
MANAGEMENT

RELEASE 5.1

March 1998

ObjectStore Management

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-MGT-510

Contents

Preface . xi

Chapter 1 Overview of Managing ObjectStore. 1

What Is ObjectStore? . 3

What Is an ObjectStore Database? . 4

What Kinds of Databases Are There? . 5

How ObjectStore Controls Storage . 7

Managing Processes . 12

Description of the Server Transaction Log 17

Managing Computer Resources . 20

Managing Memory . 22

Managing the Rawfs . 30

Planning Your Configuration . 33

What You Need to Know About the API 35

Managing Databases . 36

Overview of the Backup/Restore Facility 38

Backup Strategies . 41

The Dump/Load Subsystem . 48

Managing Users . 49

Modifying Network Port Settings. 51

How a Client Locates the Server for a Database 56

Managing ObjectStore on Multiple Platforms 57

Callback Messages Background . 58

Troubleshooting . 61

Using Virtual File Systems . 67
Release 5.1 iii

Contents
Chapter 2 Server Parameters . 69

Admin Host List . 70

Admin User. 71

Allow NFS Locks . 71

Allow Remote Database Access. 72

Allow Shared Communications . 73

Authentication Required . 73

Cache Manager Ping Time . 78

Cache Manager Ping Time In Transaction 79

DB Expiration Time . 79

Deadlock Victim . 79

Direct to Segment Threshold. 81

Failover Heartbeat Time . 82

Host Access List . 82

Log Data Segment Growth Increment. 82

Log Data Segment Initial Size . 82

Log File . 83

Log Record Segment Buffer Size . 83

Log Record Segment Growth Increment 83

Log Record Segment Initial Size . 84

Max AIO Threads . 84

Max Connect Memory Usage . 84

Max Data Propagation Per Propagate 85

Max Data Propagation Threshold . 85

Max Memory Usage . 85

Max Two Phase Delay . 86

Message Buffer Size. 86

Message Buffers . 86

Notification Retry Time . 86

PartitionN. 86

Preferred Network Receive Buffer Size 87

Preferred Network Send Buffer Size. 87

Propagation Buffer Size . 87

Propagation Sleep Time . 87

Restricted File DB Access . 87
iv ObjectStore Management

Contents
Chapter 3 Environment Variables . 89

Specifying Values for Environment Variables 92

OS_AS_SIZE . 93

OS_AS_START . 94

OS_AUTH . 96

OS_BOOTSTRAP_LRU_CACHE_SIZE . 97

OS_BROWSER_NUMERIC_FORMAT . 97

OS_CACHE_DIR . 98

OS_CACHE_SIZE . 98

OS_CMGR_STARTUP_LOCK . 99

OS_COLL_POOL_ALLOC_CHLIST_BLKS. 100

OS_COLL_THREAD_LOCKS . 100

OS_COMMSEG_DIR . 101

OS_COMMSEG_RESERVED_SIZE . 101

OS_COMMSEG_SIZE . 102

OS_COMMSEG_START . 102

OS_COMP_SCHEMA_CHANGE_ACTION 103

OS_DEBUG_C0000005 . 103

OS_DEBUG_LOCATOR_FILE . 103

OS_DEBUG_RECURSIVE_EXCEPTION 103

OS_DEF_BREAK_ACTION . 104

OS_DEF_EXCEPT_ACTION . 104

OS_DEF_MESSAGE_ACTION . 104

OS_DIRMAN_HOST . 105

OS_DIRMAN_LINK_HOST . 105

OS_DIRMAN_USE_SERVER_PREFIX . 106

OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT 106

OS_DISPLAY_INSTALL_MISMATCHES. 106

OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS 107

OS_ENABLE_REALTIME_COUNTERS . 107

OS_EVICT_IN_ABORT . 107

OS_FORCE_DEFERRED_ASSIGNMENT 107

OS_FORCE_STANDARD_PRM_FORMAT 107

OS_FORCE_HANDLE_TRANS . 108

OS_HANDLE_TRANS . 108
Release 5.1 v

Contents
OS_IGNORE_LOCATOR_FILE . 109

OS_INBOUND_RELOPT_THRESH . 109

OS_INC_SCHEMA_INSTALLATION . 109

OS_INHIBIT_TIX_HANDLE . 110

OS_LANG_OVERRIDE . 110

OS_LIBDIR . 111

OS_LOCATOR_ESCAPE_CHARACTER. 111

OS_LOCATOR_FILE . 112

OS_LOG_TIX_FORMAT . 112

OS_META_SCHEMA_DB . 112

OS_NB_LANA_NUM . 113

OS_NETWORK. 113

OS_NO_MAPPED . 115

OS_NOTIFICATION_QUEUE_SIZE . 115

OS_OSDUMP_APPSCHEMA_PATH . 115

OS_OSLOAD_APPSCHEMA_PATH . 116

OS_OSSG_CPP. 116

OS_OUTBOUND_RELOPT_THRESH . 116

OS_PORT_FILE. 116

OS_PRINT_CLIENT_COUNTERS . 116

OS_RCVBUF_SIZE . 116

OS_RELOPT_THRESH . 117

OS_RESERVE_AS . 120

OS_ROOTDIR . 121

OS_SCHEMA_KEY_HIGH . 122

OS_SCHEMA_KEY_LOW . 122

OS_SECURE_RPC_DOMAIN . 124

OS_SNDBUF_SIZE . 124

OS_STDOUT_FILE . 124

OS_SUPPRESS_PRE2_QUERY_SYNTAX_WARNINGS 124

OS_THREAD_LOCKS . 125

OS_TIX_BUFFER_SIZE . 125

OS_TIX_WD . 125

OS_TMPDIR . 125

OS_TRACE_MISSING_VTBLS . 126

OS_TURN_ON_ENGLISH_MESSAGES 126
vi ObjectStore Management

Contents
Chapter 4 Utilities. 127

os_postlink: Fixing Vtbls and Discriminants. 130

osarchiv: Logging Transactions Between Backups. 132

osbackup: Backing Up Databases . 139

oschangedbref: Changing External
Database References . 146

oschgrp: Changing Database Group Names 149

oschhost: Changing Rawfs Link Hosts 151

oschmod: Changing Database Permissions. 153

oschown: Changing Database Owners 156

oscmrf: Deleting Cache and Commseg Files 158

oscmshtd: Shutting Down the Cache Manager 159

oscmstat: Displaying Cache Manager Status 160

oscompact: Compacting Databases 164

oscopy: Copying Databases . 168

oscp: Copying Databases . 171

osdf: Displaying Rawfs Disk Space Information 176

osdump: Dumping Databases . 177

osexschm: Displaying Class Names in a Schema 188

osgc: Garbage Collection Utility . 189

osglob: Expanding File Names . 192

oshostof: Displaying Database Host Name. 193

osln: Creating Links in the Rawfs . 194

osload: Loading Databases . 196

osls: Displaying Directory Content . 197

osmkdir: Creating a Rawfs Directory. 199

osmv: Moving Directories and Databases 200

osprmgc: Trimming Persistent Relocation Maps 202

osprop: Propagating Server Logs. 205

osrecovr: Restoring Databases from Archive Logs 206

osreplic: Replicating Databases. 213

osrestore: Restoring Databases from Backups. 216

osrm: Removing Databases and Rawfs Links 222
Release 5.1 vii

Contents
osrmdir: Removing a Rawfs Directory. 224

osscheq: Comparing Schemas . 225

osserver: Starting the Server. 227

ossetasp: Patching Executable with Application Schema
Pathname . 229

ossetrsp: Setting a Remote Schema Pathname 231

ossevol: Evolving Schemas. 232

ossg: Generating Schemas . 236

ossize: Displaying Database Size . 248

ossvrchkpt: Moving Data Out of the Server
Transaction Log. 253

ossvrclntkill: Disconnecting a Client Thread on a Server. . 254

ossvrdebug: Setting a Server Debug Trace Level 256

ossvrmtr: Displaying Server Resource Information. 257

ossvrping: Determining If a Server Is Running 258

ossvrshtd: Shutting Down the Server . 259

ossvrstat: Displaying Server and Client Information 261

ostest: Testing a Pathname for Specified Conditions 271

osupgprm: Upgrading PRM Formats. 272

osverifydb: Verifying Pointers and References in a
Database . 274

osversion: Displaying the ObjectStore Version in Use 279

Chapter 5 Using Locator Files to Set Up Server-Remote
Databases . 281

What Is a Server-Remote Database? 282

Description of the Locator File . 285

Declaring Hosts . 288

Specifying Locator Rules . 289

Using Character String Patterns in Locator Files 294

Overriding the Default Locator File . 299

When Multiple Servers Can Concurrently Access a
Database . 300

Sample Locator Files . 301
viii ObjectStore Management

Contents
Limitations When Using NFS to Access
Remote Databases . 306

Troubleshooting . 308

Chapter 6 High Availability of Data . 309

Warm Failover . 310

The Failover API . 314

objectstore::get_locator_file() . 314

os_server::get_host_name() . 314

os_server::is_failover(). 314

os_failover_server::get_logical_server_hostname(). . . . 315

os_failover_server::get_online_server_hostname() 315

os_failover_server::get_reconnect_retry_interval() 315

os_failover_server::get_reconnect_timeout() 315

os_failover_server::set_reconnect_timeout_and_
interval() . 315

Asynchronous Replication . 317

Chapter 7 Managing ObjectStore on UNIX. 319

Database and Executable Pathnames 320

Setting Server Parameters . 323

Starting the Server. 325

Creating a Rawfs . 328

Setting Cache Manager Parameters 333

Increasing the Size of the Cache. 337

Description of ObjectStore Directories 338

Finding Files Containing ObjectStore Messages 339

Using Tapes with the osbackup Utility 340

ObjectStore Use of /tmp/ostore . 341

AIX Considerations . 342
Release 5.1 ix

Contents
Chapter 8 Managing ObjectStore on Windows 345

Using ObjectStore Utilities . 346

Memory Requirements for Windows 95 347

Specifying File Database Pathnames 349

Setting Server Parameters . 350

Starting the Server . 351

Creating a Rawfs . 355

Starting the Cache Manager . 357

Finding Files Containing ObjectStore Messages 358

Accessing UNIX Databases from Windows 359

About Client/Server Communication. 360

Using an NT Server to Access Remote Databases 361

Chapter 9 Managing ObjectStore on OS/2 363

Specifying File Database Pathnames 364

Setting Server Parameters . 365

Starting the Server . 366

Using OS/2 Environment Variables. 368

UNIX.UID . 368

Specifying Utility Names . 369

Finding Files Containing ObjectStore Messages 370

Creating a Rawfs . 371

Capturing Debug Information . 373

File Locking with NFS . 375

Index. 377
x ObjectStore Management

Preface

Purpose ObjectStore Management provides information needed to perform
management tasks on ObjectStore Servers and clients. This book
supports ObjectStore Release 5.1.

Audience There are two audiences for this book:

• Administrators responsible for keeping ObjectStore running,
and doing such tasks as backing up and restoring data

• Experienced ObjectStore programmers who need to
manipulate the databases they are working with

It is assumed that both audiences are familiar with the ObjectStore
host platform and experienced using the operating system.

Scope Information in this book assumes that ObjectStore is installed and
configured.

How This Book Is Organized

The first half of this book provides information that applies to all
ObjectStore platforms. The second half contains platform-specific
chapters. For complete information, you must read the general
chapters along with the chapter for your platform.

Notation Conventions

This document uses the following conventions:

Convention Meaning

Bold Bold typeface indicates user input or
code.

Sans serif Sans serif typeface indicates system
output.
Release 5.1 xi

Preface
ObjectStore Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
online in Web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a Web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You
can specify only one of the enclosed
items. Vertical bars represent OR
separators. For example, you can specify
a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system
named inside the circle supports or does
not support the feature being discussed.

Convention Meaning

UNIX UNIX
xii ObjectStore Management

Preface
Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page), you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the online support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design sales administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674. 5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
Release 5.1 xiii

Preface
xiv ObjectStore Management

Chapter 1
Overview of Managing
ObjectStore

This chapter briefly describes the architecture of ObjectStore and
provides an overview of management tasks. For an introduction
to object-oriented database management, including concepts such
as persistence, see the first several chapters of the ObjectStore C++
API User Guide.

The following topics are discussed in this chapter:

What Is ObjectStore? 3

What Is an ObjectStore Database? 4

What Kinds of Databases Are There? 5

How ObjectStore Controls Storage 7

Managing Processes 12

Description of the Server Transaction Log 17

Managing Computer Resources 20

Managing Memory 22

Managing the Rawfs 30

Planning Your Configuration 33

What You Need to Know About the API 35

Managing Databases 36

Overview of the Backup/Restore Facility 38

Backup Strategies 41

The Dump/Load Subsystem 48

Managing Users 49
Release 5.1 1

Modifying Network Port Settings 51

How a Client Locates the Server for a Database 56

Managing ObjectStore on Multiple Platforms 57

Callback Messages Background 58

Troubleshooting 61

Using Virtual File Systems 67
2 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
What Is ObjectStore?

ObjectStore is an object-oriented database management system. It
allows you to

• With the ObjectStore C++ interface, create and modify C++
objects (as well as C structs) instead of tables, columns, rows,
and tuples

• Access data in the same format in which it exists in the
application

• Describe, store, and query complex data used in sophisticated
computer applications, as well as data traditionally managed
by relational database applications, such as MIS programs

• Persistently store data independently of the data type
Release 5.1 3

What Is an ObjectStore Database?
What Is an ObjectStore Database?

An ObjectStore database is a storage location for persistent
objects.

Segments A database contains segments, which are variable-sized regions of
memory. Each segment is made up of pages. The unit of transfer
from persistent storage (an ObjectStore database) to program
memory can be a page, a number of pages, or a segment.

Default segment When an application creates a database, the database
automatically has a special segment, called the default segment, for
storing your data. The application can be written to create
additional segments if that is required. If the application does not
specify a segment when storing data, ObjectStore always stores
data in the default segment. Segments grow (add pages) to
accommodate the data that is stored in them. The size of a
segment is platform dependent. Size is limited by the available
persistent address range, which is typically between 230 MB and
2 GB.

Segment location It is not possible to specify segments at fixed locations. You
specify the pathname for a database and ObjectStore determines
where to locate the segments.

Number of pages
in a segment

You do not need to specify how many pages are in a segment. The
default segment, and any segments that an application creates,
add pages as needed to hold their data. Pages are a fixed size that
depends on your operating system; 4K is a common size. When an
application specifies a new segment, ObjectStore creates it on a
page boundary.

Page size Page size does not limit the size of an object that you can store.
Storage of an object is independent of page size. Many objects can
exist on one page. One object can span many pages.
4 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
What Kinds of Databases Are There?

You can use ObjectStore to store objects in two kinds of databases,
file databases and rawfs databases.

File Databases

A file database is a native operating system file that contains an
ObjectStore database. You can, with some restrictions, manipulate
file databases with standard operating system commands as well
as ObjectStore utilities described in this book. A file database has
a standard operating system pathname.

Rawfs Databases

A rawfs database is a database that you store in an ObjectStore
rawfs. A rawfs (raw file system) is a private file system managed
by the ObjectStore Server. It is independent of the file system
managed by the operating system.

A rawfs can contain directories, subdirectories, and databases,
just like the native file system. It can include links, but each link
must be to another ObjectStore rawfs. The ObjectStore Server
manages everything in the rawfs; everything in the rawfs is
invisible to the operating system. ObjectStore provides utilities
and os_dbutil class methods for operating on databases and
directories in a rawfs. An ObjectStore Server can manage one
rawfs, which consists of one or more Server partitions.

Rawfs partitions You specify each partition in the rawfs with a Partition n statement
in the Server parameter file. Each partition can be either

• Raw disk space set aside by the operating system, if the
operating system supports this. This is referred to as a raw
partition. Raw partitions have a fixed size.

On AIX, Digital UNIX, SGI IRIX, and Solaris, a raw partition
can be greater than two gigabytes. On HP–UX, a raw partition
can be as large as four gigabytes. On Windows, a raw partition
can be larger than four gigabytes.

• A file allocated in the operating system’s file system. This is
referred to as a file partition. File partitions can be expandable or
of fixed size.
Release 5.1 5

What Kinds of Databases Are There?
A rawfs database can span partitions. This allows you to create a
database that is larger than any single disk.

When you create a rawfs database, you specify a pathname. The
Server determines where in the rawfs to store your database.
Thus, the logical directory structure might not map directly to the
physical placement of the databases in the partitions. For
example, two rawfs databases in different ObjectStore directories
might be stored in the same partition.

Rawfs database
name format

ObjectStore recognizes a rawfs database by the following format:

hostname::/database_pathname

A double colon separates the host name from the database
pathname. The name of a rawfs database always starts at root; it
is never relative to a working directory. Slashes always separate
the levels of a rawfs database name, regardless of the platform.
Case is significant. For example, the following two pathnames
identify different databases:

hostess::/accounts/payable/JUNE
hostess::/accounts/payable/june

You can create a rawfs during ObjectStore installation or at any
time after installation. See the chapter specific to your platform for
instructions.

How Do Objects Get into a Database?

When an application allocates an object in persistent storage, it
specifies the database to contain that storage. An application can
create a database with a call to one of the member functions listed
below. You name the database in a pathname argument to the
function that creates the database.

• os_database::create()

• os_database::lookup()

• os_database::open()

See the ObjectStore C++ API Reference for information about these
functions.
6 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
How ObjectStore Controls Storage

The Server is the ObjectStore process that primarily controls object
storage. With help from the client process and the Cache Manager
process, the Server can manage databases for multiple client
applications. These applications can be on one or multiple hosts.

What Does the Server Do?

The ObjectStore Server is a process that controls access to
ObjectStore databases on a host. This includes

• Storage and retrieval of persistent data

• Arbitration of concurrent access by multiple client applications

• Recovery of databases to a transaction-consistent state if any of
the processes aborts or any host crashes, or in the event of
network failure

The Server also manages pages of data on behalf of clients
running applications.

Rawfs management For the rawfs, if there is one on the host, the Server manages the
hierarchy of directories and maintains permission modes,
creation dates, owners, and groups for each entry.

Usually, a Server must be running before any ObjectStore
application can access databases on the host. (A locator file allows
access to databases residing on a host that is not running a Server.
See Chapter 5, Using Locator Files to Set Up Server-Remote
Databases, on page 281, for further information.)

An application can use databases that are stored on different hosts
and managed by different Servers. A Server can serve clients on
any number of hosts.

Multiple Servers on a
host

A host can run one Server of a given ObjectStore release. You can
run two ObjectStore Servers on the same host if they are different
versions of ObjectStore. For example, you can run a Release 5 and
Release 4 Server on the same host. Start them on different ports
and use the ports file to let clients know which one to contact. See
Modifying Network Port Settings on page 51 for details.

A network can have a number of Servers.
Release 5.1 7

How ObjectStore Controls Storage
What Does the Client Application Do?

ObjectStore links the client library into each ObjectStore
application. In this way, each ObjectStore application is an
ObjectStore client that

• Maps persistent database objects to virtual addresses

• Allocates and deallocates storage for persistent objects

• Maintains the cache of recently used pages and the lock status
of those pages

• Handles page faults on addresses that refer to persistent objects

Client cache Each client has its own storage area, called the client cache or
simply the cache. The cache is a local holding area for data mapped
or waiting to be mapped into physical memory. When a client
application needs an object stored in a database, if the page that
holds the object is

• Already in physical memory or the cache, the application just
accesses it.

• Not in physical memory and not in the cache, or

- In the cache but not yet accessed

- In the cache but previously accessed with different
permissions (for example, read-only instead of update)

then the application receives a page fault; the ObjectStore client
requests the page from the Server, puts it in the cache, and
continues with program execution.

To change the default size of the client cache, use the OS_CACHE_
SIZE environment variable. See OS_CACHE_SIZE on page 98.

Any number of clients can run on a particular host. These clients
can contact

• The Server on that host

• Any other Server on any other host in the network

UNIX By default, ObjectStore places the cache file in the /tmp/ostore
directory. To change the default, specify an alternate directory for
the OS_CACHE_DIR environment variable. Or, set the Cache
Directory parameter in $OS_ROOTDIR/etc/host_cache_manager_
parameters .
8 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Windows and OS/2 The operating system determines the location of the cache in
virtual memory. You cannot change the location. The cache is not
a file; it is a region of virtual memory. The necessary storage is
obtained from system virtual memory, which consists of physical
memory plus swap file space.

See also Refer to the ObjectStore Technical Overview for additional
information.

What Does the Cache Manager Do?

The primary function of the Cache Manager is to facilitate
concurrent access to data by handling callback messages from the
Server to client applications. Note that the Cache Manager never
reads the cache itself. The Cache Manager coordinates access by
clients to cached data.

A Cache Manager starts automatically when an ObjectStore
application starts, if a Cache Manager is not already running on
the host. Each host that runs an ObjectStore application must have
one Cache Manager. A single Cache Manager can handle callback
messages for any number of client applications running on that
host.

If you are running clients from two different major releases of
ObjectStore, there are two Cache Managers — one for each
release. Unlike running different Servers on one host, you do not
need to configure ports.

The name of the Cache Manager executable is oscmgr4 .

On UNIX, the oscminit executable starts oscmgr4 . Normally, you
never need to invoke oscminit .

Callbacks When a client requests permission to read a page and no other
client has permission to modify that page, the Server grants read
permission (read ownership). The Cache Manager is not involved.

The Cache Manager is involved in the following situations:

• When a client requests permission to read or modify a page and
another client has permission to modify that page

• When a client requests permission to modify a page and other
clients have permission to read that page
Release 5.1 9

How ObjectStore Controls Storage
In these situations, the clients with permission are blocking the
requesting client from obtaining permission. So the Server sends
a callback message to the Cache Manager on the host of the client
that has the permission.

The Server cannot send callback messages directly to the client
because the client might not be listening; the client might be busy
running the application. The Cache Manager determines whether
the read or write permission can be released or if the client
requesting permission must wait.

If you are running an ObjectStore application that uses a database
that nobody else is using, there are no callback messages for that
database.

For information about ownership and locks, see Callback
Messages Background on page 58.

Commseg The commseg (communications segment) is where the Cache
Manager maintains information about permissions on pages and
whether or not the client is actually using the page. Each client has
its own commseg. For every page in the cache, there is a
corresponding item in the commseg.

You can use the following environment variables to modify the
default attributes of the commseg. See OS_COMMSEG_
RESERVED_SIZE on page 101 for details.

UNIX By default, ObjectStore places the commseg file in the /tmp/ostore
directory. You can specify an alternate directory by setting the
OS_COMMSEG_DIR environment variable. Another way to
change the default is to set the Commseg Directory parameter in
the $OS_ROOTDIR/etc/host_cache_manager_parameters file.

Windows and OS/2 The operating system determines the location of the commseg in
shared memory. The commseg is not a file; it is a region of virtual
memory. The illustration that follows shows the ObjectStore
processes specific to Windows and OS/2.

OS_COMMSEG_RESERVED_SIZE Maximum size of the commseg

OS_COMMSEG_SIZE Size of the commseg

OS_COMMSEG_START Starting address of the commseg (rarely
specified; ObjectStore usually
determines this)
10 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Server Client Application

disk

host

host

hosthost

hosthost

network

Server

Cache ManagerCache ManagerCache Manager

Cache Manager

disk

Client Application

Client Application

Client ApplicationClient Application
Release 5.1 11

Managing Processes
Managing Processes

ObjectStore includes three main processes that communicate with
each other to manage your data:

• Server (osserver)

• Client (application)

• Cache Manager (oscmgr4)

In general, the actions you perform on ObjectStore processes are

• Start-up

• Shutdown

• Obtain process status information

Communication Among ObjectStore Processes

The following table summarizes the communication among the
Server, client, and Cache Manager processes.

ObjectStore uses network connections to communicate among
Server, client, and Cache Manager processes. The kind of network
connection used depends on your platform. Normally, you do not
need to modify network connections. However, if you do need to
make changes, see Modifying Network Port Settings on page 51.

Starting ObjectStore Processes

Server The chapter supporting your platform provides instructions for
starting the Server on your platform. Usually, the installation

Server Responds to client requests for pages

Sends callback messages to Cache Manager to
request locks held by a client

Client Requests the Server to fetch data from a
database

Requests the Server to store data in a
database

Receives locks and pages from Server

Cache Manager Receives callback requests from Server

Creates client cache and commseg files
12 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
procedure arranges for the Server to be started automatically
when the system is booted.

When you start a Server, the Server checks for values of Server
parameters you might have changed from the default and uses the
modified values. If you have not modified any Server parameters,
ObjectStore uses the default parameters.

The Server then makes its service available. A client can use the
network connection available on its platform to connect to the
Server. ObjectStore uses default network connections. To modify
these connections, see Modifying Network Port Settings on
page 51.

There are many Server parameters you can set to determine the
behavior of the Server. Chapter 2, Server Parameters, on page 69,
describes each parameter. When you modify a parameter, you
must shut down and restart the Server for the parameter to take
effect.

Client When a client application starts, it tries to connect to the Cache
Manager on that machine. If a Cache Manager is not running,
ObjectStore starts one.

Cache Manager The Cache Manager starts automatically if one is not already
running when a client application starts.

Windows NT On Windows NT, the Server and Cache Manager normally run as
NT Services. You can use the Services applet in the Control Panel
to start and stop the Server and Cache Manager and to determine
whether or not they start automatically when you boot the system.

Stopping ObjectStore Processes

Server You need to shut down the Server

• Before you reboot or halt the host

• After you modify Server parameters

• To resize the transaction log (see Log File Size on page 18)

• To add a partition to the rawfs

Use the following steps to shut down the Server:

1 Use the ossvrstat utility to determine if clients are using the
Server.
Release 5.1 13

Managing Processes
Along with other information, this utility displays client names
if they have been set. To identify clients easily, encourage
developers to use the objectstore class, set_client_name
method. See ossvrstat: Displaying Server and Client
Information on page 261.

2 Notify clients to end their connections with the Server.

3 Use the ossvrclntkill utility to end the Server’s connection with
any dangling clients.

Dangling clients are clients that are still attached to the Server
even though they no longer exist. This can happen when a
client is halted abnormally rather than being stopped in the
usual manner. See ossvrclntkill: Disconnecting a Client Thread
on a Server on page 254.

4 Use the ossvrshtd utility to shut down the Server. See
ossvrshtd: Shutting Down the Server on page 259.

To restart the Server, see the instructions in the chapter
supporting your platform.

Client Shutdown of a client is the responsibility of the application.

If necessary, you can use the ossvrclntkill utility to sever the
connection between a client and the Server. This disconnects the
client. See ossvrclntkill: Disconnecting a Client Thread on a Server
on page 254 for details.

Cache Manager Before you shut down the Cache Manager, notify clients that you
are shutting it down and then use the oscmstat utility to confirm
that there are no active clients. See oscmstat: Displaying Cache
Manager Status on page 160. Use the oscmshtd utility to shut
down the Cache Manager. See oscmshtd: Shutting Down the
Cache Manager on page 159 for details. The next client process
that starts automatically starts the Cache Manager.

Obtaining Process Status Information

When an ObjectStore daemon process sends output to stdout or
stderr , ObjectStore routes the output to a corresponding file. These
files have different names on different platforms. See Finding
Files Containing ObjectStore Messages in the chapter
corresponding to your platform.
14 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
ObjectStore daemons seldom send messages to these files except
under certain unusual error conditions. In these cases, this
information can be helpful in understanding and resolving an
error. When you report to Object Design a problem that might
involve one of these daemons, find such a file if it exists and
provide the contents.

Meters The ossvrstat utility displays information from a Server. For
example:

• How much data the Server sent to clients

• How much modified data clients sent to the Server

• How many committed transactions the Server knows about

• How many times the Server chose a deadlock victim

• How many times a message from a client to the Server had to
wait to use a message buffer

• How much data is in the log

This utility provides these meters and many more for several
periods of time, such as the last hour and the last minute. See
ossvrstat: Displaying Server and Client Information on page 261.

Use the oscmstat utility to obtain information about the Cache
Manager, client cache files, and commseg files. See oscmstat:
Displaying Cache Manager Status on page 160.

Debugging Cache
Manager

Use the following command line to start the Cache Manager in
debug mode:

oscmgr4 0 debug-level

For debug-level, specify an integer from 0 through 50. The higher
the number, the more information ObjectStore displays about
Cache Manager activity.

Pinging If you are having any problems with a Server, the first thing to do
is run ossvrping to see if the Server is running. See ossvrping:
Determining If a Server Is Running on page 258.

Monitoring the Server You can use the ossvrdebug command to set the debug trace level
for the Server. See ossvrdebug: Setting a Server Debug Trace Level
on page 256 for more information.

To enable the ossvrdebug command, type ossvrdebug -d 5 . To
disable the command type ossvrdebug -d 0.
Release 5.1 15

Managing Processes
You can also run the Server in debug mode to obtain information
about exactly what is happening. ObjectStore displays messages
about process communication that show where the problems are,
if there are any.

To run the Server in debug mode, you must shut down and restart
the Server with the debug option. See the chapter supporting your
platform for specific details. When you no longer need the debug
output, shut down the Server and restart it without the debug
option.

Debug mode slows down the Server but does not affect clients.
Use debug mode only when you are experiencing a problem.
16 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Description of the Server Transaction Log

Each Server keeps a transaction log, which is also called a log file.
The most important function of the transaction log is to prevent
database corruption in case of failure. The log contains modified
pages of data and records about modified pages of data.

Log file The log file stores database modifications until they are
propagated to the database. The log does not have a consistent
size. It can grow to contain as much data as is written to it. You can
use the ossvrstat utility to obtain the size of the log. This is
described more fully in ossvrstat: Displaying Server and Client
Information on page 261.

Location By default, the Server places its log file in the rawfs. If there is no
rawfs, you must use the Log File Server parameter to specify a
pathname for the transaction log. See Log File on page 83. You
cannot place the log file in a raw partition. Server performance is
always better when the log is in the rawfs rather than in a native
file.

When the log is in the rawfs, it is not visible to you. Its size is
limited by the size of the rawfs. The log can span partitions.

When the log is in the native file system, its size is limited by the
file partition size. You should place the log file where it can never
be accidentally deleted by users. Deleting the log file can cause
database corruption.

Transactions, commits,
and the log

When a transaction modifies databases, either all or none of the
modifications are made, depending on whether ObjectStore
commits or aborts the transaction. This is true even if the Server
machine crashes during the transaction.

If your transaction aborts, the log entries are discarded. When
your transaction commits, your program waits until the log
information is safely on disk.

Log File Terms

The log file consists of two log record segments and a log data
segment. The Server uses both the log record segments and the log
data segment to store data.
Release 5.1 17

Description of the Server Transaction Log
Log record segment The Server writes log records, such as commit records, to a log
record segment. When a log record segment fills up, the Server
switches to the other log record segment.

Log record buffer The Server uses the log record buffer to form log records across
sectors. Its size defines the maximum size that you can write to a
log segment in one write operation. Each sector includes log
header information that indicates which log blocks are valid.

When choosing the log record buffer size, you should consider
both the cost of formatting data into a log record and the cost of a
separate write operation.

Log data segment As part of a commit record in the log segment, the Server writes
data returned as part of a commit. But this occurs only if the total
data being committed is small enough to fit in the log record
buffer. If it is not, the Server writes the data to the data segment.

Propagation The Server moves committed data from the log to databases
through propagation. The information accumulated in the log is
propagated from the log to the material (that is, real) database
transparently in a way that does not interfere with client
performance. After propagation, the space in the log that was
occupied by propagated data becomes available for new entries in
the log.

Sector A sector is a 512-byte disk block (two sectors equal one kilobyte).
When you run the ossvrstat utility, ObjectStore displays many
statistics in number of sectors.

Log File Size

When the Server recognizes that it needs a bigger transaction log,
it increases the size of the log segments according to the Log Data
Segment Growth Increment and Log Record Segment Growth
Increment Server parameters. See Log Data Segment Growth
Increment on page 82 for details.

When you run the ossvrstat utility, Current log size , in the list of
Server parameters, displays the current size of the log. Usually,
the log grows to a size that accommodates your application and
then stops growing. There is usually no reason to monitor log size
or worry about its allocation. However, if an unusual event causes
the log to grow too large, there are ways to make it smaller.
18 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
If there is nothing in the log when you start the Server, the Server
resets the size of the log data segment and log record segments to
the sizes set by the Log Data Segment Initial Size and Log Record
Segment Initial Size Server parameters. For log files in the rawfs,
this means the space is free for other databases. For log files in the
native file system, this reallocates internal log file space; the log
file size does not change.

Shrinking the
log file

To move or shrink the log, follow the steps below.

1 Set the Log Data Segment Initial Size and Log Record Segment
Initial Size Server parameters to the values you want. If
necessary, ensure that the correct value is specified for the Log
File Server parameter.

2 Ensure that no clients are using the Server.

3 Run ossvrshtd to shut down the Server.

The Server clears the log before it actually shuts down.

4 If you are reallocating a log in the rawfs skip to step 5. If you
are reallocating a log in the native file system run the Server
executable with the -ReallocateLog option.

This does not actually start the Server; it only reallocates the
log. Enter

osserver -ReallocateLog

5 Restart the Server. See the chapter discussing your operating
system for details.

Another way to shrink the size of the log file is to reinitialize the
Server. See the chapter supporting your platform for specific
information.

Warning: Never use -ReallocateLog if the Server is in an
inconsistent state. Call the ObjectStore Support group for
assistance.
Release 5.1 19

Managing Computer Resources
Managing Computer Resources

The computer resources you must manage are your CPUs,
memory, disk space, and network.

CPUs Consider the speed of your CPUs. You can run computation-
intensive applications on your fastest machines, or you can
distribute intensive applications evenly among network hosts.
You can also combine these approaches.

Memory ObjectStore uses several kinds of memory. Managing Memory on
page 22 is devoted to effective memory management.

Disk space
and network

Network communications and disk input/output are often the
most constraining elements of your installation. Configure your
system to minimize network and disk activities. Ensure that
applications are designed to minimize this activity. Also, you
probably want most of your disks, especially your fastest disks, on
the Server.

It is impossible to predict how much disk space you need for a
client application because it is dependent on the application.
However, here are some ways that an ObjectStore application
uses disk space:

• On UNIX systems, the default location for the cache and
commseg files is /tmp/ostore . On Windows and OS/2, the cache
is in virtual memory and the commseg is in shared memory.
Both are in locations that the operating system determines. If
necessary, you can increase the amount of virtual address
space by configuring a larger swap file.

• ObjectStore uses swap space for transient data when it cannot
be mapped into physical memory during a transaction. See
Managing Memory on page 22.
20 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
The following table shows how heavily ObjectStore uses
resources.

Process CPU Use Disk Use Network Use Memory Use

Server Not intensive. Intensive. Intensive. Not intensive. Uses a
little to communicate
with client.

Client Can be intensive.
Depends on
application.

ObjectStore does
not use local
disk.
Application
might.

Can be intensive. Can be highly
intensive. Lots of
mapping of data in
virtual memory.

Cache
Manager

Not intensive. Not intensive. Not intensive.
Sends/receives
short messages.

Not intensive.
Release 5.1 21

Managing Memory
Managing Memory

To manage the memory that an ObjectStore application uses, you
need to understand the concept of address space.

What Is Address Space?

ObjectStore transfers an application’s data to virtual memory.
Data stored in virtual memory can, at any particular time, reside
in

• Physical memory

• Backing store

- Backing store for persistent data is the client cache.

- Backing store for transient data is swap space.

An application’s virtual memory contains both

• Persistent data that the application accesses in an ObjectStore
transaction

• Transient data that is static or allocated in the stack or heap

Address space is a range of virtual memory addresses. For most
32-bit computers, the address space is slightly less than 232 bytes.
(The platform’s virtual memory system might reserve or might
not implement a portion of the 232 range.) For 64-bit computers,
the address space is substantially larger.

Each client process has its own address space. Address space is
distinct from virtual memory in that

• Address space includes all addresses that could be assigned. It
does not matter whether the address is in use. It is typically
larger than virtual memory.

• Virtual memory includes only addresses that currently contain
application data, either in physical memory or in backing store
on disk.

What Are the Pieces of Address Space? How Are They Shared?

A client’s address space includes two kinds of addresses:
persistent and transient. The data itself can be in one of three
22 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
locations in physical memory or backing store. These are
described in detail in this section.

Kinds of addresses Address space includes

• Persistent address space — This is a range of addresses that
ObjectStore uses to store only persistent data.

• Transient address space — This includes all addresses in the
address space except those designated for persistent data.

Just as each client has its own address space, it follows that each
client has its own persistent address space, called the persistent
storage region. There are two environment variables that control
the size and address range of the persistent storage region. OS_
AS_SIZE and OS_AS_START have different default values on
different platforms. For example, the persistent storage region on
a SPARCstation 10 running Solaris 2 is typically 400 MB. See OS_
AS_SIZE on page 93 and OS_AS_START on page 94 for specific
details.

Each client also has its own transient address space.

Locations for data An application’s data is stored in virtual memory. This means that
data is in one of the following:

• Physical memory

• Backing store

- Client cache for persistent data

- Swap space for transient data

Physical memory is shared by all applications running on that
machine. A typical amount of physical memory for a machine is
16 to 256 MB.

When a page of data needs to be brought into physical memory,
the operating system often needs to make room by removing
some other page. When the operating system removes a page
from physical memory, it places the page on disk in the
appropriate backing store.

If the page contains persistent data, the operating system pages it
to the client cache. Each client has its own cache.
Release 5.1 23

Managing Memory
If the page contains transient data, the operating system pages it
to swap space. Swap space is a disk file or disk partition that is
shared by all applications running on the host.

Virtual memory Remember that data in an application’s address space is always in
virtual memory. It does not matter whether the data has a
persistent address or a transient address. It also does not matter
whether the data is in physical memory or backing store.

Illustration of Address Space

The following figure shows address space. The persistent storage
region is near the middle of the address space. The stack allocates
transient data starting at one end of the range of addresses. The
heap allocates transient data starting at the other end of the range
of addresses. The stack and the heap can allocate space until they
reach the persistent storage region.
24 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
What Is the Relationship Between a Transaction and Address Space?

