to avoid compilation errors that might result from
mixing 32- and 64-bit pointers.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 93

Compiler options and
pointer size directives

To use 32-bit pointers, you can use command-line compiler
options and/or #pragma preprocessor directives. For example,
ObjectStore’s collections are implemented with 32-bit pointers to
support heterogeneous access. Therefore, you need to use these
options to ensure correct conversion between 64- and 32-bit
pointers.

The pointer size compiler options are -xtaso , -xtaso_short , -vptr_
size , and -vptr_size_short . You can accommodate 32- and 64-bit
code using the -xtaso and -vptr_size or -xtaso_short and -vptr_
size_short compiler options. The following table describes the
compiler options:

Whenever any of these options is specified on the command line,
the following actions occur:

• #pragma pointer_size is enabled. This pragma statement only
has an effect if you specify a pointer size compiler option on the
command line.

• The cxx command automatically passes the -taso option to the
linker. This option causes the linker to load the executable in
the lower 31-bit addressable virtual address range. This means
the program is limited to a 31-bit virtual address space
whenever you use any of the pointer-size compiler options.

When using #pragma directives to control pointer size, and these
compiler options, you must ensure that the pointer size of any
particular pointer is used consistently across compilation units.

Compiler Option Description

-xtaso Sets the default pointer size of the compilation unit
to 64 bits (for all pointers except virtual function
and virtual base pointers in a C++ class object). This
is the normal default unless overridden by -xtaso_
short .

 -xtaso_short Sets the default pointer size of the compilation unit
to 32 bits (for all pointers except virtual function
and virtual base pointers in a C++ class object).

-vptr_size Makes 64 bits the default size of virtual function
and virtual base pointers in a C++ class object. This
is the default unless overridden by -vptr_size_short .

-vptr_size_short Makes 32 bits the default size of virtual function
and virtual base pointers in a C++ class object.

UNIX

94 ObjectStore Building C++ Interface Applications

This is especially true when you call functions in any library
compiled with different pointer sizes. The #pragma directives are
defined below.

To use ObjectStore with the DEC C++ compiler, you must select
one of the following methods of protecting pointer size
assumptions:

• Use the -xtaso option and wrap all pointer declarations that
refer to other pointers so that the referring pointer size and the
referred-to pointer size agree.

In foo** , the foo* that is pointed to must agree with the foo**
declaration.

• Use ObjectStore typedefs to allow the code to compile as
required independently of the -xtaso option. Do not use these
with a persistent class.

• Use -xtaso_short and force everything to 32-bit pointers.

Considerations in deciding which of these approaches is the most
suitable for your application are the relative importance of
heterogeneity and whether disk space is an issue. (64-bit
executables and libraries use considerably more disk space than
32-bit executables and libraries.)

If heterogeneity is not a consideration for your application and
you are not concerned with the amount of memory used for 64-bit
pointers, you can take advantage of the 64-bit operating system
environment and compile using the -xtaso option. This option
makes 64 bits the default pointer size and uses 32-bit pointers for
particular declarations. In such a case, it is possible to use third-
party class libraries that only support 64-bit pointers. See “Using
the -xtaso option” on page 96 for details about using this option.

If heterogeneity is an important consideration for your
application, you can easily take advantage of ObjectStore’s 32-bit
pointers in this 64-bit operating system environment by
compiling with the -xtaso_short option. This option makes 32 bits
the default pointer size and uses 64-bit pointers for particular
declarations. The 32-bit pointer data type allows you to minimize
the amount of memory used by dynamically allocated pointers,
and assists in porting applications that contain assumptions about
pointer sizes. See “Using the -xtaso option” on page 96 for details
about this option.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 95

#pragma pointer_size
directive

The #pragma pointer_size directive controls pointer size allocation
for the following:

• References

• Pointers to member declarations

• Implied this pointer argument declarations in member function
declarations

• Function declarations

• Array declarations

ossg reminder Remember that ossg deals with these pragma statements at the
granularity of a complete top-level class. This consideration also
applies to embedded members and inherited base classes.

For this pragma statement to have any effect, specify -xtaso ,
-xtaso_short , -vptr_size , or -vptr_size_short on the cxx command.

This pragma statement has the following syntax:

#pragma pointer_size {long|64}
#pragma pointer_size {short|32}
#pragma pointer_size restore
#pragma pointer_size save

The #pragma syntax options are defined in the following table.

#Pragma Directive Description

pointer_size Controls the pointer size of all pointers except
virtual function and virtual base pointers in a C++
class object.

Has an effect only if you specify one or more of the
pointer-size compiler options.

required_pointer_size Has the same effect as #pragma pointer_size but is
always enabled, whether or not you specify any
pointer-size compiler options.

required_vptr_size Controls the size of virtual function and virtual base
pointers in a C++ class object.

Always enabled, whether or not you specify any
pointer size compiler options.

UNIX

96 ObjectStore Building C++ Interface Applications

The save and restore options are particularly useful for specifying
mixed pointer support and for protecting header files that
interface to older objects. Objects compiled with multiple pointer
size pragma statements are not compatible with old object files,
and the compiler cannot detect that incompatible objects are being
combined.

Using the -xtaso
option

The -xtaso compiler option is useful when heterogeneity is not a
consideration. Using -xtaso enables you to use the 32-bit pointer
size only for selected pointers. The -vptr_size option makes 64 bits
the default size of virtual function and virtual base pointers in a
C++ class object (64 bits is the normal default). This -xtaso option
also enables #pragma pointer_size and passes -taso to the linker.

With this approach, most pointers in your application are 64 bits,
and 32 bits are used for selected pointers. To use this method,
compile with -xtaso to enable #pragma pointer_size and cause the
cxx command to pass -taso to the linker. In addition, use #pragma
pointer_size , #pragma required_pointer_size , and #pragma
required_vptr_size to control the pointer sizes for particular
declarations. For example, to save space in an object, declare a
class as follows:

#pragma pointer_size save
#pragma required_vptr_size save
#pragma pointer_size short
#pragma required_vptr_size long

class Table_Node {
char *table; // 32 bit pointers
Table_Node *next;
Table_Node *(Table_Node::*search)(char *);

// pointer to member has
// 2 32 bit fields

public:

Option Description

long or 64 Sets as 64 bits all pointer sizes in declarations that follow
this directive until the compiler encounters another
#pragma pointer_size directive.

short or 32 Sets as 32 bits all pointer sizes in declarations that follow
this directive until the compiler encounters another
#pragma pointer_size directive.

restore Restores the saved pointer size.

save Saves the current pointer size onto a pushdown stack.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 97

void insert_node(char *);
Table_Node *extract_node(char *);
Table_Node *search_forward(char *);
Table_Node *search_backward(char *);

};
#pragma pointer_size restore
#pragma required_vptr_size restore

When you use this approach, it is important to specify the pointer
size #pragma directives after any #include directives so the header
files that assume 64-bit pointer sizes are not affected.

Using typedefs In order to provide an interface to an application using 64-bit
pointers and the ObjectStore library, which uses 32-bit pointers, a
number of new typedefs are available.

Use typedefs when building an application using the -xtaso
option to avoid compilation errors that result from incompatible
interface definitions. The following code example produces such
a compilation error:

#include <ostore/ostore.hh>
int main(int, char **)
{

os_int32 max_servers;
os_server **servers;
os_int32 n_servers;

objectstore::get_all_servers(max_servers, servers, n_servers);
}

$ cxx example.cc -c -xtaso

The error message that results might look as follows:

example.cc:9: error: In this statement, the referenced type of the pointer
value "servers" is "long pointer to os_server", which is not compatible with
"short pointer to os_server".
Compilation terminated with errors.

The use of the typedefs enables the compiler to perform the
correct pointer conversions to interface to the ObjectStore
libraries. More precisely, the typedefs listed on the next page solve
the situation of a compound pointer, that is, a pointer-to-a-pointer,
which cannot be automatically converted by the compiler. The
compiler automatically converts the pointer-to but does not
convert what it points to, the a-pointer part.

An example of such a typedef is os_server_p . It is defined as an
os_server* .

UNIX

98 ObjectStore Building C++ Interface Applications

If you modify the example, replacing os_server **servers with os_
server_p *servers , the program compiles cleanly:

#include <ostore/ostore.hh>
int main(int, char **)
{

os_int32 max_servers;
os_server_p *servers;
os_int32 n_servers;
objectstore::get_all_servers(max_servers, servers, n_servers);

}

$ cxx example.cc -c -xtaso

Note that this affects C++ references as well as pointers.

The comprehensive list of typedefs supplied by the ObjectStore
header files follows.

typedef char const* os_char_const_p;

typedef char* os_char_p;

typedef objectstore_exception& objectstore_exception_r;

typedef os_bound_query const& os_bound_query_const_r;

typedef os_canonical_ptom& os_canonical_ptom_r;

typedef os_coll_query& os_coll_query_r;

typedef os_coll_rep_descriptor const& os_coll_rep_descriptor_const_r;

typedef os_coll_rep_descriptor const* os_coll_rep_descriptor_const_p;

typedef os_collection const& os_collection_const_r;

typedef os_collection* os_collection_p;

typedef os_cursor const& os_cursor_const_r;

typedef os_database_root& os_database_root_r;

typedef os_int32& os_int32_r;

typedef os_old_reference& os_old_reference_r;

typedef os_old_reference_version& os_old_reference_version_r;

typedef os_rawfs_entry* os_rawfs_entry_p;

typedef os_reference& os_reference_r;

typedef os_reference_local& os_reference_local_r;

typedef os_reference_version& os_reference_version_r;

typedef os_transaction const* os_transaction_const_p;

typedef os_typed_pointer_void const& os_typed_pointer_void_const_r;

typedef tix_exception* tix_exception_p;

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 99

Using the -xtaso_short
option

The -xtaso_short option makes 32 bits the default pointer size. In
this mode you need to use some mechanism to accommodate code
that expects 64-bit pointers. If you select this method, remember
that references to other libraries can be more complicated since
any library with compound pointers requires you to use
#pragmas .

To use this option, compile with the -xtaso_short and -vptr_size_
short options on the cxx command. The -vptr_size_ short option
makes 32 bits the default size of virtual function and virtual base
pointers in a C++ class object. The -vptr_size_ short option also
enables #pragma pointer_size and passes -taso to the linker.

It is important to protect header files so that when the header file
is included in a compilation (using #include), the pointer size
assumptions are the same as those made when the code associated
with the header files was compiled.

#pragmas and
function declarations

In the default C++ installation, none of the system header files,
including those for the standard C library, is protected, but see
“Using the header file protection option” for an automated
method of providing this protection. The alternative methods for
doing this are to

• Modify each header file

• Use the header file protection option provided with the DEC
C++ compiler

If you include a system-defined function declaration with
pointers in its signature — without including it from a protected
header file — you need to protect it with a #pragma pointer_size
directive.

#pragma pointer_size save
#pragma pointer_size long
extern "C" {
int getrusage (

int who,
struct rusage *r_usage);

}

typedef void const* os_void_const_p;

typedef void const*& os_void_const_p_r;

typedef void* os_void_p;

typedef void*& os_void_p_r;

UNIX

100 ObjectStore Building C++ Interface Applications

#pragma pointer_size restore

Modifying each
header file

To modify each header file, use the #pragma environment
directive as shown:

#pragma __environment save // Save pointer size
#pragma __environment header_defaults // set to system defaults

// existing header file
#pragma__environment restore // Restore pointer size

Using the header file
protection option

With the header file protection option, you can place special
header files in a directory. DEC C++ processes these special
header files before and after each file included with the #include
directive. These special header files are named

• __DECC_include_prologue.h

• __DECC_include_epilogue.h

The compiler checks for files with these special names when
processing #include directives. If the special prologue file exists in
the same directory as a file with the #include directive, the
contents of the prologue file are processed just before the file
included with the #include directive. Similarly, if the epilogue file
exists in the same directory as the file included with the #include
directive, it is processed just after that file.

For example, if the source code has #include <stdio.h> , the order of
file processing would be

1 /usr/include/__DECC_include_prologue.h

2 /usr/include/stdio.h

3 /usr/include/__DECC_include_epilogue.h

4 Whatever follows #include <stdio.h>

For convenience, you can protect header files using the script

/usr/lib/cmplrs/cxx/protect_system_headers.sh

This script creates, in all directories in a directory tree that contain
header files, symbolic links to special header prologue and
epilogue files.

The default directory tree root assumed by the script is
/usr/include , but you can specify other roots.

Embedded
ObjectStore members

All ObjectStore libraries use 32-bit pointers to support
heterogeneous access, and therefore must be used in 32-bit mode.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 101

This means that the ObjectStore headers are protected so that 32
bits is the default pointer size. Any time an ObjectStore-defined
object is embedded in an application object, that class — or at least
the collection declaration — must be protected as well. This occurs
most commonly in the collection class library, but it also applies
to other ObjectStore classes such as os_Reference . Also note that
any ObjectStore relationship is an embedded collection.

Troubleshooting Errors

When you are working in a mixed 32- and 64-bit environment,
there are a variety of conditions that can cause errors. Several
error message samples and the conditions that caused them are
described below. You might see such errors if you have combined
-xtaso and -xtaso_short incorrectly, or failed to specify the -taso
option to the linker.

• In an example such as $OS_ROOTDIR/examples/coll , if you
change the TFLAGS to be only -xtaso , and your OSSCHEMA_
FLAGS remain -xtaso_short , your code compiles without any
warning messages. However, an attempt to run the code
produces an error such as

No handler for exception:
Miscellaneous ObjectStore error
An inconsistency was detected during the allocation of an object of
type part. The compiler believes the allocation size should be 40 bytes,
while the schema believes it should be 32 bytes. Verify that the
arguments to ‘new’ match the type and/or array count of the object
being allocated.
(err_misc)
Abort process (core dumped)

• If you try to use ossg without any -taso flags, the following
error occurs:

ossg -assf osschema.cc -asdb coll.adb -I/usr/local/ostore/4.0.0.C/
include schema.cc /usr/local/ostore/4.0.0.C/lib/liboscol.ldb
<err-0004-0008>
The following class definitions in library schema "/usr/local/
ostore/4.0.0.C/lib/liboscol.ldb"
were inconsistent with the corresponding definitions obtained from
other library or compilation schemas specified for building the
application schema:
"os_set" from the schema source file "/usr/local/ostore/4.0.0.C/
include/ostore/coll/coll_int.hh"
the class size changed from 24 to 40

UNIX

102 ObjectStore Building C++ Interface Applications

"os_tinyarray" from the schema source file "/usr/local/
ostore/4.0.0.C/include/ostore/coll/query.hh"...
*** Exit 1
Stop.

HP Requires Linker Options

You must supply -Wl (this is a lowercase l), -E to cc or CC. This
option is necessary so that symbols are exported correctly. If this
is not done, virtual function table pointers (vtbls) are not available
when ObjectStore relocation occurs. For this reason, your
application might run correctly the first time, but signal an
exception when run the second time. The exception would be

No handler for exception:
Attempt to call virtual function without vtbl.
Vtbl for type os_packed_list not linked into application. (err_missing_vtbl)
IOT trap (core dumped)

Here is an example of an HP makefile link command line:

$(CCC) +eh -Wl,-E -g -o test test.o os_schema.o $(LDLIBS)

+eh Mode Supported

ObjectStore only supports +eh mode of HP CC in Release 5.1.

HP aC++ Source Files

HP recommends that you name HP aC++ source files with an
extension of either .c or .C. possibly followed by additional
characters. This applies to schema source files as well because
they are preprocessed for ossg using aCC.

Note that HP recommends that you use extensions consisting
only of .c or .C without additional characters, because while the
compiler accepts the additional characters, other HP tools and
environments might not.

If you compile only, each C++ source file produces an object file
whose prefix is identical to the source file but with a .o suffix.
However, if you compile and link a single source file into an
executable program in one step, the .o file is automatically
deleted.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 103

HP C++ Compiler Messages

When using the HP C++ compiler, you might receive the
messages below when building your application. Although the
application seems to run correctly, removing the -g option from
the compilation and link phases resolves the errors. You might see
these messages during the compilation phase:

CC: "myprog.C", line 82: warning: debug.object_ids: weird
vtable->vclass for os_Collection <const MyObject*> (198)
CC: "myprog.C", line 8: warning: debug.emit_variable: bad address found
for name ABC::xyz::ex (251)

Also, you might see these warnings during the link phase:

pxdb: [cu: 0 index: 0x136] can’t link template/expansion
pxdb: [cu: 0 index: 0x14f] can’t link template/expansion
pxdb: [cu: 0 index: 0x168] can’t link template/expansion
pxdb: [cu: 0 index: 0x181] can’t link template/expansion

You might see the following warnings during compilation of a
source file that uses stack transactions (that is, that contains OS_
BEGIN_TXN/OS_END_TXN macros):

CC: "myprog.cc", line 342: warning: label in block with destructors (2048)

Such warnings, where they concern the stack transaction macros,
can safely be ignored.