Address space limits the amount of data you can touch within the
same top-level transaction. Address space must be reserved in
order to correctly relocate data into virtual memory. As of Release
5, there are two address space assignment modes: immediate and
deferred.

Under immediate assignment, the total amount of address space
needed by a segment is reserved the first time any page within
that segment is used in the transaction. This address space must
be large enough to contain the segment itself, as well as the
portions of other segments that are referred to by pointers within
the segment.

Address space is a range of
virtual memory addresses.

The stack
starts
allocating
space at one
end.

The heap
starts
allocating
space at one
end.

Client
Cache

Swap

Persistent
Storage
Region

Transient data
allocated here

Transient data
allocated here

There is one range of addresses for
each client application.

There is one client cache
per client.

All clients use the
same swap space.

Data stored in address space is
in virtual memory.

Physical Memory
Release 5.1 25

Managing Memory
Under deferred assignment, space is reserved as each page of the
segment is used in the transaction, and the amount of space
reserved by each page is the minimum required to correctly
relocate the page into virtual memory.

The default behavior of ObjectStore in Release 5 is to use deferred
assignment, since doing so prevents address space from being
wasted. However, under certain circumstances, ObjectStore can
detect that the pages in a segment can be brought into virtual
memory without any pointer relocation. In order to ensure that
the proper amount of address space is reserved without doing
pointer relocation, ObjectStore uses immediate assignment for
such a segment, provided that doing so does not increase the
address space consumption in the transaction above half of OS_
AS_SIZE.

There are several environment variables that can be used to
change this behavior. See the sections on OS_IMMEDIATE_
THRESH, OS_MAX_IMMEDIATE_RANGES , and OS_FORCE_
DEFERRED_ASSIGNMENT for more information.

Also note that databases created prior to Release 5 or with OS_
FORCE_STANDARD_PRM_FORMAT on can only use immediate
assignment until they are upgraded using the osupgprm utility.

Normally, ObjectStore removes the assignments of persistent
space at top-level transaction commit or abort. This allows the
next top-level transaction to start with an empty persistent storage
region.

However, if the application is using retain_persistent_addresses ,
ObjectStore does not release persistent address space until the
program calls release_persistent_addresses .

Transaction commit If a transaction commits, the client

• Sends a copy of each modified page back to the Server

• Keeps a copy of each modified page in the cache, in case the
page is needed in the next transaction, unless the number of
pages exceeds the cache size

• Keeps in the cache pages already in the cache but not modified

Transaction abort If a transaction aborts, the client

• Throws away modified pages because they are no longer valid
26 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
• Keeps in the cache pages already in the cache but not modified,
in case they are needed in the next transaction

Guidelines An application can limit the amount of address space it uses by

• Keeping transactions short.

• Using ObjectStore references rather than pointers. ObjectStore
reserves address space for objects that are pointed to even if the
transaction does not touch these objects. See ObjectStore
Advanced C++ API User Guide, Using ObjectStore References,
for further information.

What Happens When Resources Are Exhausted?

Address space is large and it is unusual to exhaust it. However,
lack of enough of a particular address space piece affects the
application.

Persistent address
space

If persistent address space is needed but not available, ObjectStore
raises an exception and aborts the current transaction. This can
happen when a transaction tries to assign to the persistent storage
region more data than the persistent storage region can
accommodate.

Physical memory When physical memory is needed but not available, the operating
system swaps pages to backing store. The application continues to
run, but program execution is slower if a great deal of swapping
occurs.

Client cache When space in the client cache is needed but not available,
ObjectStore attempts to migrate pages from the client cache back
to the Server that supplied the data. This can impair performance.
In some cases, this is impossible because the pages are wired into
the cache. (ObjectStore determines which pages to wire (and
unwire) into the cache. A page that is wired cannot be removed
from the cache until it is unwired.) In this case, ObjectStore raises
an internal error and aborts the transaction.

Swap space If swap space is needed but not available, the operating system
does one or both of the following:

• Aborts the process that required additional swap space

• Prohibits other processes from starting

How Can You Control These Resources?
Release 5.1 27

Managing Memory
Persistent address
space

Increasing the size of the persistent storage region makes more
address space available for a client’s persistent data. This allows a
transaction to assign more persistent data, which in turn might
change a transaction that aborts to a transaction that commits.

The environment variables OS_AS_START and OS_AS_SIZE
control the amount of persistent address space. Each application
can use the default values or specify its own settings. See OS_AS_
SIZE on page 93.

Physical memory You can add physical memory to the machine to lower the
reliance on backing store. This increases the performance of all
applications (ObjectStore as well as non-ObjectStore) because
swapping pages out of physical memory happens less often.
Operating systems include tools that help you determine when an
application is paging, for example, time and top in UNIX.

Client cache Increasing the size of the cache can improve performance because
it decreases the need to send pages containing persistent data
back to the Server. You can control the size of the client cache with
the OS_CACHE_SIZE environment variable. See OS_CACHE_SIZE
on page 98.

Swap space Adding more swap space allows you to run more or larger
applications. You can add swap space by following operating
system-specific procedures. Some operating systems require a
system reboot to accomplish this, while others allow swap space
to be added while the machine is running. Your operating system
includes a tool for determining how much swap space is available,
for example, pstat -s in UNIX.

Increasing the size of the client cache or adding swap space
provides more potential virtual memory for the client’s data.

How Much Memory Is Needed?

How much memory your application needs depends entirely on
the application. Work with the application developers to
understand the application’s data structures and data access
patterns. Start by using the default settings for the variables that
control address space. Use test runs of the application to refine
memory allocation.

Difference Between Assigning and Mapping an Address
28 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
When considering how a client uses address space, it is important
to understand the difference between assigning an address and
mapping an address.

When ObjectStore assigns an address to a page, it has determined
where to put the page if the client needs it. The data on the page
is not available to the client. Assigning an address reserves the
address so that it cannot be assigned to another page. ObjectStore
assigns address space in units of 64 KB, regardless of the page size
on the platform.

When ObjectStore maps a page to an address, it means that the
page is available to the client. The client can now use the data on
that page.

Summary of the Kinds of Memory an ObjectStore Application Uses

An ObjectStore application uses three kinds of memory:

• Physical memory is the real memory (RAM) available on the
machine. All applications running on the machine share the
real memory.

• Virtual memory contains the application’s data. Each
application has its own virtual memory.

• Persistent memory is where you can store an application’s
persistent data. Each application has its own persistent
memory.

Persistent memory is not a limitation on how much persistent
data an application can have. It is just the place where the
ObjectStore client manipulates persistent data for a transaction.
Persistent memory is a subset of virtual memory.
Release 5.1 29

Managing the Rawfs
Managing the Rawfs

The chapter for your operating system includes information for
creating a rawfs. The advantages of a rawfs are that it

Advantages • Allows for large databases because databases can span
partitions. Information in a single database is not limited to the
maximum size of a file, which on some operating systems is
limited to the size of a disk. (Large usually refers to
multigigabyte databases, but it also depends on how much disk
space you have.)

• Allows applications to use ObjectStore in such a way that
ObjectStore is invisible to end users.

• Simplifies management because all databases are in one
location.

Security • Provides greater security because the

- Transaction log is hidden so there is no chance for accidental
deletion.

- Content of the rawfs is accessible only through ObjectStore.
The rawfs is not visible to the operating system.

- Database contents are protected at the segment level.

Disadvantages The disadvantages of a rawfs are that it

• Has a fixed size. You must explicitly add a partition to increase
the size. While file partitions in a rawfs can be expandable in
size, the performance for file partitions is not as good as for raw
partitions.

• Cannot be accessed with operating system commands, so you
lose the flexibility offered by those commands.

• Might be difficult to back up because of its size.

Performance Performance varies depending on the type of database. The
following lists the database types in order of performance,
starting with the best:

1 Rawfs database stored in a raw partition

2 File database

3 Rawfs database stored in a file partition
30 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
OS_DIRMAN_HOST The OS_DIRMAN_HOST environment variable specifies a rawfs
host name that ObjectStore places at the beginning of every
pathname that does not already begin with the host:: rawfs prefix.
This variable provides a convenient way to toggle between rawfs
and native file systems. See OS_DIRMAN_HOST on page 105.

Utilities for Managing the Rawfs

ObjectStore provides the following utilities for managing the
rawfs. There are many other utilities that you can use on the rawfs
and on rawfs databases, but these are exclusively for operating on
the rawfs.

• oschhost changes the host that a link in the rawfs points to.

• osdf shows the amount of used and available disk space for the
rawfs on the specified Server.

• osln creates a symbolic link in the rawfs hierarchy.

• osmkdir creates a directory in the rawfs.

• osrmdir removes a directory from the rawfs.

Notes for Working with Rawfs Databases

Wildcards ObjectStore utilities that operate on rawfs directories and
databases can perform wildcard processing. The wildcards you
can use are described below. For example, to list all databases in
the sax directory that start with charlie, you enter the following on
Server oscar :

osls oscar::/sax/charlie*

UNIX note On UNIX systems, you must precede the wildcard with a back
slash (\) or enclose the pathname with the wildcard in quotation

Wildcard Description

* Matches any string, including a null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair
of characters separated by – matches any character
lexically between the pair, inclusive. If the first
character following the opening [is a ! any
character not enclosed is matched.

{...} Matches any one of the enclosed sequences. For
example, file.{cc,hh} matches file.cc and file.hh .
Release 5.1 31

Managing the Rawfs
marks (" "). This prevents the shell from interpreting the wildcard
as a shell wildcard.

Reconfiguring the Rawfs

To reconfigure a rawfs, you must wipe out the existing rawfs.

See the chapter in this book discussing your platform. In that
chapter are specific instructions for creating a rawfs and starting
the Server on your platform. If you decide to reconfigure the
rawfs, use that information with these general instructions.

Motivation You might want to reconfigure a rawfs because you want to

• Shrink the size of the rawfs to save space

• Remove a partition

Follow these instructions:

Procedure 1 Confirm that you are on the machine you want to reinitialize
and that your environment variables (OS_ROOTDIR and OS_
DIRMAN_HOST) reflect this. You must be careful not to delete
another rawfs accidentally.

2 Use the ossvrstat utility to confirm that no users are changing
any databases in the rawfs. The rawfs databases are backed up
for the last time during this procedure.

3 Use the ossvrchkpt utility to move everything in the log to the
relevant databases.

4 Use the osbackup utility to back up the databases in your rawfs.

5 Use the ossvrshtd utility to shut down the Server.

6 Modify the Partition N Server parameter specifications to reflect
your new rawfs.

7 Initialize the Server by specifying osserver -i . This wipes out
the rawfs partitions and starts the Server.

8 Use the osrestore utility (or oscp , if you used it when saving the
database) to restore any needed databases.
32 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Planning Your Configuration

This section provides information relevant to planning your
configuration.

Mixing Network Protocols

You can mix network protocols among your Servers and clients.
You can configure a Server to offer its services on as many types
of networks as ObjectStore supports on that platform. Clients use
the first available network that recognizes the name of the Server
host.

For example, an OS/2 client running APPC and a UNIX client
running TCP/IP can access the same Server.

However, be sure to avoid configurations that do not allow
Servers to communicate with each other, as described in the next
section.

All Servers in a Transaction Must Be Able to Communicate

You must ensure that when two or more ObjectStore Servers
receive modified data in a single transaction, each of those Servers
can communicate with each of the other Servers. If all Servers
involved in such a transaction cannot communicate with each
other, ObjectStore aborts the transaction with err_cannot_commit.

The exception occurs only when a two-phase commit has
problems. A two-phase commit usually occurs only if multiple
Servers are being written to in that transaction. If a client reads
from ServerA in one transaction and writes to ServerB in the same
transaction, it is not a two-phase commit and it is not necessary for
ServerA and ServerB to be able to communicate across a common
network.

Running an Application from a CDROM

You can place an ObjectStore application on a CDROM and run
the application from the CDROM. You can access read-only
databases on the CDROM. To do this, you must allocate a Server
log on a local writable disk. The Server itself (the executable files
that make up the Server) can reside on the CDROM.
Release 5.1 33

Planning Your Configuration
You should validate the schemas before you place an application
and/or database on a CDROM. In other words, run the
application on the database in question (in update mode) and then
put the application and/or database on the CDROM. This
validates the schemas and sets the appropriate cache state in the
databases. The result is improved performance because schema
validation is not needed when the application opens the database
on the CDROM.

See additional schema validation discussions in the ObjectStore
C++ API User Guide, in Chapter 2, Persistence.
34 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
What You Need to Know About the API

Some administrative tasks require familiarity with aspects of the
API.

Capacity planning Capacity planning requires knowledge of the data structures
underlying any ObjectStore classes that the application stores,
such as collection, relationship, and reference classes. See the
ObjectStore C++ API User Guide.

Data organization Managing the physical organization of the data (what is stored
next to what) requires knowledge of the application’s creation and
deletion patterns and clustering directives. For information about
creation and deletion patterns, talk to the application developers.
For information about clustering, see Chapter 3, Transactions, in
the ObjectStore C++ API User Guide.

Indexes and
contention

Managing indexes uses the API, and managing contention
sometimes involves the API (for example, controlling locking
granularity and lock caching). See the ObjectStore Advanced C++
API User Guide for information about indexes — Chapter 5,
Queries and Indexes, and for information about controlling
locking granularity and lock caching — Chapter 3, Transactions.

For Information About See

References Chapter 2, Persistence

Collections Chapter 5, Collections

Relationships Chapter 6, Data Integrity
Release 5.1 35

Managing Databases
Managing Databases

To manage databases, you are likely to perform the following
typical operations:

Additional utilities for operating on databases are documented in
Chapter 4, Utilities, on page 127.

Pointers and
references

Database management is complicated by the fact that a database
often

• Points to other databases

• Is pointed to by other databases

Data set To perform many administrative activities, you must know the
relationships among the databases so you can identify the data set.
The data set includes

• DatabaseA

• All databases that point to or reference databaseA

• All databases that databaseA points to or references

If a database contains no external pointers or references and is not
pointed to or referenced by any other database, then it alone is the
data set. The application developer is often the best source for this
information. If the developer is not available, you can iteratively
use the ossize utility to establish the data set. See ossize:
Displaying Database Size on page 248.

Operation Utility and Reference

Copy oscp: Copying Databases on page 171

Move osmv: Moving Directories and Databases on
page 200

Delete osrm: Removing Databases and Rawfs Links on
page 222

Back up osbackup: Backing Up Databases on page 139

Restore osrestore: Restoring Databases from Backups on
page 216

Dump osdump: Dumping Databases on page 177

Load osload: Loading Databases on page 196

Compact oscompact: Compacting Databases on page 164
36 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Schema databases When you are operating on schema databases, you do not need to
identify the data set. A schema database does not have cross-
database pointers and references.

Operate on the set After you identify a data set, you can perform an administrative
function on the entire set. If you rename or move an individual
database in the set, use the oschangedbref utility described in
oschangedbref: Changing External Database References on
page 146 to fix any external pointers and references.

Moving, renaming,
and dumping
databases

Before moving, renaming, or dumping a database, do the
following:

1 Run the osverifydb utility described in osverifydb: Verifying
Pointers and References in a Database on page 274 to confirm
that there are no bad pointers or dangling references. This
utility detects inconsistencies; it does not fix them.

If you are moving a database within a rawfs, verification is not
necessary because the move just changes the name.

2 Run the ossize utility described in ossize: Displaying Database
Size on page 248 to ensure that cross-database references are
correctly established.

3 Perform steps 1 and 2 on all databases in the data set.

4 Run the ossvrchkpt utility described in ossvrchkpt: Moving
Data Out of the Server Transaction Log on page 253 to ensure
that all data has been propagated from the log to the affected
database.

Avoiding difficulties To avoid administrative difficulties,

• Encourage developers to design database hierarchies that can
be moved easily.

• Keep all databases in a set in a single directory.

Server-remote
databases

Databases are usually local to the Server. However, you can
enable a Server to control databases that reside on a remote host.
See Chapter 5, Using Locator Files to Set Up Server-Remote
Databases, on page 281, for details.
Release 5.1 37

Overview of the Backup/Restore Facility
Overview of the Backup/Restore Facility

ObjectStore provides the following utilities to back up and restore
databases without interrupting production:

• osbackup and osarchiv

These utilities back up databases you specify to a secondary
storage location. The osbackup utility performs backups
according to the level you specify; that is, it copies segments
that have been modified since a certain date. The osarchiv
utility performs snapshots of pages modified since the
previous snapshot or backup. You specify the interval between
snapshots.

• osrestore and osrecovr

These utilities copy data from backups and archive media to
your disk. The osrestore utility primarily restores databases
from sources created by the osbackup utility. The osrecovr
utility primarily restores data from archive files created by
osarchiv . You can specify a point in time to which you want to
recover data.

These utilities provide protection from catastrophic data loss due
to hardware failure, and can also be used to transport databases
from one location to another. Run the utilities in the following
order:

1 Run the osbackup utility (described in osbackup: Backing Up
Databases on page 139) according to a schedule that you
determine.

2 Keep the osarchiv utility active. See osarchiv: Logging
Transactions Between Backups on page 132.

3 Run the osrestore utility (described in osrestore: Restoring
Databases from Backups on page 216) to recover data backed
up by the osbackup utility.

4 Run the osrecovr utility (described in osrecovr: Restoring
Databases from Archive Logs on page 206) to recover data
from archive logs.
38 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
On-Line Backup and Archive Logging

On-line backup is the first step in guarding against data loss, but
it cannot help you recover modifications made after the backup
was performed. Archive logging provides the information needed
to recover modifications made after a backup. On-line backup
gives you a starting point for using archive logging.

On-line backup and archive logging provide these features:

• Interdatabase transaction consistency. Databases are consistent
both internally and across the entire set of databases being
backed up.

• Distributed backup capability, allowing transaction-consistent
backups of interdependent distributed databases. You can back
up databases on different Servers in the same backup
operation.

• Concurrent read/write access by ObjectStore applications to
databases in the backup set. That is, on-line backup never
obtains locks on data in the backup set, so standard ObjectStore
transactions can proceed normally.

• Support for full and incremental backup.

• Platform-independent format of backup archives, allowing
databases to be moved from a Server on one architecture to a
Server on another architecture. (This does not affect whether or
not the clients of a given architecture can access the database.
See ObjectStore Building C++ Interface Applications, Chapter 5,
Building Applications for Use on Multiple Platforms.)

• Ability to generate a single archive log for distributed
databases.

• Ability to perform batch transactions to reduce the amount of
data that must be archived.

The Server transaction log is not affected by archive logging.

On-Line Restore and Recovery

The osrestore utility restores databases from a backup image,
restoring either the entire backup set or selected databases within
the set. Although osrestore runs with the ObjectStore Server on-
line, ObjectStore applications cannot access databases that are
being restored until the entire restoration process has completed.
Release 5.1 39

Overview of the Backup/Restore Facility
On-line restore and recovery offer these features:

• You can always recover a committed transaction if archive
logging was being performed for the database when the
transaction was committed.

• You can recover databases back to a transaction-consistent
state at a specific time by restoring backup images and then
applying committed changes from the archive log.

• Recovery time is fast because the archive log stores modified
data and not the set of operations that modified the data.

• You can recover modifications from backup images and from
archive logs in the same operation.

See Backup Strategies on page 41 for particular suggestions about
using ObjectStore’s backup and restore tools in a manner that best
suits your environment.
40 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Backup Strategies

When you develop a backup strategy, you need to consider
certain conditions of your database environment. The questions to
think about include:

• How large are your ObjectStore databases?

• How far back do you need to back up?

• How much downtime to perform backups can you tolerate, if
any?

• How much time can you tolerate for recovery?

The paragraphs that follow provide suggestions and examples of
methods and tools you might use, depending on your answers to
the questions posed.

General Backup Practices

Object Design, Inc. recommends a nightly backup of the
ObjectStore database at a minimum. The osbackup command is an
on-line utility that runs as if it were an ObjectStore MVCC client.
It does not cause any concurrency conflicts.

You might choose to run Microsoft’s Schedule service or use the
at command to automatically invoke this operation each night.
You can store the backup image on tape or on disk. If you are
backing up to disk, use a separate disk for the backup images. This
allows reads to occur on the source disk and writes on the target
disk, which produces a faster backup and protects you from a disk
crash.

You can take advantage of the cron facility on UNIX systems to
automatically invoke the backup operation each night.

After the backup is complete, the backup images can then be
moved to tape and eventually be stored in a safe location. For
determining the best backup strategy, it is important that
production size databases be estimated. If the databases are not in
the gigabyte range, then it is better to perform a level 0 (full
backup) every night as opposed to doing additional incremental
backups. The advantage is that, in the event of a failure, only a

WIN

UNIX
Release 5.1 41

Backup Strategies
single backup image needs to be restored. The following is a
sample backup strategy:

For example, if you need to restore the databases on Friday
morning, then you must restore the backup images from Sunday,
Wednesday, and Thursday. It is advisable to save the previous
level 0 backup in another spot before starting the new level 0
backup.

osbackup command
flags

Here is a sample backup command you might use:

osbackup -i bkup_rec.txt -l 0 -f full_bkup.img sample1.db sample2.db
sample3.db

• The -i flag specifies the incremental record file, a file that
contains information about which databases have been backed
up, and when they were backed up. The osbackup utility uses
this information to determine which segments within a
database have been modified since the last backup at a lower
level. The utility then backs up only modified segments. The
incremental record file is comparable to the archive record file
for osarchiv .

Use the same incremental record file for both osbackup and
osarchiv . If you do not, osarchiv starts its archiving operation
with a full copy first. Make sure that you use the most recent
backup and archive images.

• The -l flag specifies the level of the backup. You can specify an
integer from 0 to 9. Files that have been modified since the last
backup at a lower level are copied to the backup image. Backup
is incremental at the segment level, meaning that a segment is
only backed up if it has been modified since the last backup at
a lower level. A level 0 backup (the default) backs up all
segments in all specified databases.

• The -f flag specifies the location of the backup image.

See osbackup: Backing Up Databases on page 139 for further
explanation of the options for this utility.

Sunday: Backup level 0
Wednesday: Backup level 1
Mon. Tues. Thurs. Fri. Sat.: Backup level 2
42 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Archive Logging

The osarchiv utility takes much smaller pictures of the database
than osbackup . Object Design recommends that you always run
the osarchiv utility, even during an osbackup . The advantage of
this is that, in the event of a system failure during the osbackup
process, no data is lost. The osarchiv utility performs snapshots of
pages modified since the previous snapshot or backup. You
specify the interval between snapshots. The osarchiv utility
records all transaction activity for specified databases. Since the
osarchiv process requires a backup image as initial input, the
script responsible for this operation might choose to stop osarchiv
and restart it each night after the osbackup process completes
successfully. Avoid updates in the window of time following the
start of osbackup and the startup of osarchiv so osarchiv does not
have to dump full segments. You can move the archive file from
disk to tape at this time if disk space is an issue.

osarchiv switches to the next archive file in the sequence when it
encounters the maximum size allowed for an archive file. You can
specify the maximum amount with the -s flag. The default
maximum size is 2 megabytes. If osarchiv runs out of disk space
for archive files, it notifies you and suspends activity until
additional disk space is available.

The utility uses the following naming convention for archive files:

YYMMDDHH.ext , where,

If you decrease the time between snapshots, you also decrease the
number of transactions recorded in each snapshot. Shorter
intervals between snapshots have the effect of keeping the archive
more up to date and keeping the amount of data that needs to be
archived smaller. (Can this add to the recovery process?)
However, since each snapshot causes information to be written to
the archive file even if no data modifications are being recorded,
frequent snapshots can consume space in the archive file

YY = Year
MM = Month
DD = Day
HH = Hour
ext = Extension of the form aaa, aab, aac...
Release 5.1 43

Backup Strategies
unnecessarily. Longer intervals can reduce the amount of data
being logged in cases where the same data is modified by multiple
transactions. In such cases, only the most recent copy of the
committed data needs to be logged.

osarchiv command
flags

The following is an example of an osarchiv command:

osarchiv -a bkup_rec.txt -d archive_img -i 30 -C sample1.db
sample2.db sample3.db

Remember that the incremental record file created with osbackup
is the starting point for osarchiv . In the command line example
above:

• The -a flag specifies the pathname of the file that osarchiv uses
to record the segment change IDs for the archive set. The
osarchiv utility updates this file each time it successfully
records committed changes to the archive set. This activity is
known as taking a snapshot. The osarchiv archive record file is
equivalent to the incremental record file for osbackup . It is
usually the same file.

• The -d flag specifies the directory in which to create the archive
log files. You cannot perform archive logging directly to a tape
device.

• The -i flag specifies an integer that osarchiv uses as the interval
between snapshots. By default, this interval is in seconds, but
you can append m, h, or d to indicate minutes, hours, or days.
For example, -i 60 and -i 1m both specify an interval of one
minute. When interval is not 0, osarchiv takes a snapshot
immediately after being initiated and then every interval n
seconds (or minutes, hours, or days) thereafter. When you do
not specify an interval, it defaults to 0, which means that
snapshots are not automatically taken. You can take a snapshot
at any time that osarchiv is active by issuing the x command.
Note that the x command can only be used when running
osarchiv interactively.

• The -C flag enables the interactive command-loop feature. This
feature is disabled by default.
44 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Running osarchiv
interactively

While the osarchiv utility is running with the interactive mode
enabled, you can execute the following commands. The utility
processes the command between snapshots.

See osarchiv: Logging Transactions Between Backups on page 132
for further information about the options for this utility.

Special Considerations for Large Databases

The osbackup procedure backs up approximately 4 gigabytes an
hour. The backup can take much longer under certain load
conditions, such as when updates are occurring on large numbers
of pages while the backup is running. Contrast this time
requirement with an operating system backup that averages 20
gigabytes an hour. If you have very large databases to back up, the
advantage of an on-line back up with osbackup might be less
important than the amount of time it takes to do the back up. You
might benefit more from shutting the ObjectStore system down
and backing up the file system using operating system
commands, as described next.

Using a file system
backup and the
ObjectStore archiver

If you keep the ObjectStore’s archiver running while the operating
system backup is running, the database is never without a
recovery mechanism. The most dependable and least time-
consuming method of backing up your data is to depend on the

a pathname Adds the specified file database or rawfs
database or directory to the archive set.

h Displays on-line help.
i interval Changes the interval between snapshots.

Specify an integer for interval.
n Closes the current archive file and starts

saving snapshots in the next archive file in the
sequence.

q Takes a snapshot immediately and then
terminates the osarchiv utility.

r pathname Removes the specified file database or rawfs
database or directory from the archive set.

t Displays the pathnames of the databases and
rawfs directories in the archive set.

X Takes a snapshot as soon as you issue the
command. This has no effect on snapshot
intervals.
Release 5.1 45

Backup Strategies
operating system backup and the ObjectStore archiver. The
sequence of activities you need to complete is summarized in the
following list:

1 Freeze your applications (or shut them down).

2 Perform a Server checkpoint.

3 Wait for the archiver to take its snapshot.

4 Shut down the archiver.

5 Shut down the Server.

6 Run the File system backup.

7 Restart the Server.

8 Restart the archiver.

9 Resume or restart your applications.

Steps 3 through 5, 7, and 8 are only necessary if clients might
access the Server during this procedure. If you can guarantee no
client access, then you need only perform steps 1, 2, 6, and 9.

The next paragraphs describe how osrestore and osrecovr work.

Recovery Options

You should use the osrestore utility to restore databases from the
most recent backup images created previously by osbackup .
Recover any archived images created by the osarchiv utility by
using the osrecovr utility.

Using both osrestore
and osrecovr

When you are restoring databases to a specific point in time, make
sure you run osrestore before you run osrecovr . The following
osrestore command provides an example that assumes a full
backup was performed:

osrestore -f full_bkup.img

• The -f flag specifies the location of the backup image. The
osrestore utility prompts you for incremental backup images
you might want to apply after this (you use this option if you
have incremental backup images resulting from an incremental
backup procedure).

After the database has been restored, you can then restore your
database to a point in time by running the osrecovr utility with
a command such as
46 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
osrecovr -F archive_list.txt

• The -F flag specifies the location of a file containing the names
of all the archive images. For example archive_list.txt might
contain:

C:\name\user>type archive_list.txt
archive_img\97080719.aaa
archive_img\97080719.aab
archive_img\97080720.aac
archive_img\97080720.aad
archive_img\97080720.aae
archive_img\97080720.aaf

To recover to a specific date and time, use a command such as the
following:

-F archive_list.txt -D 7/8/97 -r 19:59:45

See osrestore: Restoring Databases from Backups on page 216 and
osrecovr: Restoring Databases from Archive Logs on page 206 for
further explanation of options for these utilities.

Using system backup
and osrecovr

Archive image files generated in a directory (specified by the
osarchiv -d flag) can be deleted or moved to tape at your
discretion. In the event of a failure, you can first restore your
UNIX or Windows backup files, then invoke osrecovr with the file
name that contains a list of all the archived images in the directory
that was specified by the -d flag.
Release 5.1 47

The Dump/Load Subsystem
The Dump/Load Subsystem

This subsystem provides a facility that allows ObjectStore users
to dump and load databases into and from a nondatabase format.

The ObjectStore dump/load facility allows you to

• Dump to an ASCII file the contents of a database or group of
databases.

• Generate a loader executable capable of creating, given the
ASCII as input, an equivalent database or group of databases.

The dumped ASCII file is in a compact, human-readable format.
You can edit the file using an editor such as Perl, Awk, or Sed. The
ASCII file (edited or unedited) is the input for the loader.

See osdump: Dumping Databases on page 177 and osload:
Loading Databases on page 196 for more detailed information
about using the dump/load facility. For advanced topics related
to customization, see Chapter 8, Dump/Load Facility, in the
ObjectStore Advanced C++ API User Guide.
48 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Managing Users

There are two sorts of ObjectStore users:

• Those who run ObjectStore applications

• Those who develop ObjectStore applications

This explanation focuses on what is required for those running
ObjectStore applications.

Running applications To run an ObjectStore application, you need

• Client, Server, and Cache Manager executables.

• Application schema database.

• One or more databases for storage of application data. The data
can already exist or can be created by the application.

OS_ROOTDIR References to ObjectStore executables, libraries, and utilities
require a definition for OS_ROOTDIR. OS_ROOTDIR is an
environment variable that indicates the top-level directory in the
file system hierarchy containing the ObjectStore release. It serves
as the prefix of various directory names used in search paths.

You can set OS_ROOTDIR on each host that runs an ObjectStore
Server or application. Alternatively, you can set OS_ROOTDIR in
each user’s environment.

OS_ROOTDIR allows you to change the location of the ObjectStore
installation and allows users to switch to a different version of
ObjectStore.

Application schema
database

Every ObjectStore application has one application schema
database that the schema generator produces when you build
your application. The application schema database contains the
definitions for all classes the application uses in a persistent
context. An ObjectStore executable embeds the pathname of the
application schema database. Therefore, you must ensure that the
application schema database is available to the executable.

You can use the ossetasp utility to change the pathname of an
application schema database for a particular executable, except on
OS/2.

OS/2
Release 5.1 49

Managing Users
Alternatively, an application can specify its application schema
database pathname when it runs by calling objectstore::set_
application_schema_path() .

Sharing schemas Multiple executables can share an application schema database.
Developers create the application schema database as part of the
procedure for building the application. The purpose of the
application schema database is to ensure that the schema for an
accessed database exactly matches the schema for an executable.
ObjectStore compares the application schema with the database
schema during execution.

Developing
applications

To develop an ObjectStore C++ application, you need to be able to
run ossg , the ObjectStore schema generator. Developers use the
schema generator to create the application schema database. See
ObjectStore Building C++ Interface Applications.
50 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Modifying Network Port Settings

Normally, the default settings for ports for network services are
sufficient. However, you can modify them if you need to. One
reason you might want to do this is if you are running two releases
of ObjectStore on a machine at one time. Another reason to modify
port numbers might be if your site uses a firewall to prevent
unauthorized network access. You can choose to have the firewall
protect the default port numbers shown below or you can select
different port numbers that are protected.

Communication Methods Background

To communicate with a network daemon such as the ObjectStore
Server, a client requires a host address to identify the machine,
and a port to identify a particular process. ObjectStore finds host
addresses by looking up the host name in a host table or similar
facility. ObjectStore uses default ports, which can be overridden if
necessary, as described below. On each platform, ObjectStore
supports at least two ways for processes to communicate:

• The local transport layer allows communication between
processes on the same host.

• The remote network allows the local host to communicate with
remote hosts.

The following table lists the communication channels for each
platform.

UNIX On UNIX, the remote network is always TCP/IP. For the local
network, ObjectStore uses sockets to communicate among Server,
client, and Cache Manager processes. Sockets use predefined
ports that you can modify if necessary. A port identifies a

Platform Local Transport Layer Remote Network

OS/2 Named Pipes IP

AIX
Digital UNIX
HP–UX

UNIX (uses UNIX domain
sockets)

IP

SGI
Solaris 2

TLI_LOCAL IP

Windows NSharedMemory IP
Release 5.1 51

Modifying Network Port Settings
particular application on that machine. (An address identifies a
particular machine.)

Windows and OS/2 On Windows and OS/2, ObjectStore uses a variety of remote
networks. Each mechanism has something analogous to port
addresses that you control with the ports file.

Defaults for Port Settings

For Named Pipes , NetBIOS, and NSharedMemory , the port setting
modifies the default port, so you can use the same setting for all
services. On the other networks, a port setting replaces the
existing port setting, so you must provide unique settings for each
port that you modify.

All Servers in all ObjectStore versions have the same port number.
The default port settings are in the following table.

Modifying Port Settings

To modify the settings, you change entries in the file shown in the
following table. After you modify the ports file, you must shut
down and restart the Server and Cache Manager for the changes
to take effect. When the daemons start, they detect the existence of
the ports file and use the settings in the ports file.

On UNIX, Windows, and OS/2, you can also set the variable OS_
PORT_FILE to the name of a file you create.

Ports File Format

Process IP Port
Number

TLI_LOCAL Pathname UNIX Pathname

Server to R4
Cache Manager

51034 os_callback_v4 /tmp/ostore/os_callback_v4

R4 client to R4
Cache Manager

51044 osccom4 /tmp/ostore/osccom4

Client to Server 51025 objectstore_server_comm /tmp/ostore/objectstore_server_comm

Notification 51049 objectstore_notification /tmp/ostore/objectstore_notification

Platform Ports File

UNIX $OS_ROOTDIR/etc/ports

Windows and OS/2 %OS_ROOTDIR%\ETC\PORTS
52 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Each line in the ports file specifies the port for a network service.
The syntax of a line in the ports file is

net:service:version:port

Example TCP/IP:server client:1:54432

net Specifies the network type. It must be one of the values
that appear in the Network column in the next table.
Possible values vary according to the platform.

service Specifies one of the following network services:

cache manager client is the service the client uses to find
the Cache Manager. This is only meaningful when net is
a local network. (The port the Cache Manager listens on
for clients is always accessed by local clients.)

cache manager server is the service the Server uses to
find a Cache Manager.

server client is the service a client uses to find the Server.

version Specifies the software version for the Cache Manager
client or the Cache Manager Server. For Release 4,
specify 4. For compatibility, ObjectStore Release 5 also
requires 4 as the version number in all cases except for
server client . This service requires a 1.

port Specifies a port identifier as described in the next table.

Network Port Identifier Port Identifier Example

IP (TCP/IP) TCP/IP 16-bit port number. See
Defaults for Port Settings on page 52.

51025

Named Pipes Second element of pathname. The
default is ostore . The format is
\\PIPE\second\oss_server_client

\\PIPE\ostore\oss_server_client

NetBIOS Last character of string you specify.
The default is the capital letter O. The
format is name_of_your_choiceX

YOUR_HOST_NAMEO

NSharedMemory First character of shared object name.
Omitted by default. The format is
Xaccept.oss_server_client

Xaccept.oss_server_client

TLI_LOCAL Pathname in TLI Local name space.
No default.

objectstore_server_com

UNIX Pathname in file system. No default. /tmp/ostore/objectstore_server_com
Release 5.1 53

Modifying Network Port Settings
If a ports file is not present, ObjectStore uses default settings.

UNIX domain example UNIX:server client:1:/tmp/.ostore/objectstore_server_comm
UNIX:cache manager client:4:/tmp/.ostore/objectstore_client_cache
UNIX:cache manager server:4:/tmp/.ostore/objectstore_server_
cache

Running Two Servers on One Host

You can run two ObjectStore Servers on the same host under some
circumstances. You must specify different ports in the ports file.
This lets clients know which one to contact.

Different versions Object Design recommends that you never run two Servers that
are the same ObjectStore version on the same host. If you want to
run two Servers on the same host, ensure that they are different
ObjectStore major versions, for example, one release 4 and one
release 5 version.

To set up two Servers on the same host, you only need to change
the server client ports for one of the Servers. The Cache Manager
ports are already different in different major versions of
ObjectStore.

All Servers that a client can communicate with must have the
same network port number. This means that if you run two
Servers on one host, any single client can access one of those
Servers but not the other. It also means that if a client accesses
Servers on more than one host, you must change the Server port
settings on all affected hosts.

UNIX notes On System V Release 4 systems, such as Solaris 2 and SGI, specify
a combination of TLI_LOCAL and TCP/IP statements. Note that the
TLI_LOCAL domain port names exist in a separate, flat name
space.

On non-System V Release 4 systems, such as AIX, Digital UNIX,
and HP–UX, specify a combination of UNIX and TCP/IP statements
in the ports file. The UNIX domain or local ports have names in
the file system’s name space.

Windows Object Design does not support running two Servers on one host.
On Windows systems, you can specify statements for
NSharedMemory, TCP/IP, and NetBIOS, according to which
networks you use.
54 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
OS/2 On OS/2 systems, you can specify statements for Named Pipes,
TCP/IP, and NetBIOS, depending on which networks are in use.

If you do not specify port settings correctly, and you try to start a
second Server or Cache Manager, the operation fails with the
following error:

<err-0001-0144>There is a server for the service <sss> already running
on net <nnn>.

When Your Application Uses Notification

When an ObjectStore application uses notifications, the client
automatically establishes a second network connection to the
Cache Manager on the local host. The application uses this
connection to receive (and acknowledge the receipt of) incoming
notifications from the Cache Manager. (Outgoing notifications are
sent to the Server, not the Cache Manager.)

This all happens automatically and transparently, so there is no
relevant API. However, as with all network connections, you
might want to control what network port is used by the
connection. You can use the ports file in the usual way to control
the use of network ports. The relevant information follows.

Name of service cache manager notification

Default IP port number 51049

Default UNIX local socket
file name

/tmp/ostore/objectstore_notification
Release 5.1 55

How a Client Locates the Server for a Database
How a Client Locates the Server for a Database

How does a client determine which Server to communicate with?
The answer depends on whether the database being created or
opened is a file database or a rawfs database.

When Accessing a File Database

When a client tries to open or create a file database, the client has
a pathname for the database. The client looks for the Server on the
machine that has the disk on which the database is or will be
stored. Normally, this disk is local to the machine with the Server.
In other words, the database is Server local.

If the client cannot find a Server that is local to the disk, it signals
an error unless there is a locator file.

A locator file allows a client to access Server-remote databases.
Server-remote databases are stored on disks that are not local to
an ObjectStore Server. See Chapter 5, Using Locator Files to Set Up
Server-Remote Databases, on page 281.

If there is a locator file, the client checks it to determine which
Server to communicate with.

When Accessing a Rawfs Database

When a client tries to open or create a rawfs database, the rawfs
host is specified in one of two ways:

• The rawfs host name appears in the pathname of the rawfs
database.

• The environment variable OS_DIRMAN_HOST is set to the name
of the rawfs host.

See Rawfs Databases on page 5.
56 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Managing ObjectStore on Multiple Platforms

When you manage a site that runs ObjectStore on a variety of
platforms, there are issues to consider that do not exist when you
run ObjectStore on only one platform.

Using Multiple File Systems

ObjectStore is not dependent on a particular file system. If the
usual file system calls (such as open, read, write, close) work on
the file, ObjectStore can successfully use them.

Translating Pathnames

You might run an ObjectStore application on both PCs and UNIX
systems. UNIX uses forward slashes in pathnames. PCs use
backward slashes. How does ObjectStore handle this?

Suppose you have a UNIX Server and some Windows NT and
OS/2 clients.

Native pathnames If you are using something like an NFS client to mount the UNIX
file system, you use the client’s native syntax. For example, on a
PC where drive Q is NFS-mounted on husky:/desktop1 ,
ObjectStore expands the file name Q:\jet\my.db into a reference to
/desktop1/jet/my.db on the Server host husky .

Server-relative
pathnames

If you do not use file mounting, you can use Server-relative
pathnames of the form husky:/desktop/jet/my.db . ObjectStore
interprets the part of the pathname that follows the colon (:)
according to the syntax of the Server host, UNIX in this example.
Release 5.1 57

Callback Messages Background
Callback Messages Background

The Cache Manager facilitates concurrent access to data by
handling callback messages from the Server to client applications.
To understand how callback messages work, you need to know
about ownership and locks.

Note: The terms ownership, encached page, and permit all represent
the same concept — a client has permission to read or modify the
page.

Read/write ownership Read ownership exists when a client has permission to read a
particular page. Write ownership exists when a client has
permission to modify a particular page.

A Server grants read ownership to as many clients as request it. If
one client requests write ownership, that client must wait if there
are current transactions that are reading that page, or if there is a
current transaction that is modifying that page.

Many clients can have read ownership at the same time. Only one
client at a time can have write ownership. When a client has write
ownership, no clients can have read ownership.

Clients can release ownership in the following situations:

• The result of a callback message to the Cache Manager is that
the client can release ownership.

• The client terminates its connection with the Server.

Read/write locks When a client actually reads or writes a page during a transaction,
it places a read or write lock on that page. When a client has a lock
on a page, it means that another client cannot receive write
permission for that page. A client must have read or write
ownership to be able to place a read or write lock on a page. The
client releases the lock when the transaction commits.

Ownership and locks It is important to recognize the difference between ownership and
locks. Ownership gives the client permission to read or modify a
page. A lock allows the client to actually read or modify the page.

When a client has ownership, it can place a lock on a page without
communicating with the Server.
58 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
A client can have read ownership without a read lock if it
previously read the page but is not reading the page in the current
transaction. The same is true for write ownership and locks.

Lazy release The client does not give up ownership on pages when the pages
are no longer needed. The client keeps ownership in case data on
those pages is needed again. In contrast, the client always gives up
locks when a transaction commits.

The lazy release is an optimization. If no other client needs the
page that your client has ownership of, then your client does not
need to request ownership from the Server for that page for as
long as the client is active.

Callbacks When a client requests read ownership for a page and no other
client has write ownership, the Server grants read ownership. The
Cache Manager is not involved.

The Cache Manager is involved in the following situations:

• When a client requests read or write ownership for a page and
another client already has write ownership for that page

• When a client requests write ownership for a page and other
clients have read or write ownership for that page

In these situations, the Server sends a callback message to the
Cache Manager on the host of the client that has ownership. The
Cache Manager determines whether ownership can be released or
the client requesting ownership must wait.

If the client with ownership

• Has a lock on the page because it is in a transaction, the second
client waits.

• Does not have a lock on the page, perhaps because it is between
transactions, the second client receives ownership.

If the first client had write ownership, and the second client is
requesting read ownership, the Cache Manager downgrades
the ownership of the first client from write to read. Otherwise,
the client loses ownership.

API for lock
management

Normally, ObjectStore performs lock management. There are,
however, API features that allow a client to control whether or not
a client waits for a lock. When an application uses these features,
ObjectStore still uses the lazy release.
Release 5.1 59

Callback Messages Background
For more information about ownership and locks, see Locking in
Chapter 3, Transactions, of the ObjectStore C++ API User Guide.
60 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Troubleshooting

This section provides some examples of problems you might
encounter. In general, when you receive an error message you
should

• Try to define what the problem is.

• Determine the ObjectStore resource that is affected.

• Obtain more information.

These steps allow you to either take a corrective action that
resolves the problem or provide Object Design Technical Support
with enough information to resolve it.

Server Initialization Failed

You might try to start the Server and receive this message:

Server initialization failed
Trouble accessing ObjectStore file system.
Exception message: <maint-0018-0006>
File access permission denied

The Server is not starting. The resource affected is the Server. To
obtain more information, you can

• Check the content of the Server output file.

• Ensure that you are starting the Server with the correct
permissions. For example, on UNIX you must be root .

• On UNIX and OS/2, you can try to restart the Server in debug
mode.

• Consider what the Server needs to do when it starts up. See
What Does the Server Do? on page 7.

Here is another message you might receive when you try to start
the Server:

Server initialization failed. (orecvery.cc line 2787)
Unknown record type 127528668 at line 1266304
Failed to start ObjectStore server

OS/2 OSSERVER.TXT

UNIX /tmp/ostore/oss_out

Windows %OS_ROOTDIR%\OSSERVER.TXT
Release 5.1 61

Troubleshooting
Again, the Server is not starting. The resource affected is the
Server and the reference to record type might indicate a problem
with the log. To obtain more information, you can

• Check the content of the Server output file. For the name of the
file on your platform, see the table in OSSERVER.TXT on
page 61.

• If there is a parameters file, check its content for the name of the
log file.

• If the log is not in the rawfs, confirm its existence in the location
specified in the parameters file.

• Try to start the Server in debug mode.

It is possible that someone accidentally deleted the log or the log
might not have the correct permissions.

Miscellaneous ObjectStore Error

While running a client application you might receive this
message:

Miscellaneous ObjectStore error
Reached end-of-file reading initial message from cache manager
(PID=0) (err_misc)
Segmentation Fault

The resource affected is the Cache Manager. To obtain more
information, you can

• Check the contents of the Cache Manager output file to see if
the Cache Manager is running.

• Check cache and commseg file locations and dates. You might
have deleted these files, but did not use the oscmrf utility.

UNIX • On UNIX, verify suid root permissions on the oscminit
executable.

If you are mounting the file system that contains the oscminit
executable, be sure that you do not specify -o nosuid . When you
mount the file system, -o suid is the default; you do not need to

OS/2 OSCMGR4.TXT

UNIX /tmp/osc4_out

Windows OSCMGR4.TXT
62 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
specify it. If the mount is in the fstab file, ensure that nosuid
does not appear in the mount options field.

• On UNIX, verify permissions on the cache and commseg files.

No Handler for Exception — Database Error

While trying to access a database you might receive this message:

No handler for exception:
ObjectStore internal error Database dbname has fraction length?
(err_internal)

The resource affected is the database or the client application. To
obtain more information you can

• Use the osverifydb (see osverifydb: Verifying Pointers and
References in a Database on page 274) and ossize (see ossize:
Displaying Database Size on page 248) utilities to check all
databases that the application accessed. Check both schema
and production databases.

• Use a debugger to find the line of code causing the error.

• Confirm that the architecture page size matches the database
page size. This error can be caused when an application
running on a machine that uses 8K pages tries to access a
database created on a machine that uses 4K pages.

• Rebuild the database, checking for corruption as it occurs.

No Handler for Exception — Cannot Open Application Schema

While trying to access a database you might receive this message:

No handler for exception:
Cannot open the application schema
<err-0025-0311> The application schema database db.asdb was not
found
(err_cannot_open_application_schema)
While trying to open the application schema database.

The resource affected is the database. To obtain more information,
you can

• Check that a current application schema database exists. It
might be missing.

• Use the ossetasp utility (see ossetasp: Patching Executable with
Application Schema Pathname on page 229) to check that the
Release 5.1 63

Troubleshooting
executable has the correct location of the application schema
database. The executable might have the wrong location.

When you move an application to a machine that is not running a
Server, leave the application schema database on the Server host.
You must then run the ossetasp utility to patch the executable so
it can find its application schema database.

The application schema database must be local to a Server. The
only exception to this is when you use a locator file. See Chapter
5, Using Locator Files to Set Up Server-Remote Databases, on
page 281.

No Handler for Exception — Invalid Address

When trying to run a client application you might receive a
message like this:

No handler for exception
ObjectStore internal error
ObjectStore referenced invalid address 0x7fff0028(0)

The resource affected is the client application. To obtain more
information you can

• Execute the program in the debugger and determine which line
of code has a bad pointer.

• Obtain a back trace from a debugger. It might be that the
program is incorrectly using ObjectStore features.

This is a case where you might not be able to figure out the
problem but you can obtain enough information for Object Design
Technical Support to solve the problem quickly.

Unsupported Server Protocol

If you are running a Release 5 Server and a non-Release 5 Server
on the same machine, you might receive the following message
when trying to run an application.

Attempt to use unsupported server protocol.
<err-0001-0006> Server elvis does not support version 4.0 clients.
(err_protocol_not_supported)

ObjectStore displays this message when a Release 5 client tries to
communicate with a non-Release 5 Server. This error might occur
if you did not shut down the non-Release 5 Server while you
64 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
installed the Release 5 Server. Shutting down and restarting the
non-Release 5 Server should correct the situation.

Cannot Commit

You must ensure that when two or more ObjectStore Servers
receive modified data in a single transaction, each Server can
communicate with each of the other Servers. If all Servers
involved in such a transaction cannot communicate with each
other, ObjectStore aborts the transaction with err_cannot_commit.

The exception occurs only when a two-phase commit has
problems. A two-phase commit usually occurs only if multiple
Servers are being written to in that transaction. If a client reads
from ServerA in one transaction and writes to ServerB in the same
transaction, it is not a two-phase commit and it is not necessary for
ServerA and ServerB to be able to communicate across a common
network.

AIX — Available Space But Database Does Not Grow

Your ObjectStore database does not grow past 1.073 gigabytes,
even though you have available disk space. You receive the
following error:

No handler for exception:
The server is out of disk space for the database or logfile
set_segment_size call to server (host "rexx")

When you check your system, you might have statistics such as
the following

rexx:phawkins(678)> df . :

rexx:phawkins(679)> ls -l mydb
-rw-rw-r-- 1 phawkins sys 1073082368 Sep 26 17:26 mydb

The problem is that you are reaching the AIX operating system
default limit for the root process. This limit is 2097151 blocks, or
1073741312 bytes. The exact database size that the failure occurs at
varies.

AIX

Filesystem Total KB free %used iused %iused Mounted on

/dev/lv00 2002944 411296 79% 5439 1% h/rexx/2
Release 5.1 65

Troubleshooting
To change the limit, change the file /etc/security/limits and add -1
for the root fsize limit. For example:

default:
fsize = 2097151
core = 2048
cpu = -1
data = 262144
rss = 65536
stack = 65536

root:
fsize = -1

daemon:
bin:
sys:
adm:
uucp:
guest:

Before You Call Object Design Support

When you contact Object Design Technical Support, you need to
provide

• Hardware platform

• Operating system and release number

• ObjectStore release number

• Severity of the problem

• Description of the problem

• Information found in the Server and/or Cache Manager output
file (if this is relevant)

• Server debug mode output if there is a problem with the Server

• Debugger output if there is a problem with an application
66 ObjectStore Management

Chapter 1: Overview of Managing ObjectStore
Using Virtual File Systems

A virtual file system provides a user with a logical view of a file
system. When you use a virtual file system, it appears as if all
sources and executables reside in the current directory path, when
only local modifications actually reside there. The purpose of a
virtual file system is to hide the actual locations of files from users.
ClearCase is an example of a virtual file system.

Opening databases You can run ObjectStore clients and utilities in directories where
ObjectStore can find all files. However, the opening of a database
is always performed by the Server. In a virtual file system, the
Server cannot determine where a file actually resides unless you
specify the true location.

Pathnames you
can use

When you use ObjectStore with a virtual file system you must
specify pathnames that would work without the virtual file
system. This is usually some kind of absolute pathname.

This requirement applies to any ObjectStore database stored
under a virtual file system and includes any object that the Server
must access. The Server must be able to access whatever
pathname is provided. This can be a virtual file system pathname
if the Server is running under a virtual file system.

Running Server under
virtual file system

You can run the Server under a virtual file system if there is only
one view of the virtual file system and the view is shared by all
users. The Server cannot recognize more than one view. In some
virtual file systems, machines and users can have their own views.

Schema databases You can maintain schema databases in a virtual file system
because the schema generator embeds the absolute pathname of
the schema in the database. However, when you generate schema
databases, you must specify pathnames that the Server can use.

Some virtual file systems provide a way to return an absolute
(nonvirtual) pathname for a given element in a virtual file system.
This pathname can enable the ObjectStore Server to locate the
element. It does mean the loss of the ability to use leaf names (such
as eng_1.libschema in the following example) as arguments to
ObjectStore utilities.
Release 5.1 67

Using Virtual File Systems
Sample error message Here is an example of the type of message you might receive when
ObjectStore cannot find a file. Notice that the file appears to be
there.

> pwd
/home/clients/libschemas
> ls
test_1.libschema
eng_1.libschema
qa_1.libschema
> ossize eng_1.libschema
ossize: The database was not found
<err-0025-0351>The database
"/home/clients/libschemas/eng_1.libschema"
does not exist (err_database_not_found)
68 ObjectStore Management

Chapter 2
Server Parameters

This chapter describes Server parameters, which determine some
aspects of how the ObjectStore Server functions. There are
defaults for all parameters. You do not need to do anything to use
the defaults.

To modify a parameter, seem the instructions in the chapter for
your operating system. After you modify a Server parameter you
must shut down and restart the Server for the change to take
effect.

Parameters are available on all platforms unless otherwise noted.
Case is not significant. Defaults are in the left margin.

The parameters described in this chapter are

Admin Host List 70

Admin User 71

Allow NFS Locks 71

Allow Remote Database Access 72

Allow Shared Communications 73

Authentication Required 73

Cache Manager Ping Time 78

Cache Manager Ping Time In Transaction 79

DB Expiration Time 79

Deadlock Victim 79

Direct to Segment Threshold 81

Failover Heartbeat Time 82
Release 5.1 69

Admin Host List
Host Access List 82

Log Data Segment Growth Increment 82

Log Data Segment Initial Size 82

Log File 83

Log Record Segment Buffer Size 83

Log Record Segment Growth Increment 83

Log Record Segment Initial Size 84

Max AIO Threads 84

Max Connect Memory Usage 84

Max Data Propagation Per Propagate 85

Max Data Propagation Threshold 85

Max Memory Usage 85

Max Two Phase Delay 86

Message Buffer Size 86

Message Buffers 86

Notification Retry Time 86

PartitionN 86

Preferred Network Receive Buffer Size 87

Preferred Network Send Buffer Size 87

Propagation Buffer Size 87

Propagation Sleep Time 87

Restricted File DB Access 87

Admin Host List

Default: none The Admin Host List parameter specifies the pathname of a file.
This file must contain a set of primary names of hosts, one per line.
(If DNS is in use, they must be fully qualified domain names.) The
hosts listed in this file are the hosts on which an administrative
user, designated with the Admin User parameter, can perform
ObjectStore Server operations.

When this parameter is not set, an administrative user can
perform ObjectStore Server operations on any ObjectStore host.

When you specify a host in the file pointed to by the Admin Host
List parameter, it causes that host to require only SYS
70 ObjectStore Management

Chapter 2: Server Parameters
authentication. This is true regardless of that host’s setting of the
Authentication Required Server parameter.

When you create an administrative hosts list, and you also have a
host access list set with the Host Access List Server parameter,
ObjectStore adds all hosts in the administrative hosts list to the
host access list.

Admin User

Default: none When Admin User is set to a user name, it allows that user to run
any ObjectStore utility without having root permission. When this
parameter is not set, you must have root permission to run
ObjectStore utilities, for example, ossvrshtd and ossvrclntkill .

When you set this parameter, you designate a user who does not
have root privileges to perform ObjectStore administrative
functions. This administrative user can execute any ObjectStore
utility that a user with root permission can, except for operating
on file databases. File databases are not affected when the Admin
User parameter is set.

When a utility operates on rawfs databases, administrative users
are not restricted by access control. They can access any database
and perform any operation even though they are operating under
their own user names and groups.

When a utility operates on file databases, administrative users
have the same restrictions they normally have. Being an
administrative user does not give them additional privileges.

Allow NFS Locks

Default: yes When the Allow NFS Locks parameter is set to yes (the default), the
Server can perform database-level locking. If database-level
locking is on, when an ObjectStore Server handles access to a
remote (or local) database, it holds a lock on the database as long
as the database is open. If the database is open for read-only, the
Server holds a read lock; if the database is open for read/write, the
Server holds a write lock.

When an ObjectStore Server holds a read lock on a database, this
prevents other Servers from acquiring a write lock on the
database. Read access by other Servers is allowed. A read lock

UNIX
Release 5.1 71

Allow Remote Database Access
does not prevent write access by another application if the same
Server handles the access.

When an ObjectStore Server holds a write lock on a database, this
prevents other Servers from acquiring either a read lock or a write
lock on the database. Again, this does not prevent access by
another application if the same ObjectStore Server handles the
access.

If a Server is blocked from acquiring a lock, ObjectStore signals the
exception err_database_lock_conflict. Access is not automatically
retried.

Caution You can turn off database-level locking by setting the Server
parameter Allow NFS Locks to No. You must use extreme caution if
you turn off locking. Concurrent database access by different
Servers can corrupt the database. Note that a mistake in the
contents of a locator file could cause unintentional concurrent
access of this sort.

Windows and OS/2 File locking is always turned on.

Allow Remote Database Access

Default: no The Allow Remote Database Access parameter determines
whether the Server can handle access to remote databases. If
ObjectStore determines from a locator file that a particular
ObjectStore Server should handle access to a database remote to
that Server, and that Server has a value of yes for this parameter,
the Server handles access to the database. If the Server does not
have a value of yes , the exception err_file_not_local is signaled.

If you allow any Server-remote access, each database should be
assigned exactly one ObjectStore Server that handles all access to
it by all applications, unless that database is never opened for
read/write. This is because when one Server handles access to a
database, it can prevent concurrent access by other ObjectStore
Servers. See the Server parameter Allow NFS Locks .

Caution Use this parameter with caution. A mistake in the content of a
locator file could cause unintentional concurrent access.
72 ObjectStore Management

Chapter 2: Server Parameters
Allow Shared Communications

Default: yes The Allow Shared Communications parameter controls whether
the Server allows shared memory communications between itself
and the client when they are on the same host. Doing so improves
performance. It is a Boolean that defaults to yes (meaning shared
memory communication is enabled). If these communications are
enabled, the Server and client exchange data by means of shared
memory.

It is possible for the Server to run out of virtual memory if you
have Allow Shared Communications set to yes and you have many
local clients. That’s because the server maps each local client’s
cache information into its virtual memory. Setting Allow Shared
Communications to no eliminates the problem.

Authentication Required

Default: by platform An understanding of ObjectStore authentication is necessary
before an explanation of the Authentication Required parameter
makes sense.

The defaults are

• NONE on OS/2 and Windows 95

• Name Password on Windows NT

• SYS on other platforms

How the Server
controls access to
data

ObjectStore has a client/server architecture. When an application
reads or modifies a database, it sends messages to an ObjectStore
Server, which in turn reads and writes the data in the database.

Because each ObjectStore Server handles requests from many
different users, it is responsible for enforcing access control to files
containing databases. It must use privileged access to read or
write any user’s database, and it must ensure that only users
entitled by the host system’s rules for access control are allowed
access to databases. To implement access control, the ObjectStore
Server must know the user name and group of the client process
that is requesting that it operate on a database.

Authentication If you start an application that asks the ObjectStore Server to read
or modify a protected file, the Server determines whether you
have proper read/write permission for the file. This access

UNIX
Release 5.1 73

Authentication Required
checking has two parts. The first part is authentication, the
operation in which the Server learns who the client is, and on
behalf of which user it is performing operations. The second part
is checking whether that user has permission to perform the
requested operation.

The type of authentication ObjectStore uses is determined by the
value of the Server parameter Authentication Required .

Note that certain Server operations that deal with file databases
require authentication. If the client does not provide
authentication, the Server refuses to perform such an operation.
These operations include looking up, creating, and deleting file
databases, or asking their size or access modes.

Administrative commands for which authorization is required
send authentication to the Server first. Administrative commands
are ObjectStore utilities that affect other people’s work
environment, for example, the utility that shuts down the Server.

ObjectStore applications send authentication to the Server the first
time the application does an operation on that Server for which
authentication is required. After an application sends
authentication information to a Server, it need not do so again for
the lifetime of the process.

Administrative
operations for
authorized clients

The Server performs several administrative operations only on
behalf of an authorized client. These are the Server operations
invoked by the ossvrshtd and ossvrclntkill utilities, with these
exceptions:

• ossvrshtd is also allowed for the user who owns the Server
process.

• ossvrclntkill is allowed if the client thread to be killed is owned
by the user issuing the command.

Parameter values The Authentication Required Server parameter specifies how the
Server controls database access. There are five possible types of
authentication:

• NONE — The only available option on platforms that do not
support security (OS/2 and Windows 95).
74 ObjectStore Management

Chapter 2: Server Parameters
On UNIX platforms, clients who present authentication NONE
cannot access file databases. Release 5 clients always present
some other form of authentication if possible.

On Windows NT, clients who present authentication NONE can
access file databases. Clients can access any file that is
accessible to the user running the Server (usually Local
System).

• SYS — UNIX only. ObjectStore uses the Sun ONC RPC AUTH_
SYS authentication method, previously called AUTH_UNIX.

The client sends the Server a UNIX user ID and a set of group
IDs, which the Server trusts. The ObjectStore client library
always sends the current effective user ID and group set. This
is the same mechanism used by the NFS protocol.

Caution If you use this method, be aware of the following points:

- If untrustworthy users have access to the root password,
they can assume the identity of any user.

- A malicious user might contrive to patch the ObjectStore
client so that it sends some access identity information other
than the current effective user ID and group set.

- Not all systems can generate this information in a client. If
you run an ObjectStore Server on such a system, this method
is not available.

• DES — Sun, AIX, and System V.4.0 only. ObjectStore uses the
Sun ONC RPC AUTH_DES authentication, also known as secure
RPC. To enable this mechanism, you must first set up the
Network Information System (NIS), run the keyserv daemon
on all client and Server hosts, and register public keys in the
publickey NIS map. (See the newkey , chkey , keyserv , and
keylogin manual pages.)

For a full explanation of the secure RPC mechanism, see the
documentation supplied with your operating system.

DES authentication protects against abuse of the root password
and against straightforward attempts to patch an ObjectStore
client to send a fraudulent access ID. However, it is not secure
against a determined intruder, due to bugs both in its design
and in the reference implementation.
Release 5.1 75

Authentication Required
• Name Password — All platforms except OS/2 and Windows 95.
This value was previously named UNIX Login . In this release,
UNIX Login is a synonym for Name Password .

ObjectStore requires each client application to send a user
name and password to the Server, which validates them. See
“User interface to authentication” on page 78. The advantage of
this method is that there is no way to fool the Server — it grants
exactly the access available to the user it authenticates. The
disadvantage is that ObjectStore cannot arrange a trusted path.
That is, there is no way that a user, prompted for a password,
can be sure that the password will be sent to the ObjectStore
Server and only to the ObjectStore Server. A malicious program
author could solicit and then retain passwords.

• NT Local — Windows NT only. Allows Windows NT clients to
communicate with local Servers.

Parameter value
might imply a set of
values

When you set the parameter to one of these authentication types,
it means that the Server can use that value as well as any values
that follow it in the list, if the value can be specified on that
Server’s platform. The complete prioritized list of authentication
types is

1 NONE

2 SYS

3 DES

4 NAME PASSWORD

5 NT LOCAL

To determine the list of authentication types that a Server
supports, run the ossvrstat utility. See ossvrstat: Displaying
Server and Client Information on page 261for further information.

Examples of allowable
authentication

For example, if an AIX Server has the value NONE for the
Authentication Required Server parameter, it means that a client
can return information that complies with NONE, SYS, DES, or
NAME PASSWORD . These four values make up the Server-
supported list on this platform.

If an HP Server has Authentication Required set to SYS, it means
that a client can return information that complies with SYS or
NAME PASSWORD . The Server-supported list for HP–UX has two
values.
76 ObjectStore Management

Chapter 2: Server Parameters
If a Windows NT Server has Authentication Required set to Name
Password , clients can return information that complies with Name
Password or NT Local . The Server-supported list for Windows NT
contains two values.

How does a
client choose?

How does a client determine which type of authentication to
provide to the Server?

On all platforms, if Authentication Required is NONE and if the
Server can have a value of SYS for the parameter, the client
returns information that complies with SYS. This allows Release 5
clients to access Release 5 rawfs and file databases.

Suppose that Authentication Required is NONE but the Server
cannot have a value of SYS. In this case, the client returns
information that complies with the first value in the Server-
supported list that the client supports. For an AIX client
contacting a Windows NT Server, this would be Name Password .
Note that if the Server were on AIX, both the SYS and DES values
would be allowed. A Server that cannot have a value of SYS is not
a UNIX system and so the Server-supported list of values for
authentication includes NONE, Name Password , and possibly NT
Local .

UNIX clients always provide Name Password authentication
when accessing Windows NT Servers.

Windows NT clients When a Windows NT client provides authentication it must
provide the domain name, the user name, and the user password.
By default, ObjectStore uses the USERDOMAIN environment
variable. You can override this by specifying a name of the form
domain\name.

When a Release 5 Windows NT client contacts a local Windows
NT Server, the client always provides NT Local authentication.

When a Release 5 Windows NT client contacts a remote Windows
NT Server or a UNIX Server, the default is for the client to provide
Name Password authentication.

To allow a Windows NT client to provide SYS authentication to a
UNIX Server, you must set the user ID and group ID in the
Windows NT registry. To prohibit Windows NT clients from
returning SYS authentication to UNIX Servers, you can either set
Authentication Required to Name Password or forbid the user ID
Release 5.1 77

Cache Manager Ping Time
and group ID entries in the registry. See Chapter 8, Managing
ObjectStore on Windows, on page 345.

Suppose a Release 5 Windows NT client contacts a Server that can
accept SYS authentication. Further suppose that user ID and
group are set in the Windows NT registry. In this case, the client
provides SYS authentication. This allows compatibility with
UNIX Servers. If the Server does not allow SYS authentication or
if the user ID and group are not set in the registry, then the client
provides the first type of authentication that it can that is in the list
of Server-supported authentication types. In some cases, this is
Name Password . But it might be NONE, which means that a
Release 5 Windows NT client can access file databases that are
accessible by the user running the Server.

Exceptions When a Server is using Name Password for authentication and
detects something wrong, it signals the err_authentication_failure
exception. This usually means that there is no user by the
specified name or the password is incorrect.

If the Server receives a command that needs authentication, but
the connection has not been authenticated, and Authentication
Required is not None , the Server rejects the command and signals
the err_rpc_auth_tooweak (client credential too weak) exception.
This means that the client could not provide the authentication
that the Server requested. This happens when a client cannot
generate any of the types of authentication that the Server
requires.

User interface to
authentication

By default, the interface to Name Password authentication
communicates with the user interactively. On UNIX, it uses the
/dev/tty device or the stdin and stdout streams to prompt for a user
name and a password. On Windows, console applications work
the same way. Windows applications pop up a dialog box. Your
application can control the Name Password interface with the
functions objectstore::set_simple_auth_ui() and get_simple_auth_
ui() , which are described in the ObjectStore C++ API Reference.

Cache Manager Ping Time

Default: 300 The Cache Manager Ping Time parameter specifies a number of
seconds. Whenever between Cache Manager Ping Time seconds
and twice Cache Manager Ping Time seconds have elapsed with no
message from the client, the Server attempts to send a message to
78 ObjectStore Management

Chapter 2: Server Parameters
the client’s Cache Manager to check whether the client is still
active. If the Cache Manager cannot be contacted or the Cache
Manager indicates that the client does not exist, the Server
disconnects the client connection. The minimum number of
seconds you can specify is 10.

A large value for this parameter reduces network traffic and
reduces the chance that a client will be disconnected because of a
transient network failure. A small value increases network traffic,
but ensures that a client that is disconnected from the network
cannot hold locks for more than a short period of time.

If Cache Manager Ping Time and Cache Manager Ping Time In
Transaction have different values, ObjectStore uses Cache
Manager Ping Time when the client is not in a transaction.

Cache Manager Ping Time In Transaction

Default: 300 The Cache Manager Ping Time In Transaction parameter is the
same as the Cache Manager Ping Time parameter, except the
Server uses the interval you specify only during transactions. The
number of seconds you specify for Cache Manager Ping Time In
Transaction must be less than or equal to the value set for Cache
Manager Ping Time . The minimum you can specify is 10 seconds.

If Cache Manager Ping Time and Cache Manager Ping Time In
Transaction have different values, ObjectStore uses Cache
Manager Ping Time In Transaction when the client is in a
transaction.

DB Expiration Time

Default: 300 The DB Expiration Time parameter specifies the number of seconds
that the Server keeps a rawfs database open after the last user has
closed the database. This allows data propagation to happen in
the background, which means that users do not wait for
propagation to occur before they can close the rawfs database.
Also, applications that use the rawfs database start more quickly
if they are starting during DB Expiration Time .

Deadlock Victim

Default: work The Deadlock Victim parameter specifies the method that the
Server uses to select a victim in the event of a deadlock. Specify
one of the following to determine which client is the victim. The
Release 5.1 79

Deadlock Victim
Server sends a message to the selected client to abort the
transaction.

This method of choosing a victim is secondary to transaction
priority. See objectstore::set_transaction_priority() in the
ObjectStore C++ API Reference for more information on transaction
priorities.

Deadlock Deadlock occurs when two or more processes are waiting for
locks and there is a circular dependency such that none of them
can obtain the locks. For example, ProcessA is waiting for a lock
held by ProcessB, which is waiting for a lock held by ProcessA.
Because the dependency is circular, none of the processes can
obtain the requested lock. If the ObjectStore Server did not detect
deadlock situations, the processes involved would wait for an
infinite length of time.

Transaction data When deadlock occurs, the Server automatically detects it and
chooses a victim whose transaction is aborted. If the aborted
transaction is a lexical transaction, it is automatically retried. If it
is a dynamic transaction, the transaction is aborted with err_
deadlock.

When the Server aborts lexical transactions, it rolls back the
persistent data that has been modified during the transaction to its
pretransaction state. Also, stack variables declared within the
scope of the transaction go out of scope. Special care must be taken
for stack variables whose values have been changed within the
transaction and for space allocated on the heap during the
transaction.

Age Youngest client. A client’s age is calculated as the
time since its last successfully committed
transaction.

Current Client that made the last request to the Server,
causing it to detect the deadlock.

Oldest Oldest client. A client’s age is calculated as the
time since its last successfully committed
transaction

Random Random client.

Work Client that has done the least amount of work, as
measured by RPC calls to the Server during the
current transaction. This is the default.
80 ObjectStore Management

Chapter 2: Server Parameters
To obtain information about where the deadlock occurs, run the
Server in debug mode.

Direct to Segment Threshold

Default: 128 The Direct to Segment Threshold parameter specifies, in sectors,
the threshold value that determines whether the Server writes
segments to the log first and then to the database, or writes them
directly to the database. If less than this threshold is written past
the current end of segment during a transaction, the data is
written to the log before being written to the database. If the
number of sectors written is greater than this threshold, the data
is written directly to the database. The default is 128 sectors (64
KB).

Choosing a value depends on the size of the log and the cost of
writing and flushing the data separately from writing and
flushing the log record. For example, if you need to add 1 KB to
each of 100 segments, writing 1 KB to each segment accesses the
disk 100 times. If average disk speed is 8 to 12 milliseconds per
access, it would take 800 milliseconds to 1.2 seconds to perform all
the write operations. But if you write the data to the log, either in
a record or in the log data segment, the write operation would
probably be to contiguous disk storage and only take about 50
milliseconds. This parameter lets you choose between

• Faster access and a larger log file

• Slower access and a smaller log file

The Server applies the following tests in the following order; the
first one that matches determines how the data is stored:

1 If the data is being written to a newly created segment, data is
always written directly to the database segment.

2 If the following conditions are met, the data goes directly to the
database (this formula means the decision to write data directly
to a database is not changed by the size of individual write
operations):

- Data is being written past the current end of the database
segment.

- The last sector number being written minus the current
committed size of the segment is greater than the new Direct
to Segment Threshold .
Release 5.1 81

Failover Heartbeat Time
3 If neither of the previous conditions applies, data is put in the
log until the commit is done.

Failover Heartbeat Time

Default: none The Failover Heartbeat Time parameter must be specified if you are
using a failover Server. This parameter can be set to between 2 and
60 seconds. The parameter defines how often a heartbeat message
is written to disk. In the advent of a failure, it takes five times
Failover Heartbeat Time for the secondary Server to recognize the
failure and to take over.

Host Access List

Default: none The Host Access List parameter specifies the pathname of a file.
This file must contain a set of primary names of hosts, one name
per line. (If DNS is in use, they must be fully qualified domain
names.) The Server refuses connections from any host not on the
list, or whose name cannot be determined. This mechanism is only
as secure as the available means for translating host addresses to
host names. On some networks, such as NetBIOS, there might not
be a secure method.

This parameter is intended for use in environments where a
machine is on a network with untrustworthy hosts and DES
authentication is unavailable or unworkable.

When you create a host access list, and you also have an
administrative hosts list set with the Admin Host List Server
parameter, ObjectStore adds all hosts in the administrative hosts
list to the host access list.

Log Data Segment Growth Increment

Default: 2048 The Log Data Segment Growth Increment parameter specifies how
many sectors to add to the data segment in the transaction log
when more room is needed. The default is 2048 sectors (1 MB).

Log Data Segment Initial Size

Default: 2048 The Log Data Segment Initial Size parameter sets the initial size of
the data segment in the transaction log in sectors. The default is
2048 sectors (1 MB).
82 ObjectStore Management

Chapter 2: Server Parameters
Log File

Default: rawfs The Log File parameter specifies the pathname of the transaction
log file.If you do not specify a value for Log File , the Server
maintains the log in the rawfs, where it does not need a name. If
you do not have a rawfs and you do not specify a value for Log
File , the Server fails to start and displays the message

There are no partitions specified in the parameters file. Whenever
partitions are omitted from the parameters file a log file path must be
specified in the parameters file.

If you have a rawfs, you should not specify a name for this
parameter. See Description of the Server Transaction Log on
page 17.

If you specify a pathname for this parameter, the pathname
cannot be for a raw partition. The directory that contains the log
file must exist before you start the Server. When the log is in the
native file system, you should place it where it can never be
accidentally deleted by a user. You might want to name it in such
a way that it is never deleted.

Caution: Deleting the log file can cause database corruption.

Windows and OS/2 On Windows and OS/2, the value of this parameter is normally
set while you run the ObjectStore Setup utility. If you indicate that
you do not want the log file to be in the rawfs, the utility prompts
you to enter the name of the log file. You can press Enter to select
the default. The defaults are in the following table.

Log Record Segment Buffer Size

Default: 1024 The Log Record Segment Buffer Size parameter defines how much
buffer space is reserved for log records. The default is 1024 sectors
(512 KB).

Log Record Segment Growth Increment

Default: 512 The Log Record Segment Growth Increment parameter specifies by
how many sectors to increase the log record segment when more
room is needed. The default is 512 sectors (256 KB).

OS/2 OSSVXOS2.LOG

Windows NT OSSVXNT.LOG
Release 5.1 83

Log Record Segment Initial Size
Log Record Segment Initial Size

Default: 1024 The Log Record Segment Initial Size parameter sets the initial
combined size of the two log record segments in sectors. The
default is 1024 sectors (512 KB).

Max AIO Threads

Default: 3 The Max AIO Threads parameter determines the number of threads
the Server can start to perform file input/output (I/O). One
thread performs all I/O for a given file. Each thread can handle
I/O for multiple files. ObjectStore assigns files to threads on a
rotating basis.

When this parameter is set to 0, Servers perform I/O
synchronously.

If you never open more than a given number of files, you might
want to set this parameter to that number. This ensures that there
is one thread per file.

While ObjectStore does not have a limit on the number of threads
you can use, your operating system might.

The default setting is 3 threads.

Max Connect Memory Usage

Default: 0 The Max Connect Memory Usage parameter defines in kilobytes an
amount of virtual memory. When the Server is using this much
virtual memory, it will refuse new connections from clients. As
long as the amount of virtual memory in use is less than the
amount set for Max Connect Memory Usage , the Server allows a
new connection. The Server does not consider how much memory
the new connection might need.