SGI IRIX Compiler Option

On SGI IRIX 6.2 you must use the -n32 option to the compiler. The
-32 and -64 options are not currently supported.

Sun C++ Compiler Options

Sun C++ 4.0 has a compile-time option, -pto , that creates all
template instantiations in the current object file. Do not use this
option when developing ObjectStore applications, because it
makes everything (including vtbls) static. Since the vtbls are static,
ObjectStore cannot get at them and gets the wrong vtbl, which
leads to an error.

-vdelx compiler option When you are using SPARC ProCompiler C++, you must always
specify the -vdelx compiler option. The -vdelx option to CC
generates the correct calling sequence for persistent vector
deletes. For example:

UNIX

104 ObjectStore Building C++ Interface Applications

delete [] persistent_array;

Without -vdelx , the compiler generates a direct call to the Sun
vector delete routine. This routine returns an error message
indicating that it did not allocate the array:

error: delete [] does not correspond to any `new’

If you use CC to link (by means of ld), then the linker receives the
correct libraries. Be sure to study the CC and ld man pages for
details, especially if you invoke ld directly.

On Solaris 2.x systems, you must compile (and link) ObjectStore
applications with real thread support. Specify -losthr on the link
line to supply the proper library for real thread support. The
libosths library, a stub threads library, can also be used with
Solaris 2.x systems. Using this library can result in higher
performance in some circumstances because it turns off thread
locking.

Debugging with DBX To use the multithread-related (MT) commands of DBX to debug
a multithreaded application, you need to obtain a separate license
from Sun. However, you are not required to use a special version
of DBX. MT features are part of the standard DBX. You can debug
without the multithreaded debugging commands. The DBX
debugger reports an error if you do not have threading licenses,
but nonetheless it debugs single-threaded applications.

Solaris 2 Linking

ObjectStore supports linking with and without threads. This
means there are two ObjectStore thread support libraries on
Solaris 2 — libosths and libosthr .

• Use the libosthr library in linking an application that links with
-mt (or -lthread).

• Use the libosths library in linking an application that does not
link with -mt (or -lthread).

Here is an example of the same program (foo) compiled and
linked in both configurations.

On Solaris 2.x, you must always specify the -mt compiler option
on the CC command line. This is required for a successful
compilation.

Linking with threads With threads:

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 105

CC -mt -I$(OS_ROOTDIR)/include $(CCFLAGS) -o foo
-L$(OS_ROOTDIR)/lib -los -losthr

Note that to link an application to use threads,

• Use -mt (or -lthread) on the link line.

• Link with libosthr .

Linking without
threads

Without threads:

CC -I$(OS_ROOTDIR)/include $(CCFLAGS) -o foo
-L$(OS_ROOTDIR)/lib -los -losths

Note that to link an application that does not use threads,

• Do not use -mt on the link line.

• Do not explicitly place -lthread in the link line.

• Link with libosths .

Sample Makefile Template

The makefile on the next page is a template for building
ObjectStore applications. This makefile is for an application that
uses queries and collections.

In an ObjectStore makefile, in the LDLIBS line, you must specify
each library with which you are linking.

Then, in the line of the makefile where ossg generates the
application schema, you must specify the library schemas needed
by your application schema. For each library schema that you
specify in the ossg command line, you must specify the
corresponding library in the LDLIBS line.

Note that the reverse is not true. For each library that you specify
in the LDLIBS line, you do not necessarily specify a library schema
in the ossg command line. This is because every library does not
necessarily have a library schema. Only those libraries that store
or retrieve persistent data have associated library schemas.

OS_POSTLINK and
os_postlink

OS_POSTLINK is a macro provided with ObjectStore. It calls the
os_postlink command that fixes vtbls and discriminants in the
executable, if needed. While os_postlink does not actually do
anything on some platforms, Object Design recommends that you
always include it so that its absence does not cause a problem if
you move the application to another platform. For more

UNIX

106 ObjectStore Building C++ Interface Applications

information about os_postlink , see Working with Virtual Function
Table (VTBL) Pointers and Discriminant Functions on page 77.

Tabs and spaces If you are using an on-line version of this book, and you copy a
makefile and try to use it, make sure that there are tabs and not
spaces at the beginning of relevant lines.

Application schema
database

In makefiles, you should not specify an existing ObjectStore
database as the application schema database. Doing so can
corrupt your build process if the Server log has not been
propagated to the database.

Makefile template include $(OS_ROOTDIR)/etc/ostore.lib.mk
APPLICATION_SCHEMA_PATH= app-schema-db
LDLIBS = $(OS_EXPORT) -losqry -loscol -los -losths [other libraries]
SOURCES = .cc files
OBJECTS = .o files
EXECUTABLES = executables
CCC=CC

all: ${EXECUTABLES}

executable: $(OBJECTS) os_schema.o
$(CCC) -o executable $(OBJECTS) os_schema.o \

$(LDLIBS)
 $(OS_POSTLINK) executable

.o files: .cc files
${CCC} $(CPPFLAGS) -c .cc files

os_schema.o: os_schema.cc
$(CCC) $(CPPFLAGS) -c os_schema.cc

os_schema.cc: schema.cc
ossg -assf os_schema.cc -asdb $(APPLICATION_SCHEMA_

PATH) \
$(CPPFLAGS) schema.cc $(OS_ROOTDIR)/lib/libosqry.ldb \
$(OS_ROOTDIR)/lib/liboscol.ldb

clean:
osrm -f ${APPLICATION_SCHEMA_PATH}
rm -f ${EXECUTABLES} ${OBJECTS} os_schema.*

Using Signal Handlers

At run time, ObjectStore sets a handler for the UNIX SIGSEGV
signal. On some platforms, it also sets a handler for SIGBUS.

These handlers are critical to ObjectStore’s operation. If your
application disturbs them, it will fail, and it might fail in a way
that makes it difficult to determine why it failed.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 107

If you must temporarily change the state of the handler for
SIGSEGV and SIGBUS, be sure to save and restore the complete
state. You cannot do this with the signal entry point; you must call
sigaction and save the contents of the structure returned as the old
handler state.

Makefile for Building from Compilation Schemas

The following makefile fragment shows a less common use of
ossg . ossg builds a compilation schema in two steps from two
schema source files. It then builds the application schema source
file and the application schema database from the compilation
schema. Finally, the makefile compiles the application schema
source file and links it into the executable. Note that the double
colon allows you to define the same target twice.

all: my_exec

my_exec: main.o os_schema.o foo.o bar.o
CC -o my_exec main.o os_schema.o foo.o bar.o -los
$(OS_POSTLINK) my_exec

my_exec.cdb:: schema_source1.o
ossg -csdb my_exec.cdb $(CPPFLAGS) schema_source1.cc
touch schema_source1.o

my_exec.cdb:: schema_source2.o
ossg -csdb my_exec.cdb $(CPPFLAGS) schema_source2.cc
touch schema_source2.o

os_schema.cc: my_exec.cdb
ossg -asdb my_exec.adb -assf os_schema.cc my_exec.cdb

For more information, see Generating a Compilation Schema on
page 55.

Establishing Fault Handlers in POSIX Thread Environments

On some UNIX systems, the POSIX thread environment gives
each thread its own set of UNIX signal handlers. On such systems,
the ObjectStore handlers for SIGSEGV (and in some cases SIGBUS)
must be established in each thread.

ObjectStore provides two macros to help you do this:

• OS_ESTABLISH_FAULT_HANDLER establishes the start of the
fault handler block.

• OS_END_FAULT_HANDLER ends the fault handler block.

UNIX

108 ObjectStore Building C++ Interface Applications

Affected platforms On the Digital UNIX, SGI IRIX, and HP–UX platforms, use the
OS_ESTABLISH_FAULT_HANDLER and OS_END_FAULT_
HANDLER macros at the beginning and end of any thread that
performs ObjectStore operations. This is required because HP–UX
and Digital UNIX signal handlers are installed strictly on a per-
thread basis and are not inherited across pthread_create calls.

A typical function that uses these macros in an ObjectStore
application would look like this:

void thread_1() {
OS_ESTABLISH_FAULT_HANDLER
...your code...
OS_END_FAULT_HANDLER

return value;
}

Unaffected platforms The AIX and Solaris 2 platforms do not require the use of these
macros because the signal handlers are inherited across pthread_
create calls.

You can benefit from using these macros, even on platforms not
requiring them. This practice helps ensure portability of code, and
also guards against potential problems resulting from future
changes to your operating system.

Virtual Function Table Pointers

Virtual function table and discriminant function symbols do not
need to be in the base executable. In fact, the schema object file
does not have to be in the base executable. It can be in shared
libraries.

When ObjectStore is fully initialized, it examines each of the
shared libraries specified at link time that was opened by shl_load
or cxxshl_load . ObjectStore searches the shared libraries for the
symbols that identify the tables in the schema object file. After it
finds these symbols, it searches again to find as many vtbls and
discriminants as it can.

Debugging Applications

When debugging applications on UNIX systems, be sure to
instruct the debugger to send SIGBUS and SIGSEGV signals
through to the application. ObjectStore expects to be handed those

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 109

exceptions, as opposed to having the debugger catch them as if
they were errors.

SGI IRIX On IRIX, the standard debugger is odbx (old dbx) or cvd , which is
part of CASEVision/Workshop 2.4 (a layered product).

HP–UX On HP–UX, the standard debugger is xdb . Specify

z 10 irs
z 11 irs

AIX On AIX, the standard debugger is dbx . Specify

ignore 10
ignore 11

Digital UNIX On Digital UNIX, the standard debugger is decladebug . Specify

ignore SEGV

It is not necessary to ignore SIGBUS.

Solaris C++ Search Paths

On Solaris 2 with ProCompiler C++ 4.0.1, the schema generator
(ossg) uses a script as the default preprocessor. This script
invokes CC and expects to find the ProCompiler C++ 4.0.1
compiler in your search path. If the script finds the wrong CC
when called by ossg , you receive a message such as the following.
If you correct your search path, this should fix the problem.

/usr/include/stddef.h line 30: syntax error on input" (103)

SGI Delta C++ Compiler

ObjectStore cannot persistently store objects in Delta format. You
can use the Delta C++ compiler, but you cannot use ObjectStore to
store Delta objects persistently in the database.

Windows

110 ObjectStore Building C++ Interface Applications

Windows

This section provides information you need to compile and link
ObjectStore applications using the Microsoft Visual C++ 32-bit
edition compiler.

Note that you must use the 32-bit edition of Visual C++.

Linking with ObjectStore Libraries

ObjectStore includes libraries that you must link with when you
build your application. Libraries allow multiple programs to
share code without redundantly compiling the source.
Applications use libraries by specifying them at link time.

On Windows platforms, the only ObjectStore library is ostore.lib .
You must link with this library every time you build an
ObjectStore application.

Use Custom Build to Run ossg

If you want to run the ObjectStore schema generator within the
IDE (Integrated Development Environment), you must use a
Custom Build step. This is to add the rules needed to run the
ObjectStore schema generator in its automatically generated
makefiles.

How to customize
Visual C++

To use the Custom Build feature, name your schema source file
with an extension other than .cpp or .c, (.osg , for example).
Include the schema source file in your project, and set up the
Custom Build step appropriately. See the MFC example discussed
in Building ObjectStore/Microsoft Foundation Class Applications
on page 117. Also see Using the Visual C++ Integrated
Development Environment (IDE) on page 121.

Ensure That You Include Required Files

The ObjectStore installation program modifies your INCLUDE
environment variable to include the %OS_ROOTDIR%\include
directory. Therefore, under normal circumstances, you should not
need to specify this directory in a compilation command.

If you edit your environment to remove %OS_ROOTDIR%\include
from your INCLUDE environment variable, you must add the
following argument to your compilation and ossg commands.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 111

-I%OS_ROOTDIR%\include

If you include in your makefiles the makefile shipped with
ObjectStore, %OS_ROOTDIR%\etc\ostore.mak , you can use the
makefile macro COMPILER_OPTS to get the proper compilation
options.

Make and Compiler Options

Here is an example of a compilation command:

mycode.obj: mycode.cpp
cl -c -W3 -EHa -G4 -D_X86_=1 -DWIN32 -MD -Zi -vmg -vmv\
I$(OS_ROOTDIR)\include mycode.cpp

Requirements The options -c, -W3, -G4, -D_X86_=1, and -DWIN32 are required in
approximately this form by all compilations with Visual C++. You
can adjust the warning level lower with -W2 or higher with -W4,
but -W3 is the default for Visual C++. You can also optimize for the
386 with -G3 or the Pentium with -G5, but -G4 is the default for
Visual C++. You can use any optimization arguments.

The option -MD is required in order for you to use msvcrt.lib ,
which is required by ObjectStore.

The implementation of TIX exceptions depends on C++
exceptions. All ObjectStore modules should be compiled with the
/EHa option. ObjectStore header files that rely on C++ exception
handling use a pragma statement to ensure that /EHa is used. If
you do not specify /EHa when you compile files that use those
headers, you receive an error such as

osdraw.cpp(168) : error C4530: C++ exception handler used, but unwind
semantics are not enabled. Specify -EHa

Do not ignore this error.

The option -Zi causes debugging information to be put in the
project database. You can also use the -Z7 or -Zd option.

All compiler and linker options not mentioned explicitly can be
set as you want.

Use the Standard Run-Time Library on Windows NT

All ObjectStore applications for Windows must link with the
standard Visual C++ run-time library msvcrt.lib .

Windows

112 ObjectStore Building C++ Interface Applications

Run-time libraries Each run-time library has its own allocation (malloc , operator new)
and deallocation (free , operator delete) routines. You cannot call
an allocator from one library (for example, msvcrt) and deallocate
that object in any other library (for example, LIBC.LIB or
LIBCMT.LIB).

ObjectStore is linked with msvcrt.lib , which allows ObjectStore to
freely allocate objects in any ObjectStore DLL and deallocate them
in any other ObjectStore DLL. This is because all ObjectStore DLLs
share the single allocator in MSVCRT40.DLL .

Because ObjectStore is linked with msvcrt.lib , it is easy for most
applications that also link with msvcrt.lib to deallocate objects that
are allocated by ObjectStore APIs (for example, os_
collection::query()).

Compiling DLLs Any part of any application that links against ObjectStore must
use msvcrt.lib and only msvcrt.lib as its run-time library.
Consequently, you must specify the -MD option when you
compile a DLL that calls ObjectStore. This option is not required
when you compile other DLLs (your own or obtained from a third
party), provided you are careful about the issues surrounding
shared C run-time constructs.

You can use a library DLL that is not compiled with the -MD
option. Keep in mind that it has a separate copy of the C run-time
library and therefore you cannot share certain objects between
that DLL and the rest of the application.

Compiling DLLs
without msvcrt.lib

When you do not compile a DLL with the -MD option, you cannot
share pointers to standard input/output files, C++ streams, and
the like. Without the -MD option, there can be conflicts about how
to delete a shared object. Some library DLLs (like WSOCK32, the
Windows Sockets DLL) were compiled with the -MD option.
Others, like MFC, were not, but you can compile them with the
-MD option.

If you must link with LIBC.LIB or LIBCMT.LIB , you can do one of
two things:

• Ask the vendor of the software that uses LIBC.LIB or
LIBCMT.LIB to use msvcrt.lib instead. You cannot design an
application as a set of cooperating DLLs if the vendor does not
support msvcrt.lib . For example, if you want to use something

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 113

that needs to share C run-time objects but was not compiled
with the -MD option, you need to contact that vendor.

• Encapsulate all code that uses ObjectStore in one or more DLLs.
In other words, instead of directly calling ObjectStore APIs like
os_database::open() from the executable, call your own
OpenOSDatabase() function that is in a DLL that was linked
with msvcrt.lib . You can then link the executable with LIBC.LIB
or LIBCMT.LIB . You must ensure that any objects passed
between the executable and the DLL are deallocated by the
correct allocator.

Linking Your Files

After you generate an application schema, you can link the
application object files, application schema object file, and
ObjectStore libraries to create an executable or dynamic link
library (DLL).

Required The following requirements apply:

• You must link ObjectStore applications with the library
ostore.lib . To do so you can either add %OS_ROOTDIR%\lib to
your LIB environment variable and put ostore.lib on the link
command line, or you can put %OS_ROOTDIR%\lib\ostore.lib
on the link command line.

The reference to ostore.lib can be anywhere on the link
command line as long as it appears before any explicit
references to msvcrt.lib (the C run-time library). If you are using
MFC, see Building ObjectStore/Microsoft Foundation Class
Applications on page 117.

• You must link with msvcrt.lib . This is the C run-time library
with which all ObjectStore DLLs and executables are linked.