ObjectStore does allow its utilities to connect to the Server when
the amount specified for Max Connect Memory Usage is exceeded.
However, the amount of virtual memory being used must be less
than (Max Connect Memory Usage + Max Memory Usage)/2.

The Max Connect Memory Usage parameter is always at least 1 MB
less than the Max Memory Usage parameter. When you increase
the value set for Max Connect Memory Usage , the Server increases
Max Memory Usage if necessary.
84 ObjectStore Management

Chapter 2: Server Parameters
The default is that Max Connect Memory Usage is unlimited. This
is indicated with a 0.

Max Data Propagation Per Propagate

Default: 512 The Max Data Propagation Per Propagate parameter specifies the
maximum number of sectors that can be moved in one propagate
operation. This limits the impact of propagation on the handling
of client requests. The default is 512 sectors (256 KB).

When counting the amount of data being propagated, ObjectStore
weights the effect of noncontiguous data by 64 sectors. This means
that with Max Data Propagation Per Propagate set to its default of
512 sectors, a maximum of eight noncontiguous writes can occur
in a single propagation.

Max Data Propagation Threshold

Default: 8192 The Max Data Propagation Threshold parameter sets the number of
sectors that can be waiting to be propagated. When the number of
sectors waiting to be propagated exceeds the value specified for
Max Data Propagation Threshold the Server forces propagation to
run faster. The default is 8192 sectors (4096 KB).

Max Memory Usage

Default: 0 The Max Memory Usage parameter specifies in kilobytes the
maximum amount of virtual memory the Server can use. The
Server checks this parameter when it starts. The Server
immediately allocates and then frees the specified amount of
memory. On some platforms, this confirms the availability of the
memory and reserves swap space for the Server.

Specify a number that includes the minimum needed plus some
other arbitrary amount. If you specify a number that is less than
the minimum needed, the Server increases the number to an
appropriate value. When calculating the minimum amount of
virtual memory needed, the Server allows for

• Five clients (about 64 KB per client)

• Amount configured for message, propagation, and log buffers

The default is that Max Memory Usage is unlimited. This is
indicated with a 0.
Release 5.1 85

Max Two Phase Delay
Max Two Phase Delay

Default: 30 The Max Two Phase Delay parameter specifies the maximum
number of seconds that the Server can delay a two-phase commit
so that the Server can back up data. Sometimes, when ObjectStore
is backing up data on multiple Servers at the same time,
ObjectStore must synchronize the relevant Servers. This ensures
that a transaction applying to more than one Server is committed
on all relevant Servers. To do this, the Server must sometimes
delay the commit of some transactions. Usually, ObjectStore can
synchronize the Servers in much less than a second.

If a client aborts during a two-phase commit, this value could be
exceeded. If this value is exceeded, ObjectStore cancels the delay
and tries again.

Message Buffer Size

Default: 512 The Message Buffer Size parameter sets the size of the message
buffer that the Server uses for processing a message from a client.
The Server reads data from this buffer and writes data requested
by the clients into this buffer. The default is 512 sectors (256 KB),
with the value being rounded to a multiple of 64 KB.

Message Buffers

Default: 4 The Message Buffers parameter sets the number of message
buffers the Server uses to communicate with clients. This number
defines the maximum number of clients that can simultaneously
perform operations that fetch or store persistent data.

Notification Retry Time

Default: 60 The Notification Retry Time parameter specifies the time in seconds
between retries for Server-to-Server communication. It is used
during two-phase commit recovery.

PartitionN

Default: none The Partition N parameter (where N is an integer) specifies a
partition in the rawfs. See Creating a Rawfs in the chapter for your
platform for information about using this parameter.
86 ObjectStore Management

Chapter 2: Server Parameters
Preferred Network Receive Buffer Size

Preferred Network Send Buffer Size

Default: 16,384 The Preferred Network Receive Buffer Size and Preferred Network
Send Buffer Size parameters specify the network buffer sizes in
bytes for sending and receiving messages to and from the Server,
respectively.

UNIX On many UNIX platforms these are TCP buffer sizes.

Propagation Buffer Size

Default: 8192 The Propagation Buffer Size parameter selects the amount of
buffer space reserved for propagation. This space is used for
reading data from the log that is to be written to target databases.
If the buffer size is large enough, data written to the log can be
kept in memory until propagation occurs, thus avoiding the need
to read the log. The default is 8192 sectors (4096 MB).

Propagation Sleep Time

Default: 60 The Propagation Sleep Time parameter determines the number of
seconds between propagations. This parameter takes effect only
when there is data to be propagated. If a lot of data is waiting to
be propagated, the Server temporarily decreases this interval.

Restricted File DB Access

Default:
none

Determines file access when an account that does not have root
privileges starts the Server. Possible values are User , Group , All , or
None . When you set this parameter to a value other than None and
the account that starts the Server does not have root permission,
then

• ObjectStore does not allow access to rawfs databases.

• ObjectStore allows access to file databases, but only by clients
to which the account that started the Server has User or Group
access, or to all accounts if All is specified.

By default Restricted File DB Access is set to None , which, in effect,
disables this parameter. This means that if an account with non-
root permission starts the Server, ObjectStore allows access to
rawfs databases but does not allow access to file databases.

UNIX
Release 5.1 87

Restricted File DB Access
88 ObjectStore Management

Chapter 3
Environment Variables

This chapter describes the ObjectStore client environment
variables.

These alphabetically-ordered variables are described in the pages
that follow:

OS_AS_SIZE 93

OS_AS_START 94

OS_AUTH 96

OS_BOOTSTRAP_LRU_CACHE_SIZE 97

OS_BROWSER_NUMERIC_FORMAT 97

OS_CACHE_DIR 98

OS_CACHE_SIZE 98

OS_CMGR_STARTUP_LOCK 99

OS_COLL_POOL_ALLOC_CHLIST_BLKS 100

OS_COLL_THREAD_LOCKS 100

OS_COMMSEG_DIR 101

OS_COMMSEG_RESERVED_SIZE 101

OS_COMMSEG_SIZE 102

OS_COMMSEG_START 102

OS_COMP_SCHEMA_CHANGE_ACTION 103

OS_DEBUG_C0000005 103

OS_DEBUG_LOCATOR_FILE 103

OS_DEBUG_RECURSIVE_EXCEPTION 103

OS_DEF_BREAK_ACTION 104
Release 5.1 89

OS_DEF_EXCEPT_ACTION 104

OS_DEF_MESSAGE_ACTION 104

OS_DIRMAN_HOST 105

OS_DIRMAN_LINK_HOST 105

OS_DIRMAN_USE_SERVER_PREFIX 106

OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT 106

OS_DISPLAY_INSTALL_MISMATCHES 106

OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS 107

OS_ENABLE_REALTIME_COUNTERS 107

OS_EVICT_IN_ABORT 107

OS_FORCE_DEFERRED_ASSIGNMENT 107

OS_FORCE_STANDARD_PRM_FORMAT 107

OS_FORCE_HANDLE_TRANS 108

OS_HANDLE_TRANS 108

OS_IGNORE_LOCATOR_FILE 109

OS_INBOUND_RELOPT_THRESH 109

OS_INC_SCHEMA_INSTALLATION 109

OS_INHIBIT_TIX_HANDLE 110

OS_LANG_OVERRIDE 110

OS_LIBDIR 111

OS_LOCATOR_ESCAPE_CHARACTER 111

OS_LOCATOR_FILE 112

OS_LOG_TIX_FORMAT 112

OS_META_SCHEMA_DB 112

OS_NB_LANA_NUM 113

OS_NETWORK 113

OS_NO_MAPPED 115

OS_NOTIFICATION_QUEUE_SIZE 115

OS_OSDUMP_APPSCHEMA_PATH 115

OS_OSLOAD_APPSCHEMA_PATH 116

OS_OSSG_CPP 116

OS_OUTBOUND_RELOPT_THRESH 116

OS_PORT_FILE 116

OS_PRINT_CLIENT_COUNTERS 116
90 ObjectStore Management

Chapter 3: Environment Variables
OS_RCVBUF_SIZE 116

OS_RELOPT_THRESH 117

OS_RESERVE_AS 120

OS_ROOTDIR 121

OS_SCHEMA_KEY_HIGH 122

OS_SCHEMA_KEY_LOW 122

OS_SECURE_RPC_DOMAIN 124

OS_SNDBUF_SIZE 124

OS_STDOUT_FILE 124

OS_SUPPRESS_PRE2_QUERY_SYNTAX_WARNINGS 124

OS_THREAD_LOCKS 125

OS_TIX_BUFFER_SIZE 125

OS_TIX_WD 125

OS_TMPDIR 125

OS_TRACE_MISSING_VTBLS 126

OS_TURN_ON_ENGLISH_MESSAGES 126
Release 5.1 91

Specifying Values for Environment Variables

You can set environment variables to modify the characteristics of
the client environment. The variables you set apply to the process
in which you set them and consequently to ObjectStore
applications that you start from that process.

An environment variable is available on all platforms unless
noted otherwise in this chapter. Defaults appear in the left margin.

The value for a variable is either an integer, a Boolean, or a string
that can have certain values as described in this chapter. When
you set a variable string to an empty string, ObjectStore uses the
default. When you set an integer or Boolean variable to a blank
string (nonempty), ObjectStore interprets it as 0 or false.

Specifying integers When a variable has a numeric value, it is an unsigned integer
(leading + or – is dropped) that ObjectStore reads as a constant
according to the rules of the C programming language. An empty
setting results in a value of 0. If the whole value cannot be parsed,
ObjectStore signals an error such as the following:

<err-0001-0040>The value of variable_name, bad_value, is not a valid
integer. (err-misc)

Specifying Booleans When a variable has a Boolean value you can specify any nonnull
value except 0 to set the variable. When the value for a Boolean
variable is false, it means that the variable is not set. To turn off a
Boolean variable, set it to 0.

A true setting for an environment variable is anything nonempty/
nonnull that does not completely parse as a constant to the value
of 0 according to the rules of the C programming language. For
example, the following values return true :

• 0Foo and Foo

• 23

• 0 0

• <space>1

• false , False , and FALSE

While the following values return false :

• 0
92 ObjectStore Management

Chapter 3: Environment Variables
• 00

• <space>0

• 0 multiplied by 0

OS_AS_SIZE

Default: by platform Sets the size, in bytes, of the persistent storage region in the
address space for each client. If you do not specify a value for this
variable, which is common, the default depends on your platform,
as shown in the table under the heading Platform on page 95.
Specify numbers of bytes in decimal values.

The size of the persistent storage region on the creating platform
typically determines the size of the largest object you can store in
a database. This is because ObjectStore commits the entire object
in the transaction that allocates it. However, if the maximum size
of a segment is smaller than OS_AS_SIZE, then the largest object
you can store is limited to the maximum segment size. (Allocation
is limited to a single segment.)

Caution An incorrect value for OS_AS_SIZE or OS_AS_START can cause
failures. Be absolutely certain you understand how addresses are
assigned on your platform before you modify these values.

For example, if you quadruple OS_AS_SIZE, your application
runs on a SPARCserver/470, but fails on SPARC 1 and SPARC PC
systems.

When considering address space, note the important distinction
between assigning an address and mapping an address. When
ObjectStore assigns an address, it means that the Server
determines where it would put those pages if the client needed
them. Assigning an address reserves it so that it cannot be
assigned to another page. When ObjectStore maps a page to an
address, it means that the page is available to the client.

ObjectStore assigns address space to any pages outside the
segment containing the initial page that was referred to. This
makes it possible, in certain situations, to use up available address
space by touching a single page. In many cases, changing OS_AS_
SIZE solves this problem. However, there are cases where the
schema design could benefit from the strategic application of
references, and sometimes a reworking of transaction semantics.
Release 5.1 93

OS_AS_START
If the application uses a reference, instead of a pointer, to point to
data in other segments, ObjectStore does not assign address space
to the other segment until the reference is actually resolved. In
programs where a complex schema requires the use of a segment
that contains pointers to lots of data in other segments or where
an extent contains pointers to instances in many segments, use
references instead of pointers. If the client exhausts the address
space, it might be possible to reorganize some of the client’s
transactions to reduce the amount of data being referenced in any
single transaction.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

OS_AS_START

Default:
by platform

Sets the address of the beginning of the persistent storage region
of the process’s address space. If you do not supply a value for this
variable (this is the usual case), the default depends on the
platform, as shown in the table under the heading Platform on
page 95.

Individual platforms impose further constraints on what values
are legal.

See OS_AS_SIZE on page 93 for a caution about the use of this
variable.

If OS_AS_START and OS_AS_SIZE are the same on all machines
that create and use data in a given database, ObjectStore can often
optimize relocation, which improves performance. See OS_
RELOPT_THRESH on page 117 for a discussion of the relocation
optimization.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

The following table shows the specifications for the persistent
storage region in a process’s address space.

OS/2
94 ObjectStore Management

Chapter 3: Environment Variables
Windows NT On Windows NT, two gigabytes is the maximum user-mode
address space. Your program, its data, and ObjectStore’s address
space must fit in two gigabytes. A user program on Windows NT
uses the bottom two gigabytes of address space. DLLs and such
use up space at 0x10000000; stacks use up space at 0x7fxxxxxx.
Consequently, there are only 1.75 gigabytes available.

SPARCstation 10 There is no address space hole on the SPARCstation 10. In a single
mmap , you can map any portion of the address space from
address 0 to the process stack (around 0xefffe000). However, a
single call to mmap has a limit of 0x80000000 bytes (approximately
2 GB). For ObjectStore, that means you can only use half of the
entire 32-bit address space.

SPARCstation 1000 On a SPARCstation 1000, the address space available for mapping
starts above the break. The break is the top of the process's heap.
The heap grows by increasing the break. It is risky to map a
persistent range that is too near the break because a growing heap
might collide with the persistent range.

The hole in the SPARCstation 2’s address space begins at
0x20000000 and ends at 0xe0000000. Addresses above the hole are

Platform Default Starting
Address
OS_AS_START

Default Size
OS_AS_SIZE

Default Ending
Address

Digital UNIX 0x35000000 512 MB+
(0x2003E000)

0x5503E000

HP–UX 0x563A0000 300 MB
(0x12C08000)

0x68FA8000

IBM RS/6000 0x40000000 1024 MB
(0x40000000)

0x80000000

IBM OS/2 0x01000000 128 MB
(0x08000000)

0x09000000

Intel Windows NT
and 95

0x30000000 128 MB
(0x08000000)

0x38000000

SGI MIPS 0x30000000 255 MB
(0x1900000

0FFF0000)

0x3FFF0000

Sun SPARC Solaris 2 0xE2000000 192 MB
(0x0C000000)

0xEE000000
Release 5.1 95

OS_AUTH
available for mapping, but ObjectStore requires that the persistent
range be contiguous, so the range cannot span the hole.

On Solaris 2, the default start address is 0xe2000000, just above the
end of the hole. The persistent range can be placed on either side
of the hole on both systems.

On a SPARCstation 2 running Solaris 2, the size of the persistent
range is limited on the high end by the area where shared libraries
and other objects placed by the system are allocated. This starts
below the stack, around 0xf0000000, and grows downward.

On the SPARCstation 1000, though, this area starts around
0xe0000000, and grows downward. Apparently, on the
SPARCstation 1000, ObjectStore's default range is sandwiched
between the stack and shared libraries. Since the hole does not
constrain the available space on this machine, the system gives the
stack a bit more room to grow by placing shared libraries at lower
addresses.

For a maximum persistent range on the SPARCstation 1000, the
range from 0x10000000 to 0xd0000000 should be safe to use and
large enough for just about any purpose. However, you should
test this before you put an application into production that
depends on it.

SPARCcenter 2000 Up to 1.8 gigabytes can be allocated in a single mmap call.

OS_AUTH

Overrides NT Remote authentication. The following table lists
values that OS_AUTH can be assigned:

Value Authentication Override

0 Client sends no authentication

1 Client sends SYS authentication

3 Client sends DES authentication

10 Client sends Name Password
authentication

12 Client sends NT Local authentication

13 Client sends NT Remote authentication
96 ObjectStore Management

Chapter 3: Environment Variables
OS_BOOTSTRAP_LRU_CACHE_SIZE

Default:
three-quarters
of cache size

Specifies a number of bytes. When the cache grows to this size,
ObjectStore performs an LRU (least recently used) bootstrap
routine to start the process of determining which pages are not
being used. This allows the first page eviction to be done
intelligently, since page eviction chooses pages to evict based on
information that must be collected over time. If the size of your
cache drops below the OS_BOOTSTRAP_LRU_CACHE_SIZE
threshold, ObjectStore suspends this process until you reach the
threshold again. This way your application does not have the
unnecessary overhead of determining which pages should be
evicted.

OS_BOOTSTRAP_LRU_CACHE_SIZE has a default setting that is
three-quarters of the cache size.

If your cache is large enough to hold the entire database being
used by a program, set OS_BOOTSTRAP_LRU_CACHE_SIZE so
that it is greater than the cache size. This improves performance
by avoiding execution of the bootstrap routine. Execution is
unnecessary since page evictions are not needed when the cache
can hold the entire database.

When you set OS_BOOTSTRAP_LRU_CACHE_SIZE to a size
greater than (OS_CACHE_SIZE – eviction_pool_size), ObjectStore
runs the LRU bootstrap routine when there are eviction_pool_size
free pages left in the cache. The eviction_pool_size defaults to 2
percent of the cache and is always at least twice the eviction_batch_
size, which defaults to 1 percent of the cache.

Use the API to set eviction sizes: objectstore::set_eviction_pool_
size and objectstore::set_eviction_batch_size. See ObjectStore C++
API Reference.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

OS_BROWSER_NUMERIC_FORMAT

Default:
ObjectStore defaults

Allows you to set the output format of numeric types. It supports
the following types: int , long , double , ldouble , float , uint , ulong ,
short , and ushort . If you do not set any of these types, ObjectStore
defaults are used.
Release 5.1 97

OS_CACHE_DIR
The following example sets the display format of all int types to
hex, all float types to four-digit precision, and all ulong types to
hex.

OS_BROWSER_NUMERIC_
FORMAT="int=%x,float=%.4f,ulong=%x"

OS_CACHE_DIR

Default:
/tmp/ostore

Specifies the pathname of the directory in which ObjectStore
places the client cache and communications segment (commseg)
files. Specifying an alternative pathname can be useful when your
/tmp/ostore directory is small. ObjectStore places the cache file in
the specified directory, and assigns a file name to avoid conflicts
between multiple processes that are running ObjectStore and
using the same directories.

If OS_CACHE_DIR is not set, ObjectStore places the cache file in the
directory specified by the Cache Directory parameter in the Cache
Manager parameters file, if one exists. See Setting Cache Manager
Parameters on page 333.

This directory should not be an NFS mount point because this can
result in slower client performance and can result in potential
problems with memory mapping over NFS.

Cache and commseg files should be in the same directory. See OS_
COMMSEG_DIR on page 101 for related information.

Windows and OS/2 The operating system determines the location of the cache in
virtual memory. You cannot change the location.

OS_CACHE_SIZE

Default: 8 MB
ObjectStore Single: 2

MB

Size of client cache, in bytes. The cache size defaults to 8 MB,
except for ObjectStore single applications, for which the default
cache size is 2 MB. In either case, the default cache size can be
overridden using the OS_CACHE_SIZE environment variable.

Note that the size of the client cache does not limit the size of an
object that can be in the database. ObjectStore can store an object
on multiple pages and can swap pages in and out of the client
cache as needed.

When trying to determine the optimum cache size for your
application, consider data access patterns as well as how much

UNIX
98 ObjectStore Management

Chapter 3: Environment Variables
data is accessed. In other words, both size and operation are
important. The goal is to minimize the number of times the client
must swap pages out of the cache and send them back to the
Server.

You should also consider the amount of physical memory in your
machine. Usually, it is desirable for the cache to stay in physical
memory rather than be swapped out to disk.

The cache size is limited only by the amount of resources (address
space, memory and/or disk space) on the machine.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

OS_CMGR_STARTUP_LOCK

Default:
varies
by platform

Specifies an alternate location for the Cache Manager start-up lock
file.

On UNIX and OS/2 systems, ObjectStore clients automatically
start a Cache Manager if one is not already running. ObjectStore
uses a special file, called a start-up lock file, to ensure that only one
Cache Manager starts on a host. The default location for this file is

If a Cache Manager is not already running, a client

1 Creates the start-up lock file

2 Launches the Cache Manager

3 Ensures that it can communicate with the Cache Manager

4 Deletes the start-up lock file

The start-up lock file does not contain anything. Its existence
serves as a lock while a client is starting a Cache Manager. This
prevents other clients from also starting a Cache Manager.

If you do not want to use the default location for the start-up lock
file, or if the default location is unavailable, you can specify an
alternative location with the OS_CMGR_STARTUP_LOCK
environment variable. Set this variable to a local pathname.

WIN

OS/2 \SEM32\OSTORE\CMGR4_STARTUP_L

Solaris 2 /var/tmp/cmgr4_startup_lock

Other systems
(not Windows)

/tmp/cmgr4_startup_lock
Release 5.1 99

OS_COLL_POOL_ALLOC_CHLIST_BLKS
ObjectStore tries to use the default first. If it is not possible to use
the default, ObjectStore uses the pathname you specified for OS_
CMGR_STARTUP_LOCK .

The client process must have the authority to create the specified
file.

OS_COLL_POOL_ALLOC_CHLIST_BLKS

Default: false Specifies that chained list blocks should be pool allocated. To set
this variable, specify any nonnull value except 0.

OS_COLL_THREAD_LOCKS

Default: true Determines whether ObjectStore uses a lock to ensure that only
one thread at a time can execute within ObjectStore collections
code.

When this variable is set to a nonnull value other than 0,
ObjectStore uses the collections thread lock. This is the default.

If you are certain that in a multithreaded application only one
thread at a time ever executes any collections operation, then you
can improve performance by disabling the collections thread lock.
In other words, set OS_COLL_THREAD_LOCKS to 0. You can do
this when other threads are using ObjectStore entry points other
than those involved with collections.

The OS_THREAD_LOCKS (see OS_THREAD_LOCKS on page 125)
variable determines whether ObjectStore uses a lock to ensure
that only one thread at a time can execute within ObjectStore code
other than collections code.

If OS_THREAD_LOCKS is disabled, you cannot enable OS_COLL_
THREAD_LOCKS . In other words, when OS_THREAD_LOCKS is
set to 0, ObjectStore cannot use thread locks in any portion of
ObjectStore.

Caution If you set OS_COLL_THREAD_LOCKS to 0, and you cannot
guarantee that only one thread at a time executes within
collections code, you must enforce thread safety in some other
way. If you do not enforce thread safety, and a multithreaded
ObjectStore application has more than one thread executing
within an ObjectStore collections entry point or the fault handler,
then corruption of your nonpersistent data, ObjectStore’s
100 ObjectStore Management

Chapter 3: Environment Variables
nonpersistent data, or persistent data can occur. The corruption
might or might not be detected when it occurs. Program failure
can result.

An application cannot repeatedly enable and disable thread locks.
Use the default, or establish the desired state before calling
objectstore::initialize .

OS_COMMSEG_DIR

Default:
/tmp/ostore

Pathname of the directory used for the communications segment.
ObjectStore automatically places the commseg in the /tmp/ostore
directory. If the UNIX file system containing /tmp/ostore is very
small, it might be desirable to locate the communication segment
elsewhere.

ObjectStore places the commseg in the specified directory and
assigns a unique file name to avoid conflicts between multiple
processes that are all running ObjectStore and using the same OS_
COMMSEG_DIR setting.

Commseg and cache files should be in the same directory. See OS_
CACHE_DIR on page 98 for related information.

This directory should not be an NFS mount point because this can
result in slower client performance and can create potential
problems with memory mapping over NFS.

Windows and OS/2 The operating system determines the location of the commseg in
shared memory. You cannot change the location.

OS_COMMSEG_RESERVED_SIZE

Default: 8 MB Specifies the maximum size, in bytes, to which the commseg
(communications segment) can grow. If you set the maximum size
to something less than the initial size, OS_COMMSEG_SIZE,
ObjectStore automatically increases the reserved size to equal the
initial size.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

In previous releases, this variable was specified as OS_
COMMSEG_MAX_LENGTH . This name is no longer accepted.

UNIX
Release 5.1 101

OS_COMMSEG_SIZE
OS_COMMSEG_SIZE

Default:
approx. 262,144 bytes,
varies by platform and

OS_CACHE_SIZE
setting

Specifies, in bytes, the initial size of the communications segment
(commseg). You must specify an integer that is a multiple of the
page size.

The commseg is a preallocated region that holds ObjectStore
internal data (global data, cache indexing info, and data that
describes databases and segments used by the application).

The size of the commseg depends on the size of the cache file.
Modify the size of the cache file as needed and ObjectStore adjusts
the size of the commseg. The basic formula for commseg size
requirements, roughly, is that you need

• At least 2000 bytes constant overhead

• Plus 64 bytes times the number of pages in the cache

• Plus 840 bytes for each segment you use or create

• Plus a bit more for each Server you use and for each database
you use

For example, for 15,000 segments, assuming an 8 MB cache, which
is 2048 four-kilobyte pages, you can expect to need about
12732840 bytes (12.7 MB) of commseg.

Specifying a value below the minimum size needed to store
required structures in the communications segment has no effect.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.

An application can set its own commseg size with the API
function objectstore::set_commseg_size .

OS_COMMSEG_START

Default: 0 Allows you to control the address of the commseg
(communications segment). Normally, you do not need to set this
variable; ObjectStore picks an address automatically.

If necessary, ObjectStore rounds down the number you specify to
a page-size boundary, that is, a multiple of the page size.
102 ObjectStore Management

Chapter 3: Environment Variables
OS_COMP_SCHEMA_CHANGE_ACTION

Default: error Controls the severity of the error resulting from a type mismatch
during library and compilation schema generation. You can set it
to

OS_DEBUG_C0000005

Default: false Instructs ObjectStore to display a message box if a fault occurs and
the ObjectStore exception handler sees it. The message explains
the fault as an Attempt to read location 0x1234 from EIP 0x10231023.
This can be useful in tracking down access violations in your code.
To set this variable, specify any nonnull value except 0 to turn this
variable on.

OS_DEBUG_LOCATOR_FILE

Default: 0 Instructs ObjectStore to send diagnostic information about the
processing of the locator file to stderr .

When set to 0, the default, no information is provided.

When set to 1, ObjectStore generates a report every time the
locator file is searched. This allows you to determine exactly what
the input to the search is, which in turn lets you diagnose why the
locator file is not providing the expected results.

If your application is a Windows GUI application, see OS_
STDOUT_FILE on page 124.

OS_DEBUG_RECURSIVE_EXCEPTION

Default: false On Windows only, when this is set, recursive exceptions are not
handled by ObjectStore, so they can be debugged in a debugger.

error The type mismatch is reported as an error. The
compilation is eventually terminated, and the
compilation schema remains unchanged.

silent The type mismatch is not reported. The new type
definition replaces the previous definition in the
compilation schema.

warn The type mismatch is reported as a warning. The new
type definition replaces the previous definition in the
compilation schema.

WIN

WIN
Release 5.1 103

OS_DEF_BREAK_ACTION
OS_DEF_BREAK_ACTION

Default: false Allows you to set a break point that obtains a stack trace before the
stack is unwound. When you set this variable to 1, ObjectStore
reaches a hardcoded break point immediately before an exception
is signaled. This is useful when your application exits with an
unhandled TIX exception and works with Visual C++’s just-in-
time debugging. Setting OS_DEF_BREAK_ACTION also hits a
breakpoint if ObjectStore’s internal abort routine is called.

This environment variable cannot be used for systems running
Windows NT on the Digital Alpha architecture.

OS_DEF_EXCEPT_ACTION

Default: not set Controls what happens if an unhandled exception is signaled; this
is useful in debugging unhandled exceptions. You can specify the
following values:

OS_DEF_MESSAGE_ACTION

Default:
not set

Determines the default message action for _ODI_message (used
for unhandled TIX exceptions). You can set this variable to stderr
or stdout to send the information there, or you can specify the
name of a file to receive the information.

WIN

abort ObjectStore aborts the process. On UNIX,
ObjectStore creates a core file, and, if you are
running in a debugger, returns control to the
debugger.

integer Specify an integer greater than or equal to 1.
ObjectStore exits from the program with the
specified integer as the return value.

kill ObjectStore action varies by platform:

• OS/2 — DosExit (EXIT_PROCESS, 0x006600);

• Windows NT and 95— ExitProcess (0x006600);

• UNIX — kill (getpid(), SIGKILL);

Any other
value

ObjectStore exits from the program with a return
value of 1. This is the default.

WIN
104 ObjectStore Management

Chapter 3: Environment Variables
OS_DIRMAN_HOST

Default: not set Specifies a rawfs host name that ObjectStore places at the
beginning of every pathname that does not already begin with the
host:: rawfs prefix. This variable provides a convenient way to
toggle between rawfs and native file systems.

The only exception is for paths that start with :: . In other words,
when you set OS_DIRMAN_HOST, every path, except a path
starting with :: , is a rawfs database pathname. For example, if you
specify twinkie for OS_DIRMAN_HOST and you specify
snoball:/myfile for a pathname, ObjectStore treats it as though you
had specified

twinkie::/myfile

However, if you specify ::/myfile , ::blah or ::../../foo as the
pathname, ObjectStore treats it as a file database on the local host.
When OS_DIRMAN_HOST is set, this is the only way you can
specify a file database.

If OS_DIRMAN_HOST is set, and OS_DIRMAN_USE_SERVER_
PREFIX is set to Yes, ObjectStore builds the path using the value
specified for OS_DIRMAN_HOST. If the result is a::b:c , ObjectStore
interprets it as b::c . The OS_DIRMAN_USE_SERVER_PREFIX
variable allows compatibility with previous ObjectStore releases.
See OS_DIRMAN_USE_SERVER_PREFIX on page 106.

If you use only native file systems, do not set this variable; its use
can cause difficulty in finding your databases or Server.

OS_DIRMAN_LINK_HOST

Default: not set For use in resolving by-ID cross-database references, which have
been obsolete since Release 1. Set the variable to the name of a
Release 5 Server host to enable that Server as the clearinghouse for
such references. The host must have a Release 5 rawfs with a
directory called /.ODI_compatibility_links . In this directory there
must be a link (possibly cross-server) to the actual database. Each
link has a name of the form x_y_z, where x, y, z are the three words
of the database ID, in hexadecimal, padded out to eight characters
with leading zeros.
Release 5.1 105

OS_DIRMAN_USE_SERVER_PREFIX
OS_DIRMAN_USE_SERVER_PREFIX

Default: false Specifies an alternate interpretation of rawfs pathnames. Release
3 Directory Manager pathnames were allowed to have the form

a::b:/foo

In Release 4, ObjectStore interprets such names as

a::/foo

If this is not what you want, you can set the environment variable
OS_DIRMAN_USE_SERVER_PREFIX. When this variable is set,
ObjectStore interprets a::b:/foo as b::/foo .

When OS_DIRMAN_HOST is set and OS_DIRMAN_USE_SERVER_
PREFIX is set, ObjectStore applies the setting of OS_DIRMAN_
HOST first, and then applies OS_DIRMAN_USE_SERVER_PREFIX.

OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT

Default: false Intended for use with the ObjectStore C++ API. When set, causes
the query translator to treat all uses of [and] found in query
expression strings as array subscripting operations. Any setting of
the environment variable is ignored if the application calls

os_coll_query::set_disable_pre2_query_syntax_support()

The use of [and] as the query element selection operator is
discouraged. The use of [%% and %%] is preferred. In a future
release of ObjectStore, support for [and] as the query element
selection operator will be dropped. After you convert your
sources to use the preferred form of the operator, set this variable
to any nonnull value except 0.

OS_DISPLAY_INSTALL_MISMATCHES

Default: false Displays to stdout any mismatches found during MOP dynamic
type installation. When this variable is not set, the only indication
of failure is that an exception is raised. To set this variable, specify
any nonnull value except 0.

If your application is a Windows GUI application, see OS_
STDOUT_FILE on page 124.
106 ObjectStore Management

Chapter 3: Environment Variables
OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS

Default: – (for stderr) For use with the ObjectStore C++ API. When set to a nonnull
string, enables warnings from the C++ API query translator about
the use of obsolete query syntax for nested element selection [(
and)]. The string should name the file to which the warnings
should be written. Any setting of this variable is ignored if the
application calls os_coll_query::set_enable_pre2_query_syntax_
warnings() .

OS_ENABLE_REALTIME_COUNTERS

Default: false Turns on the collection and display of timing statistics that
measure ObjectStore performance. ObjectStore displays values of
real-time counters that help show where time is being spent. To
set this variable, specify any nonnull value except 0.

OS_EVICT_IN_ABORT

Default: false Instructs ObjectStore to evict rather than relocate locked pages
during an abort. This results in improved abort performance if
relocation optimization is not in effect. The tradeoff is that pages
must be fetched for subsequent operations. Specify any nonnull
value except 0.

OS_FORCE_DEFERRED_ASSIGNMENT

Default:false When set to a nonzero value, causes all segments that are in
enhanced format to use deferred assignment. If a segment uses
deferred assignment, it cannot benefit from relocation
optimization.

OS_FORCE_STANDARD_PRM_FORMAT

Default: false When set to a nonzero value, causes all new databases to be
created with the standard (old) PRM format. The standard format
is necessary to ensure compatibility of cross-database pointers for
applications that use databases created with ObjectStore prior to
Release 5.0 and whose PRM format has not been upgraded with
osupgrm.

See ObjectStore Installation and License for Solaris and the ObjectStore
C++ Interface Release Notes for further information.
Release 5.1 107

OS_FORCE_HANDLE_TRANS
OS_FORCE_HANDLE_TRANS

OS_HANDLE_TRANS

Default: false Controls what ObjectStore does if there is a memory fault on an
address that is not in the persistent storage region of address
space, for example, if you happen to dereference a null pointer.

When you set OS_FORCE_HANDLE_TRANS to any nonnull value
except 0 (or objectstore::set_handle_transient_faults is called with
the true argument) ObjectStore signals the appropriate exception:
err_null_pointer or err_deref_transient_pointer. This causes
dereferences to illegal non-ObjectStore addresses to signal a TIX
exception and display a message, and lets you get a stack trace.

When you set OS_HANDLE_TRANS , ObjectStore runs the
SIGSEGV handler that was in force before ObjectStore was fully
initialized. If there is no such handler, ObjectStore signals the
appropriate exception.

If neither of these variables is set, ObjectStore runs the SIGSEGV
handler that was in force before ObjectStore was fully initialized.
If there is no such handler, ObjectStore returns the signal to the
operating system to handle. The operating system performs the
usual actions for SIGSEGVs, for example, dumping core or some
other action that depends on other environment variable settings.

If you do not set up your own SIGSEGV handler before
ObjectStore is initialized, the error message is Segmentation
Violation: Core Dumped. If both variables are set, OS_FORCE_
HANDLE_TRANS has precedence.

OS/2 implements a subset of this feature. OS/2 ignores the value
of OS_FORCE_HANDLE_TRANS . When you set OS_HANDLE_
TRANS, ObjectStore signals the appropriate exception: err_null_
pointer or err_deref_transient_pointer. This causes dereferences to
illegal non-ObjectStore addresses to signal a TIX exception and
display a message, and lets you obtain a stack trace. OS/2 never
runs the previous SIGSEGV handler if OS_HANDLE_TRANS is set.
If you do not set up your own SIGSEGV handler before
ObjectStore is initialized, the error message is SYS3175: Access
Violation.

UNIX

OS/2
108 ObjectStore Management

Chapter 3: Environment Variables
OS_IGNORE_LOCATOR_FILE

Default: false Indicates that no locator file is associated with any application on
the client. This overrides all other settings and function calls,
including the existence of $OS_ROOTDIR/etc/locator . Specify any
nonnull value except 0 to set this variable. Set this variable to 0 to
allow locator files (this is the default).

When this variable is set to a nonnull nonzero value, locator files
are not used but a small part of the locator file logic in the client is
still executed. Consequently, if you have locator file debugging
enabled, you still receive some diagnostic information. See OS_
DEBUG_LOCATOR_FILE on page 103.

For information about the locator file, see Description of the
Locator File on page 285.

OS_INBOUND_RELOPT_THRESH

Default: half the size of
the persistent storage

region

For databases that use enhanced-format PRM segments, sets the
amount of process address space that can be used for immediate
assignments. Values should be set in byte units.

If process address space already exceeds the threshold set, only
immediate assignments that do not further increase process
address space are allowed.

The default value is half the size of the persistent storage region.
The PSR is controlled with OS_AS_SIZE, described in OS_AS_SIZE
on page 93.

OS_INC_SCHEMA_INSTALLATION

Default: false When set, ObjectStore creates new databases in incremental
schema installation mode. This means that ObjectStore adds types
to the database schema as they are needed. When this variable is
not set, ObjectStore creates new databases in batch schema
installation mode. This means that when ObjectStore creates a
database, it creates a database schema that includes all types that
might be allocated in the database.

To set this variable, specify any nonnull value except 0.

An application performs incremental rather than batch schema
installation if either of these conditions is true:
Release 5.1 109

OS_INHIBIT_TIX_HANDLE
• The application has OS_INC_SCHEMA_INSTALLATION set.

• The database was created with incremental schema
installation.

You can override the effect of this environment variable for a
particular process by using objectstore::set_incremental_schema_
installation() . See the ObjectStore C++ API Reference. For a
discussion of the issues involved, see the ObjectStore C++ API User
Guide.

OS_INHIBIT_TIX_HANDLE

Default: not set Specifies an error message substring for which exception
handling is to be disabled.

Many end-user applications have omnibus error handlers to catch
all errors being signaled and present them in an easily readable
format to the user. This sometimes makes debugging difficult,
because the backtrace information has disappeared. When you
specify a substring to OS_INHIBIT_TIX_HANDLE , if the substring
appears in the formatted error message, exception handling is
disabled for the specific error. You can then generate an
unhandled exception dump for analysis, or view the backtrace in
a debugger.

Specify all to disable all handling.

OS_LANG_OVERRIDE

Default: not set OS_LANG_OVERRIDE changes the behavior of ObjectStore without
affecting other applications that depend on LANG .