Link example Use a command line like the following, which is shown using the
response file syntax used by nmake :

Linking an executable file would look like this:

link @<<
-NODEFAULTLIB -machine:i386 -subsystem:windows -debug
-debug-type:cv -out:myapp.exe myapp.obj myschema.obj ostore.lib
msvcrt.lib kernel32.lib user32.lib gdi32.lib winspool.lib
<<

Linking a DLL would look like this:

Windows

114 ObjectStore Building C++ Interface Applications

link @<<
-NODEFAULTLIB -dll -machine:i386 -debug -debugtype:cv
-out:myapp.dll myapp.obj myschema.obj ostore.lib msvcrt.lib
kernel32.lib user32.lib gdi32.lib winspool.lib
<<

myschema.obj in the previous two link commands is the
application schema object file output from the schema generator
(ossg).

In both examples, the %OS_ROOTDIR%\lib directory must be
listed in your LIB environment variable. This is normally set up by
the ObjectStore installation program.

Sample Makefile

In makefiles, do not specify an existing ObjectStore database as the
application schema database. Doing so can corrupt your build
process if the Server log has not been propagated to the database.

The schema generator (ossg) is a C++ compiler front end that
parses C++ source code to obtain information. This means that
you must pass the same compiler flags to ossg as you pass to the
compiler when you are compiling your source. It is especially
important to duplicate the -I, -D, and -Zp arguments. Also,
remember that -MD implies -D_DLL , so pass the -D_DLL to ossg .
Note how $(COMPILER_OPTS) is used for both compilation and
schema generation in the following makefile fragment.

!include $(OS_ROOTDIR)\etc\ostore.mak

OBJECTS=note.obj
EXECUTABLES=note.exe

APPLICATION_SCHEMA_PATH=note.adb

all: $(EXECUTABLES)

myschema.obj: schema.cc
ossg -asof myschema.obj -asdb $(APPLICATION_SCHEMA_

PATH) \
$(COMPILER_OPTS) schema.cc

note.obj: note.cc
$(COMPILER) $(COMPILER_OPTS) note.cc

note.exe: $(OBJECTS) myschema.obj
$(CL_LINK) /OUT:note.exe $(OBJECTS) myschema.obj \

$(OS_ROOTDIR)\lib\ostore.lib

clean:
-osrm -f $(APPLICATION_SCHEMA_PATH)

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 115

-del $(OBJECTS) osschema.*

Sample Makefile for an Application That Uses Collections and Queries

The following makefile adds the specification of two library
schemas to the preceding makefile. This is for a Windows
application that uses collections and queries. Note that in
ObjectStore Release 3, you only needed to specify the collections
library schema, which included the query library schema. In
ObjectStore Release 5.1, if you use both collections and queries,
you must specify a library schema for each feature.

Sample file !include $(OS_ROOTDIR)\etc\ostore.mak

OBJECTS=note.obj
EXECUTABLES=note.exe

APPLICATION_SCHEMA_PATH=note.adb

all: $(EXECUTABLES)

myschema.obj: schema.cc
ossg -asof myschema.obj -asdb $(APPLICATION_SCHEMA_

PATH) \
$(COMPILER_OPTS) schema.cc \$(OS_

ROOTDIR)\lib\osquery.ldb \ 1

$(OS_ROOTDIR)\lib\os_coll.ldb 2

note.obj: note.cc
$(COMPILER) $(COMPILER_OPTS) note.cc

note.exe: $(OBJECTS) myschema.obj
$(CL_LINK) /OUT:note.exe $(OBJECTS) myschema.obj \

$(OS_ROOTDIR)\lib\ostore.lib

clean:
-osrm -f $(APPLICATION_SCHEMA_PATH)
-del $(OBJECTS) osschema.*

Notes on sample file 1Add query library schema.

2Add collections library schema.

Specifying Environment Variables

The following environment variables are automatically set by the
ObjectStore installation program:

OS_ROOTDIR ObjectStore root directory.

PATH %OS_ROOTDIR%\bin is added to this
environment variable.

Windows

116 ObjectStore Building C++ Interface Applications

You can edit these environment variables using the Control Panel
System applet.

On Windows NT, ObjectStore adds these variables to the system
environment.

Debugging Your Application

Visual C++ debugger ObjectStore handles all access violations to determine if they are
persistent memory accesses. If you handle access violations in the
Visual C++ debugger you would disrupt this, so leave this
exception unhandled in the debugger. You might see multiple
exception messages such as the following:

First-Chance Exception in yourprog.exe: 0xC0000005: Access Violation.

First-Chance Exception in yourprog.exe: (something.DLL) 0xC0000005:
Access Violation.

You can safely ignore these messages.

Under Debug | Exceptions , the default for exception C0000005
Access Violation is Stop if not handled . Do not change this to Stop
Always . If you do, ObjectStore cannot function normally.

Obtaining a stack
trace

On Windows NT, to obtain a complete stack trace, use the debug
versions of the ObjectStore DLLs.

The debug DLLs are available on the distribution CDROM.

To obtain a back trace using the debug DLLs, put the debug DLL
directory in the front of the path environment and then run the
msvc debugger.

For example, using myapps on drive C and a CDROM on drive E,
you would issue the following commands:

C:\myapps> set path = e:\windows\debnt\bin;%path%
C:\myapps> start msvc myapps.exe

INCLUDE %OS_ROOTDIR%\include is added to this
environment variable (only for
development installations).

LIB %OS_ROOTDIR%\lib is added to this
environment variable (only for
development installations).

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 117

Setting a breakpoint If your application exits with an unhandled TIX exception, you
can set a breakpoint to obtain a stack trace prior to the stack’s
being unwound. The OS_DEF_BREAK_ACTION environment
variable allows you to do this. When you set this variable to 1,
ObjectStore reaches a hardcoded breakpoint immediately before
an exception is signaled. This works with Visual C++’s just-in-
time debugging.

Abnormal Application Exit

In case of abnormal ObjectStore application exits, you might want
to get a stack trace at the point of failure before cleanup handlers
are run. To do this, you can do one of the following:

• Set the environment variable OS_DEF_BREAK_ACTION . See
ObjectStore Management, Chapter 3, Environment Variables.

• Include code in your program that uses the static method for
the class tix_exception called set_unhandled_exception_hook() ;
see %OS_ROOTDIR%\include\ostore\tix.hh .

This method allows you to set a function to be called before the
ObjectStore exception handler unwinds the call stack or exits from
the program. You can set a breakpoint in this function and then
examine the stack using the Visual C++ debugger. Here is a code
sample illustrating how to use this function:

#include <iostream.h>
#include <ostore/ostore.hh>
void break_hook(tix_exception *err, os_int32, char* message){
cout << "Set break point here" << endl;
cout << "Have a look at the stack " << endl;
// You may also want to put up a message box that displays
// the contents of the message parameter.
}
main(int argc, char *argv[])
{ OS_ESTABLISH_FAULT_HANDLER

os_database *db1;
objectstore::initialize();
tix_exception::set_unhandled_exception_hook(break_hook);
do_something_fun();
OS_END_FAULT_HANDLER

}

Building ObjectStore/Microsoft Foundation Class Applications

To build ObjectStore/MFC applications, users need to address a
number of issues, as described here. (See Generating MFC

Windows

118 ObjectStore Building C++ Interface Applications

Applications Using ObjectStore AppWizards on page 119 for
related information.)

1 Putting OS_ESTABLISH_FAULT_HANDLER and
objectstore::initialize code in WinMain .

2 Putting OS_ESTABLISH_FAULT_HANDLER in threads created
with CWinThread::CreateThread .

3 Integrating ObjectStore’s overloading of operator new and
delete with MFC's DEBUG_NEW macro.

4 Adding knowledge of nonmapped persistent pointers to
MFC's valid-address checking.

5 Adding support for persistent new of MFC types.

To ensure that these issues do not cause problems using MFC, add
the following to your code.

Issue 1 Resolve issue 1 by copying the function AfxWinMain from
MFC\SRC\WINMAIN.CPP to an application source file, and adding
the initialization calls to the copy. This will override the
AfxWinMain in the unchanged MFC DLL .

Issue 2 Resolve issue 2 by putting the OS_ESTABLISH_FAULT_HANDLER
and OS_END_FAULT_HANDLER macros in the thread functions
passed to CWinThread::CreateThread .

Issue 3 Resolve issue 3 by modifying stdafx.h as follows. The reason for
doing this is that MFC uses #define new DEBUG_NEW to activate
the MFC debugging malloc , and that causes problems for the
ObjectStore overloadings of new . To eliminate these problems,
redefine DEBUG_NEW to be new as opposed to new(__FILE__,__
LINE) and then insert an inline operator delete that calls
ObjectStore’s internal persistent delete function. This, in turn,
checks for transient pointers and calls _ODI_free if needed.

To do this, add the following to stdafx.h after including ostore.hh
and afxwin.h :

// If we let DEBUG_NEW keep the definition that it’s given in
// afxwin.h,
// and let the "#define new DEBUG_NEW" from afx.h stay, then our
// overloadings of new won’t be recognized by the compiler.

#ifndef _AFX_NO_DEBUG_CRT
#ifdef DEBUG_NEW
#undef DEBUG_NEW

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 119

#define DEBUG_NEW new
#endif
#ifdef new
#undef new
#define new new
#endif
#endif

Then, add the following at the end of stdafx.h :

// This declaration taken from ostore.h */
extern "C" void _OSSYSCALL objectstore_delete(void *);
// In DEBUG mode, MFC has its own operator delete. We need to get
// first dibs on the deletion if the thing being deleted is persistent.
//
#if defined(_DEBUG) && !defined(_AFX_NO_DEBUG_CRT)
inline void operator delete(void* p)

{
objectstore_delete(p);

}
#endif

Issue 4 Resolve issue 4 by never passing persistent data to library calls.
Pass copies instead.

Issue 5 Resolve issue 5 by not storing MFC classes persistently. See Class
os_CString below.

Class os_CString

ObjectStore provides a shadow class of CString called os_CString
that does the job of storing CString objects persistently. These
classes can be used interchangeably for most purposes.

Class os_CString has the same layout and member functions, but
it includes get_os_typespec() members and cast-to-CString
members. This means that users can easily pass them from the
database to MFC and back. To use os_CString , include
<ostore/oscstring.h> in your source code.

You can find the source code for os_CString in the directory %OS_
ROOTDIR%\examples\ospmfc .

Generating MFC Applications Using ObjectStore AppWizards

ObjectStore includes a custom AppWizard for VC++ 5.0. This
wizard can be used to generate MFC applications that use
ObjectStore.

Windows

120 ObjectStore Building C++ Interface Applications

When an application is generated with this wizard, all the code
needed for ObjectStore is inserted into your project. The following
is what is inserted in addition to standard code provided by
VC++:

• Copy of AfxWinMain() that establishes ObjectStore fault
handling and calls initialization functions

• Code to stdafx.h that includes ObjectStore header files and
ensures that the correct operator new is called

• Skeleton for ObjectStore schema in schema.scm file

• ObjectStore headers and libraries that are added to the makefile

Ensure that the following environment variables are set:

• INCLUDE must include %OS_ROOTDIR%\INCLUDE.

• LIB must include %OS_ROOTDIR%\LIB .

These are set by ObjectStore installation.

The source code for the ObjectStore AppWizard can be found in
the directory %OS_ROOTDIR%\examples\ostoreaw .

Using the AppWizard Complete the following sequence to create an ObjectStore MFC
application with the AppWizard:

1 Start Microsoft Developer Studio.

2 In the File menu, select New.

3 From the dialog box displayed, select the Projects tab and select
ObjectStore AppWizard .

4 Enter the project name and click OK.

5 In these steps, select the MFC-specific options you prefer.

6 Check Use ObjectStore Collections if you want your application
to use ObjectStore collections. This will include collections-
related files and initialize ObjectStore collections at the right
place.

7 Click on Finish to generate a project with correct ObjectStore
include files and initializations.

Read the readme.txt file provided with this new project and make
changes as described there. This project also copies a file
schema.scm in your project. This is a skeleton for a schema file
needed for ObjectStore. You can change this file and add ossg

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 121

compilation options in your project, as described in the readme.txt
provided in the project.

Manual steps The ObjectStore AppWizard cannot add the schema compilation
build step to the project. You must do this following the directions
in readme.txt .

You must add OS_ESTABLISH_FAULT_HANDLER to the top-level
threads functions when using threads.

Using the Visual C++ Integrated Development Environment (IDE)

Follow these steps to use the VC++ IDE to generate schema.

1 Choose a file name extension for your schema source file other
than .cpp , for example, .osg .

2 Set up a Custom Build rule that specifies that the schema object
file is to be built from the schema source file, by using the
command

ossg <other ossg args> schema.osg

The ObjectStore MFC example is set up to use this technique.

Using ObjectStore Within a DLL

This section provides examples of how to use ObjectStore in a
DLL.

In the directory %OS_ROOTDIR%\examples\dll , there are two
subdirectories, LIBSCHM and NOSCHM. These two directories
demonstrate two ways to use ObjectStore from within a DLL.

Each of these two directories contains two subdirectories, PROG
and LIB . The LIB directory creates a DLL called people.dll that uses
ObjectStore. The PROG directory creates a program that uses
people.dll .

The difference between the directories LIBSCHM and NOSCHM is
as follows:

• The directory LIBSCHM\LIB creates a DLL that uses ObjectStore
and a library schema to go with the DLL. The directory
LIBSCHM\PROG uses the library schema in addition to its own
schema sources to create an application schema.

• The directory NOSCHM is an example of how you create a DLL
that uses ObjectStore but is to be linked with programs that are

Windows

122 ObjectStore Building C++ Interface Applications

not using ObjectStore. The objective is to avoid concern with
schema generation and linking rules in the application
makefiles.

This approach is useful if you are in a development
environment where a single person or a small group of people
are the only developers using ObjectStore, or if your product is
a persistent library that will be used by developers who do not
have any knowledge of ObjectStore.

Building Applications on Machines Remote from the Server

You can build an application on a machine that is remote from the
ObjectStore Server.

All databases, including application schemas and library
schemas, must physically reside on the same machine as the
Server. The schema generator expects to be able to connect to a
Server and produces an error message if it cannot do so.
Consequently, you must provide the schema generator with a
Server-relative pathname. There are two ways to do this.

You can specify ObjectStore Server-relative pathnames even if
you are not using NFS or another file-sharing option. This does
not rely on any file system protocol. Instead, this syntax is
recognized by ObjectStore tools. Using Server-relative
pathnames, the ossg command line would look like this:

Example 1 ossg -asdb foo:c:\appdir\appschema.adb -assf osschema.cc /
-cd schmdefs.hh myschema foo:c:\ostore\lib\os_coll.ldb

This example assumes that

• The Server is on a remote machine named foo .

• There is a directory on foo’ s C drive called appdir .

• ObjectStore is installed on foo ’s C drive in the ostore directory.

This method makes no assumptions about the availability of a
remote file system protocol.

If you can use Windows networking to connect to a network drive
on the Server, you can use pathnames that start with that network
drive letter.

Example 2 If you are on a system that supports NFS, you can mount a
directory on the Server as follows:

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 123

nfs use x: bar:/usr

This mounts the /usr file system of a remote Server machine called
bar on the local directory x. Having done that, you use the
following form for your ossg command line:

ossg -asdb x:\appdir\appschema.adb -assf osschema.cc \
-cd schmdefs.hh myschema.cc x:\ostore\lib\os_coll.ldb \
x:\ostore\lib\os_query.ldb

This example assumes that

• The Server is on a remote machine named bar .

• The application is in /usr/appdir on bar .

• ObjectStore is installed in /usr/ostore on bar .

Porting ObjectStore Applications to Windows Platforms

This section presents guidelines for porting ObjectStore code to a
Windows environment.

Macros for fault and
exception handling

ObjectStore must handle all memory access violations, because
some of those access violations are actually references to
persistent memory in an ObjectStore database. On UNIX systems,
ObjectStore can register a signal handler for such access
violations. But on Windows, there is no function for registering a
handler that also works when you are debugging an ObjectStore
application; the SetUnhandledExceptionFilter function does not
work when you are using the Visual C++ debugger.

Therefore, every ObjectStore application must put a handler for
access violations at the top of every stack in the program. This
normally means putting a handler in a program’s main or WinMain
function and, if the program uses multiple threads, putting a
handler in the first function of each new thread.

ObjectStore provides two macros to use in establishing a fault
handler:

• OS_ESTABLISH_FAULT_HANDLER establishes the start of the
fault handler block.

• OS_END_FAULT_HANDLER ends the fault handler block.

These macros expand to nothing on platforms that do not require
their use. Using these macros, a typical main function in an
ObjectStore application would look like this:

Windows

124 ObjectStore Building C++ Interface Applications

int main (int argc, char** argv) {
OS_ESTABLISH_FAULT_HANDLER
...your code...
OS_END_FAULT_HANDLER

return value;
}

A WinMain function would also look like the preceding example.

Threads You must use the Visual C++ C run-time functions _beginthread
and _endthread , as they properly initialize the Visual C++ C run-
time library. CreateThread and TerminateThread do not properly
initialize the Visual C++ C run-time library.

objectstore::initialize() need only be called once, even though an
application has multiple threads.

long double and
warning C4069

Visual C++ makes double s and long double s the same size (eight
bytes) and issues a warning whenever a long double is
encountered. For example:

c:\ostore\include\ostore\mop.hh(1041) : warning C4069: long double is
the same precision as double

To avoid these warnings, ObjectStore header files use pragma
statements that disable them. You can enable this warning for
your code by adding the following after the ObjectStore include
files:

#pragma warning (default : 4069)

/NODEFAULTLIB
option

The default libraries should not be used with multithreaded
programs. The /NODEFAULTLIB or /NOD option tells the Visual
C++ linker not to search the default libraries. During compilation,
you can use the /Zl (lowercase l as in library) option to suppress
default library search records in the object files.

Windows DEBUG and DDEBUG Builds of ObjectStore

The build of ObjectStore for Windows installed by the SETUP
program is a retail release that was compiled optimized, without
extra error checking and without debugging symbols, to make the
smallest, most efficient installation package. Two debugging
versions of ObjectStore that you can install manually to aid in
debugging your applications are also included.

debug The debug build is a drop-in replacement for the retail build, and
can be used to obtain symbolic stack trace information that can

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 125

help you debug your application or that might be required by
Object Design Technical Support to track down a problem. It is
compiled unoptimized, and has some extra error-checking code
built in.

ddebug The ddebug build uses the debugging version of the Visual C++
run time, and so is compatible with the debug versions of the
Microsoft Foundation Class and Visual C++ libraries. This build is
most useful to application developers who are building and
debugging a new application, because they can symbolically
debug an entire application, including the run-time and MFC
libraries, if used.

Installing DEBUG.ZIP or DDEBUG.ZIP

To install DEBUG.ZIP or DDEBUG.ZIP, follow these steps:

1 Install ObjectStore Release 5.1 with the SETUP program. See
ObjectStore installation for Windows NT documentation for
instructions.

2 Shut down the ObjectStore Server and Cache Manager by using
the ObjectStore SETUP program. Answer Yes to the question
about shutting down servers, then exit from SETUP.

3 Go to the %OS_ROOTDIR% directory.

4 Rename bin and binsngl directories (from the command
prompt window or Windows Explorer) to retail.bin and
retail.binsngl .

5 Unzip the file (DEBUG.ZIP or DDEBUG.ZIP) from the command
prompt by typing the following command.The -d option
creates and restores the directories included in the zip file.

pkunzip -d debug.zip

6 Run the ObjectStore SETUP program to start the Server. In the
first setup dialog, select the Setup Server option. In the menu
Choosing to start ObjectStore services automatically , select Yes.
Then a Confirm Message dialog asks if you want to start the
services right now. Select Yes.

To use the retail or debug builds, compile your application using
the /MD switch. Using Project | Settings in Developer Studio, select
C/C++, Category Code Generation , Use runtime library
Multithreaded DLL . This automatically selects ostore.lib as a

Windows

126 ObjectStore Building C++ Interface Applications

default library. You can then switch between retail and debug
builds by changing your PATH.

To use the ddebug build, install the ddebug libraries as directed in
Installing DEBUG.ZIP or DDEBUG.ZIP on page 125. Then
compile your application using the /MDd switch. Using Project |
Settings in Developer Studio, select C/C++, Category Code
Generation , Use runtime library Debug Multithreaded DLL . This
automatically selects ostored.lib as a default library. To run the
resulting application, ensure that the ddebug build is in your
PATH.

The following table compares the features of retail ObjectStore,
debug , and ddebug :

Compiling and linking
applications

Use the following information when compiling and linking
applications:

* The /MDd option defines the symbol _DEBUG, which determines
the link library used by ObjectStore.

Characteristic Retail debug ddebug

Installation with
INSTALL?

Yes No No

Optimized? Yes No Yes

ObjectStore symbols
available?

No Yes Yes

Drop-in capability? Yes Yes No

Retail debug ddebug

Run-time libraries (DLL) msvcrt.dll msvcrt.dll msvcrtd.dll

Compile Options /MD /MD /MDd *

Link Library ostore.lib ostore.lib ostored.lib

ObjectStore libraries
(DLLs)

O4....DLL O4... .DLL D4... .DLL

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 127

OS/2

This section provides information about compiling and linking
ObjectStore applications using the VisualAge C++ compiler, icc ,
on OS/2.

Using Compiler Options

Required You must always use these compiler options:

Prohibited You cannot use these compiler options with ObjectStore:

You cannot use these compiler options when compiling code that
includes ObjectStore header files:

Specifying default
language for files

Use /Tdp to compile all source and unrecognized files that follow
on the command line as C++ files. You can specify /Td anywhere
on the command line to return to the default rules for the files that
follow it.

No rules There are no rules for compiler and linker options not explicitly
mentioned. You can decide how to set them.

Note: Previous releases of ObjectStore on OS/2 required the /Su4
compiler option. While it is not required for ObjectStore Release
5.1 applications, you must continue to specify it if you want your
application to be compatible with databases that were created
with ObjectStore Release 3. The /Su4 option is required for
compatibility whether or not you upgraded your databases to be

/Gd Dynamically link run-time library

/Gm Multithreaded libraries

/Gr Device driver

/Rn Subsystem environment

/EHa No exception support

/H Short external names

/Ms Use _System calling sequence

/Sc Use cfront language standard

/Sg Set margins

/Sp Pack structures

/Sq Use sequence numbers

OS/2

128 ObjectStore Building C++ Interface Applications

ObjectStore Release 5.1 databases. An alternative to specifying
this option is to perform schema evolution on the existing
databases.

Linking Your Files

After you generate the application schema, you can link your
application object files, ObjectStore libraries, and the application
schema object file into an executable.

Required library You must link ObjectStore applications with the library ostore.lib .
To do so, you can either add %OS_ROOTDIR%\lib to your LIB
environment variable and put ostore.lib on the link command
line, or you can put %OS_ROOTDIR%\lib\ostore.lib on the link
command line.

The reference to ostore.lib can be anywhere on the link command
line as long as it appears before any explicit references to
CPPOM30I.LIB (the C++ run-time library).

You must call the function objectstore::initialize() before calling
any other ObjectStore interface function.

Case sensitivity ObjectStore applications run correctly whether or not linking is
case sensitive. Object Design recommends case-sensitive linking.

Compiling the
application schema
source file

You must compile the application schema source file produced by
ossg into an object file. This file includes ObjectStore header files
and none of your header files, so the compilation command line is
simple. For example:

icc /C /Gd /Gm myschema.cpp

This produces a file named myschema.obj .

Linking object files into
an executable

A typical link command line is

icc /Tdp /B"STACK:32768" /Femy_exec.exe myschema.obj \ my_
ob1.obj my_ob2.obj %OS_ROOTDIR%\lib\ostore.lib

Sample makefile In makefiles, do not specify an existing ObjectStore database as the
application schema database. Doing so can corrupt your build
process if the Server log has not been propagated to the database.

myschema.obj: myschema.cpp
ossg -assf myschema.cpp -cd schmdefs.hh -asdb

myschema.adb \
myschema $(OS_ROOTDIR)\lib\os_coll.ldb

icc /C /Gd /Gm myschema.cpp

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 129

my_exec.exe: my_exec.obj myschema.obj
icc /Tdp /B"STACK:32768" /Femy_exec.exe my_exec.obj \

myschema.obj $(OS_ROOTDIR)\lib\ostore.lib

Sample Makefile Without Library Schemas

OBJECTS=note.obj
EXECUTABLES=note.exe

APPLICATION_SCHEMA_PATH=note.adb

all: $(EXECUTABLES)

myschema.obj: myschema.cc
icc /C /Gd /Gm /Ti myschema.cc

myschema.cc: schema.cc
ossg -assf myschema.cc -cd schmdefs.hh \

-asdb $(APPLICATION_SCHEMA_PATH) \
$(CPPFLAGS) schema.cc

note.obj: note.cc
icc /C /Gd /Gm /Ti note.cc

note.exe: $(OBJECTS) myschema.obj
icc /Tdp /B"STACK:32768" /Fenote.exe $(OBJECTS)

myschema.obj \
$(OS_ROOTDIR)\lib\ostore.lib

clean:
-osrm -f $(APPLICATION_SCHEMA_PATH)
-del $(OBJECTS) osschema.*

Sample Makefile for an Application That Uses Collections and Queries

The following makefile adds the specification of two library
schemas to the previous makefile. This is for an OS/2 application
that uses collections and queries. Note that, in Release 3, you only
needed to specify the collections library schema, which included
the query library schema. In ObjectStore Release 5.1, if you use
both collections and queries you must specify a library schema for
each feature.

OBJECTS=note.obj
EXECUTABLES=note.exe

APPLICATION_SCHEMA_PATH=note.adb

all: $(EXECUTABLES)

myschema.obj: myschema.cc
icc /C /Gd /Gm /Ti myschema.cc

myschema.cc: schema.cc
ossg -assf myschema.cc -cd schmdefs.hh \

OS/2

130 ObjectStore Building C++ Interface Applications

-asdb $(APPLICATION_SCHEMA_PATH) \
$(CPPFLAGS) schema.cc \

Add query library
schema
Add collections library
schema

$(OS_ROOTDIR)\lib\osquery.ldb \
$(OS_ROOTDIR)\lib\os_coll.ldb

note.obj: note.cc
icc /C /Gd /Gm /Ti note.cc

note.exe: $(OBJECTS) myschema.obj
icc /Tdp /B"STACK:32768" /Fenote.exe $(OBJECTS)

myschema.obj \
$(OS_ROOTDIR)\lib\ostore.lib

clean:
-osrm -f $(APPLICATION_SCHEMA_PATH)
-del $(OBJECTS) osschema.*

Debugging Your Application

By default, IPMD halts for every memory exception and asks
whether to proceed. Because ObjectStore applications take
memory exceptions regularly in the course of persistent storage
management, it is often convenient to disable this behavior.

You can do this by using the OS/2 environment variable
PMDEXCEPT. When this environment variable is set to 1, the
debugger unconditionally passes ObjectStore exceptions to
ObjectStore.

However, if your application fails with a general protection fault,
setting PMDEXCEPT causes the program to exit before you can
debug the error.

If you need to debug this kind of problem, set a breakpoint on the
first instruction in O4LOW.DLL . This breakpoint occurs only if
there is a general protection fault that ObjectStore declines to
handle (such as dereferencing a null pointer).

Obtaining a stack
trace

To obtain a complete stack trace, use the debug versions of the
ObjectStore DLLs. The debug DLLs are available on the
distribution CDROM.

To obtain a back trace using the debug DLLs, put the debug DLL
directory in the front of the LIBPATH environment, reboot, and
then run the IPMD debugger.

Chapter 4: Compiling, Linking, and Debugging Programs

Release 5.1 131

Pass Source Files to ossg

If you pass object modules instead of source modules to ossg on
the command line, the schema generator displays a parsing error.
Be sure to pass source modules to ossg .

Building Applications on Machines Remote from the Server

You can build an application on a machine that is remote from the
ObjectStore Server.

All databases, including application schemas and library
schemas, must physically reside on the same machine as the
Server. The schema generator expects to be able to connect to a
Server and produces an error message if it cannot do so.
Consequently, you must provide the schema generator with a
Server-relative pathname. There are two ways to do this.

You can specify ObjectStore Server-relative pathnames even if
you are not using NFS or another file sharing option. This does not
rely on any file system protocol. Instead, this syntax is recognized
by ObjectStore tools. Using Server-relative pathnames, the ossg
command line would look like this:

Example 1 ossg -asdb foo:c:\appdir\appschema.adb -assf osschema.cc /
-cd schmdefs.hh myschema foo:c:\ostore\lib\os_coll.ldb

This example assumes that

• The Server is on a remote machine named foo .

• There is a directory on foo’ s C drive called appdir .

• ObjectStore is installed on foo ’s C drive in the ostore directory.

This method is preferable to the file sharing method because it is
more portable. It makes no assumptions about the availability of
a file system protocol.

Example 2 If you are on a system that supports NFS, you can mount a
directory on the Server as follows:

mount x: foo:c:\

This mounts the C drive of a remote Server machine called foo on
the local directory x. Having done that, you use the following
form for your ossg command line:

ossg -asdb x:\appdir\appschema.adb -assf osschema.cc \

OS/2

132 ObjectStore Building C++ Interface Applications

-cd schmdefs.hh myschema.cc x:\ostore\lib\os_coll.ldb \
x:\ostore\lib\os_query.ldb

The same assumptions apply here as in the previous example.

Release 5.1 133

Chapter 5
Building Applications for
Use on Multiple Platforms

You can build an ObjectStore application on multiple platforms
and then use it to store and update data interchangeably on any of
these platforms. Applications that run on more than one platform
are considered to be heterogeneous.

This chapter provides instructions for building heterogeneous
applications. This chapter does not provide information about
how to make your application portable.

It covers the following topics:

General Instructions 134

Which Platforms Can Be Heterogeneous? 136

When Is a Schema Neutral? 138

Restrictions 140

ossg Neutralization Options 145

Neutralizing the Schema 148

Listing Nondefault Object Layout Compiler Options 156

Description of Schema Generator Instructions 162

Endian Types for ObjectStore Platforms 166

General Instructions

134 ObjectStore Building C++ Interface Applications

General Instructions

You can build an ObjectStore application on multiple platforms
and then use it to store and update data interchangeably on any of
these platforms. This is referred to as heterogeneity. Applications
that allow heterogeneity are considered to be heterogeneous.

To make an application heterogeneous, you must neutralize its
schema for all platforms and then build the application on each
platform. Neutralization is the process of modifying a schema so
that it has identical data formats on each platform that runs the
application. This is necessary because different compilers lay out
data in different ways.

When building a heterogeneous application, consider address
space limitations on all platforms. Database access patterns might
work on some platforms but not on others.

You can start with an application that runs on one platform or you
can create a new application. If you are building a new
application, see the limitations in Restrictions on page 140 before
you design your application.

When you have a working application, follow these steps to make
it heterogeneous. As always, you can use the command-line
interface or a makefile.

1 Run the schema generator to determine what you must do to
neutralize your application.

a Specify the -architecture setn (or -arch setn) option for the set
of compilers on which the application must run.

b You can also specify other ossg options.

A description of the schema generator neutralization options is
on page 140.

2 Modify your application source files according to the
instructions you receive from the schema generator. Some
instructions require you to insert macros in your source code.
Be sure to enter the exact name specified by the schema
generator.

3 Repeat steps 1 and 2 until the schema generator no longer
displays instructions to change your source files.

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 135

If you follow the neutralization instructions correctly, you
should need to repeat step 1 only once and step 2 not at all.

4 Recompile your application source files.

5 Compile the application schema source file generated by ossg .
Be sure to do this after the schema generator has successfully
produced the application schema database.

When you use Visual C++, the schema generator creates the
application schema object file directly. On all other platforms,
you must compile the application schema source file yourself.

6 Link the application object files and the application schema
object file and any required libraries to create a neutralized
executable.

7 When your neutralized application works on the first platform,
copy the source files to each additional platform.

8 Build the application on each platform:

a Run ossg . Always specify the -arch set n option. You should
not receive additional instructions to modify your source
files, but this catches any changes that affect neutralization.

b Compile.

c Link.

The following figure illustrates the workflow for neutralizing an
application and then building it on multiple platforms.

Which Platforms Can Be Heterogeneous?

136 ObjectStore Building C++ Interface Applications

Which Platforms Can Be Heterogeneous?

Application.cc

Run CC

 Run ossg

Link Objects and
Libraries

 Neutral Executable App. Schema DB

Heterogeneous Build
Process

Schema Source File

Produced
application
schema?

Modify
Application
Sources

yes

Object File

Perform
Neutralization

Built on all
platforms?

Copy source files
to new platform

Heterogeneous
Applications

noyes

Run CC

Object File

no

Your Application Sources

App. Headers

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 137

You can build an application that runs under all operating
systems listed. The compilers you can use are also shown. See the
ObjectStore C++ Interface Release Notes for ObjectStore Release 5.1
for the latest versions of supported compilers.

Normally, you cannot build an application that can run on both
32-bit and 64-bit platforms. The only exception to this rule is that
Digital UNIX can operate heterogeneously with 32-bit platforms.
The compiler on this 64-bit platform allows you to mix 32-bit and
64-bit pointers through pragma statements in the source code.
When all pointers in persistent classes are forced to be of the 32-
bit variety, you can share these classes with 32-bit platforms. The
following table includes the supported compilers.

Platform Operating System Compiler

AXP (Alpha) Digital UNIX DEC C++

HP 700 and
HP 800

HP–UX HP C++

IBM RS/6000 AIX IBM C Set ++

Intel OS/2 Warp 3.0

Windows NT 3.5 and
Windows 95

Solaris 2

VisualAge C++

Visual C++

Sun ProCompiler C++

SGI MIPS IRIX SGI C++

Sun SPARC Solaris 2 (includes
SunOS 5)

Sun SPARCompiler
C++

When Is a Schema Neutral?