LANG is a public environment variable that controls the selection
of the message catalog sets appropriate for the specific language
locale. It is also used internally to identify the character encoding
used, and thus affects the processing of strings. This variable
might already be set by your system manager.

Because the LANG variable is public, Object Design supplies
another variable, OS_LANG_OVERRIDE , that takes precedence
over LANG. The result is that anywhere ObjectStore uses catalogs,
OS_LANG_OVERRIDE can change the catalog path construction as
well as the way strings are processed. OS_LANG_OVERRIDE also
affects .msg file path construction for Object Design scripts such
as osinstal and osconfig on platforms that use them.

UNIX
110 ObjectStore Management

Chapter 3: Environment Variables
There is a possibility that the value of LANG is not one of the
variables shown in the following table. If the value set is not one
of those listed in the table, English is assumed unless OS_LANG_
OVERRIDE is set to one of the values in the table.

The values recognized by ObjectStore appear in the following
table.

OS_LIBDIR

Default: OS_
ROOTDIR\lib

Specifies the directory that contains schema files distributed with
ObjectStore. The directory must be on a machine that has a Server,
so you do not receive an error when trying to access the schema
files. This is set up by the installation process. The only exception
to this is if you have a locator file that is set up to handle remote
access to databases and you configure the relevant Server to allow
remote access to databases.

If OS_ROOTDIR is on a machine that does not have an ObjectStore
Server, you must copy or move the library schema files to a
machine that is running a Server. Use this variable to specify the
new directory.

OS_LOCATOR_ESCAPE_CHARACTER

Default: $ The default escape character for regular expressions in locator
files is $, rather than the usual \. You can specify an escape
character explicitly with this environment variable. For

Value HP–UX Non-HP–UX

japanese Shift JIS Code (SJIS) Extended UNIX Code
(EUC)

Ja_JP
jp_JP.sjis
ja_JP.sjis
japanese.sjis

Shift JIS Code (SJIS) Shift JIS Code (SJIS)

Japanese
japanese.euc
japan
Japan
jp_JP
jp_JP.euc
ja_JP
ja_JP.euc

Extended UNIX
Code (EUC)

Extended UNIX Code
(EUC)
Release 5.1 111

OS_LOCATOR_FILE
information about the locator file, see Description of the Locator
File on page 285.

OS_LOCATOR_FILE

Default: false The client environment variable OS_LOCATOR_FILE can be set to
any legitimate argument to objectstore::set_locator_file() , with the
same meaning. Calls to set_locator_file() override this setting. See
the ObjectStore C++ API Reference. See also Description of the
Locator File on page 285.

OS_LOG_TIX_FORMAT

Default: false The name of a log file to record all exceptions signaled. This file
logs all printf control strings signaled, regardless of whether the
exception is handled. This facility is especially useful for
debugging two situations: recursive exceptions (common if you
get exceptions during message processing), and bad printf strings.

OS_META_SCHEMA_DB

Default: $OS_
ROOTDIR/lib/
metaschm.db

Specifies the metaschema database.

The metaschema database, which is shipped with ObjectStore,
describes hidden internal types and is needed for operations such
as data browsing, schema evolution, database verification, and
the Metaobject Protocol (MOP).

The metaschema database must be on the same machine as the
Server. The only exception to this is if you have a locator file that
is set up to handle remote access to databases and you configure
the relevant Server to allow remote access to databases.

Normally, the metaschema database is in $OS_ROOTDIR/lib , but
under certain circumstances it might be elsewhere. This can
happen when the machine where $OS_ROOTDIR resides does not
have a local ObjectStore Server. In this situation, unless you set up
a locator file, you must copy the metaschema database to the
machine that the Server runs on.

If you move the metaschema database out of $OS_ROOTDIR/lib , be
sure to set this variable to the new location so that ObjectStore can
find the metaschema database.
112 ObjectStore Management

Chapter 3: Environment Variables
OS_NB_LANA_NUM

Default: not set Specifies the number of the default network protocol. Typically,
you set this variable when your system is running more than one
protocol. You do this to ensure that ObjectStore uses NetBEUI as its
NetBIOS protocol.

On Windows, set OS_NB_LANA_NUM in the system environment
so ObjectStore services have access to the proper value.

OS_NETWORK

Specifies the network dynamic link libraries (DLLs) to be loaded
and used by all ObjectStore executables. On Windows, the default
is

O4NETNSM,O4NETTCP,O4NETBIO

On OS/2, the default is

O4NETNP,O4NETTCP,O4NETSNA,O4NETBIO

You do not normally need to change the default setting. In other
words, you do not usually set OS_NETWORK. Possible values for
OS_NETWORK are

Possible values • O4NETTCP — TCP/IP network DLL. Used for network
communication.

• O4NETBIO — NetBIOS network DLL. Used for network
communication.

Windows On Windows, you can also specify

• O4NETNSM — Named shared memory DLL. Used for local
interprocess communication.

OS/2 On OS/2, you can also specify

• O4NETNP — Named pipes DLL. Used for local interprocess
communication.

In standard operation, ObjectStore automatically detects which
networks are present, and OS_NETWORK does not need to be set.
However, you can set OS_NETWORK to a comma-delimited list in
situations where you want more control over the network used by
ObjectStore.

WIN

UNIX
Release 5.1 113

OS_NETWORK
Network list order The order of the list is important. On Windows, when you set the
OS_NETWORK variable, you must almost always specify
O4NETNSM as the first network in the list. On OS/2, when you set
the OS_NETWORK variable, you must almost always specify
O4NETNP as the first network in the list. For local connections, the
local network (O4NETNSM for Windows, O4NETNP for OS/2)
offers significantly higher performance than any other network.

If you omit the local network, or do not specify it first, starting an
ObjectStore application might fail to start the Cache Manager
automatically. You must then start the Cache Manager by hand
before running the first ObjectStore application. Many other
operations can fail if these DLLs are not specified at all or not
specified first.

If you specify O4NETBIO, it must always be last. If the NetBIOS
network is present, ObjectStore uses it in preference to other
networks that might follow it in the list.

When to change
the default

Suppose you originally installed ObjectStore on a system
connected to a network. Then you disconnect the system from the
network. You must set OS_NETWORK so that it no longer expects
to enable network protocols. For example, if your system was
previously using TCP and now it is a stand-alone system, you
might receive the following error when you try to run ObjectStore:

ObjectStore internal error
connect failed (err_internal)

Set OS_NETWORK to O4NETNSM on Windows or to O4NETNP on
OS/2 to prevent the TCP interface from loading and allow the
Server to initialize normally.

On OS/2 systems, you might need to change the value of OS_
NETWORK if you receive a message like the following when trying
to run ObjectStore:

** Network error <err-0033-0705>SNA APPCerror: <maint-0033-0332>
AP_Comm>sub system_not_loaded **

ObjectStore signals an exception when it cannot enable a network
protocol that it expects to enable, in this case, SNA networking.
Set the OS_NETWORK environment variable to ignore the missing
protocol or enable the SNA network.
114 ObjectStore Management

Chapter 3: Environment Variables
If you are using TCP/IP on your OS/2 system, do so with a set
statement in your config.sys file. For example:

set OS_NETWORK=O4NETNP,O4NETTCP

If you are using NetBIOS on your OS/2 system, the set statement
is

set OS_NETWORK=O4NETNP,O4NETBIO

Windows On Windows, if you have an unsupported TCP/IP stack on your
machine, and you experience problems, set OS_NETWORK to
O4NETNSM,O4NETBIO so that ObjectStore does not attempt to
initialize or use the unsupported network.

OS_NO_MAPPED

Default: true Instructs ObjectStore not to use mapped communication between
the client and the Server. ObjectStore uses mapped
communication only if the client and the Server are on the same
host and the Server parameter Allow Shared Communications is
set. To set this variable, specify any nonnull value except 0.

OS_NOTIFICATION_QUEUE_SIZE

Default: not set Specifies the maximum number of notifications that can be in a
process’s notification queue. Notification queues are part of the
ObjectStore Cache Manager process. The Cache Manager has a
notification queue for each local client.

If an application does not call the set_queue_size() function, then
ObjectStore uses the value you specify for OS_NOTIFICATION_
QUEUE_SIZE. If an application does not call set_queue_size() , and
this environment variable is not set, ObjectStore uses a default
value of 50.

The maximum allowable value for this variable is 16383. If you set
this variable to a value that is higher, ObjectStore uses 16383 as the
value and not the value you set.

The API for setting the maximum length of the notification queue
is os_notification::maximum_notification_queue_length() .

OS_OSDUMP_APPSCHEMA_PATH

Default: Allows users to give a different path for osdump.adb .

UNIX
Release 5.1 115

OS_OSLOAD_APPSCHEMA_PATH
OS_OSLOAD_APPSCHEMA_PATH

Default: Allows users to give a different path for osload.adb .

OS_OSSG_CPP

Default:
by platform

Sets the C preprocessor used by ossg . You can set this variable to
a nondefault C preprocessor. The following table shows the
default preprocessor on each platform.

OS_OUTBOUND_RELOPT_THRESH

Synonymous with OS_RELOPT_THRESH. See OS_RELOPT_
THRESH on page 117 for a description of this environment
variable.

OS_PORT_FILE

Default: by platform The name of a ports file for network services. See Modifying
Network Port Settings on page 51.

OS_PRINT_CLIENT_COUNTERS

Default: false Turns on display of counters that provide information about
client performance. To set this variable, specify any nonnull value
except 0.

OS_RCVBUF_SIZE

Default: 16384 bytes Sets the default size of the network buffer used by the client to
receive data from the Server. For best results, this size should be
the same as the Server parameter Preferred Network Send Buffer
Size.

See Preferred Network Send Buffer Size on page 87 for further
information.

Note that some applications benefit from an increase in the size of
the network buffers used by ObjectStore clients and Servers. You
can change the size used by the clients from the default of 16384
bytes by setting the environment variables OS_SNDBUF_SIZE and
OS_RCVBUF_SIZE. You can change the size used by the Server by

OS/2

OS/2 icc

UNIX cpp

Windows cl
116 ObjectStore Management

Chapter 3: Environment Variables
setting the Server parameters Preferred Network Send Buffer Size
and Preferred Network Receive Buffer Size . Usually, you achieve
the best performance if OS_SNDBUF_SIZE is the same as Preferred
Network Receive Buffer Size and OS_RCVBUF_SIZE is the same as
Preferred Network Send Buffer Size .

Depending on the operating system, you might find that large
values are rejected, which leads to reduced performance. Object
Design recommends that you experiment by doubling the size
until performance no longer improves.

OS_RELOPT_THRESH

Defaults:
0x4000000
(64 MB)
0x10000000
(256 MB)
on AIX

The name is short for relocation optimization threshold. Use this
variable to specify how much relocation information each
segment in a database can store about every other segment in the
database, in bytes. ObjectStore uses many criteria to determine
whether or not to relocate a page. One factor is whether or not the
total amount of pseudoaddress space assigned within the
segment’s relocation map has exceeded this threshold. If the
threshold has been exceeded, ObjectStore suppresses the
relocation.

Note that OS_RELOPT_THRESH is used to decide if outbound
relocation is allowed. For information on controlling inbound
relocation, see osprmgc: Trimming Persistent Relocation Maps on
page 202.

The most common use of this environment variable is to disable
outbound relocation optimization entirely by setting it to 0. You
can specify any number of bytes.

Relocation map Every segment in an ObjectStore database contains a relocation
map for the segment. If the database only consists of one segment,
this is the relocation map for the entire database. However, if the
database contains multiple segments, the relocation map for every
segment in the database is stored in every other segment. This is
true until the database grows to the size of OS_RELOPT_THRESH.
When this occurs, relocation information for external segments is
only added when a pointer to an object in another segment is
added to the segment.

Performance When the relocation maps get large and there are a large number
of segments in the database, you lose the performance benefits of

C++
Release 5.1 117

OS_RELOPT_THRESH
having the segment relocation map repeated in each segment. In
fact, the performance most likely deteriorates.

Setting OS_RELOPT_THRESH to 0 causes the ObjectStore client
not to include any relocation information for other segments in
the same database that are not being referenced by this segment.
When the amount of relocation information becomes large, this
saves the database reader the expense of reading in this additional
information and also saves the database population program the
expense of creating it.

Avoiding large
relocation maps

To avoid having large segment relocation maps, you can presize
your segments with the os_segment->set_size() function. This
limits the need for multiple entries in the relocation map for a
segment. When a segment is created it reserves a default amount
of persistent address space:

At this point there is only one entry in the relocation map for the
segment. Roughly, this entry contains a location and a size. If you
enlarge the segment through a persistent new , and the persistent
address space above the end of the segment is available, only the
size field of the relocation map entry needs to be updated. A new
relocation map entry is not required. However, if the persistent
address space above the segment at the time of the persistent new
is not available and persistent address space looks like this:

Then after the new , persistent address space looks like this:

This forces the need for a new entry in the relocation map for Seg1.
In addition, the entry is migrated to all the other segments in the
database if the database has not reached the value of OS_RELOPT_
THRESH.

Persistent Address Space

Seg1

Persistent Address Space

Seg2Seg1

Persistent Address Space

Seg2Seg1 Seg1
118 ObjectStore Management

Chapter 3: Environment Variables
Presizing the segment can help avoid this. You can use the
ObjectStore utility ossize with the -a and -c options to see how
many entries are in the relocation map for each segment of the
database. This should help you determine if segment
fragmentation is taking place.

Relocation
optimization
procedure

ObjectStore performs relocation optimization automatically
whenever conditions permit. At a minimum, relocation
optimization occurs when objectstore ::set_check_illegal_pointers
is not enabled.

What happens in relocation optimization is that ObjectStore tries
to set up the transient address map (the in-use TRM) for a
transaction so that all pseudoaddress values stored in a segment
(that is, the process-neutral pointer values stored in the database)
match up exactly with the process-specific virtual addresses that
are used in the current transaction. In other words, inbound
pointer relocation can be skipped for any page accessed in that
segment because all pointers on any of the segment’s pages
already have correct address values.

Relocation optimization can result in a noticeable performance
improvement, especially when many pages are retained in the
client cache and reused in successive transactions.

For relocation optimization to be useful in as many cases as
possible, it is important for the persistent relocation maps (PRMs)
for each database segment to be as similar as possible. In other
words, any two segments that both contain outbound pointers to
the same segment should use the same pseudoaddress range to
refer to that segment. This way, relocation optimization is
effective regardless of the order in which segments are accessed in
a transaction.

When relocation optimization is in effect, ObjectStore skips
outbound pointer relocation when pages are evicted from the
cache or when the current transaction is complete. Normally, it is
during outbound pointer relocation that the ObjectStore client
adds entries to a segment’s PRM. This happens whenever an
application updates objects in a segment to point to some other
segment for the first time (or to a part of some segment that it
never pointed to before).
Release 5.1 119

OS_RESERVE_AS
When relocation optimization is in effect and a segment is
modified in a committed transaction, ObjectStore takes the
conservative approach of updating the segment’s PRM to contain
an entry for every entry in the in-use PRM. This includes any
segments referenced in the current transaction, as well as any
segments reachable from (that is, pointed to by) objects in those
segments. The reason for this is that ObjectStore has no record of
what changes were made to the segment, after a page in the
segment became enabled for write access. It is possible that a
pointer to a valid persistent object was copied from any other
persistent object that was active in the transaction.

PRM bloat The effect of this is referred to as PRM bloat. The PRM for a
segment is likely to contain entries for segments that are never
actually pointed to by that segment. Since address space is
reserved for all entries in a PRM (when the segment is first
accessed in a transaction), this condition might lead to excessive
consumption of address space, especially as databases become
large.

ObjectStore uses the environment variable OS_RELOPT_THRESH
to put an upper bound on PRM bloat. The way this works is that
when the sum of the sizes of all PRM entries in a segment exceeds
the value of OS_RELOPT_THRESH, ObjectStore disables relocation
optimization, and normal outbound pointer relocation is used to
determine when the PRM needs to have new entries added to it.

If you know that a database your application uses is larger than
the default value, but less than the maximum size of the persistent
storage region, then you might choose to increase the value of OS_
RELOPT_THRESH to keep the relocation optimization in force for
larger databases.

On the other hand, if an application is trying to conserve address
space, it might make more sense to set OS_RELOPT_THRESH to 0
to disable relocation optimization.

OS_RESERVE_AS

Default: false There is an optimization to ObjectStore that increases
performance, sometimes by a very significant factor. ObjectStore
uses this optimization when this environment variable is not set.
This means performance is fast but there is potential for

UNIX
120 ObjectStore Management

Chapter 3: Environment Variables
confusion. ObjectStore does not use the optimization when this
environment variable is set.

This optimization can cause trouble if your own program calls the
mmap system call with 0 as the first argument, or if your program
calls some subroutine library that does so. If your program does
either of these things, you should disable the optimization, either
by calling the entry point objectstore::set_reserve_as_mode(os_
boolean new_mode) , or by setting the environment variable OS_
RESERVE_AS to any nonnull value except 0. If you both call the
entry point and set OS_RESERVE_AS, the entry point takes
precedence.

This variable affects the setting of reserve address space mode.
When ObjectStore is in this mode, it always keeps the entire
persistent region reserved, from the operating system’s point of
view, so that any other subsystem in the client process that maps
something in and asks the operating system to assign some
address space receives address space outside the persistent
region.

If reserve address space mode is off, such a request might assign
space that is part of ObjectStore’s persistent region. This can cause
problems because the subsystem appears unable to coexist with
ObjectStore.

If reserve address space mode is off, however, operating system
calls that manipulate the virtual address space are faster on some
platforms.

OS_ROOTDIR

Default: varies
by platform

The top-level directory in the part of the file system hierarchy
containing ObjectStore files serves as the prefix of various
directory names used in search paths. This environment variable
is required to run ObjectStore. You set the value of the variable
when you install ObjectStore.

If you change the location of your ObjectStore installation, be sure
to change the value specified for OS_ROOTDIR. Not doing so can
cause the following message to be displayed:

no handler for exception:
no networks where registered, please verify your ostore network
configuration: <err_0001_0141>
Release 5.1 121

OS_SCHEMA_KEY_HIGH
The client tried to find the Server over the network. With an
incorrect setting for OS_ROOTDIR, this happens even when the
client and the Server are on the same machine.

Defaults The following table shows the defaults for OS_ROOTDIR.

Windows If ObjectStore was not installed in C:\OSTORE, you must set OS_
ROOTDIR to the location of the directory where ObjectStore was
installed. OS_ROOTDIR should be kept in the DOS environment,
so that makefiles and DOS utilities can reference it.

OS_SCHEMA_KEY_HIGH

OS_SCHEMA_KEY_LOW

Default: 0 OS_SCHEMA_KEY_HIGH specifies the high four bytes of a 64-bit
schema key.

OS_SCHEMA_KEY_LOW specifies the low four bytes of a 64-bit
schema key.

If you run certain ObjectStore tools and utilities on schema-
protected databases, set OS_SCHEMA_KEY_LOW and OS_
SCHEMA_KEY_HIGH to specify the schema keys of the databases
to be accessed. The tools and utilities for which you must set these
variables include

• oscompact

• osexschm

• ossevol

• ossg

• ossize

• osverifydb

Platform Default for OS_ROOTDIR

OS/2 The parent of the directory containing the
O4LOW.DLL that is executing

Solaris 2 /opt/ODI/OS5.0

UNIX
(except Solaris 2)

/usr/local/ODI/OS5.0

Windows The parent of the directory containing the
O4LOW.DLL that is executing
122 ObjectStore Management

Chapter 3: Environment Variables
Any ObjectStore application, including an ObjectStore tool or
utility, can have a schema key that allows it to access a protected
database with a matching key. Normally, you specify a key for an
application programmatically. See objectstore::set_current_
schema_key() in the ObjectStore C++ API Reference. These
environment variables are provided because it is not possible for
you to set the schema key of a tool or utility programmatically.

You can, however, build an application that performs the same
function as an ObjectStore utility, by calling a member of the class
os_dbutil . This application can specify the schema key
programmatically.

Deploying
applications

If you are deploying an application, you need to know that some
ObjectStore tools (such as ossg) cannot be invoked from the
ObjectStore API. To allow your customers to use such a tool on a
database that you have protected, build an application that
spawns the tool as a child process. Specify the key of the child
process by setting the environment variables from within the
application.

These environment variables determine an application’s schema
key when an ObjectStore application attempts to access data in a
schema-protected database, and either one of the following is
true:

• The application did not set the schema key using
objectstore::set_current_schema_key() .

• The application’s most recent call to objectstore::set_current_
schema_key() specified 0 for both arguments.

Keep in mind that when the environment variables determine an
application’s schema key, all schema-protected databases that the
application accesses must have the same schema key.

If you run an application on a schema-protected database, and the
application does not have a schema key, or the application’s
schema key does not match the database’s schema key,
ObjectStore signals err_schema_key and issues an error message
like the following:

Error using schema keys
<err-0025-0151> The schema is protected and the key, if provided, did
not match the one in the schema of database db1.
Release 5.1 123

OS_SECURE_RPC_DOMAIN
See also For information about the schema protection API, see
objectstore::set_current_schema_key() , os_database::change_
schema_key() , and os_database::freeze_schema_key() in the
ObjectStore C++ API Reference.

OS_SECURE_RPC_DOMAIN

Default: not set Specifies a local domain name. For use with AUTH_DES
authentication. If there is no system getdomainname() routine or if
it returns null, this variable is consulted for the name of the local
domain.

OS_SNDBUF_SIZE

Default: 16384 bytes Sets the default size of the network buffer used by the client to
transmit data to the Server. For best results, this size should be the
same as the Server parameter Preferred Network Receive Buffer
Size.

See Preferred Network Receive Buffer Size on page 87 for
additional information about the Server network buffer size. See
further discussion about these parameters and how they affect
performance in OS_RCVBUF_SIZE on page 116.

OS_STDOUT_FILE

Default: not
set

Specifies the pathname of a file to which you want to redirect
output that ObjectStore would otherwise send to stdout and
stderr .

If your application is a Windows GUI and this variable is not set,
ObjectStore displays the output in a MessageBox.

To separate the output from several applications, you can set this
variable to a pathname such as C:\TEMP\DEBUG.%d . ObjectStore
substitutes the process ID in place of the %d.

OS_SUPPRESS_PRE2_QUERY_SYNTAX_WARNINGS

Default: false Suppresses warnings when an application contains the pre-
Release 2 element selection operator [] . To set this variable, specify
any nonnull value except 0.

WIN
124 ObjectStore Management

Chapter 3: Environment Variables
OS_THREAD_LOCKS

Default: true Determines whether ObjectStore uses a lock to ensure that only
one thread at a time can execute within ObjectStore code other
than collections code.

When this variable is true (set to a value other than 0), ObjectStore
uses the thread lock. This is the default.

If OS_THREAD_LOCKS is not set, you cannot enable OS_COLL_
THREAD_LOCKS (see OS_COLL_THREAD_LOCKS on page 100). In
other words, when OS_THREAD_LOCKS is set to 0, ObjectStore
cannot use thread locks in any portion of ObjectStore.

OS_TIX_BUFFER_SIZE

Default: 8192 Specifies the size in bytes of the error report buffer. The default
size is large enough for all reasonable and expected errors.
However, if an error message is extremely long, it might overflow
the buffer and cause the application to abort. If this happens, you
can resolve the problem by setting this variable to a larger value.

OS_TIX_WD

Defaul:none: Specifies the working directory for ObjectStore when an
unhandled TIX exception causes ObjectStore to create a core
dump. (Whether or not there is a core dump depends on the
platform and on the setting of the OS_DEF_EXCEPT_ACTION
environment variable.)

When you specify a directory for OS_TIX_WD, ObjectStore sets
that directory to be the working directory before it creates the core
file.

This is particularly useful for ObjectStore daemons. For example,
on UNIX systems the Cache Manager always runs with its
working directory set to the root directory. This avoids
administration problems such as preventing volumes from being
unmounted. Set the OS_TIX_WD variable to control where
ObjectStore puts core dumps of the Cache Manager daemon.

OS_TMPDIR

Default: not
set

Specifies a directory in which to place temporary files. If you do
not set OS_TMPDIR, ObjectStore uses the path returned by the

UNIX

UNIX

WIN
Release 5.1 125

OS_TRACE_MISSING_VTBLS
Win32 API GetTempPath() . To set this variable, specify any
nonnull value except 0.

OS_TRACE_MISSING_VTBLS

Default: false Causes a run-time debugging message to be printed to stderr
when a missing vtbl handler is installed for a class. The message
identifies the class with the missing vtbl handler. For example:

Installing missing vtbl: Class: CCC Name: NNN Symbol: SSS

When you are missing a vtbl, the err_missing_vtbl run-time error
message does not indicate the vtbl that is missing. If you rerun the
application with OS_TRACE_MISSING_VTBLS turned on,
ObjectStore catalogs vtbls that

• Were not found at initialization

• Might result in err_missing_vtbl errors later on

When you are debugging problems with missing vtbls, this helps
determine which classes need vtbls. Any nonempty value except
0 enables the debugging message.

OS_TURN_ON_ENGLISH_MESSAGES

When set to 1, forces the printing of English messages along with
the catalog-retrieved language-specific message.

CCC Identifies the class of the top-level object for
which the vtbl was found to be missing.

NNN Identifies the independent name of the vtbl. For
example, Derived_class::Base_class.

SSS Identifies the mangled name of the vtbl symbol
that was missing.
126 ObjectStore Management

Chapter 4
Utilities

This chapter provides information about ObjectStore utilities.
Many of these utilities are implemented using the os_dbutil class
methods. See the ObjectStore C++ API Reference.

The following utilities are described in alphabetical order in this
chapter:

os_postlink: Fixing Vtbls and Discriminants 130

osarchiv: Logging Transactions Between Backups 132

osbackup: Backing Up Databases 139

oschangedbref: Changing External Database References 146

oschgrp: Changing Database Group Names 149

oschhost: Changing Rawfs Link Hosts 151

oschmod: Changing Database Permissions 153

oschown: Changing Database Owners 156

oscmrf: Deleting Cache and Commseg Files 158

oscmshtd: Shutting Down the Cache Manager 159

oscmstat: Displaying Cache Manager Status 160

oscompact: Compacting Databases 164

oscopy: Copying Databases 168

oscp: Copying Databases 171

osdf: Displaying Rawfs Disk Space Information 176

osdump: Dumping Databases 177

osexschm: Displaying Class Names in a Schema 188

osgc: Garbage Collection Utility 189
Release 5.1 127

osglob: Expanding File Names 192

oshostof: Displaying Database Host Name 193

osln: Creating Links in the Rawfs 194

osload: Loading Databases 196

osls: Displaying Directory Content 197

osmkdir: Creating a Rawfs Directory 199

osmv: Moving Directories and Databases 200

osprmgc: Trimming Persistent Relocation Maps 202

osprop: Propagating Server Logs 205

osrecovr: Restoring Databases from Archive Logs 206

osreplic: Replicating Databases 213

osrestore: Restoring Databases from Backups 216

osrm: Removing Databases and Rawfs Links 222

osrmdir: Removing a Rawfs Directory 224

osscheq: Comparing Schemas 225

osserver: Starting the Server 227

ossetasp: Patching Executable with Application Schema
Pathname 229

ossetrsp: Setting a Remote Schema Pathname 231

ossevol: Evolving Schemas 232

ossg: Generating Schemas 236

ossize: Displaying Database Size 248

ossvrchkpt: Moving Data Out of the Server Transaction Log 253

ossvrclntkill: Disconnecting a Client Thread on a Server 254

ossvrdebug: Setting a Server Debug Trace Level 256

ossvrmtr: Displaying Server Resource Information 257

ossvrping: Determining If a Server Is Running 258

ossvrshtd: Shutting Down the Server 259

ossvrstat: Displaying Server and Client Information 261

ostest: Testing a Pathname for Specified Conditions 271

osupgprm: Upgrading PRM Formats 272

osverifydb: Verifying Pointers and References in a Database 274

osversion: Displaying the ObjectStore Version in Use 279
128 ObjectStore Management

Chapter 4: Utilities
Pathnames for utility
executables

The pathname of the executable for an ObjectStore utility is

Earlier releases In previous releases of ObjectStore, utilities were in the /admin and
/debugging directories. These directories are obsolete.

FAT names on OS/2 On OS/2, if you install ObjectStore on a FAT file system,
ObjectStore uses the FAT name for a utility if the usual name of
the utility exceeds eight characters.

UNIX $OS_ROOTDIR/bin/ utility-name

Windows and OS/2 %OS_ROOTDIR%\bin\ utility-name.exe
Release 5.1 129

os_postlink: Fixing Vtbls and Discriminants
os_postlink: Fixing Vtbls and Discriminants

On cfront platforms, the os_postlink utility fixes vtbls and
discriminants in your executable.

While os_postlink does not actually do anything on some
platforms, Object Design recommends that you always call it from
a makefile so that its absence does not cause a problem if you
move the application to another platform.

Syntax

Use the OS_POSTLINK macro in your makefile to call the os_
postlink utility.

$(OS_POSTLINK) executable

Description

When ObjectStore reads in an object with virtual functions, it
supplies an appropriate vtbl pointer from the current application.
This is called vtbl relocation.

When your application references a persistent object of a class
with virtual functions, ObjectStore must fill in the vtbl pointer in
the object. Virtual function tables are not stored in databases; they
are part of your executable. To fill in the vtbl pointer, ObjectStore
needs the address of the vtbl for the class.

During relocation, ObjectStore might need vtbls and discriminant
functions. It finds them in tables that map class names to
references to vtbls and discriminant functions. The schema
generator generates a C++ source file (or object file for Visual
C++) containing these tables that relate your schema to your
application.

These tables are filled in during application link or postlink or at
program start-up time, or some combination of these, depending
on the platform. At each of these steps, the referenced vtbls and
discriminants are searched for in the executable and, if found, are
entered into the tables. At run time, ObjectStore can use these
tables to find items for relocation.

On cfront platforms, the os_postlink executable performs this job.
On some platforms, the compiler/linker does it. On some

UNIX
130 ObjectStore Management

Chapter 4: Utilities
platforms, this search might be done at run time based on the
currently available DLLs.

API None.
Release 5.1 131

osarchiv: Logging Transactions Between Backups
osarchiv: Logging Transactions Between Backups

The osarchiv utility records all transaction activity for specified
databases. You can run this utility interactively or in the
background.

Syntax

osarchiv [options] -d directory [pathname...]

Options

-d directory Specifies the directory in which to create the
archive log files. This is required.

pathname... Specifies a database or rawfs directory whose
transactions you want to log. You can specify one
or more pathnames. Pathnames can be on different
Servers.

Databases can be file or rawfs databases.

When you specify a rawfs directory, osarchiv logs
transactions for all databases in that directory. It
does not operate on databases that are in
subdirectories unless you specify the -r option.

The group of databases for which you are
performing archive logging is called the archive set.

If you do not specify at least one pathname, you
must specify the -I (I) option with an import file
name.

-a archive-record-file Specifies the pathname of the file that osarchiv uses to record the
segment change IDs for the archive set. The osarchiv utility
updates this file each time it successfully records committed
changes to the archive set — this is referred to as taking a
snapshot. The archive record file is comparable to the incremental
record file for osbackup .

-B size Specifies the size of the buffer used by each Server that osarchiv
contacts. size is a number optionally appended with k, m, or g to
indicate kilobytes, megabytes, or gigabytes, respectively. If no
letter is specified, m is presumed. For example, -B 1024k , -B 1m ,
and -B 1 each specify a maximum buffer size of 1 megabyte. The
default value is 1 MB.
132 ObjectStore Management

Chapter 4: Utilities
-C Enables the interactive command-loop feature. This feature is
disabled by default.

-i interval Specifies an integer that osarchiv uses as the interval between
snapshots. By default, this interval is in seconds, but you can
append m, h, or d to indicate minutes, hours, or days. For example,
-i 60 and -i 1m both specify an interval of one minute.

When interval is not 0, osarchiv takes a snapshot immediately after
being initiated and then every interval seconds (or minutes, hours,
or days) thereafter.

When you do not specify an interval, it defaults to 0, which means
that snapshots are not automatically taken. You can take a
snapshot at any time that osarchiv is active by issuing the x
command. See the command description for x on page 134.

-I import-file Specifies the name of a file that contains a list of either file or rawfs
database pathnames. The osarchiv utility logs transactions for the
databases in this list. The osarchiv utility cannot read such a list
from stdin .

The list contains one pathname per line. Leading and trailing
white space is ignored.

If you specify the -I (uppercase I) option, you can also specify
additional pathnames on the command line. After you initiate the
osarchiv utility, you can use the a command to add databases to
the archive set. See a pathname on page 134. You cannot specify -I-.

-r Instructs osarchiv to descend into any rawfs directories specified
on the command line, adding all rawfs databases found to the
archive set. By default, only databases in the specified directory
are backed up.

When archiving file databases, specifying the -r option has no
effect. You must explicitly specify each file database.

After archive logging begins, you can add a rawfs directory to the
archive set. If you specified -r when you initiated osarchiv , it
applies to subsequently added rawfs directories.

You cannot specify the -r option for some directories and not for
others. When specified, it applies to the entire archive set.
Release 5.1 133

osarchiv: Logging Transactions Between Backups
Commands

You can execute the following commands when you use osarchiv
in interactive mode. The utility processes the command between
snapshots.

-s size Specifies the maximum amount of data to write to an archive file.
By default, this size is in megabytes. You can specify KB, MB, or
GB by appending k, m, or g to size. For example, -s 1024k , -s 1m ,
and -s 1 each specify a maximum archive file size of 1 megabyte.

When an archive file is full, the osarchiv utility automatically
starts using the next file in the archive file sequence. A particular
snapshot is always in a single archive file; osarchiv never stores it
across two files.

The default is 2 MB.

a pathname Adds the specified file database or rawfs database
or directory to the archive set.

h Displays on-line help.

i interval Interval — changes the interval between snapshots.
Specify an integer for interval. You can append the
letter m, h, or d to indicate minutes, hours, or days.
For example, i 60 and i 1m both specify an interval
of one minute. When interval is 0, snapshots are not
automatically taken.

You can specify i without an integer to display the
current interval.

You cannot take a snapshot of each transaction.

n Next — closes the current archive file and starts
saving snapshots in the next archive file in the
sequence.

q or EOF Quit — takes a snapshot immediately and then
terminates the osarchiv utility.

r pathname Removes the specified file database or rawfs
database or directory from the archive set.

t Table of contents — displays the pathnames of the
databases and rawfs directories in the archive set.

x eXplicit — takes a snapshot as soon as you issue the
command. This has no effect on snapshot intervals.
134 ObjectStore Management

Chapter 4: Utilities
Description

When archive logging is active, ObjectStore takes snapshots of
modifications to the archive set. An archive snapshot records all
data modified by transactions that have committed since the last
snapshot was taken.

When you start osarchiv , the first snapshot records data modified
by transactions that committed since the last time the osbackup or
osarchiv utility was run.

Tape device You cannot perform archive logging to a tape device.

Archive
file format

The osarchiv utility places snapshots in archive files in the
directory that you specified when you initiated the osarchiv
utility. The utility uses the following naming convention for
archive files:

YYMMDDHH.ext

Switching
archive files

The osarchiv utility places consecutive snapshots in the same
archive file until one of the following happens:

• You issue the n command, which instructs osarchiv to use the
next archive file.

• An archive file contains the maximum amount of data allowed
(specified with -s) and osarchiv switches to the next archive file
in the sequence. The default maximum size is 2 MB.

Ensure sufficient
disk space

You must ensure that there is sufficient disk space available to the
osarchiv utility by periodically moving archive files to secondary
storage. When osarchiv runs out of disk space for archive files, it
notifies you and suspends activity. You must move archive files or
allocate additional disk space to allow the utility to continue.

Adding to
archive set

When you add a database to a directory for which you are
performing archive logging, the osarchiv utility does not

Variable Meaning

YY Year

MM Month

DD Day

HH Hour

ext Extension of the form aaa, aab, aac, and so on
Release 5.1 135

osarchiv: Logging Transactions Between Backups
automatically begin to take snapshots of that database. To enable
archive logging for the additional database, you must use the a
command to explicitly add the database to the archive set.

Deleting a database When you are performing archive logging for a database, the
Server keeps the database open. This has implications for deleting
databases.

OS/2 and Windows On OS/2 and Windows, you cannot delete a database for which
you are performing archive logging until you invoke the
osarchiv r command to remove the database from the archive set.

UNIX On UNIX systems, when you remove a file the operating system
removes its directory entry, but does not actually delete the file or
free associated disk space until there are no applications that have
the database open. Again, you must invoke the osarchiv r
command to remove the database from the archive set.

On all systems, the r command does not take effect until the end
of a snapshot.

Tradeoffs for Obtaining the Results You Need

Decreasing the time between snapshots decreases the number of
transactions recorded in each snapshot. Shorter intervals between
snapshots have the effect of keeping the archive more up to date
and keeping the amount of data that needs to be archived smaller.

However, each snapshot causes information to be written to the
archive file even if no data modifications are being recorded.
Taking snapshots too frequently can consume space in the archive
file unnecessarily. Longer intervals can reduce the amount of data
being logged in cases where the same data is modified by multiple
transactions. In such cases, only the most recent copy of the
committed data needs to be logged.

Examples

In the following example, ./inc is the pathname of the file that
osarchiv uses to record the segment change IDs for the archive set.
The osarchiv utility updates this file each time it takes a snapshot.
The directory in which to create the archive log files is
/vancouver1/archives . The -i option indicates that snapshots
should be taken every 30 seconds. The -r option instructs osarchiv
to descend into any rawfs directories specified on the command
136 ObjectStore Management

Chapter 4: Utilities
line, adding all rawfs databases found to the archive set. Finally,
vancouver::/ specifies a rawfs directory whose transactions you
want to log.

% osarchiv -C -a ./inc -d /vancouver1/archives/ -i 30 -r vancouver::/
Writing backup volume #1 (/vancouver1/archives/96011216.aaa)...

Display archive set
members

> t
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db

Take a snapshot now > x
Archiving 452 sectors in database vancouver::/dbdir/bar.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.