138 ObjectStore Building C++ Interface Applications

When Is a Schema Neutral?

When an application is heterogeneous, its persistent objects are
laid out in memory in identical formats for all platforms accessing
the objects. The sizes and offsets of all data elements must be
identical in both the creating architecture and the accessing
architecture.

What Causes Data Formats to Vary?

Compilers on different platforms can use different rules for laying
out objects. Machine architectures might have differing
requirements for alignment of data types. This can cause differing
object layouts. For example, the following class might have a
different layout in memory if the required alignment of the int
data type is two-byte alignment instead of four-byte alignment:

struct X {
char status;
int value;

};

Layout incompatibilities are related to

• Alignment requirements for primitive data types, classes, or
structs

• Bit-field packing rules

• Hidden compiler data structures

Additionally, even when a class is defined so that it is identically
laid out on all platforms, the fundamental nature of the processor
can result in differing formats of the data values themselves. For
example, the standard SPARC architecture uses a byte order
different from the Intel microprocessor line. If an integer is written
on one platform, its format might need to be converted for it to be
readable on another platform.

Other features that can cause data formats to vary are

• Virtual function table pointers (vtbls)

• Virtual base classes

• Zero-length base classes

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 139

How Can You Create Identical Data Formats?

When you run ossg with neutralization options, the schema
generator determines where padding is needed to create identical
data formats. The schema generator examines the schema for a set
of compilers that you specify. It then displays instructions for you
to insert padding macros in your source files. After you modify
your source files, you run ossg again. If you followed the
instructions correctly, the schema is now neutralized for the
compilers in the specified set.

The schema generator always proposes adding explicit padding
to your classes to achieve neutralization. In many cases, however,
you can reduce the size of the end result by reordering the
members of a class to eliminate some or all padding. For example:

class X {
char a;
int i;
char b;
int j;

};

The best way to neutralize this code is to reorder the members:

class X {
int i;
int j;
char a;
char b;

};

Because some applications depend on the order of members
within a class, it is up to you to decide whether or not this method
is appropriate for each case.

After you neutralize a schema, a class in the schema is the same
size on each platform on which you run the application. If you run
the ossize utility, the returned value is the actual size of the object
in the database. Objects belonging to a particular class are the
same size on each platform on which they exist.

Restrictions

140 ObjectStore Building C++ Interface Applications

Restrictions

When designing applications, it is important to be familiar with
the restrictions on heterogeneity.

Virtual Base Classes

When you are using several types of compilers, the use of virtual
base classes makes neutralization particularly complex because of
differences among the compilers in the way they lay out objects.

You cannot use virtual base classes when some but not all of your
compilers use a cfront or SGI layout.

Applications compiled with Sun ProCompiler C++, AIX C Set ++,
DEC C++, VisualAge C++, and Visual C++ can use virtual base
classes in a heterogeneous environment.

Primitive Data Types

The compilers OS/2 VisualAge C++ (icc), Sun C++, and AIX C Set
++ (xlC) each support a long double data type that has no
counterpart on any other platform. If you use the long double
type, you cannot neutralize your application. Use the double data
type instead.

If you expect to run a heterogeneous application on a Digital
UNIX platform, avoid using the long data type. On the Alpha
platform, long data types are 64 bits, rather than the usual 32 bits.
Types can only be neutralized for architectures that use the same
size for the type.

In general, you should use 32-bit integers and floating-point
formats that are four or eight bytes.

64-Bit Pointers

You cannot neutralize a schema containing 64-bit pointers so that
it works on a 32-bit platform. See DEC C++ 64-Bit Pointer
Considerations on page 91 for detailed information about mixing
pointer size.

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 141

Floating-Point Data Conversion

During database access, it is not known whether or not the data
might have been written by an application running on another
platform. ObjectStore automatically converts data if necessary so
that data is in the correct format for your application. There is,
however, an exception to this rule.

ObjectStore does not convert floating-point data formats. To do so
would introduce inaccuracies in your data. When floating-point
formats are different but the data size is the same, ObjectStore
only swaps bytes, which causes the result to be meaningless.

Pointers to Members

On some platforms, you cannot use pointers to members in
persistent classes.

DEC C++ does not allow pointer-to-data-members (PTODMs) or
pointer-to-member-functions (PTOMFs) to be persistently
maintained. Visual C++ PTOMFs cannot be persistently
maintained.

On other platforms, you can store PTODMs persistently and use
them heterogeneously, with this exception: cfront and Sun C++
PTODM formats do not support PTODMs that refer to a member
of a virtual base class.

Base Class Initialization Order

Occasionally, you might receive neutralization instructions from
ossg that involve the reordering of base classes. Following these
instructions might disturb dependencies in your source files. If
this occurs, you might need to modify your source code to
accommodate changes in the base class initialization order as well
as to accommodate neutralization.

Parameterized Classes

The schema generator instructs you to neutralize class
instantiations rather than the template class itself. This is because
you can create a template specialization with different parameters
that produces a different layout. This can present a problem. For
example:

template <class T> class Y

Restrictions

142 ObjectStore Building C++ Interface Applications

{
public:

char a;
T b;

};
Y<char> y_char;
Y<double> y_double;

The Y<char> template requires no additional padding to be
neutral. However, the Y<double> template does require padding.
To define the schema as neutral, you can follow the neutralizer
instructions and define a template specialization for Y<double> .

Template
specialization

A template specialization is a special kind of replacement class. In
certain cases, you might want to specify that for a template with a
particular set of template arguments, the instantiation generated
from the template not be used. Instead, a replacement class that
you specify should be used. These replacement classes are known
as template specializations. Here is an example of where one
might be useful:

/* a simple template class that holds a data item */
template<class T> class Data {
public:

Data(T& the_data) : data(the_data) {}
T data;

};

/* a specialization that knows to strdup string data */
class Data<char*> {
public:

Data(char* the_data) : data (the_data ? strdup(the_data) : 0) {}
~Data() { if (data) free(data); }
char* data;

};

Here is the template specialization you would define for the
example:

class Y<double>
{
public:

char a;
char_os_pad_1[7]
double b;

};

You might find that the schema generator instructs you to
specialize each class instantiation in the same way. In this case, it
is easier for you to change the template itself. Since the schema

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 143

generator does not provide instructions for modifying class
templates, it is up to you to decide when this is appropriate. For
example:

Sizes for Data Types

A neutralized schema requires that a data type be the same size on
all platforms. When the types involved are classes, the schema
generator can determine how to achieve the same size. But when
the types involved are primitive types, the schema generator
cannot provide instructions for padding to achieve the same size.
In this case, ossg displays messages similar to the ones following.
You might receive multiple versions of the second message.

<err-0013-0006>The following neutralization problems occurred during
the compilation of file m.cc:
failures for class E:
<err-0013-0011>Components of the class have differing sizes:
Data member e

Original template
definition

template <class T> class linked_list
{
public:

T* data;
char flag;
linked_lists<T*> next;

};

Used by this type linked_list<int>

Template specialization
based on schema
generator instructions.
This provides a neutral
storage format.

class linked_list <int> {
public:

T* data;
char flag;
char _os_pad_1[3];
linked_lists<T*> next;

};

Alternatively, you can
modify the template this
way. Instantiations of
this template would be
neutral.

template <class T> class linked_list
{
public:

T* data;
char flag;
char _os_pad_1[3];
linked_lists<T*> next;

};

Restrictions

144 ObjectStore Building C++ Interface Applications

In general, you must do one of the following:

• Choose an alternative data type that has a uniform size across
the platforms in the architecture set.

• Use command-line options or pragma statements that force the
data type to be a uniform size.

An example of nonstandard type sizes is when you use enum
types and your architecture set includes OS/2. On OS/2, use the
/Su4 option to force enum s to have a size of four bytes.

General Restriction

Occasionally, there are classes that require a special alignment
that the schema generator cannot provide. Generally this refers to
certain special cases of classes with virtual bases (usually multiple
virtual bases) where at least one base class requires double
alignment (usually with set3 heterogeneous).

If you carefully followed the neutralization instructions and you
still receive the Neutralization failure message, it might mean that
your schema includes such a class. In this situation, contact Object
Design Technical Support for assistance in neutralizing your
schema.

An example of when this might occur is when you are using
virtual base classes that contain double s. Even with a single
compiler (cfront is the most likely one), there might be cases
where the schema generator cannot adequately align the virtual
base classes for all platforms.

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 145

ossg Neutralization Options

You neutralize a schema by running ossg with neutralization
options. The -arch set n option is required; the other options are
not. The table describes the neutralization options.

-arch set n The schema that is generated or updated will be neutralized to
be compatible with the architectures in the specified set.
Applications running on these architectures can then access a
database associated with the schema.

Required when you are neutralizing schema. No default.

You can specify one of the following sets.

set1 Some 32-bit architectures

HP–UX HP C++

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT and Windows 95

RS/6000 AIX C Set ++

SGI IRIX SGI C++

SPARC 2 Sun C++

set2 set1 without cfront architectures

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT Visual C++

Intel Windows 95 Visual C++

RS/6000 AIX C Set ++

SPARC Solaris 2 Sun C++

set3 cfront architecture

HP–UX HP C++

RS/6000 AIX C Set ++

SPARC 2 Sun C++

set4 Some IBM architectures

IBM VisualAge C++ for OS/2

RS/6000 AIX C Set ++

ossg Neutralization Options

146 ObjectStore Building C++ Interface Applications

set5 set1 plus Digital UNIX DEC C++ Restriction: Your schema cannot
contain a data member of type long .

set6 set2 plus Digital UNIX DEC C++ Restriction: Your schema cannot
contain a data member of type long .

set7 set1 with Windows NT Alpha

set8 set2 with Windows NT Alpha

set9 set5 with Windows NT Alpha

set10 set6 with Windows NT Alpha

set11 set6 with SGI and HP–UX support

-neutral_info_output filename
or -nout filename

Indicates the name of the file to which neutralization
instructions are directed.

Optional. Default is that the schema generator sends output
to stderr .

-noreorg or -nor Prevents the schema generator from instructing you to
reorganize your code as part of neutralization. This is useful
for minimizing changes outside your header file, working
with unfamiliar classes, or simply padding formats.

When you include -noreorg , your application might not
make the best use of its space. In fact, it is seldom possible to
neutralize a schema without reorganizing classes.

When you use virtual base classes, it is very unlikely that you
can neutralize your schema when you include this option.

Optional. The default is that the schema generator provides
reorganization instructions.

-pad_maximal or -padm
-pad_consistent or -padc

Indicates the type of padding requested.

-pad_maximal or -padm indicates that maximal padding
should be done for any ObjectStore-supported architecture.
This means all padding, even padding that the various
compilers would add implicitly.

-pad_consistent or -padc indicates that padding should be
done only if required to generate a consistent layout for the
specified architectures.

Optional. Default is -padc .

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 147

-schema_options option_file
or -sopt option_file

Specifies a file in which you list compiler options being used
on platforms other than the current platform. The options in
this file usually override the default layout of objects, so it is
important for the schema generator to take them into
account. See page 156 for details about the content of the
option file.

Optional. No default.

-show_difference or -showd
-show_whole or -showw

Indicates the description level of the schema neutralization
instructions. Optional. Default is -show_whole .

Neutralizing the Schema

148 ObjectStore Building C++ Interface Applications

Neutralizing the Schema

Follow these instructions to generate a neutral application
schema.

1 Run the schema generator with neutralizer options to
determine what changes in your source files (usually header
files) allow your application to be heterogeneous.

When you initiate the schema generator, you specify the set of
platforms for which you want to neutralize. The schema
generator examines the classes in the schema to ensure that the
interpretation of the class definitions yields identical layout
results on all platforms in the specified set.

When there are layout discrepancies, the schema generator
determines the changes needed to produce a neutral layout,
and provides instructions for modifying your source files.

To invoke ossg , use the same format you use to generate an
application, library, or compilation schema. The only
difference is the addition of neutralizer options. The following
format shows the addition of neutralization options when
generating an application schema. You can also add
neutralization options when you generate a library or
compilation schema. For an explanation of the ossg command
line, see Generating an Application or Component Schema on
page 35. (Portions of the command line are on different lines
only for clarity.)

ossg [compilation_options] neutralizer_options
[other_schema_generator_options]
{-assf app_schema_source_file | -asof app_schema_object_file}
-asdb app_schema_database schema_source_file
[lib_schema.ldb ...]

2 Change your source files according to the instructions from the
schema generator.

3 Run ossg again.

If you followed the neutralization instructions correctly, you
should now have a neutralized schema and you can skip step 4.

4 Continue to modify your source files according to ossg
instructions and then run ossg until the schema generator
successfully produces your application schema.

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 149

5 Recompile your source files.

When you run the schema generator with neutralization options,
neutralization is limited to the classes defined in the schema
source file and any classes defined in an include file that is directly
or indirectly included in the schema source file. This means that
when ossg generates an application schema, the schema
generator does not examine class definitions that are in existing
schemas. This limitation has no meaning when ossg generates a
library or compilation schema because an existing schema is not
involved.

When to Use Neutralization Options

After you neutralize your application, you should continue to
include the -arch set n option whenever you run ossg . This ensures
that changes do not cause platform conflicts.

Specifying the -arch set n option creates internal information
needed by the relocation subsystem. This information ensures
access to the correct virtual function tables.

If you remove the -arch set n option, you might add data that is not
properly aligned for a particular platform. The schema generator
normally selects the most restrictive alignment. Without the -arch
setn option, the schema generator cannot determine that the
alignment must be larger on certain platforms.

Additional Neutralization Considerations

Be sure to generate an application schema that is neutral for each
platform on which you plan to run the application. When a
schema is not explicitly neutralized for a platform, you might
receive run-time schema validation errors when you invoke the
application on that platform.

Be sure to mark all required data types in the schema source file.
When you fail to mark a required type, the schema generator
cannot detect incompatibilities.

The schema generator might require neutralization to prevent
straddling pointers (pointers that span pages). This might be
necessary

Neutralizing the Schema

150 ObjectStore Building C++ Interface Applications

• On platforms that do not require four-byte alignment of
pointers

• When a pragma or compiler option causes tighter packing

Updating a Database Schema to Be Neutral

Suppose you have an existing application on one platform that
already stores information in a database. Now you want to
neutralize the application schema to create a heterogeneous
application. In this case, you must also update the database
schema and the data so it matches the neutralized application
schema. To do this, use the ossevol utility or a custom evolution
application using the schema evolution library.

Benefits of Compiler Groups

There are several reasons to group the cfront platforms separately.

• The amount of padding necessary is usually less than with
other, larger groupings. The result is smaller objects and
smaller databases than would otherwise be possible.

• These groups are consistent with the heterogeneous
architectures in ObjectStore Release 3.0. If you are running an
ObjectStore Release 3.0 heterogeneous application, you can use
one of these compiler groups to minimize, and often eliminate,
the padding usually needed to upgrade to Release 4, and
subsequently to Release 5.1.

• set3 is a separate group because cfront handles virtual base
classes very differently from other compilers.

The more platforms for which you neutralize your schema, the
more space you use. If you neutralize for fewer platforms, you
decrease the amount of space you use but you cannot run your
application on as many types of platforms.

Command Line and Neutralization Examples

Here is a sample ossg command line on a Sun SPARC system:

ossg command line ossg -arch set1 -padm -assf proj_schema.cc \
-asdb progschema.adb \
proj_schema_source.cc $(OS_ROOTDIR)/lib/liboscol.ldb \
$(OS_ROOTDIR)/lib/libosqry.ldb

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 151

The schema will be neutralized for use on platforms belonging to
set1 . Maximal padding will be done. Since this is not being
invoked on a Windows platform, the schema generator produces
an application schema source file (prog_schema.cc) that you must
compile. The application schema will include the type
information from the two library schemas specified.

Neutralization
example

Here is a schema source file:

#include <ostore/ostore.hh>
#include <ostore/manschem.hh>
class A {
public:

virtual void fun1();
double d;
A();

};
OS_MARK_SCHEMA_TYPE(A);

First, try running the schema generator and specifying -arch set1
for schema neutralization. These examples assume that you are
running ossg on a UNIX platform. To try these examples on a
Windows NT platform, you would specify -asof instead of -assf .
Also, on Windows and OS/2 platforms, the specification of the
path for ObjectStore header files would be -I%OS_
ROOTDIR%\include instead of the way it is in the examples.

ossg -assf hetero.cc -asdb hetero.adb -arch set1 \
-I$OS_ROOTDIR/include hetero.cc

Schema generator
output

<err-0013-0002>The schema must be neutralized in order to operate
heterogeneously with the architectures specified:
The following schema modifications must occur:
class A :

public os_virtual_behavior /* New */
{

public:
char _os_pad_0[4]; /* New */
double d;

};

In the output, the schema generator does not display the member
functions. It displays only the data members and nested types in
the class definitions.

Also, the /* New */ comment in the output flags the changes you
need to make. You must edit the schema source file to have this
content:

Neutralizing the Schema

152 ObjectStore Building C++ Interface Applications

Modified schema
source file

#include <ostore/ostore.hh>
#include <ostore/manschem.hh>
class A : public os_virtual_behavior {
public:

virtual void fun1();
double d;
char _os_pad_0[4];
A();

};
OS_MARK_SCHEMA_TYPE(A);

Now the previous ossg command line generates the schema with
no error messages.

Use of -noreorg Suppose that the first run of the schema generator also had the
-noreorg switch specified:

ossg -assf hetero.assf -asdb hetero.adb -noreorg -arch set1 \
-I$OS_ROOTDIR/include hetero.cc

<err-0013-0002>The schema must be neutralized in order to operate
heterogeneously with the architectures specified:
The following schema modifications must occur:
class A
{

public:
os_pad_vftbl_start /* New */
char _os_pad_0[4]; /* New */
double d;
char _os_pad_1[4]; /* New */
os_pad_vftbl_end /* New */

};

Working from this output, edit the original class description as
follows:

Modified class
description

class A {
public:

virtual void fun1();
os_pad_vftbl_start
char _os_pad_0[4];
double d;
char _os_pad_1[4];
os_pad_vftbl_end
A();

};

Next, modify the original ossg command line by adding the
-show_difference option. The only effect that this has is on the way
that the changes are presented:

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 153

Use of
-show_difference

ossg -assf hetero.assf -asdb hetero.adb -arch set1 -show_
difference\
-I$OS_ROOTDIR/include hetero.cc

<err-0013-0002>The schema must be neutralized in order to operate
heterogeneously with the architectures specified:
The following schema modifications must occur:
Changes for class A:

Add os_virtual_behavior as the first base class
Add a padding member as the first member: char _os_pad_0[4];

As you can see, the output in this case is simpler. For complex
classes, the difference mode of display might be more easily
understood.

For most classes, the default (-show_whole) display behavior is
probably simplest.

Virtual base example Here is a more complicated class involving virtual bases:

#include <ostore/ostore.hh>
#include <ostore/manschem.hh>

class A {
public:

virtual void fun1(int);
A();

};

class B {
public:

virtual void fun2(char);
B();

};

class C {
public:

virtual void fun3(void*);
C();

};

class D : public virtual A, public virtual B, public C
{
public:

D();
virtual void fun1(int);

};
OS_MARK_SCHEMA_TYPE(D);

In this case, neutralize with the set2 architecture group because
heterogeneity of classes with virtual bases between cfront and
non-cfront-type platforms is not supported.

Neutralizing the Schema

154 ObjectStore Building C++ Interface Applications

Schema generator
command line

ossg -assf hetero.assf -asdb hetero2.adb -arch set2 \
-I$OS_ROOTDIR/include hetero2.cc

<err-0013-0002>The schema must be neutralized in order to operate
heterogeneously with the architectures specified:
The following schema modifications must occur:
class/* file: m.cc line: 19 */
class D :

public os_vb_fbsc<0,A> /* New */,
public C,
public os_vb_fbs<0,B> /* New */

{
};

Nonvirtual template
instantiations

In this example, you can see that the schema generator replaces
the virtual bases with nonvirtual template instantiations. These
instantiations virtually inherit from classes A and B in a way that
ensures layout compatibility. Note that the two virtual base
introducing templates are named slightly differently.

The particular template that the schema generator chooses for a
given virtual base depends on the characteristics of the virtual
base and the derived class.

Caution When you modify files according to neutralization instructions be
sure to follow the instructions exactly. In particular, when a class
inherits from other classes the order of inheritance must be
specified in the exact way expected by the schema neutralizer.

Using a Makefile to Obtain Neutralization Instructions

You can use a single makefile to invoke ossg and compile and link
your code. The schema generator sends a nonzero return code
when source changes are required for neutralization. This
nonzero return causes make to stop processing. The schema
generator displays neutralization instructions for changes to your
source code.

UNIX makefile
example

all: my_exec

my_exec: main.o os_schema.o foo.o bar.o
CC -o my_exec main.o os_schema.o foo.o bar.o -los -loscol
$(OS_POSTLINK) my_exec

os_schema.cc: schema_source.o

os_schema.cc must depend on all headers that
schema_source.cc depends on.
You must also set up default rules so that schema_source.cc

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 155

compiles to schema_source.o.

ossg -arch set2 -showd -mrscp -asdb my_exec.adb \
-assf os_schema.cc $(CPPFLAGS) schema_source.cc \
$(OS_ROOTDIR)/lib/os_col.ldb

Building a Heterogeneous Application from a Neutral Schema

After you neutralize a schema, there are two more steps before
you have a heterogeneous application:

1 Finish building your application on the original platform.

2 After your application works on the first platform, build it on
each platform on which you want it to work.

Neutralizing enums

OS/2 is the only platform on which you can specify multiple
enum sizes. All other platforms use four bytes for an enum .

If you are neutralizing for any architecture set except set3 (which
does not include OS/2), the schema generator assumes that the
schema is to be used on OS/2. Consequently, unless you specify
otherwise, the schema generator expects OS/2 to use one byte for
small-valued enum s. This causes a neutralization error.

Regardless of whether or not you intend to use the schema on
OS/2, you must do one of the following:

• Specify a dummy value inside the enum that guarantees that
the enum uses four bytes. For example:

enum embedd_enum { enum_val1, enum_val2, enum_val3,
enum_val4 = 100000 };

• On the ossg command line, specify -schema_options with the
name of a compiler option file. In the compiler option file,
specify that you will be using the /Su4 option on OS/2. See
Listing Nondefault Object Layout Compiler Options on
page 156 for details.

Listing Nondefault Object Layout Compiler Options

156 ObjectStore Building C++ Interface Applications

Listing Nondefault Object Layout Compiler Options

When building C++ applications, you might encounter
circumstances where compiler options or pragma statements are
needed to alter default object layout rules. When you are building
heterogeneous applications, this is usually true because each
compiler has its own layout rules that might be incompatible in
some way with the other compilers to be used. For
nonheterogeneous applications, all that is required is that you
specify any such compiler command options when invoking
ossg . For heterogeneous applications the problem is more
complicated, because ossg needs to know about all options or
pragma statements that are used on any of the platforms in the
heterogeneity set. You must provide this information to ossg by
using a schema options file.

In the options file, you maintain a list of any compiler options and
pragma statements that alter default object layout required on all
platforms in the application’s heterogeneity set. The schema
generator uses the compiler option file when determining what
changes are necessary for schema neutralization. You tell ossg
what schema options file to use by the -schema_options options_file
command-line argument.

See Compiler Option Files for Architecture Sets on page 161 for
information about the contents of basic compiler option files for
specific platform architectures. These describe what you should
use as an absolute minimum for each architecture set.

If there are compiler options that you use on the current platform,
specify them on the ossg command line as well as in the schema
options file.

Compiler Option File Format

The compiler options file has the following structure:

• Each line contains one option.

• Comments and blank lines are allowed. A number sign (#)
signals a comment and must be the first nonblank character in
a comment line.

• An option has the following form:

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 157

{ compiler_spec | architecture_spec } [(class_list)] option

The compiler_spec variable indicates the compiler with which
you are using the specified option.

The architecture_spec indicates both the compiler and the
platform that you are using. The possible values are in the
following table.

The class_list variable lists one or more classes that the specified
compiler option or pragma operates on. Classes in the list can
be all application classes included in the schema. If you do not
specify a class, the option applies to all possible classes.

Enclose the class list in parentheses and insert a space between
two class names.

The option variable can be a compiler switch or a pragma
statement.

Compiler switches When the option variable is a compiler switch, it has one of the
following forms:

switch compiler_switch

switch compiler_switch compiler_switch_value

switch compiler_switch '=' compiler_switch_value

The compiler switches you can specify appear in the following
table. See your compiler documentation for an explanation of each
switch. These switches apply to an entire compilation rather than
to a specific class.

Architecture architecture_spec

Digital UNIX DEC C++ axp_unix_dec

IBM VisualAge C++ for OS/2 intel_os2_visualage

Intel Windows NT Visual C++
Intel Windows 95 Visual C++

intel_win32_msoft or
visualc++

RS/6000 AIX C Set ++ rs6000_visualage

Listing Nondefault Object Layout Compiler Options

158 ObjectStore Building C++ Interface Applications

Pragma statements When the option variable is a pragma statement, it has the
following form:

pragma directive directive_value

The pragma statements you can specify appear in the following
table. See your compiler documentation for an explanation of
these pragma statements.

compiler_spec or
architecture_spec

compiler_switch compiler_switch_value

axp_unix_dec -nomember_alignment

-vptr_size_short

-xtaso_short

–Zpn

Not applicable

intel_os2_visualage /Sp

/Sp1 (default)

/Sp2

/Sp4

/Sp+

/Sp-

/Su+ (default)

/Su-

/Su1

/Su2

/Su4

Not applicable

rs6000_visualage –qalign= full

packed

power

–qenum= int (default)

small

visualc++ or
intel_win32_msoft

/vmb

/vmg

/vms

/vmm

/vmv

/Zpn

Not applicable

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 159

Overriding Options Within the Compiler Option File

You can specify compiler options and pragmas at various levels.
Specifications for a specific platform or compiler can override a
specification that applies to all platforms or a set of platforms.
Specifications for specific classes can override a specification for

compiler_spec or
architecture_spec

directive directive_value

axp_unix_dec member_alignment Not applicable

nomember_alignment Not applicable

pack Not applicable

pointer_size long

short

32

64

required_pointer_size long

short

32

64

required_vptr_size long

short

32

64

intel_os2_visualage pack (n)

rs6000_visualage options ldbl128

options align= power

full

packed

options enum= smallest

int

visualc++ or
intel_win32_msoft

pack (n)

pointers_to_members best_case

full_generality,single_inheritance

full_generality,multiple_inheritance

full_generality,virtual_inheritance

Listing Nondefault Object Layout Compiler Options

160 ObjectStore Building C++ Interface Applications

all classes. The order of the options in the compiler option file is
not significant. For example:

intel_os2_visualage switch /Sp
intel_os2_visualage (classA classB classC) switch /Sp2

For all classes, ossg assumes that the compiler uses the /Sp switch.
Except for classA , classB , and classC , ossg assumes the /Sp2
switch.

Sample Compiler Option File

visualc++switch /Zpn
intel_os2_visualageswitch /Sp4
intel_win32_msoftpragma pointers_to_members best_case
visualc++ (ClassX) pragma pack (1)
rs6000_csetpragma options align=full

Compiler Option File Example

Suppose you want to use the following class in an application that
runs on several platforms:

class A {
public:

enum { X,Y,Z} id;
};

The platforms you intend to use are OS/2, Windows NT, and
Solaris 2. This class will not be neutral unless you specify the /Su4
option on OS/2. (This option forces enums to be of size int .) You
need a schema option file that contains the line

intel_os2_visualage option /Su4

In this example, the name of the schema option file is schm.opt .
When you generate the schema on OS/2, specify the /Su4 option.
When you run ossg on the other platforms, specify schm.opt .
Specifying the schema option file indicates to the schema
generator exactly how objects are laid out on all platforms.

Compiler Options That Aid Neutralization

Certain platforms have default behavior in their compilers that
causes problems in neutralization. The schema generator
normally reports these problems as members of different sizes. In
this situation, you might need to specify compiler options that
force the compiler to yield a compatible object layout.

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 161

OS/2 On OS/2 with the VisualAge C++ compiler, enum types default to
the smallest size that can contain all values of the enumeration.
Because of this, you must do one of the following:

• Pad the enumerations with large enumerator values. For
example, enum Color { RED, BLUE, GREEN, BIG_COLOR=1<<30}

• Specify the /Su4 compiler switch.

DEC AXP On DEC AXP systems that run Digital UNIX, pointers default to
64 bits. For this platform to operate heterogeneously with 32-bit
platforms, you must build applications with compiler switches or
pragmas that force the compiler to use 32-bit pointers at the
appropriate time. To do this, use -xtaso or -xtaso_short on the
compiler command line, as described in DEC C++ 64-Bit Pointer
Considerations on page 91.

Compiler option file When you use one of these compiler options, remember to include
it in the compiler option file. In fact, if you specify -arch set1 for
neutralization but you do not intend to use OS/2, you still need to
specify compiler options that would be needed on OS/2.

Compiler Option Files for Architecture Sets

This section provides basic compiler option files that are a
minimum starting point for each of the architecture sets. Note that
file contents are listed for set1 through set6 . In the event that you
are using any set beyond set6 (set7 through set11), be aware that
these sets are based on the first six. See ossg Neutralization
Options on page 145 to clarify the relationship between the sets.

Set Compiler Option File Contents

set1 # force enums to be 4 bytes on OS/2

intel_os2_visualage switch /Su4

set2 # force enums to be 4 bytes on OS/2

intel_os2_visualage switch /Su4

set3 # no options needed

set4 # force enums to be 4 bytes on OS/2

intel_os2_visualage switch /Su4

Description of Schema Generator Instructions

162 ObjectStore Building C++ Interface Applications

Description of Schema Generator Instructions

When run with neutralization options, the schema generator
instructs you to insert ObjectStore padding macros and make
other changes in your source files. The neutralization instructions
are explicit. Be sure to use the exact macro name the schema
generator provides.

This section provides a description of the macros that the schema
generator instructs you to use. An explanation of changes to
virtual base templates is also included.

Some macros have (x) at the end. The neutralizer provides
instructions for replacing the x with a meaningful value.

Base Class Padding Macros

On platforms where the base class produces no padding, the
schema generator cannot recognize that the padding macro exists.
However, the schema generator can determine that, if the macro
were present, the schema would be neutral. This allows the
schema generator to both

• Produce the schema for the current platform successfully

• Warn you that additional padding is needed on other
platforms

set5 # force enums to be 4 bytes on OS/2

intel_os2_visualage switch /Su4

force pointers to be 4 bytes on AXP under DEC UNIX

axp_unix_dec switch -xtaso_short

axp_unix_dec switch -vptr_short

set6 # force enums to be 4 bytes on OS/2

intel_os2_visualage switch /Su4

force pointers to be 4 bytes on AXP under DEC UNIX

axp_unix_dec switch -xtaso_short

axp_unix_dec switch -vptr_short

Set Compiler Option File Contents

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 163

The message names the specific platforms. Add the padding and
run ossg again.

Dynamically Defined Padding Macros

The schema generator does some dynamic naming of macros
when inheritance precludes reusing a macro name. Dynamically
named macros all begin with _os_pad_ .

Member Padding Macros

Each member padding macro does one of the following:

• Defines a pad data member whose name is based on the macro
name.

• Defines a nested class whose name is based on the macro name.
Although no padding occurs on the neutralization platform,
this allows the schema generator to recognize that the macro
was used and determine how that macro would be expanded
on other platforms.

The following table describes the member padding macros that
ObjectStore provides.

Macro Inserts Padding to Compensate for

os_base_pad_vftbl

os_base_pad_vftbl8

Four- or eight-byte vftbls placed at the
start of an object

os_base_pad_vbptr(x)

os_base_pad_vbptr8(x)

Four- or eight-byte virtual base pointers
placed at the start of an object

os_base_pad_vbtbl Four-byte vbtbls placed at the start of
an object

Macro Inserts Padding to Compensate For

os_pad_vftbl_start
os_pad_vftbl_start8

Four- or eight-byte vtbls placed at the start of an
object.

os_pad_vftbl_end
os_pad_vftbl_end8

Four- or eight-byte vtbls placed at the end of an
object.

os_pad_vftbl_only8 Eight-byte vtbls in classes containing no data
members.

os_pad_vbtbl
os_pad_vbtbl8

Four- or eight-byte virtual base tables placed at the
end of an object.

Description of Schema Generator Instructions

164 ObjectStore Building C++ Interface Applications

Virtual Base Templates

Class layout varies so greatly among compilers that in many cases
there is no way to achieve a compatible layout by padding alone.
Often, complex inheritance paths that differ from platform to
platform are needed.

Rather than require you to maintain multiple parallel class
definitions and manually check that the correct neutralizations
have been applied, the schema generator instructs you to use
standard template base classes to introduce virtual bases. For
example, suppose you begin with this class:

class A : public virtual B {}

The schema generator might instruct you to convert this to
something like the line following. This varies depending on which
platforms are involved.

class A : public os_vb_fbs<0,B> {}

Sometimes, instead of using a particular virtual base class, the
schema generator instructs you to use a specific class whose name
starts with os_vb_ . This class takes two arguments. The first is an
int , and you should insert the exact int that the schema generator
provides. The second is the name of the virtual base class that you
are replacing. Here are the class names:

• os_vb_f<>

• os_vb_fs<>

• os_vb_fbs<>

os_pad_vbptr_start(x)
os_pad_vbptr_start8(x)

Four- or eight-byte virtual base pointers placed at
the start of an object. Takes an integer argument
that must be unique for any use of the macro
within the class.

os_pad_vbptr_end(x)
os_pad_vbptr_end8(x)

Four- or eight-byte virtual base pointers placed at
the end of an object. Takes an integer argument
that must be unique for any use of the macro
within the class.

os_pad_mem_ptr8(x)
os_pad_mem_ptr12(x)
os_pad_mem_ptr16(x)

Data member pointers that are 8, 12, or 16 bytes
long.