Add to archive set > a /vancouver1/dbdir/foo.db

Display archive set
members

> t
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
vancouver:/vancouver1/dbdir/foo.db

If you press Enter while the osarchiv utility is taking a snapshot,
the utility displays a message such as the following. If it is not
taking a snapshot, the utility displays another prompt symbol.

>
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.

Save snapshots in next
archive file

> n
Closing volume #1 (/vancouver1/archives/96011216.aaa).
Writing backup volume #2 (/vancouver1/archives/96011216.aab)...

Display snapshot
interval

> i
Snapshot interval is 5 seconds.

Change snapshot
interval

> i 1m
> i
Snapshot interval is 60 seconds.

Remove member of
archive set, display
archive set members

> r vancouver::/foo.db
> t
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
vancouver:/vancouver1/dbdir/foo.db

Take a snapshot now > x
Release 5.1 137

osarchiv: Logging Transactions Between Backups
Archiving 68 sectors in database vancouver::/foo.db.

Take a snapshot and
terminate osarchiv
utility

> q
Closing volume #2 (/vancouver1/archives/96011216.aab).
%

API None.
138 ObjectStore Management

Chapter 4: Utilities
osbackup: Backing Up Databases

The osbackup utility copies specified databases to another on-line
location or to tape.

Syntax

osbackup [options] -f backup-image-file [-f backup-image-file]...
pathname ...

-f backup-
image-file

Specifies the location of the backup image.

You can specify a local file or a locally mounted file.

You can specify a tape device that is directly
accessible from the host on which you are running
osbackup . You cannot specify a remote tape device.

You can repeat the -f option with a new backup-
image-file to create a multifile backup. When you do
this, specify the -s option to indicate the size of each
backup-image-file. For example:

osbackup -s 1m -f back1 -f back2 -f back3 db1 db2 db3

ObjectStore tries to back up the databases to the
back1 , back2 , and back3 files. The utility prompts
for additional file names if 1MB per file is not
sufficient.

On UNIX systems, you can specify -f - (hyphen) to
indicate stdout . This allows you to pipe osbackup
output directly to the osrestore utility.

On Windows NT systems, you specify a tape device
with this syntax, \\.\Tape0, the standard Windows
NT name for the first tape drive.

pathname... Specifies a database or directory to be backed up.
You can specify one or more pathnames.
Pathnames can be on different Servers.
Release 5.1 139

osbackup: Backing Up Databases
Options
-a Aborts the backup operation if the utility cannot open the backup

device. This raises an exception that indicates the problem.

The default is that if the backup utility fails to open the backup
device, it displays a message and waits for you to correct the
problem.

Examples of failure to open the backup device are having a write-
protected tape or no tape loaded.

-b blocking-factor Specifies a blocking factor to use for tape input and output. The
blocking factor is in units of 512-byte blocks. This parameter is
ignored for regular files. The default on UNIX is 126 blocks. The
maximum blocking factor is 512 blocks.

-B size Specifies the size of the buffer used by the Servers contacted by
osbackup . size is a number optionally appended with k, m, or g to
indicate kilobytes, megabytes or gigabytes respectively. If no letter
is given, m is presumed. For example, -B 1024k , -B 1m , and -B 1
each specify a maximum buffer size of 1 megabyte. The default
value is 1 MB.

-i incremental-record-file Required. Specifies the incremental record file, a file that contains
information about which databases have been backed up, and
when they were backed up. The osbackup utility uses this
information to determine which segments within a database have
been modified since the last backup at a lower level. The utility
then backs up only modified segments. The incremental record
file is comparable to the archive record file for osarchiv .

Performing a backup at any level for which no previous
information exists is equivalent to doing a level 0 backup for that
database.

-I import-file Specifies the name of a file that contains a list of either file or rawfs
database pathnames. The osbackup utility backs up the databases
in this list. If you specify "-" as the import file name, osbackup
reads from standard input.

The list contains one pathname per line. Leading and trailing
white space is ignored.

If you specify the -I option, you can also specify additional
pathnames on the command line.
140 ObjectStore Management

Chapter 4: Utilities
-l level Lowercase L specifies the level of the backup. Specify an integer
from 0 to 9. Files that have been modified since the last backup at a
lower level are copied to the backup image. For example, suppose
you did a level 2 backup on Monday, followed by a level 4 backup
on Tuesday. A subsequent level 3 dump on Wednesday would
contain all files modified or added since the level 2 (Monday)
backup.

Backup is incremental at the segment level, meaning that a
segment is only backed up if it has been modified since the last
backup at a lower level. A level 0 backup (the default) backs up all
segments in all specified databases.

-r Instructs osbackup to descend into any rawfs directories specified
on the command line, adding all rawfs databases found to the list
of databases to be backed up. By default, only databases in the
specified directory are backed up. When backing up file
databases, specifying the -r option has no effect. You must
explicitly specify each file database.

-s size Sets the size of the volume being dumped to. The osbackup utility
prompts you to insert a new tape or specify a new backup image
file after it writes the amount of data specified by size.

You can specify k, m, or g to indicate that size is in units of
kilobytes, megabytes (the default), or gigabytes. For example, -s
1024k, -s 1m , and -s 1 each specify a maximum backup image size
of 1 MB.

You can use this option with the -f option to perform a
multivolume backup.

This option is mainly for use when you are backing up to a tape
device, since end-of-media cannot be reliably detected on some
systems.

On Solaris 2, the -s option is not required because the end of the
tape is reliably signaled to the application without any loss of
data. On other systems, if you do not specify -s, the osbackup
utility terminates when it reaches the end of the tape.

-S exec_command_name Specifies the pathname of a command to be executed when the
osbackup utility reaches the end of the media. This command
should mount the next volume before returning. The exit status
from this command must be 0 or the backup operation aborts.
Note that this option is an uppercase S.
Release 5.1 141

osbackup: Backing Up Databases
Description

When backing up databases, ObjectStore takes advantage of any
operations already being performed by the Server on behalf of
various client applications. This reduces the cost of performing
the backup. The osbackup utility gives priority to databases that
are already open at the time the backup starts, and, within a
database, to those sectors that are being actively used.

When backup starts, osbackup determines which segments
require backup, builds a map that describes this data, and sets
itself up to intercept read and write requests to and from these
sectors. Any time the Server reads a sector of interest to the
backup process that has not already been backed up, osbackup
allows the read to proceed and makes a copy of the data at that
time. Similarly, write requests are intercepted and delayed long
enough for osbackup to retrieve the transaction-consistent data
first. Otherwise, the backup process operates in the background,
retrieving data as efficiently as possible.

Considerations

Incremental backup
of file databases

To perform an incremental backup on a file database, you must
have created the database using ObjectStore Release 4 or later.
You cannot perform an incremental backup on file databases that
were upgraded from releases of ObjectStore prior to Release 4.

You can mix file databases and rawfs databases in the set of
databases to be backed up.

Backing up a
rawfs directory

When you specify a rawfs directory, osbackup backs up all
databases in the directory. When you specify the -r option,
osbackup also backs up all databases in all subdirectories,
subsubdirectories, and so on.

Backing up file
databases

When backing up file databases, you must explicitly specify the
name of each database with the pathname argument or in an
import file, specified with the -I (uppercase I) option.

Specifying an
incremental record
file

If you do not specify an incremental record file for your backup,
osbackup creates one using a default pathname.

If a file of this name already exists, it is written over, and data in it
is lost. For this reason, it is recommended that you use the -i option
to provide a unique name for the incremental record file.
142 ObjectStore Management

Chapter 4: Utilities
Compacted
databases

When you run the oscompact utility on a database, it has the
potential to modify each segment in the database. When you back
up a database after compacting it, the osbackup utility copies each
modified segment; this might be the entire database.
Consequently, you might want to compact databases just before
you perform a full backup.

Examples of Backing Up Databases

% osls -l vancouver::/foo.db
-rw-rw-r-- smith odi 231424 Dec 20 16:17 vancouver::/foo.db
%

Full backup of
rawfs database
to three files

% osbackup -i ./inc -f ./s1 -f ./s2 -f ./s3 -s 80k vancouver::/foo.db
Writing backup volume #1 (./s1)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./s1).
Auto switching to volume #2 (./s2).
Writing backup volume #2 (./s2)...
Closing volume #2 (./s2).
Auto switching to volume #3 (./s3).
Writing backup volume #3 (./s3)...
Closing volume #3 (./s3).
%

If you do not specify enough files, it prompts as follows:

% osbackup -i ./inc -f ./s1 -f ./s2 -f ./s3 -s 10k vancouver::/mdltst1.db
Writing backup volume #1 (./s1)...
Closing volume #1 (./s1).
Auto switching to volume #2 (./s2).
Writing backup volume #2 (./s2)...
Closing volume #2 (./s2).
Auto switching to volume #3 (./s3).
Writing backup volume #3 (./s3)...
Archiving 913 sectors in database vancouver::/mdltst1.db.
Closing volume #3 (./s3).
Please enter the pathname of the next file to use for backup.

Full backup of
rawfs database
to existing image

% osls vancouver::/
dbdir/
foo.db
% osls vancouver::/dbdir
bar.db
foo.db

% touch ./img <-- create file to demonstrate problem
% osbackup -f ./img -i ./inc vancouver::/foo.db

Error encountered while opening file ./img (File ./img already exists.
Cannot archive to an existing file.)
Release 5.1 143

osbackup: Backing Up Databases
Do you wish to try_again? (yes/no): yes
Please enter the pathname of the next file to use for backup. ./img2
Writing backup volume #1 (./img2)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img2).

Full backup of
directory

% osbackup -f ./img -i ./inc -r vancouver::/
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver::/dbdir/bar.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).

Full backup of
databases listed in
import file

% cat ./import_file
vancouver::/foo.db
/vancouver1/dbdir/foo.db
%

% osbackup -f ./img -i ./inc -I ./import_file
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).
%

Using an import
file and specifying
a pathname

% osbackup -f ./img -i ./inc -I ./import_file vancouver::/dbdir/foo.db
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).
%

Incremental backups
of a rawfs database

% $OS_ROOTDIR/bin/osbackup -f ./img0 -i ./inc -l 0
vancouver::/foo.db
Writing backup volume #1 (./img0)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img0).

% $OS_ROOTDIR/bin/osbackup -f ./img1 -i ./inc -l 1
vancouver::/foo.db
Writing backup volume #1 (./img1)...
Closing volume #1 (./img1).

% $OS_ROOTDIR/bin/osbackup -f ./img2 -i ./inc -l 2
vancouver::/foo.db
Writing backup volume #1 (./img2)...
Closing volume #1 (./img2).

% osrm vancouver::/foo.db

Restoring from
incremental backups

% $OS_ROOTDIR/bin/osrestore -f ./img0
Recovering from volume #1 (./img0)...
Restoring 452 sectors to database "vancouver::/foo.db"
144 ObjectStore Management

Chapter 4: Utilities
Recovered to time Thu Jan 12 15:50:10 1996

Do you wish to restore from any additional incremental backups?
(yes/no):
yes
Closing volume #1 (./img0).
Please enter the pathname of the next file from which to restore.
./img1
Recovering from volume #2 (./img1)...
Recovered to time Thu Jan 12 15:50:21 1996

Do you wish to restore from any additional incremental backups?
(yes/no):
yes
Closing volume #2 (./img1).
Please enter the pathname of the next file from which to restore.
./img2
Recovering from volume #3 (./img2)...
Recovered to time Thu Jan 12 15:50:41 1996

Do you wish to restore from any additional incremental backups?
(yes/no):
no
Closing volume #3 (./img2).
%

API None.
Release 5.1 145

oschangedbref: Changing External Database References
oschangedbref: Changing External Database
References

The oschangedbref utility changes the external database
references for the specified database.

Syntax

oschangedbref db {from | -n name1} { to | -n name2}

FAT name oschange

Description

Before using this utility, run ossize to display the cross-database
references in the database whose references you want to change.
Carefully examine ossize output to determine how that database
defines relative pathnames. Use this information to specify the
from and to arguments.

Examples

UNIX ossize loon:/dbs/db_0
[...]
External database pointers:
Relative name db_1, resolves to loon:/dbs/db_1

External references:

db Specifies the database for which you want to
change references.

from Specifies the currently referenced database. This
must be an absolute pathname that includes a
Server host prefix.

-n name1 Specifies a relative pathname for the currently
referenced database. You must use this option for
names beginning with a hyphen.

to Specifies the database to be referenced. This is a
relative pathname or an absolute pathname,
depending on how the original reference was
defined.

-n name2 Specifies a relative pathname for the database to be
referenced. You must use this option for names
beginning with a hyphen.
146 ObjectStore Management

Chapter 4: Utilities
Relative name db_3, resolves to loon:/dbs/db_3

To change the reference to db_3 to a reference to db_7 , enter

oschangedbref loon:/dbs/db_0 loon:/dbs/db_3 loon:/dbs/db7

For the to argument, you can use the relative pathname instead of
the absolute name. This is an equivalent command:

oschangedbref loon:/dbs/db_0 loon:/dbs/db_3 db7

Windows, OS/2 ossize me:h:\temp\t_1
[output omitted]

External database pointers:
Relative name t_3, resolves to me:h:\temp\t_3
Relative name t_0, resolves to me:h:\temp\t_0
Relative name t_2, resolves to me:h:\temp\t_2

External references:
Relative name t_3, resolves to me:h:\temp\t_3

To change pointers and references from t_3 to t_3.new , enter

oschange me:h:\temp\t_1 me:h:\temp\t_3 me:h:\temp\t_3.new

or

oschange me:h:\temp\t_1 me:h:\temp\t_3 t_3.new

Example of moving to
same directory

/a/b/db1 contains a reference to /a/b/db2 .

If you move both db1 and db2 to a different directory, for example,
/e/f/g , the reference is still valid because the result is

/e/f/g/db1
/e/f/g/db2

Both db1 and db2 are still in the same relative pathname.

If you move db1 to /e/f and db2 to /e/f/g , the result is

/e/f/db1
/e/f/g/db2

In this case, they are no longer in the same relative path. You need
to use the oschangedbref utility.

Example of moving to
different directories

/a/b/db1 contains a reference to /a/b/c/db2 . In this case, db1 refers to
c/db2 . So if you move db1 to /e/f and move db2 to /e/f/c the result is

/e/f/db1
/e/f/c/db2

The reference is still valid because db1 still refers to c/db2 .
Release 5.1 147

oschangedbref: Changing External Database References
Example of moving to
different Server

/a/b/db1 on Server green contains a reference to /a/b/db2 on Server
green . You want to move db1 to Server red . If you move them both
to the same directory on Server red , the reference is still valid.

If you want to move only db1 to Server red in directory /x/y , then
you must use oschangedbref to change the reference from db1 to
specify the full pathname, including Server name, for db2 .

When you store references, no Server name is attached until you
use oschangedbref to specify it. The exception to this rule is if you
use os_database::set_relative_directory() . See the ObjectStore C++
API Reference.

API Class: os_database
Method: change_database_reference
148 ObjectStore Management

Chapter 4: Utilities
oschgrp: Changing Database Group Names

The oschgrp utility changes the group name of the specified
databases and directories.

Syntax

oschgrp [-R][-f] group pathname ...

Options

Description

This utility operates on rawfs databases and file databases.

When you specify a file database, you cannot specify a remote file-
server host name in the pathname of the file database. The
oschgrp utility passes the operation to a local native utility. If you
specify a remote file-server host name, ObjectStore informs you
that you specified an illegal pathname.

oschgrp can perform wildcard processing. See “Wildcards” on
page 31.

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks ("") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

oschgrp accepts a combination of rawfs pathnames and file
pathnames.

group Specifies a group name or group number in a group
ID file.

pathname
...

Specifies the databases and/or directories whose
group name you are changing. You can specify
either rawfs paths of any kind or file database
paths.

-f Forces execution. Errors are not reported.

-R Indicates that ObjectStore should change the group
name recursively for all specified directories. That
is, it changes the group name for subdirectories and
their contents, subsubdirectories and their contents,
and so on.
Release 5.1 149

oschgrp: Changing Database Group Names
/etc/group is the group ID file. You must be the owner of the
database, or be the superuser.

API Class: os_dbutil
Method: chgrp
150 ObjectStore Management

Chapter 4: Utilities
oschhost: Changing Rawfs Link Hosts

The oschhost utility changes the host that a link in the rawfs
points to.

Syntax

oschhost [-f][-R] newhost pathname ...

oschhost [server_host] old_link_host new_link_host

Options

Description

This utility operates only on rawfs links. The oschhost utility only
changes the host component of the rawfs symbolic link, or all links
in the rawfs. The utility does not physically move any databases
or directories.

You can use oschhost to update the rawfs after you restore an
entire file system from one Server to another.

Use the first form of the utility to change specified links, that is,
links with particular pathnames.

newhost Specifies the name of the new host for the specified
rawfs link.

pathname ... Specifies one or more rawfs links.

server_host Specifies the Server on which you are running
oschhost . When you do not specify this
argument, ObjectStore runs the utility on the
local host.

old_link_host Specifies the name of the host the link currently
points to.

new_link_host Specifies the name of the host the link will point
to.

-f Forces execution. Errors are not reported.

-R Indicates that ObjectStore should change the host
recursively for all specified directories.
Release 5.1 151

oschhost: Changing Rawfs Link Hosts
Use the second form of the utility to change all links on a
particular host (server_host) that point to a specified host (old_link_
host) so that they point to a new host (new_link_host).

UNIX You must be the superuser to change the host for a rawfs.

API Class: os_dbutil
Methods: rehost_all_links and rehost_link
152 ObjectStore Management

Chapter 4: Utilities
oschmod: Changing Database Permissions

The oschmod utility changes the permission mode for the
specified databases and directories.

Syntax

oschmod [-R][-f] new_mode pathname ...

Options

Description

To change the permission mode for a database, you must be the
owner of the database or, on UNIX, the superuser.

The new_mode argument can be absolute or symbolic.

Absolute mode An absolute mode is an octal number constructed from the OR of
the following modes (note that execute is meaningful only for
directories):

new_mode Specifies the new permission mode for the specified
databases and directories.

pathname
...

Specifies the databases and directories whose
permission you want to change. You can specify
both rawfs and file pathnames.

-R Indicates that ObjectStore should change the
permission recursively for all specified directories.

-f Forces execution. Errors are not reported.

400 Read by user.

200 Write by user.

100 Execute (search in directory) by user.

040 Read by group.

020 Write by group.

010 Execute (search) by group.

004 Read by others.

002 Write by others.

001 Execute (search) by others.
Release 5.1 153

oschmod: Changing Database Permissions
Symbolic mode A symbolic mode has the form

[who] op permission [op permission] ...

who is a combination of

If you omit who, the default is a, but the setting of the file creation
mask (on UNIX, see umask in sh(1) or csh (1) for more
information) is taken into account. When who is omitted, oschmod
does not override the restrictions of your user mask.

op is one of

permission is any combination of

Omitting permission is useful only with =, to remove all
permissions.

oschmod can perform wildcard processing. See “Wildcards” on
page 31.

When you specify a file database, you cannot specify a remote file-
server host in the pathname of the file database. The oschmod
utility passes the operation to a local native utility. If you specify
a remote file-server host name, ObjectStore informs you that you
specified an illegal pathname.

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks (" ") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

u User permissions

g Group permissions

o Others

a All, or ugo

+ Add the permission

– Remove the permission.

= Assign the permission explicitly (all other bits for
that category, owner, group, or others, are reset).

r Read

w Write

x Execute
154 ObjectStore Management

Chapter 4: Utilities
API Class: os_dbutil
Method: chmod
Release 5.1 155

oschown: Changing Database Owners
oschown: Changing Database Owners

The oschown utility changes the ownership of specified databases
and directories.

Syntax

oschown [-R][-f] owner[.group] pathname ...

Options

Description

This utility operates on rawfs databases and directories and file
databases and directories.

When you specify a file database, you cannot specify a remote file-
server host in the pathname of the file database. The oschown
utility passes the operation to a local native utility. If you specify
a remote file-server host name, ObjectStore informs you that you
specified an illegal pathname.

oschown can perform wildcard processing. See “Wildcards” on
page 31.

owner Specifies the user name of the new owner of the
specified databases and directories.

.group Specifies the group name of the specified databases
and directories. Be sure to precede it with a period.
Optional.

pathname Specifies the databases and directories whose
owner you want to change. You can specify both
file and rawfs pathnames.

-R Indicates that ObjectStore should change the owner
recursively for all specified directories.

-f Forces execution. Errors are not reported.
156 ObjectStore Management

Chapter 4: Utilities
UNIX You must be the superuser to run this utility. The owner must be
a user name in the password file, /etc/passwd . Only the superuser
can change the owner of a directory or database. The group is a
group name found in the GID file, /etc/group .

When operating on a rawfs database, you must enclose the
wildcard with quotation marks ("") or precede it with a back slash
(\) to keep the shell from interpreting wildcards. The -f and -R
options are identical to the shell chown command’s force and
recursive options, respectively. The oschown utility accepts a
combination of rawfs pathnames and file pathnames.

API Class: os_dbutil
Method: chown
Release 5.1 157

oscmrf: Deleting Cache and Commseg Files
oscmrf: Deleting Cache and Commseg Files

The oscmrf utility instructs the Cache Manager on the specified
host to delete the cache files and commseg files in its free pool.

Syntax

oscmrf [hostname]

Description

It is always safe to run this utility. The Cache Manager deletes
only files that are not in use by any client.

After oscmrf runs, if an additional client appears, the Cache
Manager must create new cache and commseg files. This is
slightly slower than if it did not have to create these files.

Windows and OS/2 The Cache Manager does not use cache files or commseg files on
OS/2 or Windows systems. However, you can use the oscmrf
utility on these operating systems and specify hosts that do use
cache files and commseg files.

Example

% oscmrf
Deleted 2 cache files and 2 commseg files.
%

API Class: os_dbutil
Method: cmgr_remove_file

hostname Specifies the host of the Cache Manager that you
want to instruct to delete cache and commseg files.
Defaults to the local host.
158 ObjectStore Management

Chapter 4: Utilities
oscmshtd: Shutting Down the Cache Manager

The oscmshtd utility shuts down the Cache Manager on the
specified host.

Syntax

oscmshtd [hostname] [version]

Description

Be sure to notify users before you shut down the Cache Manager.

Example

% oscmshtd
Shutting down Cache Manager process
%

API Class: os_dbutil
Method: cmgr_shutdown

hostname Specifies the host of the Cache Manager that you
want to shut down. The default is the local host.

version Specifies the version of the Cache Manager that you
want to shut down. The default is 4.
Release 5.1 159

oscmstat: Displaying Cache Manager Status
oscmstat: Displaying Cache Manager Status

The oscmstat utility displays status information about the Cache
Manager process running on the specified host.

Syntax

oscmstat [hostname] [version-number]

Description

The information provided by the oscmstat utility is useful for
debugging the storage system.

If you do not specify a host name, the default is the local host.

The oscmstat utility prints one line for every Server to which the
Cache Manager is connected. For each Server, it displays

• The name of the Server host

• The client process ID of the client being processed, or 0 if none
is being processed

• A string that indicates what the thread is doing or what it most
recently did

• Information on notifications queued for clients

UNIX If the Cache Manager is running on a UNIX system, oscmstat also
displays the names of cache and commseg files known to the
Cache Manager. This is useful if you are trying to determine if files
are in active use by ObjectStore, or are ObjectStore files no longer
in use that can be deleted.

In oscmstat output, the second word of an ObjectStore file name
is the name of the host that created and owns or owned the file.
For example, for files named objectstore_doolittle_commseg_8
and objectstore_doolittle_cache_3 , the host name is doolittle .

hostname Specifies the name of the host of the Cache
Manager for which you want information. The
default is the local host.

version-number Specifies the version of the Cache Manager for
which you want information. The default is 4.
160 ObjectStore Management

Chapter 4: Utilities
The command oscmstat doolittle displays the files that the Cache
Manager daemon on host doolittle currently knows about. If your
file is not on the list, it is no longer in use, and can be removed with
oscmrf .

If oscmstat reports that there is no Cache Manager running, it is
safe to delete the file, as long as you are certain that oscmstat did
not fail due to temporary network failure or something similar.

Example

UNIX Output on a UNIX workstation typically looks like the following:

kellen% oscmstat

ObjectStore Release 5.0 Cache Manager, Version 9.0.1

Process ID 6444. Executable is path.exe.2

Host "kellen". Started at Sat May 20 14:54:05 1995
Soft Allocation Limit 0, Hard Allocation Limit 0. 3

Allocated: free 80568320, used 5775360. 4

Server host: Client process ID: Status for this host:
kellen 0 Initializing: constructor finished

There is 1 client currently running on this host:
Free files (cache):

/tmp/ostore/objectstore_5_kellen_cache_1 (16777216) 5

/tmp/ostore/objectstore_5_kellen_cache_5 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_7 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_9 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_11 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_13 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_15 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_17 (8388608)
/tmp/ostore/objectstore_5_kellen_cache_19 (8388608)

In-use files (cache):
/tmp/ostore/objectstore_5_kellen_cache_3 (8388608)

Free files (commseg):
/tmp/ostore/objectstore_5_kellen_commseg_18 (278528)
/tmp/ostore/objectstore_5_kellen_commseg_16 (278528)
/tmp/ostore/objectstore_5_kellen_commseg_14 (262144)
/tmp/ostore/objectstore_5_kellen_commseg_12 (262144)
/tmp/ostore/objectstore_5_kellen_commseg_10 (983040)
/tmp/ostore/objectstore_5_kellen_commseg_8 (483328)
/tmp/ostore/objectstore_5_kellen_commseg_6 (344064)
/tmp/ostore/objectstore_5_kellen_commseg_4 (557056)
/tmp/ostore/objectstore_5_kellen_commseg_2 (1622016)

In-use files (commseg):
/tmp/ostore/objectstore_5_kellen_commseg_20 (262144)

Call Back Queue: Empty

Notifications 6
Release 5.1 161

oscmstat: Displaying Cache Manager Status
kellen%

1 Internal version number unrelated to ObjectStore release
numbers.

2 Operating system process ID of the Cache Manager process.
The executable that you are running oscmstat from is identified
by path.exe.

3 The allocation limit parameters are as described in the
parameter file.

4 Total sizes of the used pool and the free pool.
5 One line for each Server connection to the Cache Manager. This

information is sometimes useful in debugging.

Cache file names end in odd numbers and commseg file names
end in even numbers. The cache file whose name ends in 1 and
the commseg file whose name ends in 2 go together. Likewise,
the cache file whose name ends in 3 and the commseg file
whose name ends in 4 go together, and so on.

One line for each client (ObjectStore application process)
currently running on this host. For each client it gives the
operating system process ID and user ID, the name of the client
(assuming the client has called objectstore::set_client_name()),
an internal version number that also has nothing to do with
ObjectStore release numbers, and a virtual address within the
Cache Manager that is useful in debugging the Cache Manager.

6 For each client, the oscmstat output displays the following
notification information:

- Process ID (PID) of the client.

- Size of the queue.

- Received From Servers is the number of notifications that
were received from any Servers and were addressed to this

Client
PID

Queue
Size

Received
From
Server

Received
By Client

Pending Overflows Notifier State

13149 100 1814 1796 0 18 waiting_for_
notification

13145 43 904 876 0 5 waiting_for_
notification
162 ObjectStore Management

Chapter 4: Utilities
client process. Each such notification either went into the
client's queue or was discarded because the queue was full
(that is, it was an overflow notification). Both kinds are
counted here. This number only increases.

- Received By Client is the number of notifications the client
actually received. This means that the client called os_
notification::receive and obtained the notification. This
number does not include the overflow notifications or the
notifications that are still in the queue. This number only
increases.

- Pending is the number of notifications that are in the queue.
This number can increase and decrease.

- Overflows is the number of notifications that were discarded
because the queue was full. This number is for the lifetime of
the client process and it only increases.

- Notifier State is for Object Design support purposes. It
provides debugging information that is useful when you are
familiar with the internal workings of the notification
implementation.

OS/2 or Windows On Windows and OS/2 systems, there are no cache or commseg
files so there is no mention of them in oscmstat output.

API Class: os_dbutil
Method: cmgr_stat
Release 5.1 163

oscompact: Compacting Databases
oscompact: Compacting Databases

The oscompact utility removes deleted space in specified
databases or segments.

Syntax

oscompact {-dbs_to_compact pathname ... | -segments_to_compact
pathname segment_number [pathname segment_number] ... }
[-db_references pathname ...]
[-segment_references pathname segment_number
[pathname segment_number] ...]
[-compaction_threshold percent_of_deleted_space]

Options

Description

The oscompact utility runs as an ObjectStore client process. After
you compact a database,

• Access is usually faster so performance improves.

• You cannot decompact it.

You can obtain segment numbers by running the ossize utility or
calling the API function os_segment::get_number() .

-dbs_to_compact
pathname ...

Specifies one or more databases to compact. You must specify one
of -dbs_to_compact or -segments_to_compact . You can specify
both.

-segments_to_compact
pathname segment_number

Specifies one or more segments to compact. Identify each segment
with its database pathname and segment number. You must specify
one of -dbs_to_compact or -segments_to_compact . You can specify
both.

-db_references pathname...Specifies one or more databases that contain pointers or ObjectStore
references to the databases and segments being compacted.

-segment_references
pathname segment_number

Specifies one or more segments that contain pointers or ObjectStore
references to the databases and segments being compacted. Identify
each segment with its database pathname and segment number.

-compaction_threshold
percent_of_deleted_space

Specifies the minimum percent of deleted space that a segment
must have to be compacted. Segments with less than the specified
percent of deleted space are not compacted. When you do not
specify this option, oscompact compacts any segment that has
internal deleted space.
164 ObjectStore Management

Chapter 4: Utilities
You can use the oscompact utility on both file databases and rawfs
databases.

Compacting
file databases

The segments in file databases are made up of extents, all of which
are allocated in the space provided by the host operating system
for the single host file. When there are no free extents left in the
host file, and growth of an ObjectStore segment is required, the
ObjectStore Server extends the host file to provide the additional
space. The compactor permits holes contained in segments to be
compacted for return to the allocation pool for the host file. This
frees that space for use by other segments in the same database.
However, since operating systems provide no mechanism to free
disk space allocated to regions internal to the host file, any such
free space remains inaccessible to other databases stored in other
host files. In other words, compacting a file database does not
reclaim space for use by other databases. See also oscp in oscp:
Copying Databases on page 171.

Database size Compacting a file database does not decrease its size, and might
increase it to a small degree.

Compacting rawfs
databases

The ObjectStore rawfs stores all databases in a single region, on
either one or more host files or raw partitions. Any space in a
rawfs that is freed by the compaction operation can be reused by
any segment in any database stored in the rawfs.

What the compactor
does

The compactor compacts all C and C++ persistent data, including
ObjectStore collections, indexes, and bound queries, and correctly
relocates pointers and all forms of ObjectStore references to
compacted data. ObjectStore os_reference_local references are
relocated assuming they are relative to the database containing
them. The compactor respects ObjectStore clusters, in that
compaction ensures that objects allocated in a particular cluster
remain in the cluster, although the cluster itself may move as a
result of compaction.

Caution When you have cross-database references, be sure to compact the
databases together or use protected references. Not doing so can
destroy references. If you run the oscompact utility on, for
example, databaseA, then os_reference s from databaseB to
databaseA are no longer valid. Alternatively, if you use protected
references from databaseB to databaseA, then compacting
databaseA does not cause a problem.
Release 5.1 165

oscompact: Compacting Databases
Backing up
compacted
databases

When you run the oscompact utility on a database, it has the
potential to modify each segment in the database. When you back
up a database after compacting it, the osbackup utility copies each
modified segment; this might be the entire database.
Consequently, you might want to compact databases just before
you perform a full backup. However, as a safeguard against
unexpected results, it is a good idea to back up databases just
before you compact them.

Restrictions You must observe the following data restrictions when using the
compactor:

• Union discriminant functions require access to the
representation to be compacted in order to run, and therefore
cannot be compacted.

• Some data structures become invalid as a result of compaction.
A classic example is a hash table that hashes on the offset of an
object within a segment. Because compaction modifies these
offsets, there is no way such an implicit dependence on the
segment offset can be accounted for by compaction. Therefore,
the compacted hash table becomes invalid. ObjectStore
collections and indexes are valid after compaction.

• Since the ObjectStore retain_persistent_addresses facility
requires that persistent object locations within a segment not
vary, no client application using this facility and referencing
segments to be compacted can run concurrently with the
ObjectStore compactor.

• Transient ObjectStore references into a compacted segment
become invalid after compaction finishes.

• The oscompact utility can run out of address space when
compacting large databases. In these cases, you can compact
your databases using the -segments_to_compact option.

Schema protection When developing an application, if you are running this utility on
a protected schema database, ensure that the correct key is
specified for the environment variables OS_SCHEMA_KEY_LOW
and OS_SCHEMA_KEY_HIGH . If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."
166 ObjectStore Management

Chapter 4: Utilities
When deploying an application, if your end users need to use the
oscompact utility on protected schema databases, you must wrap
the utility in an application. This application must use the API to
provide the key before using the os_dbutil class to call the utility.
End users need not know anything about the key. For information
about wrapping your application around an ObjectStore utility,
see the class os_dbutil in the ObjectStore C++ API Reference.

API Class: objectstore
Method: compact
Release 5.1 167

oscopy: Copying Databases
oscopy: Copying Databases

The oscopy utility makes a copy of an ObjectStore database. A key
benefit of oscopy is that it performs transaction-consistent
database copying without incurring locking conflicts.

oscopy cannot be used to copy databases to file directories. It
cannot copy segment-level permissions and it does not work with
ObjectStore/Single. Instead, use the oscp utility.

Syntax

oscopy source target

oscopy -R source_dir target_dir

oscopy source ... target

Options

source Specifies the ObjectStore file or rawfs database to be
copied.

target Specifies the pathname for the copy. ObjectStore
either creates this database or overwrites it. The
target directory must be a rawfs file system.

source_dir Specifies the pathname of the rawfs directory to be
copied.

target_dir Specifies the target rawfs pathname. If this
directory does not exist, ObjectStore creates it, if its
base name exists. ObjectStore recursively copies the
source directory into the target directory.

source Specifies the rawfs or file databases to be copied.

target Specifies the rawfs directory to contain the copies.

-R Instructs oscopy to copy a directory recursively.
You must specify a rawfs directory for both the
source and destination pathnames. The top-level
name of the destination pathname must exist before
you issue oscopy .
168 ObjectStore Management

Chapter 4: Utilities
Description

This command has three forms. The first copies a file or rawfs
database to a rawfs file system. The second recursively copies a
rawfs directory and its contents to another location. The third
copies a database or databases to a rawfs file system. You can
specify either file or rawfs databases as sources. Copies must
always be made to rawfs file systems.

Restrictions You cannot specify wildcards in database pathnames.

Transaction
consistency

When you specify more than one database as a copy source,
oscopy ensures transaction consistency among the specified
databases for a particular moment in time.

Database IDs Native copy commands and the oscopy utility create copies with
the same database ID as the original. This is important only if you
have applications that rely on the uniqueness of these IDs. You
can assign the copy a new, unique ID with os_database::set_new_
id() .

Schema protected
databases

When you copy a schema-protected database without specifying
the schema key, the copy has the same db_id as the original. If you
supply the correct schema key, the copy has a new db_id . In both
cases, the copy has the same schema key as the original, and the
key is frozen in the copy if it is frozen in the original.

Copying a rawfs
database to a file
database

Copying a rawfs database to a file database results in the loss of
segment-level access control information.

Database size might
change

Your database might appear to have a different size after you use
oscopy to copy it. This is because the Server might allocate the
copy in a way that is different from the way it allocated the
original database. Also, when you perform oscopy , the size of the
database is set. The Server can make just the right amount of space
available for the copy of the database.

Variables that affect
pathname
interpretation

There are many conditions that can affect pathname
interpretation:

• Settings of environment variables

• Whether or not there is a locator file

• Whether or not file systems are NFS-mounted
Release 5.1 169

oscopy: Copying Databases
• Symbolic links

When you copy a file and the result is not what you expect, be sure
to consider these conditions.
170 ObjectStore Management

Chapter 4: Utilities
oscp: Copying Databases

The oscp utility makes a copy of an ObjectStore database.

Unlike oscopy, you can use oscp to copy ObjectStore/Single
databases and to copy databases to file directories. Note, however,
that oscp can produce an inconsistent database if other clients are
updating the database while oscp is running. In these cases, use
the oscopy command.

Syntax

oscp [-L server_log] source target

oscp -R [-i] source_dir target_dir

oscp [-Ri] source ... target

Options

source Specifies the ObjectStore file or rawfs database to be
copied.

target Specifies the pathname for the copy. ObjectStore
either creates this database or overwrites an
existing database of this name.

source_dir Specifies the pathname of the rawfs directory to be
copied.

target_dir Specifies the target rawfs pathname for the copy of
the rawfs directory. If this directory does not exist,
ObjectStore creates it, if its base name exists.
ObjectStore recursively copies the source directory
into the target directory.

source Specifies the rawfs databases to be copied.

target Specifies the rawfs directory to contain the copies.

-i Instructs oscp to prompt you to confirm whether or
not to overwrite databases or directories at existing
pathnames. If target does not exist, you do not see
this prompt.
Release 5.1 171

oscp: Copying Databases
Description

Restrictions • You cannot specify wildcards in database pathnames.

• Because oscp uses segments as a unit in copying, it is possible
for oscp to produce an inconsistent database if other clients
perform updates while oscp is running.

Using native copy
commands

The oscp utility contacts the Server to ensure that the database
being copied is transaction-consistent and fully up-to-date. The
native copy commands do not do this. Therefore, you should only
use native copy commands if the Server for the file database you
want to copy has been shut down. (You cannot, of course, use
native copy commands to copy a database to or from a rawfs.)

Using native copy commands sometimes produces a database

• In an inconsistent state if the database was copied during
propagation of data from the log

• In a consistent but out-of-date state if the effects of some
transactions have not yet been propagated from the log to the
database

Attempting to operate on an inconsistent copy fails, signaling err_
inconsistent_db.

Database IDs Native copy commands and the oscp utility create copies with the
same database ID as the original. This is important only if you
have applications that rely on the uniqueness of these IDs. You
can assign the copy a new, unique ID with os_database::set_new_
id() .

-L server_log When specified, the named file is used for the
Server log file. When unspecified, a temporary file
is used.