Macro Inserts Padding to Compensate For

Chapter 5: Building Applications for Use on Multiple Platforms

Release 5.1 165

• os_vb_fbsc<>

• os_vb_fbcsd<>

This technique has the effect of virtually inheriting from class B,
but hides all platform-dependent details needed to make the class
neutral.

An important effect of this technique is that class B must have a
public or protected default constructor. Since it is the
responsibility of the most derived class to actually invoke the
correct constructor, it should not be difficult to provide a public or
protected default constructor.

The virtual base introduction templates have the prefix os_vb_ .
The schema generator flattens these template instantiations so that
your class definitions are retained and the classes have compatible
schema representations.

Database Growth Resulting from Padding

Database growth as a result of padding source files is hard to
predict. Whether or not there is any growth depends on

• Kinds of data and structures in the schema

• Which platforms the application can run on

For example, the schema databases supplied with ObjectStore
hardly grow. Applications that include virtual base classes and
applications that do not include the os_virtual_behavior base class
will grow more.

One way to try to determine any effect on database size would be
to neutralize the schema and then run the osexschm utility on the
preneutralized schema and postneutralized schema. Compare
class sizes weighted by their relative frequency of occurrence in
the database. You can also make a test run of the neutralized
application and compare the database size to an equivalent
preneutralized database.

Endian Types for ObjectStore Platforms

166 ObjectStore Building C++ Interface Applications

Endian Types for ObjectStore Platforms

Endian type specifies whether the high-order byte is first or the
low-order byte is first. This information is provided as general
information. You do not need to be concerned with endian types
when you neutralize schemas.

When you use the schema generator to neutralize for a group of
platforms, the schema generator takes into account all platforms
you want to use and the endian type for each platform. When the
schema generator does this, it helps determine how to lay out
objects in a way that can be used by all machines involved.

The following table shows the endian type for ObjectStore
platforms. In a big-endian type, the high-order bit is first.

Big-Endians Little-Endians

HP DEC AXP

RS/6000 Intel

SGI

Sun SPARC

Release 5.1 167

Chapter 6
Working with
ObjectStore/Single

ObjectStore/Single is a form of the ObjectStore client tailored for
single-user, nonnetworked use. The functional capability of an
ObjectStore/Single application operating on file databases is
virtually identical to that of a full ObjectStore client. Databases
created with one kind of client are completely compatible with the
other. However, full ObjectStore and ObjectStore/Single are not
intended to run together.

As a stand-alone version of ObjectStore, ObjectStore/Single
includes the Server and Cache Manager functionality as part of
the same library as the ObjectStore client, rather than as separate
processes. Also, ObjectStore/Single does not support rawfs file
systems.

By using dynamic library load paths, you can decide at execution
time whether an application should be a full ObjectStore or an
ObjectStore/Single application. This allows you to develop
applications using full ObjectStore, but package the application
using ObjectStore/Single as a replacement. This replacement
eases integration of embedded applications.

ObjectStore/Single Features

168 ObjectStore Building C++ Interface Applications

ObjectStore/Single Features

Each invocation of an ObjectStore/Single application requires a
Server log file. Applications for UNIX platforms also require a
cache file. Users must be prepared to specify the cache and Server
log files at each execution of an ObjectStore/Single application.

ObjectStore/Single API

The following functions in the class objectstore can be used in
creating ObjectStore/Single applications:

• objectstore::embedded_server_available()

• objectstore::get_cache_file() — UNIX only

• objectstore::get_log_file()

• objectstore::network_servers_available()

• objectstore::propagate_log()

• objectstore::set_cache_file() — UNIX only

• objectstore::set_log_file()

• objectstore::shutdown()

ObjectStore/Single Utilities

The following ObjectStore utilities can be used with
ObjectStore/Single. ObjectStore Management describes each utility
in detail.

• oschangedbref: Changing External Database References

• oschgrp: Changing Database Group Names

• oschmod: Changing Database Permissions

• oschown: Changing Database Owners

• oscompact: Compacting Databases

• oscp: Copying Databases

• osexschm: Displaying Class Names in a Schema

• oshostof: Displaying Database Host Name

• osls: Displaying Directory Content

• osmkdir: Creating a Rawfs Directory

• osmv: Moving Directories and Databases

Chapter 6: Working with ObjectStore/Single

Release 5.1 169

• osprmgc: Trimming Persistent Relocation Maps

• osprop: Propagating Server Logs

• osrm: Removing Databases and Rawfs Links

• osrmdir: Removing a Rawfs Directory

• osscheq: Comparing Schemas

• ossetasp: Patching Executable with Application Schema
Pathname

• ossetrsp: Setting a Remote Schema Pathname

• ossevol: Evolving Schemas

• ossg: Generating Schemas

• ossize: Displaying Database Size

• osupgprm: Upgrading PRM Formats

• osverifydb: Verifying Pointers and References in a Database

• osversion: Displaying the ObjectStore Version in Use

Dynamic Library Load Path

The tools run as full ObjectStore or ObjectStore/Single
applications, depending on the kind of client and database
utilities libraries found when the user’s dynamic library load path
is resolved at execution time.

For ObjectStore/Single, specify the following:

Platform Library Load Path

UNIX $OS_ROOTDIR/libsngl/:$OS_ROOTDIR/lib

Windows %OS_ROOTDIR%\binsngl

OS/2 %OS_ROOTDIR%\libsngl

Application Development Sequence

170 ObjectStore Building C++ Interface Applications

Application Development Sequence

You should first develop your applications and schema using
distributed ObjectStore, and then run your applications with the
ObjectStore/Single libraries for final testing and delivery.

You can use two environment variables for proof of concept when
you want to convert a full ObjectStore application to an
ObjectStore/Single application. These environment variables are
strictly for development purposes and are not supported if
included in your final application. See Additional Considerations
on page 175 for a discussion of the issues involved in using these
environment variables.

The two environment variables are

• OS_CACHE_FILE

• OS_LOG_FILE

OS_CACHE_FILE The OS_CACHE_FILE environment variable can be used early in
development instead of the entry point objectstore::set_cache_file
to specify the cache file for an ObjectStore/Single application
execution. The entry point takes precedence over the environment
variable. Use of the environment variable in the final application
is not supported, and is potentially troublesome to your
customers.

OS_LOG_FILE The OS_LOG_FILE environment variable can be used early in
development instead of the new entry point objectstore::set_log_
file to specify the Server log file for an ObjectStore/Single
application execution. The entry point takes precedence over the
environment variable. Use of the environment variable in the final
application is not supported, and is potentially troublesome to
your customers.

The user must take responsibility for ensuring that the Server log
information is propagated when moving a database from a full
ObjectStore environment to ObjectStore/Single, or the reverse.

Chapter 6: Working with ObjectStore/Single

Release 5.1 171

Server Log Propagation

This section discusses log propagation in both ObjectStore/Single
and full ObjectStore.

ObjectStore/Single provides transaction consistency for
databases just as full ObjectStore does. Both ObjectStore/Single
and full ObjectStore use a Server log as a tool to provide
transaction consistency. See Description of the Server Transaction
Log in ObjectStore Management for additional information about
Server logs.

In this discussion, the term Server refers to both the separate
osserver process of full ObjectStore and the functionally
equivalent part of ObjectStore/Single that is contained in the
client library. The term is meaningful for ObjectStore/Single
because, while ObjectStore/Single does not have or need a
separate-process Server, the requisite work is done in a part of the
client library internals known as the embedded Server.

Server Log Functions

You must be aware of several important aspects of Server logs.

Commit compared to
propagation

A log might contain data that has been committed but not yet
written to one or more databases. Logically, the log information is
part of the databases, and so it must be propagated, that is, written
into the actual databases, before those databases can be used for
more work. Users of full ObjectStore might have encountered this
issue when trying to copy file databases with an operating system
command such as cp rather than oscp .

Databases are marked internally when there is unpropagated data
in the log file, so that if an ObjectStore application tries to use that
database with a log different from the one holding the not-yet-
propagated data, an error is reported. The significance of this
information is that you must be careful not to delete a log that has
unpropagated information in it.

Server log size Server logs can grow large fairly quickly. As a rule of thumb, a
log’s size is proportional to the amount of data that has been
modified in the largest transaction since that log was created. The
Server cannot shrink its log. The log size is not generally a
problem for full ObjectStore since there is only one log file per

Server Log Propagation

172 ObjectStore Building C++ Interface Applications

osserver process. However, in ObjectStore/Single, because each
execution of an ObjectStore/Single process must have its own
log, the log size can quickly become a disk space management
problem. Thus you must be conscientious about finding and
propagating (and thereby removing) old log files.

Log File Guidelines

The following ObjectStore behaviors help you deal with logs:

• ObjectStore/Single always forces the log to be propagated
immediately when a transaction commits. The result of this is
that the period of time when there is committed data in the log
is usually quite short.

• During start-up, both ObjectStore/Single and full
ObjectStore’s osserver process propagate data in the log before
doing any other work.

• During shutdown (either during a normal process exit or when
objectstore::shutdown is called), ObjectStore/Single attempts
to propagate any remaining data in the log and remove the log.
Full ObjectStore’s osserver process similarly propagates the log
but does not delete it when ossvrshtd is executed.

• The utility osprop propagates data from the log files named in
the command invocation. Following successful propagation,
the log files are automatically removed.

• The other utilities that provide meaningful information as
ObjectStore/Single tools (oscp , ossize, and osverifydb) all
accept a log file explicitly named on the command line. If a log
file is specified, and is writable, propagation of the log occurs
automatically before the indicated operation is carried out.

When to Intervene

An ObjectStore/Single application (or any of the
ObjectStore/Single utilities) will try to ensure that all the data in
its Server log is propagated and the log removed before it exits.

Important note The absence of a log after the program ends is both normal and a
guarantee that all committed data is physically in the affected
databases.

Conversely, the presence of a log after the program ends is an
indication that the databases should be considered to be in an

Chapter 6: Working with ObjectStore/Single

Release 5.1 173

inconsistent state. When this happens, run the osprop utility on
that Server log immediately.

Also bear in mind that any time an ObjectStore/Single
application or utility is initialized with an existing Server log,
ObjectStore automatically conducts propagation. The osprop
utility is the simplest possible ObjectStore/Single application —
it starts, does propagation, and then shuts down.

Cautions to observe Note the following considerations:

• It is the responsibility of the application to keep track of Server
logs. Databases do not contain any record of where an
associated log is located.

• Databases that have not been propagated should not be moved.

• When the Server does log propagation, it silently discards data
associated with databases not found.

Full ObjectStore osserver Role

The most reliable way to ensure that data has been propagated
into a database last used by an osserver process is to shut down
the Server using ossvrshtd . As a practical matter, though, the
osserver process normally propagates data into a database when
no client process has the database open.

Other than by shutting down the osserver process, it is not easy
for users to know if log information has been completely
propagated into a database.

However, the Server will hold a database open with a write file
lock if unpropagated data lies in the log, so UNIX system tools
such as ofiles or lsof can be used to infer the Server log state.

UNIX

Remote Access

174 ObjectStore Building C++ Interface Applications

Remote Access

ObjectStore/Single allows remote access to databases through
NFS. The pathname lookup algorithm differs from full
ObjectStore in that it does not consider remote mount points when
expanding paths, so all paths appear to be local.

The different pathname lookup behavior between
ObjectStore/Single and full ObjectStore could be a concern for
those who

• Use cross-database pointers and cross-database references

• Operate on databases via NFS mounts

• Want to interoperate between full ObjectStore and
ObjectStore/Single

Accessing Server Logs and Cache Files Through NFS

It is acceptable, though not recommended, for an
ObjectStore/Single application to use a Server log that is reached
through NFS.

Attempting to use a cache file through NFS is not supported and
might generate run-time errors (for example, a failure in mmap),
depending on the host platform.

UNIX

Chapter 6: Working with ObjectStore/Single

Release 5.1 175

Packaging ObjectStore/Single Applications

This section provides a checklist of the requirements for
packaging ObjectStore/Single applications for UNIX and
Windows platforms.

Cache and Server Log Files

ObjectStore/Single makes the application completely responsible
for identification of each program’s cache and Server log file. This
burden is not trivial. Every instance of a program run must have
a unique cache and Server log. (Note that cache files are required
for UNIX applications only.) You must be sure that

• Old cache files do not accumulate.

• Server logs with unpropagated data (due to application
crashes) are propagated and not inadvertently removed.

Additional Considerations

The ObjectStore/Single environment variables (OS_LOG_FILE
and OS_CACHE_FILE) should only be used early in development
when you are prepared for things to go wrong. They are not safe
for production, and they can create interoperability problems.
Nonetheless, they can be useful to you very early in the process of
moving a project from full ObjectStore to ObjectStore/Single.

Picking cache and log file names for an application should not be
done statically. The names chosen must be in the context of
whatever other ObjectStore/Single applications happen to be
running at the same time on the host. Name collisions must be
avoided. All of these concerns are the application’s responsibility.

This issue is more complicated than the cache manager’s job in
managing the commseg and cache file pools for networked
ObjectStore, since there are the additional factors of user
permissions and Server log file persistence. To summarize, your
application should address the following issues when selecting a
cache and log file.

Packaging ObjectStore/Single Applications

176 ObjectStore Building C++ Interface Applications

Cache File Considerations

• Specifying a location with sufficient disk space

• Picking a unique name (for example, tmpnam or tempnam)

• Deciding whether to immediately delete cache files after a
program run or create a pool so that they can be reused

In case of an application crash, or if cache files are being pooled,
you need to specify a mechanism for cleanup (the work done
by oscmrf for full ObjectStore).

Server Log File Considerations

• Specifying a location with sufficient disk space

• Deciding where to put a backup of the log file

• Determining how the log file name should be communicated to
an external agent in case recovery is needed

• Specifying how to manage recovery when the log file remains
after the application exits

• Devising a mechanism to safeguard the log file until recovery
is accomplished

What Should You Tell Your Customers?

What is enough disk space and what is going to be backed up are
the points that need to be communicated clearly to the
application. The end-user site must determine where there is
enough disk space and what should be backed up. If you do not
consider the other items, at a minimum, your application should
be installed in a space that allows all cache and log files to be
generated in a subdirectory of the product installation or in
another directory on the same disk.

Be sure to communicate this to your customers prior to your
application installation.

Contact Object Design if you have recommendations about how
the current cache file and Server log API could be enhanced to
ease this requirement.

UNIX

Chapter 6: Working with ObjectStore/Single

Release 5.1 177

Packaging an ObjectStore/Single Application

If you choose to package the ObjectStore/Single components
with your own libraries, you must include the ObjectStore/Single
libraries from libsngl (both libos and libosdbu), plus whatever
additional libraries from lib are useful to your application (such as
liboscol , libosmop , and so on). Do not include lib/libos or
lib/libosdbu .

Also include the ObjectStore utilities.

On Windows NT, all the ObjectStore/Single components are
installed in the \binsngl directory. Choose which DLLs and
ObjectStore utilities your application requires and add them to
your packaging procedure.

Packaging with a VAR Product

When ObjectStore/Single is packaged with a VAR’s product, the
only other installation issues are related to the items presented in
the discussion in Additional Considerations on page 175.