This option is only applicable when you are
running the utility as an ObjectStore/Single
application. If the file already exists, it must be a
properly formed Server log.

-R Instructs oscp to copy a directory recursively. You
must specify a rawfs directory for both the source
and destination pathnames. The top-level name of
the destination pathname must exist before you
issue oscp .
172 ObjectStore Management

Chapter 4: Utilities
Schema-protected
databases

When you copy a schema-protected database without specifying
the schema key, the copy has the same db_id as the original. If you
supply the correct schema key, the copy has a new db_id . In both
cases, the copy has the same schema key as the original, and the
key is frozen in the copy if it is frozen in the original.

Copying a rawfs
database to a file
database

Copying a rawfs database to a file database can result in the loss
of segment-level access control information. This can happen
because file databases do not maintain this information. The oscp
utility issues a warning after copying a database if the source
database had segment-level protections that could not be copied.
If the source database is not using segment-level access control,
nothing is lost and a warning is not displayed.

Database size might
change

Your database might appear to have a different size after you use
oscp to copy it. This is because the Server might allocate the copy
in a way that is different from the way it allocated the original
database. Also, when you perform oscp , the size of the database
is set. The Server can make just the right amount of space available
for the copy of the database.

Variables that affect
pathname
interpretation

There are many conditions that can affect pathname
interpretation.

• Settings of environment variables

• Whether or not there is a locator file

• Whether or not file systems are NFS-mounted

• Symbolic links

When you copy a file and the result is not what you expect, be sure
to consider these conditions.

Examples

These examples take two ObjectStore environment variables into
account.

• OS_DIRMAN_HOST — Specifies a rawfs host name that
ObjectStore places at the beginning of every pathname that
does not already begin with the host:: rawfs prefix.

• OS_DIRMAN_USE_SERVER_PREFIX — When this variable is
set, ObjectStore interprets a::b:/foo as b::/foo . When it is not set,
ObjectStore interprets a::b:/foo as a::/foo .
Release 5.1 173

oscp: Copying Databases
When OS_DIRMAN_HOST is set and OS_DIRMAN_USE_SERVER_
PREFIX is set to Yes, ObjectStore applies the setting of OS_
DIRMAN_HOST first, and then applies OS_DIRMAN_USE_
SERVER_PREFIX.

Simple copy Suppose neither variable is set and you invoke oscp as follows:

oscp /source/db1 /target/db2

If you do this on a host named atlas , then the full pathname of the
copy is atlas:/target/db2 , which is a Server-relative pathname. A
Server-relative pathname is the operating system pathname as
opposed to an ObjectStore rawfs pathname.

OS_DIRMAN_HOST Now suppose that you set OS_DIRMAN_HOST to mars . If you
execute the two commands below on atlas , each command
produces the same result.

oscp /source/db1 /target/db2

oscp atlas:/source/db1 /target/db2

The first command line is the same as the simple copy example
above, but the result is different from the previous example.
ObjectStore interprets /source/db1 as mars::/source/db1 . The full
pathname of the copy is mars::/source/db1 .

In the second command, ObjectStore interprets atlas:/source/db1
as mars::atlas:/source/db1 and then as mars::/source/db1 . This is
the default interpretation when OS_DIRMAN_USE_SERVER_
PREFIX is not set.

OS_DIRMAN_USE_
SERVER_PREFIX

In the next example, OS_DIRMAN_HOST is not set, but OS_
DIRMAN_USE_SERVER_PREFIX is set to Yes. Invoke the following
command on atlas :

oscp mars::atlas:/source/db1 /target/db2

ObjectStore interprets mars::atlas:/source/db1 as
atlas:/source/db1 . The full pathname of the copy is
atlas:/target/db2 .

Both variables set In the last example, OS_DIRMAN_HOST is set to mars and OS_
DIRMAN_USE_SERVER_PREFIX is set to Yes. Invoke the following
oscp command on atlas :

oscp atlas:/source/db1 /target/db2

ObjectStore interprets atlas:/source/db1 in two steps.
174 ObjectStore Management

Chapter 4: Utilities
1 ObjectStore applies the setting of OS_DIRMAN_HOST, so the
result is mars::atlas:/source/db1 .

2 ObjectStore applies the setting of OS_DIRMAN_USE_SERVER_
PREFIX, so it interprets mars::atlas:/source/db1 as
atlas:/source/db1 .

The full pathname of the copy is mars:/target/db2 .

API Class: os_dbutil
Method: copy_database
Release 5.1 175

osdf: Displaying Rawfs Disk Space Information
osdf: Displaying Rawfs Disk Space Information

The osdf utility shows the amount of used and available disk
space for the rawfs on the specified Server.

Syntax

osdf hostname

Description

If one or more of the partitions that make up the rawfs are
expandable, and there is free disk space in the file system holding
such a partition, the rawfs grows as needed. In this situation, the
osdf utility does not show how much growth room is available.

Example

osdf elvis

API Class: os_dbutil
Method: disk_free

hostname The name of the host for which you want to display
rawfs disk space information.

Filesystem kbytes use avail capacity

elvis 95749 533 95215 0%
176 ObjectStore Management

Chapter 4: Utilities
osdump: Dumping Databases

The osdump utility dumps to ASCII a database or group of
databases, and generates the source for a loader capable of
creating equivalent databases.

Syntax

osdump [-pseudo] [-emit] pathname ...

Options

pathname ... One or more pathnames, separated by spaces,
specifying the database or databases to be
dumped, or (if -emit is supplied) specifying the
database or databases for which loader source is
to be emitted.

The file name at the end of each path must have
the form filename.db ; that is, it must have the
extension .db .

-emit Tells osdump to generate the source code for a
loader executable for the specified databases. To
generate an ASCII dump of the specified databases,
do not specify emit .
Release 5.1 177

osdump: Dumping Databases
Description

Each execution of osdump does one of the following:

• Dumps to an ASCII file the contents of a database or group of
databases.

• Generates the source files for a loader executable capable of
creating, given the ASCII as input, an equivalent database or
group of databases. osdump also generates a makefile for your
platform that allows you to build the loader executable with a
single make command.

For each database or group of databases you want to dump,
execute osdump twice:

• Once without -emit , to generate the ASCII for the databases

• Once with -emit , to generate the source for a dumper tailored to
the databases

The dumped ASCII has a compact, human-readable format. It is
editable with tools such as perl, awk, and sed. You can use edited
or unedited ASCII as input to the loader.

The schema for the dumped databases is stored in a remote
schema database associated with the dump.

-pseudo When used with -emit , tells osdump to generate the
files ldrcls00.h and ldrcls00.cpp , which contain
pseudo declarations of the classes in the dumped
databases. When used without -emit , this switch has
no effect.

When you build the loader executable, you can
specify the schema of the databases with either of
the following:

• Original C++ code used to create the databases

• ldrcls00.h and ldrcls00.cpp

If you want to use the original C++ code, do not
supply -pseudo , and change #include "ldrcls00.h" in
generated code to include the original .h files
instead.

If you want to use ldrcls00.h and ldrcls00.cpp ,
supply -pseudo , and do not change the include lines.
178 ObjectStore Management

Chapter 4: Utilities
See also osload: Loading Databases on page 196.

Default compared to
customized dump
and load

You can use the default dump and load processes, or customize
the dump and load of particular types of objects. Customization is
appropriate for certain location-dependent structures, such as
hash tables. To determine when to customize, see When Is
Customization Required? on page 181. To learn how to
customize, see Chapter 8, Dump/Load Facility, in the ObjectStore
Advanced C++ API User Guide.

Databases with unions, pointers-to-members, or
multidimensional arrays cannot be dumped by this utility.

Generated ASCII files When invoked without -emit , osdump generates the following
files in the current directory:

• filename.dmp for each dumped database, filename.db

• db_table.dmp , which records information about the dumped
databases

See Default Dumper ASCII Format on page 182 for a description
of the layout of the generated ASCII file.

Generated source
and makefiles

If osdump is invoked with -emit , it generates the following files in
the current directory:

• ldrdef00.h : struct s to hold loaded data before class construction.

• ldrcls00.h : Generated only if -pseudo is supplied together with
-emit . Default declarations for the classes in the dumped
databases. These declarations contain class constructors that
take the corresponding struct s from ldrdef00.h as an argument.

• ldrldr00.h : Declarations of the classes needed for loading each
of the classes in the dumped databases.

• ldrcls00.cpp : Generated only if -pseudo is supplied together
with -emit . Default implementations of the constructors
declared in ldrcls00.h .

• ldrldr00.cpp : Implementation of the classes needed for loading
each of the classes in the databases.

• ldrsch00.cpp : OS_MARK_SCHEMA_TYPE() calls for each class in
the databases.

• ldrmai00.cpp : The main() file for osload .

• makefile.unx : Build file for UNIX.
Release 5.1 179

osdump: Dumping Databases
• makefile.w32 : Build file for Windows.

If files with these names exist in the working directory, osdump
overwrites them.

To build the loader from these files, use one of the generated
makefiles. On UNIX, use the make utility and the osdump -
generated makefile makefile.unx . On Windows, use nmake and the
osdump -generated makefile makefile.w32 .

Default Equivalence

This section defines equivalence for databases dumped and loaded
by the default dump and load processes.

Roughly speaking, two databases are equivalent if every object in
one database has a corresponding, equivalent object in the other
database, where two objects are equivalent if

• The fundamental values they contain, directly or indirectly, are
the same.

• The pointers or references they contain refer to corresponding
objects (that is, if an object in a dumped database points to o,
the corresponding object in the loaded database points to the
object that corresponds to o).

More precisely, two databases, db1 and db2, are equivalent if and
only if there is a one-to-one mapping, map(), between objects in
db1 and objects in db2 such that for every object, o1, in db1, o1 is
equivalent to map(o1).

Two objects, o1 and o2, are equivalent (according to map()) if and
only if all the following hold:

• o1 and o2 have the same type.

• If the type of o1 is fundamental, o1 and o2 have the same value.

• If o1 is a pointer or (C++) reference, map(the referent of o1) is
the referent of o2.

• If o1 is an array, o1 and o2 have the same cardinality, and for
every index-list, o1[index-list] is equivalent to o2[index-list].

• If the type of o1 is a non-ObjectStore class, then for every
member, m, of o1, o1.m is equivalent to o2.m.

• If o1 is an ObjectStore reference, map(the referent of o1) is the
referent of o2.
180 ObjectStore Management

Chapter 4: Utilities
• If o1 is an ObjectStore collection, o1 and o2 have the same
cardinality, and for each element, e, of o1, e has the same count
in o1 as map(e) does in o2.

• If o1 is an ordered ObjectStore collection, then for each element,
e, of o1, e has the same position in o1 as map(e) does in o2.

• If o1 is an ObjectStore index, o1 and o2 have the same path and
index options, and map(the collection that o1 indexes) is the
collection that o2 indexes.

• If o1 is an ObjectStore cursor, o1 and o2 have the same cursor
options, and map(the element at which o1 is positioned) is the
element at which o2 is positioned.

• If o1 is an ObjectStore database root, o1 and o2 have the same
root name, and map(o1’s associated entry-point object) is o2’s
associated entry-point object.

• If o1 is an ObjectStore index path, o1 and o2 represent the same
paths.

When Is Customization Required?

In most cases customization is not required. If you have a
database with objects whose structure depends on the locations of
other objects, you might have to customize the dumping and
loading of those objects.

A dumped object and its equivalent loaded object do not
necessarily have the same location, that is, the same offsets in their
segment. Among the implications of this are the following:

• Other objects might use different pseudoaddresses to refer to
them.

• Their addresses might hash to different values; that is, for
example, objectstore::get_pointer_numbers() might return
different values for them.

The default dumper and loader take into account the first
implication, and the loader automatically adjusts all pointers in
loaded databases to use the new locations.

The default dumper and loader also take into account the second
implication for ObjectStore collections with hash-table
representations. Since a dumped collection element hashes to a
different value than the corresponding loaded element does, their
Release 5.1 181

osdump: Dumping Databases
hash-table slots are different. So the facility does not simply dump
and load the array of slots based on fundamental values (which
would result in using the same slot for the dumped and loaded
objects).

Instead, it dumps the collection in terms of sequences of high-
level API operations (that is, string representations of create and
insert arguments) that the loader can use to recreate the collection
with the appropriate membership.

The default dumper and loader do not take into account the
second implication for non-ObjectStore classes. If you have your
own classes that use hash-table representations, you must
customize their dumping and loading. Any other location-
dependent details of data structures (such as encoded offsets)
should also be dealt with through customization.

See Chapter 8, Dump/Load Facility, in the ObjectStore Advanced
C++ API User Guide.

Performance

To enhance efficiency during a dump, database traversal is
performed in address order whenever possible. To enhance
efficiency during loads, loaders are generated by the dumper and
tailored to the schema involved. This allows the elimination of
most run-time schema lookups during the load.

Default Dumper ASCII Format

Each db_table.dmp file has the format for database_table
described below.

For each dumped database, filename.db , filename.dmp has the
format shown for database , below.

database_table ::=
databases [number_databases]

{ database_entry [database_entry]* }

number_databases ::=
the integer number of dumped databases

database_entry ::=
<

pathname
database_size
182 ObjectStore Management

Chapter 4: Utilities
number_segments
odi_release
architecture (date)

>

database ::=
database [database_index] pathname roots segments

pathname ::=
the pathname of the database being dumped

database_size ::=
the size of the database in an integral number of bytes

number_segments ::=
the integral number of segments contained in the database

odi_release ::=
the ObjectStore release information

architecture ::=
the host architecture set for the database

date ::=
the date the database was last modified

database_index ::=
the index of this database within the list of databases being
dumped (0-based)

roots ::=
roots [number_roots] { root [, root]* }

root ::=
name (Type) id

segments ::=
segments [segment]*

segment ::=
segment segment_number [segment_size]

(pathname) data

segment_number ::=
integral segment number of this segment within its database

data ::=
(objects | cluster)*

cluster ::=
cluster [cluster_size] { objects }
Release 5.1 183

osdump: Dumping Databases
objects ::=
object*

object ::=
id (type) value

id ::=
<database_index,segment_number,offset>

offset ::=
integral value denoting the byte offset of an object

within its segment

type ::=
integral | real | pointer | reference | array | class

value ::=
character | integral | floating_point | pointer_value | reference |

collection | string | array_elements | class_members

integral ::=
char | signed char | unsigned char | signed short |

unsigned short | int | unsigned int | signed long |
unsigned long

real ::=
float | double

pointer ::=
type*

reference ::=
type&

array ::=
array type [size]

class ::=
(class | struct | union) name

character ::= 'c' where c is any printable ascii character

integral ::= any non-floating-point decimal number

floating_point ::=
any floating-point decimal number

pointer_value ::=
any hex unsigned integral number
184 ObjectStore Management

Chapter 4: Utilities
string ::=
"s" where s is any sequence of printable ascii characters

with '"' escaped as "\"" and '\' escaped as "\\".

array_elements ::=
{ value [, value]* }

class_members ::=
{ value [, value]* }

Each object is emitted as a single line of text.

The special storage types cluster , segment , and database denote
underlying ObjectStore storage structures. When a storage type
appears, each object following is contained within that storage
structure.

Other types denote C++ type constructs. Values appear as single
values or as a bracketed comma-separated list of values. Base class
instances and other embedded subobjects are flattened into a
class_members list.

ObjectStore references, collections, cursors , indexes, and queries
are instances of Object Store types that require special treatment.
The following special dump formats are used for them:

reference ::=
id

collection ::=
simple_collection | collection_with_representation_policy |

dummy_cursor | cursor | cursor_with_index |
cursor_with_range | collection_index |

collection_element_load | collection_query

simple_collection::=
[behavior cardinality collection_type representation_enum]

behavior::=
integral

cardinality::=
integral

collection_type::=
string

representation_enum::=
integral
Release 5.1 185

osdump: Dumping Databases
collection_with_representation_policy::=
[behavior cardinality collection_type representation_enum]

{ [representaion_enum]* }

dummy_cursor::=
[D]

cursor::=
[C collection_reference safe_flag]

collection_reference::=
reference

safe_flag::=
integral

cursor_with_index::=
[C collection_reference safe_flag

{ I path_name_length path_name element_name_length
element_name }]

path_name_length::=
integral

path_name ::=
string

element_name_length::=
integral

element_name::=
string

cursor_with_range::=
[C collection_reference safe_flag

{ R range_type key_type low_condition low_value H
high_condition high_value }]

range_type::=
integral

key_type::=
integral

low_condition::=
boolean

low_value::=
integral

high_condition::=
186 ObjectStore Management

Chapter 4: Utilities
boolean

high_value::=
integral

boolean::=
0 | 1

collection_index::=
[[{ path_name_length path_name element_type_length

element_type_name }]*]

collection_element_load::=
[[element_reference]*]

element_reference::=
reference

element_type_length::=
integral

element_type_name::=
string

collection_query::=
[element_type_length element_type < query_string_length

query_string > < file_name_length file_name >
< line_number >]

query_string_length::=
integral

query_string::=
string

file_name_length::=
integral

file_name::=
string

line_number::=
integral
Release 5.1 187

osexschm: Displaying Class Names in a Schema
osexschm: Displaying Class Names in a Schema

The osexschm utility lists the names of all classes in the schema
referenced by the specified database.

Syntax

osexschm [-detail] pathname

Description

For each class, osexschm indicates whether an object of the class
type can be persistently allocated.

Schema protection When developing an application, if you are running this utility on
a protected schema database, ensure that the correct key is
specified for the environment variables OS_SCHEMA_KEY_LOW
and OS_SCHEMA_KEY_HIGH . If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

API None.

-detail Describes the structure of every class in detail.

pathname Specifies a file or rawfs database.
188 ObjectStore Management

Chapter 4: Utilities
osgc: Garbage Collection Utility

Garbage collection frees storage associated with persistent objects
that are unreachable. Applications can continue to use a database
while garbage collection is in process.

The command line utility for collecting garbage is osgc . Invoke
this tool with the following format:

osgc [options] database_name

You can specify the following options:

Option Description

-seg segment_id Collects garbage from only the specified
segment. By default, the osgc utility
operates on the entire database.

-retries number Indicates the number of times the tool
tries to resume the sweep phase of
garbage collection after it waits for a
lock. The default is 10.

-retryInterval interval Indicates the number of milliseconds the
sweep operation waits between sweep
attempts for a concurrency conflict to be
resolved before it tries to resume the
sweep. The default is 1000.

-lockTimeOut interval Indicates the number of milliseconds the
sweep operation waits for a lock conflict
to be resolved. If it is not resolved in the
specified length of time, the tool aborts
the current transaction and starts a new
transaction. ObjectStore rounds this
value up to the nearest second. The
default is 1000.

-transactionPriority n Specifies the transaction priority
associated with transactions started by
the tool. The Server uses this
specification when it must determine
which transaction must be the victim in a
deadlock. This number is intentionally
low so that the garbage collection
transaction is the deadlock victim of
choice. The default is 0.
Release 5.1 189

osgc: Garbage Collection Utility
Performing Garbage Collection in a Database

The ObjectStore persistent garbage collector (GC) collects
unreferenced objects and ObjectStore collections in an ObjectStore
database.

Persistent garbage collection frees storage associated with objects
that are unreachable. It does not move remaining objects to
coalesce the free space. (See oscompact: Compacting Databases on
page 164)

The GC performs its job in two major phases. In the mark phase,
the GC identifies the unreachable objects. In the sweep phase, the
GC frees the storage used by the unreachable objects.

A segment is the smallest storage unit that can be garbage
collected. You can specify a segment or a database to be garbage
collected.

C++ Usage note Normally, databases resulting from ObjectStore applications
written in C++ will not require garbage collection since all storage
allocation is handled explicitly.

osgc can be useful as a debugging tool. For example, if
unreferenced objects are being harvested, it’s an indication of a
persistent memory leak. The identity of these objects can be a clue
to the root of the problem.

-displayGarbage level Displays information about the
candidates for garbage collection
instead of actually destroying the
candidates. The level you specify
determines the amount of information
the tool displays. 1 lists the number of
objects per segment that would be
destroyed. 2 is not currently supported. 3
lists the location of each GC candidate. 4
lists the roots of garbage graphs. Level 4
can require intensive computations.

-statistics Displays statistics for the garbage
collection operation. This includes the
total number of reachable objects and the
total number of garbage objects.
190 ObjectStore Management

Chapter 4: Utilities
Restriction Do not use osgc with applications that rely on cross-database
pointers, The garbage collector operates on one database at a time.
References to one database from another are not detected and
objects pointed to by references from other databases are seen as
unreferenced and therefore removed.

Applications can continue to use a database while persistent GC
is in progress. GC locks portions of a segment as needed, just as if
it were just another application. In this way, the GC minimizes the
number of pages that are locked and the duration for which the
locks are held. Also, the GC retries operations when it detects lock
conflicts.

By default, the GC runs with a transaction priority of zero.
Consequently, it is the preferred victim when the Server must
terminate a transaction to resolve a deadlock. At a later time, the
GC redoes the work that was lost when the transaction was
aborted.

The GC uses read and write lock timeouts of short duration. This
avoids competition with other processes for locks. If the GC
cannot acquire a lock because of a timeout, it retries the operation
at a later time.
Release 5.1 191

osglob: Expanding File Names
osglob: Expanding File Names

The osglob utility performs ObjectStore file name expansion.

Syntax

osglob wordlist

Description

The osglob utility can perform wildcard processing similar to
regular expression wildcards *, ?, {} , and [] .

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks ("") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

API Class: os_dbutil
Method: expand_global

wordlist Specifies strings, such as rawfs pathnames,
containing wildcards that you want to expand into
all matching pathnames.
192 ObjectStore Management

Chapter 4: Utilities
oshostof: Displaying Database Host Name

The oshostof utility displays the host of the specified database to
standard output.

Syntax

oshostof pathname

Description

The oshostof utility can operate on file or rawfs databases.

Normal pathname syntax is supported, including the OS_
DIRMAN_HOST compatibility feature.

When you specify a pathname that is a symbolic link oshostof
displays the host of the database that the link points to.

When you specify the pathname of a Server-remote database the
oshostof utility returns the name of the host where the database
resides.

Examples

A typical use is as follows:

ossvrchkpt ‘oshostof a/b/c’

API None.

pathname Specifies the database for which you want to
display the host name.
Release 5.1 193

osln: Creating Links in the Rawfs
osln: Creating Links in the Rawfs

The osln utility creates a symbolic link in the rawfs hierarchy.

Syntax

osln pathname linkname

Description

Different links can point to the same rawfs pathname.

To indicate hosts, specify pathnames in the form

host::/pathname

Limitation To access a particular database or directory, a client can follow as
many as 15 cross-Server links. For example, a client traverses a
link to Server Q. Server Q sends the client to Server P. Server P
sends the client to another Server or even back to Server Q. Each
connection to a Server counts as one link. It does not matter
whether or not the Server was previously connected to in the link
chain. When the client reaches the sixteenth link, ObjectStore
displays the error message err_too_many_cross_svr_links.

To access a particular database or directory in its rawfs, the Server
can traverse as many as ten same-Server links. When the Server
reaches the eleventh link, ObjectStore displays the error message
err_too_many_links.

In a chain of links, a client can return to a Server that it contacted
earlier in the chain. In this situation, the Server’s count of links
within its rawfs begins with one. It does not continue the count
from where it left off during the previous connection. Each time a
link sends the client to a Server, the Server can follow as many as
ten links within its rawfs.

These limits allow ObjectStore to catch circular links. For example,
A is a link to B, and B is either directly or indirectly a link to A.

pathname The pathname of the rawfs directory or database
that you want to point to.

linkname The pathname of the rawfs directory or database
that is the new link. It points to pathname.
194 ObjectStore Management

Chapter 4: Utilities
When needed Links within the rawfs are useful in many situations, including
the following:

• You move a database. You can define a link so that
programmers do not need to modify applications that use the
moved database.

• You want to store all databases in one place but allow
applications to refer to the databases in different ways.

• You want to set up applications so that they always refer to one
location and that location is a link to the actual database.

Removing a link To remove a link, use the osrm utility. The syntax is osrm linkname.

See osrm: Removing Databases and Rawfs Links on page 222.

Examples

In the following example, link_to_db in canard ’s rawfs points to
real_db in web-foot ’s rawfs.

osln web-foot::/real_db canard::/link_to_db

In the next example, link_to_db points to real_db and both
databases are in the same rawfs.

osln web-foot::/real_db web-foot::/link_to_db

API Class: os_dbutil
Method: make_link
Release 5.1 195

osload: Loading Databases
osload: Loading Databases

To load a database or group of databases from an osdump -
generated ASCII file, build the executable osload from the
corresponding osdump -generated source.

On UNIX, use the make utility and the osdump -generated
makefile makefile.unx . On Windows, use nmake and the osdump -
generated makefile makefile.w32 .

The utility osload creates a database or group of databases given
osdump -generated ASCII as input. The resulting databases are
equivalent to the ones from which the ASCII was produced.

Syntax

osload [-cwd] db_table.dmp pathname ...

Options

Description

For given ASCII input, the databases created by osload have the
same file names as the databases from which the ASCII was
generated (as stored in db_table.dmp).

If switch -cwd is not set, then the databases have the same
pathnames (as stored in db_table.dmp). If files with the given
paths already exist (for example, because the dumped databases
are still in their original locations), osload aborts.

-cwd forces osload to ignore paths from db_table.dmp and create
the databases in the current working directory.

db_table.dmp Database table dump file generated by
osdump . Records information about the
dumped databases.

pathname ... One or more pathnames, separated by spaces,
specifying the ASCII dump files to be loaded.

-cwd Tells osload to recreate databases in the
current working directory.
196 ObjectStore Management

Chapter 4: Utilities
osls: Displaying Directory Content

The osls utility lists the contents of the specified directory.

Syntax

osls [-dlRsu] pathname ...

Options

Description

When a pathname includes links, ObjectStore identifies the
pathname as the pathname to which the symbolic link chain
points. This is true even if an alternative name was specified at
creation.

The osls utility ignores trailing and multiple slashes in
pathnames. It accepts a combination of rawfs pathnames and file
pathnames.

When you specify a local directory, you cannot specify a remote
file-Server host in the pathname of the local directory. The osls
utility passes the operation to a local native utility. If you specify
a remote file-Server host name, ObjectStore informs you that you
specified an illegal pathname.

pathname
...

Specifies one or more rawfs or native file directories
for which you want to list the contents.

-d Lists the information about the directory itself,
rather than the contents. This option operates on
rawfs directories only.

-l Displays information about directory contents in
long format, including the size in bytes.

-R Recursively lists the contents of the specified
directory.

-s Causes the size to be displayed in 1 KB blocks. This
option operates on rawfs directories only.

-u Lists the user name of the owner of the contained
databases. This option operates on rawfs directories
only.
Release 5.1 197

osls: Displaying Directory Content
This utility can perform wildcard processing using regular
expression wildcards *, ?, {} , and [] .

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks ("") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

API Class: os_dbutil
Method: list_directory
198 ObjectStore Management

Chapter 4: Utilities
osmkdir: Creating a Rawfs Directory

The osmkdir utility creates a directory in the rawfs.

Syntax

osmkdir [-p] [-m octal-mode] directory

Options

Description

You can also use osmkdir to create a nonrawfs directory. When
you create a nonrawfs directory, you cannot specify a remote file-
server host in the pathname of the nonrawfs directory. The
osmkdir utility passes the operation to a local native utility. If you
specify a remote file-server host name, ObjectStore informs you
that you specified an illegal pathname. If you specify the -p
option, it works if the native utility supports that feature.

API Class: os_dbutil
Method: mkdir

-p Indicates that ObjectStore should create any
missing directories that are needed to make the
specified directory path exist.

-m octal-
mode

Indicates that the new directory has the
permission mode as specified by octal-mode.
Specify the protection mode that you want the
directory to have. The default mode is 0700.

directory Specifies a rawfs directory pathname.
Release 5.1 199

osmv: Moving Directories and Databases
osmv: Moving Directories and Databases

The osmv utility moves a database, directory, or link.

Syntax

Rawfs osmv [-fi] p1 p2
osmv [-fi] p1... pn dir

File databases osmv [-fi] p1 p2

Options

Description

The osmv utility moves rawfs databases, directories, and links
within a rawfs or from one rawfs to another. It also moves file
databases within the file system. A side effect of osmv is to rename
a file or directory.

As shown in the Syntax section, there are three forms of the
command line for the osmv utility.

In the first form, if p1 and p2 are rawfs databases or links, osmv
moves (changes the name of) p1 to p2. If p2 already exists, the
utility removes it and then moves p1 to p2. If p1 is a rawfs
directory, then p2 must not already exist. osmv moves (changes
the name of) the p1 directory to the p2 directory.

p1
p1 ... pn

Specifies the pathname of a file database or a rawfs
database, link, or directory that you want to move.

p2 Specifies the new pathname for the file database or
rawfs database, link, or directory. If p2 is a link to a
directory, ObjectStore places p1 in the pointed-to
directory.

dir Specifies a rawfs directory into which you want to
move the specified rawfs databases, links, or
directories.

-f Forces execution. Errors are not reported.

-i Specifies interactive mode. ObjectStore prompts
you to confirm for each specified database that you
really want to move it.
200 ObjectStore Management

Chapter 4: Utilities
In the second form, osmv moves one or more databases, links, or
directories into the last directory in the list. The utility maintains
the original names of the moved entities. The directory into which
you are moving items must already exist and you must have write
permission for that directory.

In the third form, osmv moves (changes the name of) file database
p1 to file database p2.

Procedure When moving rawfs databases to another Server, the osmv utility
moves an item by doing the following:

1 Remove the destination, if it exists.

2 Copy the source to the destination.

3 Remove the source.

This allows for consistent databases in the event of a Server crash.
If the Server crashes during the osmv operation, there might not
be a destination database, but there would always be a source
database. When moving rawfs paths on the same Server,
ObjectStore directly renames the item.

Fix external pointers
and references

After you move a database, you need to use the oschangedbref
utility to fix external pointers and references. See oschangedbref:
Changing External Database References on page 146.

Native move
commands

While you can use native move commands to move ObjectStore
file databases, you forfeit the database consistency protection that
osmv provides. If the Server crashes before propagating all
changes to the database, then the Server cannot find the changes
at recovery time and the database is corrupted.

When you specify a file database, you can specify a host in the
pathname of the file database.

osmv can perform wildcard processing using regular expression
wildcards *, ?, {} , and [] .

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks ("") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

API Class: os_dbutil
Method: rename
Release 5.1 201

osprmgc: Trimming Persistent Relocation Maps
osprmgc: Trimming Persistent Relocation Maps

The osprmgc utility prevents PRM bloat.

Syntax

osprmgc [-q] [-r] [-n N] [-t keyword] database-name

Options
-q Quiet mode does not print results after every

segment, but provides a report of total ranges
found and total pages collected.

-r Read-only mode calculates how many ranges can
be collected, but does not do the collection. It runs
MVCC.

Another circumstance that produces a read-only
report is if you run the utility on a database for
which you have only read permission. In such a
case, however, the utility does not run MVCC
unless -r was specified.

-n N Specifies that osprmgc examine segment N only.
This allows you to take advantage of the PRM
reduction in one segment without subjecting the
entire database to garbage collection.

-t keyword This option accepts the following keywords as
values.

remove_whole_ranges – Default. Removes whole
unused PRMEs. This is the only possible setting for
use with immediate address-space assignment.

shrink_ranges – Removes whole unused PRMEs
and shrinks any remaining non-huge PRMEs.

This setting minimizes address space as much as
possible without increasing the number of PRMEs.

split_ranges – Removes whole unused PRMEs. Any
remaining PRMEs are split and the unused space is
removed. This setting best minimizes address-
space usage, but can increase the number of PRMEs
in existence.

coalesce_ranges – This setting can increase
address-space usage. It is the best setting to reduce
the number of PRMEs.
202 ObjectStore Management

Chapter 4: Utilities
Description

The osprmgc utility reduces the size of persistent relocation maps
(PRMs) by removing unnecessary persistent relocation map
entries (PRMEs). The PRM governs the translation of
pseudoaddresses, for persistent pointers, to process addresses.
While the PRMs are stored in a compact form, the maps useful to
an application, transient relocation maps (TRMs), are larger and
consume transient heap memory. Also, large TRMs have a
significant impact on persistent address space in the process.

The PRM grows whenever you add a pointer that is not yet
translated by an existing PRME. Outbound relocation adds the
necessary entry. The issue is that although pointers come and go
(and once they are gone, the corresponding PRME might no
longer be needed), the PRMEs are not normally removed. The
PRM does not normally shrink.

If you are using relocation optimization, unnecessary PRM
expansion can occur, since the entire lot of translations is taken in
the interest of performance. That is, when you use relocation
optimization for the sake of better performance, the PRM size can
increase dramatically.

The osprmgc command-line utility is a PRME garbage collector
that shrinks the size of the PRM so that it translates only the
pointers currently existing in the segment. To decide when an
entry should be removed, the utility looks at every data page in
the segment to ensure that the entry is no longer needed.

The benefits of running the osprmgc utility are that it

• Reduces the amount of memory consumed by the transient
relocation map used by the application

• Increases the speed of transfer from PRM to TRM and back

• Reduces the consumption of persistent address space

The utility uses one transaction per segment. It reports by
segment and also provides a total number of ranges found and
collected per database.

Additionally, an embedded form of the utility exists in an os_
dbutil version. This is particularly useful for databases with
discriminant unions. The format is as follows:
Release 5.1 203

osprmgc: Trimming Persistent Relocation Maps
struct os_prmgc_options {
os_boolean flag_quiet; // -q, default is false
os_boolean flag_read_only; // -r, default is false
os_boolean flag_one_segment; // -n, default is false
os_unsigned_int32 one_segment_number; // the N in -n N
os_prmgc_type prmgc_type; //-t default is remove_whole_ranges

};

Discriminant union
considerations

If you have a database with discriminant unions, you must
perform PRM garbage collection using the os_dbutil form, and
link in the necessary discriminant functions.

Both the command-line and embedded versions of the utility use
a streaming fetch policy. The embedded version ensures that the
policy is restored to its original state (if different) to minimize
impact on the application.

Environment Variables

By default, when a segment is put in use, the address space
assignment for that segment is immediate when inbound
relocation optimization is possible. The default becomes deferred
assignment either because inbound relocation optimization is not
possible, or because trying to get immediate assignment would
increase the amount of assigned address space above half of OS_
AS_SIZE.

The defaults are effective for the large majority of conditions, but
for extreme cases, there are override mechanisms. The default
behavior can be overridden by the following environment
variables:

• OS_FORCE_STANDARD_PRM_FORMAT

• OS_IMMEDIATE_THRESH

• OS_MAX_IMMEDIATE_RANGES

See ObjectStore Management for a description of the use of these
environment variables. Note that the existing environment
variable OS_RELOPT_THRESH does not affect this choice. It is
only used to decide if outbound relocation optimization is
allowed.

API Class: os_dbutil
Method: osprmgc
204 ObjectStore Management

Chapter 4: Utilities
osprop: Propagating Server Logs

An ObjectStore/Single utility that performs a Server checkpoint.

Syntax

osprop [-f] server-log-name ...

Options

Description

ObjectStore/Single The osprop utility ensures that committed data in the Server logs
is propagated to the affected databases. osprop is meaningful only
when run as an ObjectStore/Single application.

osprop performs a function similar to ossvrchkpt . The difference
is that ossvrchkpt propagates what it can, immediately. osprop
propagates everything, guaranteed, and deletes the log when
done.

It is not usually necessary to run this utility because an
ObjectStore/Single application that terminates normally always
conducts propagation and removes the log.

After osprop successfully propagates data in a log it removes the
log. Running osprop twice on the same Server log is permissible.

Examples osprop log1 log2 ...

Iteratively propagates committed data in the specified log files to
the actual databases. Note that this is only meaningful if osprop is
executed in an environment where the ObjectStore/Single
version of libos is used.

osprop -f log3

Propagates committed data in the specified log file if the file exists
and is a valid log. Otherwise, the file is ignored.

API Class: objectstore
Method: propagate_log

-f Instructs osprop to ignore errors.
Release 5.1 205

osrecovr: Restoring Databases from Archive Logs
osrecovr: Restoring Databases from Archive Logs

The osrecovr utility copies (rolls forward) database modifications
from archive log files to the affected databases.

Syntax

osrecovr [options] [-f backup/log-file...] [pathname_translation...]

Options

-f backup/
log-file...

Specifies an archive log file from which to recover
committed database changes made since the last
backup.

You can specify the -f option zero, one, or more
times. The osrecovr utility processes the files in the
order in which you specify them.

If you do not specify the -f option, you must
specify the -F option.

You can mix specifications of -f and -F. The
osrecovr utility processes them in the order in
which you specify them.

Specifying a directory signals an error.

pathname_
translation...

Specifies a pair of pathnames. The first pathname
in the pair indicates the source of the database as
recorded in the archive log or backup image. The
second pathname indicates the target, that is, the
pathname for the database after it is recovered.

You can specify zero, one, or more pathname
translations. Each pathname can be a directory or
a single database. However, you cannot specify a
directory as the source and a database as the
target.

If you do not specify at least one pathname_
translation, all databases in the archive logs or
backup images you specified are restored in their
original locations.

-c Directs the osrecovr utility to apply each archive
log snapshot and each backup image in its own
transaction. The default is for all changes to be
applied in a single transaction.
206 ObjectStore Management

Chapter 4: Utilities
Description

The osrecovr utility can apply changes up to the time of the last
snapshot in the archive log, or to some earlier time that you
specify.

The osrecovr utility can restore backups as well as recover data
from archive logs, both in the same invocation.

When you run the osrestore or osrecovr utility, the operation is
transaction-protected. This means that if the operation fails,
ObjectStore rolls databases back to the state they were in before
the operation started.

-D date Specifies a date in the MM/DD/YY format. The
osrecovr utility rolls forward all database changes
committed before or on this date. The default is to
roll forward to the last snapshot taken.

-F recover-file Specifies the name of a file that contains a list of
archive files or backup images from which to
recover specified databases. If you specify "-" as the
recover file name, osrecovr reads from standard
input.

The list contains one file pathname per line.
Leading and trailing white space is ignored.