UNIX

WIN

Packaging ObjectStore/Single Applications

178 ObjectStore Building C++ Interface Applications

Release 5.1 179

Index

A
AIX

architecture code 157
virtual function tables 82

ANSI exceptions 102
application schema databases

description 2
option to ossg 46
specification in makefiles 106

application schema object files
description 3
option to ossg 45

application schema source files
description 2
naming convention 65
option to ossg 45

application schemas
C preprocessor, changing default 46
-cd option on OS/2 47
comparison with other schemas 66
database schemas, compatibility

with 33
description 30
generating 35
generating from a compilation

schema 56
library schemas, omitting 49
moving 75

multiple applications, using same for 51
ossg command-line examples 51
ossg , invoking 36
specifying library schemas 48

applications
debugging 85
heterogeneous 134
moving 75
third-party 6
Windows

porting to 123
-arch set n option to ossg 37, 145
architectures

code specifications 157
neutralization, specifying for 37, 145
starter compiler options files 161

-asdb option to ossg 46
-asof option to ossg 45
-assf option to ossg 45

B
breakpoints

OS/2 130
Windows application abnormal exit 117

building heterogeneous applications 155
building ObjectStore applications

compiling 73
debugging 73

C

180 ObjectStore Building C++ Interface Applications

flow chart 4
generating schemas 29
linking 73
neutralizing schemas 148
overview 2
Server involvement 9

C
C compiler

schema source file contents 25
C run-time library

UNIX, order for specifying libraries 88
-cd option to ossg 47
cfront

supported compilers 137
changing default preprocessor 46
cl preprocessor 47
clients

virtual file systems 7
coll.hh header file

when to use 15
with os_Collection_declare macro 17

collections
coll.hh header file 15
libraries and library schemas needed 48
restricting use of 59
template class, undefined error report 16
template instantiation problem 16
UNIX, order for specifying libraries 88
Windows makefile 115

compact.hh header file
when to use 15

compactor
compact.hh header file 15
libraries and library schemas needed 48
UNIX, order for specifying libraries 88

compatibility
application and database schemas 33

compilation options
HP 102
neutralizing with nondefault

layouts 156
OS/2 127
Sun C++ 103
to ossg

application schemas 37
Windows 111

compilation schemas
comparison with other schemas 66
description 31
generating 55

compiler options files
description 156
example 160
format 156
neutralization 160
overriding options 159
pragmas 158
starter file for each architecture set 161
switches 157

compilers
heterogeneous 137
icc public symbols 47
third-party 5

cpp preprocessor 47
-cpp_fixup option to ossg

application schemas 38
crash recovery 11
creating schema source files

examples 24
instructions 22

D
data formats 138
database schemas

comparison with other schemas 66
compatibility with application

schemas 33
description 32

database utilities
dbutil.hh header file 15
UNIX, order for specifying libraries 88

Index

Release 5.1 181

databases
See also protected databases

dbutil.hh header file
when to use 15

DDE4MBSI.LIB library 128
ddebug build 125
debug build 124
debugging

OS/2 130
overview 85
Windows 116

DEC C++
pointer restrictions 141

defaults
C preprocessor 46

delta format objects 109
dependencies

object files on header files 86
Digital UNIX

architecture code 157
discriminant functions

when building applications 77
example of making them available 50
making them available 44
notification about missing ones 43
UNIX, shared libraries 108

DLLs
compiling 112
debug versions

OS/2 130
Windows 116

linking 113
load path

ObjectStore/Single 167
using 11
using ObjectStore from within 121

dynamic libraries
See DLLs

E
endian types 166
environment variables

OS_CACHE_FILE
ObjectStore/Single 170

OS_COMP_SCHEMA_CHANGE_ACTION
example 61

OS_LOG_FILE
ObjectStore/Single 170

OS_TRACE_MISSING_VTBLS
debugging applications 85

PMDEXCEPT
OS/2 130

Windows 115
exception handling

macros for 107
Windows compiler options 111
Windows macros 123

F
fault handlers

UNIX macros 107
Windows 123

@filename option to ossg 47
-final_asdb option to ossg 39

G
/Gd compiler option on OS/2 127
generating schemas

application 35
compilation 55
library 53
overview 30
Server involvement 9
vtbls and discriminant functions, making

available 44
vtbls and discriminants, example of

making available 50
get_os_typespec()

missing functions message 49

H

182 ObjectStore Building C++ Interface Applications

/Gm compiler option on OS/2 127

H
header files

coll.hh 24
required order 18
when to use 15

compact.hh
when to use 15

dbutil.hh 24
when to use 15

dependencies 86
manschem.hh 24

creating schema source files 22
mop.hh

required order 18
when to use 15

ObjectStore 15
OS/2 class definition file 25
ostore.hh 24

when to use 15
ostore/manschem.hh

when to use 15
relat.hh

when to use 15
required order 18
Rogue Wave on Solaris 69
sample #include statements 24
schmdefs.hh 24
schmevol.hh

required order 18
when to use 15

semoptwk.hh
when to use 18

user-defined 14
heterogeneity 136
heterogeneous applications

allowable platforms 137
building 155
description 134
description of schema generator

instructions 162

endian types 166
mixing 32-bit and 64-bit platforms 137
neutralization options 145
neutralizing schema

instructions 148
nondefault object layout options 156
restrictions 140

HP CC
+eh mode 102

-hpfb option to ossg 24
HP–UX

linker options 102
missing vtbls 102

I
-I- option to ossg

application schemas 42
icc preprocessor 46
IDE for Visual C++

makefiles 110
INCLUDE environment variable on

Windows 116
include paths

-no_default_includes option to ossg 42
specifying to ossg 37

indexes
UNIX, order for specifying libraries 88

inline virtual functions
missing vtbls 81

Integrated Development Environment
See IDE for Visual C++

L
LIB environment variable on Windows 116
libos library order 88
liboscmp library 88
liboscmp.ldb library schema

when to use 48
liboscol library order 88

Index

Release 5.1 183

liboscol.ldb library schema
UNIX example 106
when to use 48

libosdbu library order 88
libosmop library order 88
libosqry library order 88
libosqry.ldb library schema

UNIX example 106
when to use 48

libosse library order 88
libosse.ldb library schema

when to use 48
libostcl library order 88
libosthr library order 88
libosths library order 88
libraries 88

OS/2 128
third-party 6
UNIX

specifying 88
Windows

requirement 110
standard run-time 111
using ObjectStore within DLL 121

library schemas
comparison with other schemas 66
description 31
generating 53
ObjectStore-provided 48
omitting one, example 49
remote 48
specifying to generate application

schema 48
specifying when invoking ossg 46
when to create one 54

link order 88
linking

OS/2 128
UNIX 88
Windows 113

log files, ObjectStore/Single
forcing data propagation for

applications 172
issues 176
size of Server log file 171

long data type 140
long double data type 140
long long type support 58
loscmp library

when to use 48
loscol library

when to use 48
losqry library

when to use 48
losse library

when to use 48

M
macro arguments

specifying to ossg 37
macro, system-supplied

base class padding 162
member padding 163
_ _NO_TEMPLATES_ _ preprocessor

macro 59
_ODI_OSSG_ 57
os_Collection_declare 16
os_Collection_declare_no_class 17
os_Collection_declare_ptr_tdef 17
OS_END_FAULT_HANDLER 107
OS_ESTABLISH_FAULT_HANDLER 107
OS_MARK_SCHEMA_TYPE() 23
OS_MARK_SCHEMA_TYPESPEC() 23
OS_NO_COLLECTION_TEMPLATES

preprocessor macro 59
OS_POSTLINK 105

-make_reachable_library_classes_
persistent option to ossg 40

N

184 ObjectStore Building C++ Interface Applications

-make_reachable_source_classes_
persistent option to ossg

application schemas 41
whether to mark 20

makefiles
compilation schema generation 55
dependency of object files on header

files 86
library schema generation 53
neutralizing schemas 154
OS/2 example 128
retrofitting 87
tabs and spaces 106
UNIX

building compilation schemas 107
description 105
template 106

Windows example 114
Windows IDE 110

manschem.hh header file
creating schema source files 22

marking types
how to 23
reason for 19

-MD option to Visual C++ 111
memory access violations

Windows debugger 116
metaobject protocol

mop.hh header file 15
UNIX, specifying libraries 88

MOP
See metaobject protocol

mop.hh header file
when to use 15

moving application schemas 75
-mrlcp option to ossg 40
-mrscp option to ossg

application schemas 41
comparison with marking types 20

msvcrt.lib run-time library 111
-mt compiler option 103

multithreaded applications
Solaris, debugging 104
Windows 124

N
-neutral_info_output option to ossg 42, 146
neutralizing schemas

class instantiations 141
compiler options needed 160
considerations 149
definition 134
endian types 166
examples 151
how ossg creates identical formats 138
instructions 148
makefiles 154
nondefault object layout options 156
options 145
restrictions 140
schema generator instructions,

description 162
virtual base templates 164

NFS mounts
building applications on OS/2 122, 131

-no_default_includes option to ossg
application schemas 42

_ _NO_TEMPLATES_ _ preprocessor
macro 59

-no_weak_symbols option to ossg 43
-nor option to ossg 146
-noreorg option to ossg 146
-nout option to ossg 146

O
objects

delta format 109
ObjectStore libraries 11
ObjectStore stand-alone

See ObjectStore/Single

Index

Release 5.1 185

ObjectStore/Single
API 168
application packaging 177
cache files 175
definition 167
embedded Server 171
end-user information 176
interoperability with full

ObjectStore 174
libraries 11
log files 172, 175
remote database access 174
use of NFS with 174
using environment variables 175
utilities 168

objectstore , the class
functions that can be used with

ObjectStore/Single 168
_ODI_OSSG_, the macro 57
OS/2

building applications remote from
Server 122, 131

-cd option to ossg 47
compiler options 127

for neutralization 161
debugging 130
library schemas 48
linking 128
makefile example 128
schema header file 25
/Su4 compiler option 127

os_Array , the class
undefined error 16

os_Bag , the class
undefined error 16

os_base_pad_ xxx macros 163
OS_CACHE_FILE environment variable

use in developing ObjectStore/stSingle
applications 170

use with objectstore::set_cache_file 170

os_coll.ldb library schema
OS/2 makefile example 130
when to use 48

os_Collection , the class
undefined error 16

os_Collection_declare , the macro
description 16
example 17

os_Collection_declare_no_class , the
macro 17

os_Collection_declare_ptr_tdef , the
macro 17

OS_COMP_SCHEMA_CHANGE_ACTION
environment variable

example 61
os_Cursor , the class

undefined error 16
OS_END_FAULT_HANDLER , the macro

description 107
Windows, example 123

OS_ESTABLISH_FAULT_HANDLER , the
macro

description 107
Windows, example 123

os_List , the class
undefined error 16

OS_LOG_FILE environment variable 170
use with objectstore::set_log_file 170

OS_MARK_SCHEMA_TYPE() , the macro
creating schema source files 23
examples 24

OS_MARK_SCHEMA_TYPESPEC() , the
macro

creating schema source files 23
OS_NO_COLLECTION_TEMPLATES

preprocessor macro 59
OS_OSSG_CPP environment variable

C preprocessor, changing C
preprocessor 46

os_pad_ xxx_xxx macros 163

P

186 ObjectStore Building C++ Interface Applications

os_postlink executable
description 105
vtbl relocation 78

OS_POSTLINK , the macro
description 105
example 106

OS_ROOTDIR environment variable
Windows 115

%OS_ROOTDIR%\include directory 110
os_Set , the class

undefined error 16
OS_TRACE_MISSING_VTBLS environment

variable
debugging applications 85

os_vb_ virtual base introduction
templates 164

oscmpct.ldb library schema
when to use 48

osmakedep command 86
osquery.ldb library schema

OS/2 makefile example 130
when to use 48

ossetasp utility 75
ossevol.ldb library schema

when to use 48
ossg utility

@filename option 47
comparison of command lines 65
generating application schemas 36
generating compilation schemas 56
nondefault object layout options 156
options 36
platforms in architecture sets 37, 145
temporary file, using to send

arguments 47
UNIX, building compilation

schemas 107
ostore.hh header file

when to use 15

ostore.lib library
how to link with 113
OS/2, linking 128
when to use 48
Windows, linking 110

ostore/manschem.hh header file 15
overloaded operators

cfront compilers 84

P
-pad_consistent option to ossg 43, 146
-pad_maximal option to ossg 43, 146
-padc option to ossg 146
padding macros

base class 162
database growth 165
dynamically defined 163
members 163

-padm option to ossg 146
parameterized classes

instantiation problem 16
neutralizing schemas 141
restricting use of 59

-parse_function_bodies option to ossg 24
PATH environment variable on

Windows 115
pathnames

when using virtual file systems 7
persistence

allowing allocation of reachable types
application schemas 41

platforms
architecture sets 37, 145
supporting heterogeneous

applications 137
PMDEXCEPT OS/2 environment

variable 130
pointers

DEC C++ restrictions 141
POSIX thread environment 107

Index

Release 5.1 187

preprocessor macros
_ _NO_TEMPLATES_ _ 59
OS_NO_COLLECTION_TEMPLATES 59

preprocessors
allowing spaces in C++ tokens

application schemas 38
default on each platform 46
options, specifying 37

propagation
ObjectStore/Single log files 171

protected databases
generating schemas for 68

Q
queries

libraries and library schemas needed 48
UNIX, order for specifying libraries 88
Windows makefile 115

R
reachable types

description 19
specifying -mrlcp 40
specifying -mrscp

application schemas 41
relat.hh header file

when to use 15
relationships

relat.hh header file 15
UNIX, order for specifying libraries 88

relocating vtbls 78
remote library schemas 48
remote Servers

building applications on OS/2 122, 131
Rogue Wave header file problem 69
-rtdp option to ossg

how to use 44
example 50

-runtime_dispatch option to ossg
how to use 44
example 50

S
schema databases

description 30
virtual file systems 7

schema evolution
libraries and library schemas needed 48
ostore/manschem.hh header file 15
schmevol.hh header file 15
UNIX, order for specifying libraries 88

schema generation
See generating schemas

schema generator
See ossg utility

schema source files
creating 22
description 19
marking types 19
specifying for ossg

application schemas 46
using more than one 53

-schema_options option to ossg
description 44, 147
starter file for neutralization 161
how to use 156

schemas
See also application schemas
See also compilation schemas
See also database schemas
See also generating schemas
See also library schemas
comparison of kinds 66
database schema, updating 150
hiding code from ossg 57
introduction 30
metaschema mismatch errors 61
moving 75
neutralization definition 134

S

188 ObjectStore Building C++ Interface Applications

neutralization examples 150
neutralization instructions 148
OS/2 class definition header file 25
ossg run-time errors 61
persistent allocation errors 60
protected databases 68
type mismatch errors 60
types, determining 19
vtbls, missing 80

semoptwk.hh header file 18
Server logs

See log files, ObjectStore/Single
Servers

build process involvement 9
building applications remotely on

OS/2 122, 131
embedded Server for

ObjectStore/Single 171
virtual file systems 7

setting breakpoints on Windows 117
-sfbp option to ossg 24
shared libraries

UNIX
vtbl and discriminant function

symbols 108
shared library load path 10
-show_difference option to ossg 44, 147
-show_whole option to ossg 44, 147
-showd option to ossg 147
-showw option to ossg 147
SIGBUS signals

fault handlers 107
modifying state 106

signal handlers
UNIX 106

SIGSEGV signals
handlers 107
modifying state 106

64-bit platforms
general restriction 137
pointer restriction 140

-skip_function_body_parsing option to
ossg 24

Solaris
compiler options 103
default preprocessor 109
Rogue Wave header file problem 69

-sopt option to ossg
description 147
how to use 156

source files
contents 14
ObjectStore header files 15
schema source files 22

stack traces
using debug DLLs

OS/2 130
Windows 116

Windows
abnormal application exit 117

standard template library support 74
STL class libraries

ObjectSpace 74
Rogue Wave 74
Visual C++ 74

struct
and schema source file 25

/Su4 compiler option on OS/2
compatibility with previous

versions 127
Sun C++

compilation options 103

Index

Release 5.1 189

T
template specializations 142
templates

collection classes instantiation
problem 16

nonvirtual instantiations 154
restricting use of 59
virtual base templates 164
when to modify 142

third-party applications, compilers, and
libraries 5

thread environment, POSIX 107
threads

UNIX, libraries 88
Visual C++ 124

troubleshooting
HP–UX

missing vtbls 102
OS/2 general protection fault 130
OS/2 link failure 131
Rogue Wave header file problem 69
Solaris, syntax error on input 109
Windows

abnormal application exit 117
symbols, missing 79

types
long double 140
long long 58
reachable 19
wchar_t 58
which to mark 19

types, how to mark 23

U
union discriminant functions

See discriminant functions
UNIX

fault handlers in POSIX thread
environment 107

libraries
specifying 105

library schema
specifying 105

library schemas 48
linking 88
makefile for building compilation

schema 107
makefile template 105
ObjectStore libraries 88
signal handlers 106
vtbl pointers 107

utilities
virtual file systems 7

V

190 ObjectStore Building C++ Interface Applications

V
-vdelx compiler option 103
VFTs on AIX 82
virtual base classes

neutralization example 153
neutralization restrictions 140

virtual base templates
neutralization issues 164

virtual file systems 7
virtual functions

missing vtbls 81
vtbls 77

virtual table pointers
See vtbls

Visual C++
application schema object file 135
double data type 124
long double data type 124
/NODEFAULTLIB option 124
required options 111
STL restriction 74
threads 124

VisualAge C++
architecture code 157
options for neutralization 161

vtbls
AIX/CSET 82
description 77
HP–UX, missing 102
inline virtual functions 81
making them available 44
making them available, example 50
missing 80
notification about missing ones 43
os_postlink executable 105
relocation 78
UNIX, shared libraries 108

W
wchar_t types 58
Windows

abnormal application exit 117
applications, porting to 123
breakpoints, setting 117
debugging 116
include directory 110
libraries, run-time 111
library schemas 48
library, required 110
linking 113
makefile, sample 114
memory access violations 123
ossg , running within IDE 110
symbols, missing 79
using ObjectStore within DLL 121

Windows NT
architecture code 157

Z
-Zn options to Visual C++ 111