If you specify the -F option, you can also specify -f
with additional file names on the command line.
You can mix specifications of -f and -F. osrecovr
processes them in the order in which you specify
them.

-n Normally, if a directory is specified as the source of
a recovery operation, all databases in the directory
and its subdirectories are recovered. Including the
-n option limits the recovery operation to databases
contained in the named directory.

-r time Specifies a recover-to time in the HH:MM:SS
format. The osrecovr utility rolls forward all
database changes committed before or at this time.
The default is to roll forward to the last snapshot
taken.

-t Displays a list of databases contained in specified
archive files.
Release 5.1 207

osrecovr: Restoring Databases from Archive Logs
ObjectStore applications cannot access databases that are being
restored until the entire restoration process has finished.

Specify a pathname_translation when you want to restore

• One or more, but not all, databases in the backup image to their
original locations

• One or more databases in the backup image to locations other
than their original locations

When restoring data from tape, you must use the osrestore utility.

Run osrestore and
then osrecovr

You must run the osrestore utility before the osrecovr utility if
you performed both of the following steps:

1 You used the osbackup utility to back up a database.

2 You ran the osarchiv utility and used the same incremental
backup record that you used for the osbackup utility.

Tradeoffs When Recovering in Several Transactions

You can specify the -c option to recover data in several
transactions instead of one transaction. While this gives you
flexibility, there is a tradeoff between the ability to roll back
databases and the space needed in the log to record all
modifications to databases being recovered.

For example, if you specify -c when you initiate osrecovr ,
ObjectStore recovers each snapshot in its own transaction. If the
operation fails because of media failure while applying the last
snapshot, ObjectStore rolls the databases back to the state they
were in as of the last successfully applied snapshot.

However, suppose that each snapshot is 100 MB. This requires 100
MB of log space. If you ensure that the database does not exist
when the recover operation starts, and if you apply all snapshots
in a single transaction, then all recovered data bypasses the log
and goes directly to the database. Now, if the operation fails,
ObjectStore rolls all changes back, including the database
creation.

The fundamental tradeoff is between the ability to roll back to a
previous state, and the resources needed to log the changes so that
rollback is possible. In cases where the size of the databases being
208 ObjectStore Management

Chapter 4: Utilities
recovered exceeds the size of the space available (or desirable) for
logging, it is preferable

• To use a single transaction for the recovery operation

• Not to restore over existing databases

Examples

Listing archive
contents

% osrecovr -f /vancouver1/archives/96011216.aaa -t
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

Recovering from
a single archive

% osrecovr -f /vancouver1/archives/96011216.aaa
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 17:28:22 1996
Recovered to time Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:57 1996
Recovered to time Thu Jan 12 16:26:11 1996
Restoring 452 sectors to database "vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Thu Jan 12 16:26:41 1996
Recovered to time Thu Jan 12 16:27:13 1996
Recovered to time Thu Jan 12 16:27:43 1996
Recovered to time Thu Jan 12 16:28:14 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

Recovering back to
place

The next example restores all databases to their location and state
as of 16:25:27 and January 12, 1996.

% osrecovr -f /vancouver1/archives/96011216.aaa -r 16:25:27
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:27 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).

Recovering from
multiple archive files

% cat ./archive_list
/vancouver1/archives/96011216.aaa
/vancouver1/archives/96011216.aab
/vancouver1/archives/96011216.aac

% osrecovr -t -F ./archive_list
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/96011216.aaa).

% osrecovr -F ./archive_list
Release 5.1 209

osrecovr: Restoring Databases from Archive Logs
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 17:27:01 1996
Recovered to time Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:57 1996
Recovered to time Thu Jan 12 16:26:11 1996
Restoring 452 sectors to database "vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Thu Jan 12 16:26:41 1996
Recovered to time Thu Jan 12 16:27:13 1996
Recovered to time Thu Jan 12 16:27:43 1996
Recovered to time Thu Jan 12 16:28:14 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).
Auto switching to volume #2 (/vancouver1/archives/96011216.aab).

Recovering from volume #2 (/vancouver1/archives/96011216.aab)...
Recovered to time Thu Jan 12 16:28:21 1996
Recovered to time Thu Jan 12 16:28:35 1996
Recovered to time Thu Jan 12 16:28:37 1996
Recovered to time Thu Jan 12 16:28:38 1996
Recovered to time Thu Jan 12 16:28:40 1996
Recovered to time Thu Jan 12 16:28:41 1996
Recovered to time Thu Jan 12 16:28:49 1996
Recovered to time Thu Jan 12 16:28:55 1996
Recovered to time Thu Jan 12 16:29:01 1996
Recovered to time Thu Jan 12 16:29:06 1996
Recovered to time Thu Jan 12 16:29:12 1996
Recovered to time Thu Jan 12 16:29:17 1996
Recovered to time Thu Jan 12 16:29:23 1996
Recovered to time Thu Jan 12 16:29:28 1996
Recovered to time Thu Jan 12 16:29:34 1996
Recovered to time Thu Jan 12 16:29:39 1996
Recovered to time Thu Jan 12 16:29:43 1996
Recovered to time Thu Jan 12 16:29:44 1996
Recovered to time Thu Jan 12 16:29:49 1996
Recovered to time Thu Jan 12 16:29:55 1996
Recovered to time Thu Jan 12 16:30:01 1996
Closing volume #2 (/vancouver1/archives/96011216.aab).
Auto switching to volume #3 (/vancouver1/archives/96011216.aac).

Recovering from volume #3 (/vancouver1/archives/96011216.aac)...
Recovered to time Thu Jan 12 16:31:04 1996
Recovered to time Thu Jan 12 16:31:06 1996
Closing volume #3 (/vancouver1/archives/96011216.aac).
%

Recovering to a date
and time

% osrecovr -F ./archive_list -D 1/12/96 -r 16:27:43
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 16:27:43 1996
Recovered to time Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:57 1996
Recovered to time Thu Jan 12 16:26:11 1996
210 ObjectStore Management

Chapter 4: Utilities
Restoring 452 sectors to database
"vancouver:/vancouver1/dbdir/foo.db"Recovered to time Thu Jan 12
16:26:41 1996
Recovered to time Thu Jan 12 16:27:13 1996
Recovered to time Thu Jan 12 16:27:43 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

Recovering to a time
today

% osrecovr -F ./archive_list -r 16:27:43
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 16:27:43 1996
Recovered to time Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:57 1996
Recovered to time Thu Jan 12 16:26:11 1996
Restoring 452 sectors to database "vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Thu Jan 12 16:26:41 1996
Recovered to time Thu Jan 12 16:27:13 1996
Recovered to time Thu Jan 12 16:27:43 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

Recovering a single
database

The next example makes vancouver::/bar.db equal to
vancouver::/foo.db as of 16:27:43 today.

% osrecovr -F ./archive_list -r 16:27:43 vancouver::/foo.db \
vancouver::/bar.db
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Thu Jan 12 16:27:43 1996
Recovered to time Thu Jan 12 16:25:27 1996
Recovered to time Thu Jan 12 16:25:57 1996
Recovered to time Thu Jan 12 16:26:11 1996
Recovered to time Thu Jan 12 16:26:41 1996
Recovered to time Thu Jan 12 16:27:13 1996
Recovered to time Thu Jan 12 16:27:43 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).

% osls vancouver::/
bar.db
dbdir/
foo.db
%

% cat ./archive_list
/vancouver1/archives/96011216.aaa
/vancouver1/archives/96011216.aab
/vancouver1/archives/96011216.aac

% osrecovr -t -F ./archive_list
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/96011216.aaa).
Release 5.1 211

osrecovr: Restoring Databases from Archive Logs
%

Examples of Recovery Failures

Nonexistent database % osrecovr -f /vancouver1/archives/96011216.aaa -r 16:25:27 \
vancouver::/asdla.db vancouver::/as.db
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Closing volume #1 (/vancouver1/archives/96011216.aaa).
Recover failed: Database vancouver::/asdla.db does not exist in this
backup image
%

Day not in
the archives

% osrecovr -F ./archive_list -D 1/11
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Wed Jan 11 17:29:08 1996
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

Day/year
not in archives

% osrecovr -F ./archive_list -D 1/11/95
Recovering from volume #1 (/vancouver1/archives/96011216.aaa)...
Target time: Tue Jan 11 17:29:51 1995
Closing volume #1 (/vancouver1/archives/96011216.aaa).
%

API None.
212 ObjectStore Management

Chapter 4: Utilities
osreplic: Replicating Databases

The osreplic utility replicates and maintains multiple copies of a
database.

Syntax

osreplic[-r] [-v] [-x] [-i interval] [-p] [-B size] [-I import_file] -a archive_
rec_file src_path1 dest_path1 [src_path2 dest_path2 ...]

Options
 -a archive_
record_file

Archive. Required. Specifies the archive
record file. If the files does not exist, it is
created.

-B size Buffer. Controls the amount of transient
workspace available to the source server.

size is a number optionally appended with k,
m, or g to indicate kilobytes, megabytes, or
gigabytes respectively. If no unit is specified,
m is presumed. For example, -B 1024k , -B 1m ,
and -B 1 each specify a maximum buffer size
of 1 megabyte. The default value is 1 MB

-i interval Interval. Sets the interval between snapshots.
The default is 600 seconds. A copy is made
immediately after osreplic is initiated and
then every interval thereafter.

Intervals are specified with integer values.
Append m, h, or d to a value to indicate
minutes, hours, or days, respectively. By
default, values are interpreted as seconds. For
example, -i 60 and -i 1m both specify an
interval of one minute.

-I import_file Import (uppercase I). Source and destination
databases and directories can be specified
with a separate input file as well as on the
command line. Each line in the input file
should consist of a source path followed by a
target path. If a directory is specified, its
contents are added to the source set.

-p Permissions. Sets database ACLs on the
replica to match those of the master (rawfs
only).
Release 5.1 213

osreplic: Replicating Databases
Description

The ObjectStore replicator produces a continuously updated copy
(or replica) of one or more user databases. The utility works by
coordinating the actions of a source ObjectStore Server running an
archive logger, and of a target ObjectStore Server, providing a
read-only (MVCC) copy of a database that is dynamically
updated from the master database.

ObjectStore Release 4 and later databases and rawfs directories
can be replicated, as well as ObjectStore Release 4 and later file
databases. Native file system directories cannot be replicated.

When you start the replicator, you specify a set of sources and
destinations for replicated databases on the command line or with
a separate input file using the -I (I) option. The master/replica pair
is specified by pathname with the src_path and dest_path
arguments, including the target host if needed. The list of
databases cannot be changed once the replicator is started.

src_path and dest_path can be a directory path or a database name.
You can also use UNC pathnames (on Windows platforms),
Server relative pathnames, or local pathnames. However, you
cannot use UNC pathnames as destinations.

You must also specify an archive_record_file with the -a option. The
osreplic utility uses this information to determine which segments
within a database have been modified since the last replication.
This file is identical to the archive record file for osarchiv .

At specified intervals, the replicator takes a snapshot of the
databases and sends the changed data to the target host so the

-r Recursive. Enables recursive processing of
rawfs directories.

-v Verbose. Enables verbose output.

-x Exclude. Prohibits clients from using the
replica until osreplic terminates.

-y Yes. Confirms the restart of the replicator for
an existing master/replica pair and bypasses
the usual prompt after osreplic starts. When
using this option, be sure beforehand that the
replica is unchanged since the last update.
214 ObjectStore Management

Chapter 4: Utilities
data is applied to the replica. All committed user data is
replicated.

Database ACLs (Access Control Lists, including owner, group,
mode) can also be copied for rawfs databases. However, neither
rawfs directory ACLs nor segment-level permissions are copied.
Additionally, no file database ACLs are copied.

Operations such as osrm are not propagated to the replica.

API None.
Release 5.1 215

osrestore: Restoring Databases from Backups
osrestore: Restoring Databases from Backups

The osrestore utility copies databases from backup storage
locations to your disk or rawfs. Backups must have been created
with the osbackup utility.

Syntax

osrestore [options] -f backup-file [-f backup-file]... [pathname_
translation]...

Options

-f backup-
file

Specifies a file or tape device that contains a backup
image from which to restore databases. You can
specify the -f option one or more times. Required.

On UNIX systems, you can specify -f - (hyphen) to
indicate stdin .

pathname_
translation...

Specifies a pair of pathnames separated by a space.
The first pathname in the pair indicates the source
of the database as recorded in the backup image.
The second pathname indicates the target, that is,
the pathname for the database after it is restored.

You can specify zero, one, or more pathname
translations. Each pathname can be a directory or a
single database. However, you cannot specify a
directory as the source and a database as the target.

If you do not specify at least one pathname_
translation, all databases in the backup image are
restored in their original locations.

-a Aborts the restore operation if the utility cannot
open the restore device. This raises an exception
that indicates the problem.

The default is that if the restore utility fails to open
the device, it displays a message and waits for you
to correct the problem.

Examples of failure to open the device are having a
write-protected tape or no tape loaded.
216 ObjectStore Management

Chapter 4: Utilities
Description

ObjectStore applications cannot access databases that are being
restored until the entire restoration process has finished.

Specify a pathname_translation when you want to restore

• One or more, but not all, databases in the backup image to their
original locations

• One or more databases in the backup image to locations other
than their original locations

Procedure To restore databases, begin with a level 0 backup image. The
osrestore utility prompts for incremental backup images you
might want to apply after this. Not all incremental backups need
to be applied. To determine which incremental backups to apply,
list the backup levels in chronological order, starting with the
level 0 backup. For example, suppose you performed the
following backups:

-b blocking-factor Specifies a blocking factor to use for tape input and
output. This parameter applies only when you are
restoring data from a tape. The blocking factor is in
units of 512-byte blocks. The default on UNIX is 126
blocks. The maximum blocking factor is 512 blocks.

-n Normally, if a directory is specified as a source for
osrestore , all databases in the directory and its
subdirectories are restored. Including the -n option
limits the operation to databases in the named
directory.

-O Restores the database image specified with the -f
flag and then exits. There is no prompt for
additional volumes.

-p The -p (permissions) option causes osrestore to
restore database ACLs for the rawfs stored in the
archive log file for the database being restored.

-S exec_command_name Specifies the pathname of a command to be
executed when the osrestore utility reaches the end
of the media. This command should mount the next
volume before returning. The exit status from this
command must be 0 or the restore operation aborts.
Note that this option is an uppercase S.

-t Displays a list of databases in the backup image.
Release 5.1 217

osrestore: Restoring Databases from Backups
• Level 0 backup on Monday

• Level 5 on Tuesday

• Level 6 on Wednesday

• Level 2 on Thursday

• Level 4 on Friday

Your list would look like this: 0, 5, 6, 2, 4.

Scanning the list from right to left, find the lowest incremental
backup level greater than 0, in this case, the level 2 backup made
on Thursday. To restore databases to their state as of the backup
on Friday, apply the level 0 backup and the incremental backups
made at levels 2 and 4, in that order.

Block size The block size must be 512 bytes or less. The osrestore utility
cannot work when the block size is greater than 512 bytes.

Comparing
databases

You might want to have two copies of the same database for
verification purposes — a restored version and the original
version. Here is a sample command line for doing this. In this
example, backup.img contains foo::/db . The pathname translation
does the job in one step.

osrestore -f backup.img foo::/db foo::/restore.db

Windows to UNIX
pathname translation
example

You must specify a pathname translation when you restore or
recover data on an architecture that is different from the
architecture on which you are restoring the data. For example,
here is a Windows NT to UNIX pathname translation. The backup
image being restored is /tmp/my.img . The interaction is on a UNIX
system. You do not need to do anything special when you make
the backup on the Windows NT system.

In the first interaction, the command line specifies the -t option,
which instructs the osrestore utility to list the databases in the
specified backup image. Nothing is actually restored. The only
database in the backup image is mckinley:e:\r4tsd_data\arch.0 .
This is a Windows NT database, and the following example shows
that the osrestore utility on a UNIX system translates it to
mckinley:e:/r4tsd_data/arch.0 . The utility automatically translates
back slashes (\) to slashes (/).

% osrestore -f /tmp/my.img -t
Recovering from volume #1 (/tmp/my.img)...
218 ObjectStore Management

Chapter 4: Utilities
mckinley:e:/r4tsd_data/arch.0
Closing volume #1 (/tmp/my.img).
%

In the second interaction, the command line specifies the
pathname translation mckinley:e:/r4tsd_data/ /recovery . This
instructs the osrestore utility to copy all files in the backup image
in the mckinley:e:/r4tsd_data/ directory to the /recovery directory
on the local machine. In this example, this is only arch.0 .

% osrestore -f /tmp/my.img mckinley:e:/r4tsd_data/ /recovery
Recovering from volume #1 (/tmp/my.img)...
Restoring 3175 sectors to database "vancouver:/recovery/arch.0"
Recovered to time Fri Mar 3 14:07:24 1995

Do you wish to restore from any additional incremental backups?
(yes/no):
no
Closing volume #1 (/tmp/my.img).
%

Examples

The following examples illustrate some uses of osrestore .
Although it is not shown, osrestore prompts you to indicate if you
want to restore from incremental backups.

The examples are UNIX examples; however, they would be the
same on any platform except for the file name format.

Listing databases
in backup image

This example displays a list of databases in the backup.img backup
image.

% osrestore -t -f /backup.img
::eudyp:/test/
::eudyp:/test: data1.odb data2.odb data3.odb
::cleopat:/results/
::cleopat:/results: r1.odb r2.odb r3.odb

This indicates that the backup image contains six file databases.
Three are in the /test directory; they were backed up on host
eudyp. Three are in the /results directory; they were backed up on
host cleopat .

Copying backups
to new Servers

Restore all databases on Server eudyp to Server kellen , and all
databases on Server cleopat to Server eudyp :

% osrestore -f backup.img eudyp:/ kellen:/ cleopat:/ eudyp:/
restoring "::eudyp:/test/data1.odb" to "::kellen:/test/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::kellen:/test/data2.odb"
Release 5.1 219

osrestore: Restoring Databases from Backups
restoring "::eudyp:/test/data3.odb" to "::kellen:/test/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::eudyp:/results/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::eudyp:/results/r2.odb"
restoring "::cleopat:/results/r3.odb" to "::eudyp:/results/r3.odb"

Changing Servers
and directories

Restore all databases in the /test directory on Server eudyp into the
/test-copy directory on Server kellen :

% osrestore -f backup.img eudyp:/test kellen:/test-copy
restoring "::eudyp:/test/data1.odb" to "::kellen:/test-copy/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::kellen:/test-copy/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::kellen:/test-copy/data3.odb"

Restoring a single
database

Restore the database eudyp:/test/data1.odb to /tmp :

% osrestore -f backup.img eudyp:/test/data1.odb eudyp:/tmp
restoring "::eudyp:/test/data1.odb" to "::eudyp:/tmp/data1.odb"

Restoring to source
with one exception

Restore everything in the /test directory on Server eudyp to its
original location, except data1.odb , which gets restored in the
/example directory on Server cleopat .

% osrestore -f backup.img eudyp:/test/data1.odb cleopat:/example
\ eudyp:/test eudyp:/test
restoring "::eudyp:/test/data1.odb" to "::cleopat:/example/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::eudyp:/test/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::eudyp:/test/data3.odb"

In this example, the order of the pathname translations is
important. Specify specific pathnames before you specify
directories that include those pathnames.

Restoring to source Restore the entire backup image to its original location.

% osrestore -f backup.img
restoring "::eudyp:/test/data1.odb" to "::eudyp:/test/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::eudyp:/test/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::eudyp:/test/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::cleopat:/results/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::cleopat:/results/r2.odb"
restoring "::cleopat:/results/r3.odb" to "::cleopat:/results/r3.odb"

Restoring all to a local
directory

Restore the entire backup image into the /examples directory on
the local host (twinkie).

% osrestore -f back.img eudyp:/test /examples cleopat:/results
/examples
restoring "::eudyp:/test/data1.odb" to "::twinkie:/examples/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::twinkie:/examples/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::twinkie:/examples/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::twinkie:/examples/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::twinkie:/examples/r2.odb"
220 ObjectStore Management

Chapter 4: Utilities
restoring "::cleopat:/results/r3.odb" to "::twinkie:/examples/r3.odb"

API None.
Release 5.1 221

osrm: Removing Databases and Rawfs Links
osrm: Removing Databases and Rawfs Links

The osrm utility removes databases and rawfs links from Servers.

Syntax

osrm [-f][i][r] pathname...

Options

Description

To remove a database, you must have write permission to its
directory, but you do not need write access to the database itself.

If you specify more than one database to be removed and for some
reason ObjectStore cannot remove at least one of the databases,
then ObjectStore does not remove any of the databases.

If a database is open when you remove it with the osrm utility,
ObjectStore does not actually remove it until it is closed.
Transactions can update the removed database until the database
is closed.

The osrm utility can perform wildcard processing using regular
expression wildcards *, ?, {} , and [] .

pathname... Specifies the file or rawfs database or directory, or
rawfs link, that you want to remove. You can
specify one or more. You can specify both file and
rawfs databases and directories and rawfs links in
the same operation. You must specify the -r option
if you want to remove a rawfs directory.

-f Forces execution of the utility and does not display
an error message if the specified database is not
found or cannot be removed. This option is
required when you want to remove nondatabase
files from the native file system.

-i Specifies interactive mode. ObjectStore prompts
you to confirm for each specified database that you
really want to remove it.

-r Recursively removes all databases in the specified
directory. On OS/2, this option works only on
rawfs directories.
222 ObjectStore Management

Chapter 4: Utilities
For file databases, the osrm utility calls the native remove utility.

UNIX When operating on a rawfs database, you must enclose the
wildcard in quotation marks ("") or precede it with a back slash (\)
to keep the shell from interpreting wildcards.

API Class: os_dbutil
Method: remove
Release 5.1 223

osrmdir: Removing a Rawfs Directory
osrmdir: Removing a Rawfs Directory

The osrmdir utility removes a directory from the rawfs.

Syntax

osrmdir directory

Description

To remove a directory from the rawfs, the directory must be
empty. Also, you must have write permission for the parent
directory. You do not need write permission for the directory you
are removing.

You can also use osrmdir to remove a local directory. When you
specify a local directory, you cannot specify a remote file-Server
host in the pathname of the local directory. The osrmdir utility
passes the operation to a local native utility. If you specify a
remote file-Server host name, ObjectStore informs you that you
specified an illegal pathname.

Wildcards The osrmdir utility can perform wildcard processing using regular
expression wildcards *, ?, {} , and [] .

UNIX On UNIX, you must enclose the wildcard with quotation marks
(" ") or precede it with a back slash (\) to keep the shell from
misinterpreting the asterisk as a shell wildcard.

API Class: os_dbutil
Method: rmdir

directory Specifies the pathname of the directory that you
want to remove from the rawfs.
224 ObjectStore Management

Chapter 4: Utilities
osscheq: Comparing Schemas

The osscheq utility compares two schemas.

Syntax

osscheq [-quiet] db1 db2

Description

The osscheq utility is useful when you suspect that a change to a
schema causes it to be incompatible with the other schemas in an
application. It is best to detect an incompatibility as early as
possible. When schemas are not compatible, execution of the
application fails because of a schema validation error.

Example

For example, suppose the database test1 contains the following
definition for C:

class C {
int del ;
int mod ;

} ;

Database test2 defines C as follows:

class C {
int add ;
char* mod ;

} ;

Invoke the osscheq utility as follows:

osscheq test1 test2

db1
db2

Specifies the pathnames of the two databases you
want to compare. Each database can contain an
application schema, a compilation schema, or a
database schema. If the database contains a
database schema, it can be local or remote.

-quiet Returns a value of 0 if the databases are compatible.
Returns a nonzero value if the databases are not
compatible. When you do not specify this option,
the utility displays messages explaining why the
schemas are different. There is no other output.
Release 5.1 225

osscheq: Comparing Schemas
The result is the following output:

The following class definitions in test1 and test2 were inconsistent:
C (C.del was deleted, the type of C.mod changed (from int to char*), and
C.add was added)

Comparison
technique

The comparison technique depends on the types of schemas being
compared. When comparing compilation or application schemas,
ObjectStore uses the technique used by the schema generator
when building compilation or application schemas. When one of
the schemas being compared is a database schema, the
comparison technique is the same as that used to validate an
application when it accesses a database.

Schema checking done by the schema generator is a stricter form
of checking than that used to validate an application against a
database. The latter form of checking is the minimal checking
required to ensure that the application and the database use the
same layout for all shared classes.

API None.
226 ObjectStore Management

Chapter 4: Utilities
osserver: Starting the Server

The osserver utility starts the Server. Starting the Server varies
from platform to platform. Look for details in the chapter for your
platform.

Syntax

osserver options

Options

Ordinarily, you use Server parameters to control how the Server
functions. However, you can also specify options when you
execute the osserver utility.

-c Checkpoint. Forces all data to be propagated from
the log to the database. The Server does not start
after this checkpoint.

-d int Starts the Server in debug mode. Specify an integer
from 1 through 50. The larger the number, the more
information ObjectStore provides. You can also
specify the -F option so that ObjectStore displays
the information on the screen.

ObjectStore copies debug output to the standard
Server output file, unless you redirect it to another
file.

-F Foreground. Runs the Server process in the
foreground. This reverses the normal behavior,
where the Server runs as a background process.
This option is not available on Windows.

-i Initializes the Server log file and the rawfs, if you
have one, with a confirmation prompt. Use with
caution.

-I (Uppercase I) Initializes the Server log file, and the
rawfs if you have one, without a confirmation
prompt. Use with extreme caution.
Release 5.1 227

osserver: Starting the Server
API None.

-p
pathname

Specifies a file containing Server parameter settings
that override the default settings. If you do not
specify this option, ObjectStore uses the default
parameter file. This option is not available on
Windows.

-v Displays Server parameter values at start-up.
228 ObjectStore Management

Chapter 4: Utilities
ossetasp: Patching Executable with Application
Schema Pathname

The ossetasp utility patches an executable so that it looks for its
application schema in a database that you specify.

Syntax

ossetasp -p executable
ossetasp executable database

Description

When the schema generator generates an application schema,
ObjectStore stores the actual string given as the -asdb argument to
ossg (or the -final_asdb argument, if specified). When the
application starts, it uses that string to find the application schema
database.

When you move or copy an ObjectStore application to a machine
that is not running a Server, leave the application schema
database on the Server host. Normally, the application schema
database must always be local to the Server.

After you copy or move an application to another machine, you
must patch the executable so that it can find the application
schema database. Run the ossetasp utility with the absolute
pathname of the application schema database. Be sure to specify
the name of the Server host.

OS/2

-p Instructs ossetasp to display the pathname of the
specified executable’s application schema
database. Do not specify database in the command
line when you include -p.

executable Specifies the pathname of an executable. On
Windows systems, this can also be the pathname
of a DLL.

database Specifies the pathname of an application schema
database. ObjectStore patches the specified
executable so it uses this application schema.
Release 5.1 229

ossetasp: Patching Executable with Application Schema Pathname
A locator file allows a database and its application schema to be
on a machine other than the Server host. See Chapter 5, Using
Locator Files to Set Up Server-Remote Databases, on page 281.

Windows On Windows systems, you can perform the ossetasp utility on
any EXE or DLL that contains schema (that is, that has a schema
object file produced by ossg linked into it).

Restrictions This utility is available on all platforms except OS/2. On OS/2, as
well as on all other platforms, you can use the API.

API Class: objectstore
Methods: get_application_schema_pathname
and set_application_schema_pathname
230 ObjectStore Management

Chapter 4: Utilities
ossetrsp: Setting a Remote Schema Pathname

The ossetrsp utility specifies a new pathname for the schema
associated with a particular database.

Syntax

ossetrsp {-p | schema_db_path} db_path

Description

A database can store its schema in a separate schema database.
The schema database contains all schema and relocation
metadata. The main database contains everything else.

When needed If you move the schema database, you must execute ossetrsp or
use os_database::set_schema_database() to inform ObjectStore of
the schema database’s new pathname.

If you copy the schema database with an operating system
command or an ObjectStore utility, you can execute ossetrsp or
use os_database::set_schema_database() to inform ObjectStore of
the schema database’s new pathname.

You cannot associate an entirely new schema database with the
main database. You can only change the pathname of the original
schema database by moving or copying the original schema
database.

API Class: os_database
Methods: get_schema_database
and set_schema_database

-p Displays the pathname of the schema database used
by the database specified by db_path, if db_path is a
database that stores its schema remotely. If it is not,
ObjectStore displays a message informing you that
db_path is not a database whose schema is stored in
some other database.

schema_
db_path

Specifies a new pathname for the schema database
used by the database specified by db_path.

db_path Specifies the pathname of a database whose schema
database pathname you want to either change or
display.
Release 5.1 231

ossevol: Evolving Schemas
ossevol: Evolving Schemas

The ossevol utility modifies a database and its schema so that it
matches a revised application schema. It handles many common
cases of schema evolution. For more complicated evolutions,
including the cases ruled out in this section, see ObjectStore
Advanced C++ API User Guide, Chapter 9, Advanced Schema
Evolution.

Use osbackup first Running the ossevol utility changes the physical structure of your
database. Consequently, you should back up your database
before you run the ossevol utility.

Syntax

ossevol workdb schemadb evolvedb ... [keyword-options]

Options
-task_list filename Specifies that the ossevol utility should produce a

task list and place it in the file specified by filename.
Use "-" for stdout . When you specify this option,
ObjectStore does not perform schema evolution.

The task list consists of pseudofunction definitions
that indicate how the migrated instances of each
modified class would be initialized. This allows you
to verify the results of a schema change before you
migrate the data.

-classes_to_be_removed class-name(s) Specifies the name of the classes to be removed.

-classes_to_be_recycled class-name(s) Specifies the name of the classes whose storage
space can be reused. By default, the storage
associated with all classes is recycled.

-drop_obsolete_indexes { yes | no } Specifies whether or not obsolete indexes
encountered in the course of the evolution should be
dropped. The default is no , which means that they
are not dropped.

-local_references_are_db_relative Specifies that all local references are relative to the
database in which they are encountered. The default
is no .

-resolve_ambiguous_void_pointers Resolves ambiguous void pointers to the outermost
enclosing collocated object. The default is no .
232 ObjectStore Management

Chapter 4: Utilities
OS/2 and AIX It is possible to run the ossevol utility on

• An OS/2 machine and evolve a database that was created on
AIX

• An AIX machine and evolve a database that was created on
OS/2

Description

When you specify two or more classes for an option, separate the
class names with a space.

Changes can include You can use the ossevol utility to evolve the following changes:

• Adding/deleting the first/last virtual member function

-upgrade_vector_headers Upgrades the representation of vector objects in the
evolved database to a format that allows them to be
accessed by clients built by different types of
compilers.

You do not need to convert vector objects if the
database will be accessed only by applications that
were compiled with the same type of compiler. In
other words, this option is for databases being used
in an environment that includes multiple types of
compilers. It is also useful if you are switching from
OSCC (cfront), no longer supported in ObjectStore
Release 5.0, to a native compiler that uses vector
headers, such as SGI C++.

Use this option only with databases that meet at
least one of these conditions:

• Created before ObjectStore Release 4.0

• Built by applications compiled with a cfront or
cfront -derived compiler

You do not need to use this option if you only intend
to access the schema from applications that were
compiled with cfront , since cfront does not need
vector headers.

You also need this option on SGI machines when
you are converting from ObjectStore 3.x to
ObjectStore 4.0.

-explanation_level n A number from 1 to 3; primarily an internal
debugging aid.
Release 5.1 233

ossevol: Evolving Schemas
• Reordering data members

Changes cannot
include

You cannot use the ossevol utility to evolve changes that include

• User-defined transformer functions

• Any exception-handling code not handled by ossevol
command-line options

• A pointer-to-member that points to a member of a virtual base
class

• Illegal pointer handlers

Changes might
include

You might be able to use the ossevol utility to evolve the
following changes. In each item, the information after the first
sentence indicates reasons why the ossevol utility might not be
able to perform the evolution.

• Deleting obsolete classes/instances. Deleting an object might
require modification of data belonging to another object, such
as a counter.

• Adding/deleting base classes. When adding base classes, you
might want some data members to be initialized with a value
other than 0. When deleting base classes, you might want
another effect.

• Adding/deleting a data member (also indexable data
members). When adding a data member, you might want it to
be initialized to something other than 0.

• Changing the type of a class member. Depending on the type
you are changing to, there might be a requirement for some
transformations that cannot be done automatically.

Evolution not required These changes do not require schema evolution:

• Adding a new isolated class (Isolated means that it is not a
superclass or a subclass of another class. When a new class is
isolated, its addition does not cause objects already in the
database to change.)

• Adding an isolated derived class

• Changing member access (private/protected/public)

• Changing integer data member to/from signed/unsigned

• Changing data member to/from const /non-const

• Adding/deleting static/persistent data members
234 ObjectStore Management

Chapter 4: Utilities
Except on Windows NT, the following two changes do not require
schema evolution. On Windows NT, these two changes require
schema evolution in some cases. You receive a schema validation
message when you run the schema generator and schema
evolution is required.

• Adding/deleting nonvirtual member functions

• Adding/deleting virtual member functions (other than first or
last)

Transformer function
required

These changes require application-specific transformer functions:

• Renaming a data member

• Initializing instances of a new data member from data
members of old or existing instances

• Changing a data member to/from being indexable

• Adjusting particular local references

• Adding a data member that is a C++ reference or a const

• Moving data members to/from a derived or base class

• Reinitialization of user-defined structures containing values
that are addresses of evolved instances

Schema protection When developing an application, if you are running this utility on
a protected schema database, ensure that the correct key is
specified for the environment variables OS_SCHEMA_KEY_LOW
and OS_SCHEMA_KEY_HIGH . If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

When deploying an application, if your end users need to use the
ossevol utility on protected schema databases, you must wrap the
utility in an application. This application must use the API to
provide the key before using the os_dbutil class to call the utility.
End users need not know anything about the key. For information
about wrapping your application around an ObjectStore utility,
see the class os_dbutil in the ObjectStore C++ API Reference.

API For complete information about schema evolution, see ObjectStore
Advanced C++ API User Guide.
Release 5.1 235

ossg: Generating Schemas
ossg: Generating Schemas

The ossg utility is the ObjectStore schema generator. See
ObjectStore Building C++ Interface Applications for complete
information about how to use ossg . You must have a client
development license and a Server development license to use this
utility.

Syntax

Examples

See ObjectStore Building C++ Interface Applications.

Kind of Schema Syntax for ossg Command

Application ossg [compilation_options] [neutralizer_options] [-cpp_fixup] [-E]
[-final_asdb final_app_schema_db] [{ -mrlcp | -mrscp }]
[-no_default_includes] [-no_weak_symbols] [-rtdp {minimal |
derived | full | maximal }] [{ -sfbp | -pfb }] [-store_member_
functions]
[-weak_symbols]
{-assf app_schema_source_file or -asof app_schema_object_file.obj }
-asdb app_schema_database schema_source_file [lib_schema.ldb ...]

On OS/2, you must also specify -cd class_definition_file.

Library ossg [compilation_options] [neutralizer_options] [-cpp_fixup] [-mrscp]
[-no_default_includes] [{ -sfbp | -pfb }] [-store_member_functions]
[-use_cf20_name_mangling | -use_cf30_name_mangling]
-lsdb lib_schema.ldb schema_source_file

Compilation ossg [compilation_options] [neutralizer_options] [-cpp_fixup] [-mrscp]
[-no_default_includes] [{ -sfbp | -pfb }] [-store_member_functions]
-csdb comp_schema.cdb schema_source_file
236 ObjectStore Management

Chapter 4: Utilities
Options
compilation_options Specifies any options that would be passed to the

compiler if you were compiling a schema source file
instead of generating schema from it. You should
include any preprocessor options, such as include file
paths and macro definitions, as well as compiler
options that might affect object layout, such as packing
options (for example, /Zp4 for Visual C++).

If you specify the /I, -I, /D, or -D option, do not include a
space between the option and the argument. For
example, on OS/2 the following is correct:

ossg /I$(OS_ROOTDIR)\include...

On UNIX, do not specify the -o option on the ossg
command line.

On Windows, do not specify /Tp on the ossg command
line.

On OS/2, when you specify an option that takes an
argument do not put a space between the option and
the argument.

Optional.

neutralizer_options Include any of the options described in -arch setn on
page 245. These options allow you to neutralize a
schema for a heterogeneous application. You can
include them in any order.

Optional. The default is that neutralization is not done.

-cpp_fixup Allows preprocessor output to contain spaces inside
C++ tokens. Specify this option if your preprocessor
inserts a space between consecutive characters that
form C++ tokens. For example, if your preprocessor
changes :: to : :, you can specify this option so that the
schema generator allows the inserted space and
correctly reads the preprocessor output.

It is possible to generate an application schema from a
compilation schema and library schemas. In this case,
you do not need this option because there is no source
code input to the schema generator, which means that
the preprocessor is not involved.

Optional. The default is that ossg does not allow a
space in a C++ token such as :: or .*.
Release 5.1 237

ossg: Generating Schemas
-E Causes ossg to preprocess the schema source file and
send the preprocessed output to standard output. This
option is useful for debugging ossg parsing problems
because it allows you to see the results of any
preprocessing. It is also useful when reporting ossg
problems to Object Design support representatives
because it allows the problem to be reproduced by
Object Design without the need to package your
application’s include files.

When you specify the -E option, you cannot specify
schema databases on the same command line. You can
only specify the schema source file and preprocessor
switches.

-final_asdb final_app_schema_db Specifies a location for the application schema database
that is different from the location you specify with the
-asdb option. The schema generator writes the location
you specify with the -final_asdb option into the
application schema source file (application schema
object file for Visual C++). Use this option when you
cannot specify the desired location with the -asdb
option. The -asdb option is still required and that is
where the schema generator places the application
schema.

This option is useful when you plan to store the
application schema database as a derived object in a
ClearCase Versioned Object. The schema generator
cannot place the application schema database directly
in a ClearCase VOB. If you specify the -final_asdb
option with the desired location, you avoid the need to
run the ossetasp utility, which patches an executable so
that it looks for its application schema in a database that
you specify.

After you run ossg with the -final_asdb option,
remember to move the application schema to the
database you specify with -final_asdb .

You must specify an absolute pathname with final_
asdb .

Optional. The default is that the schema generator
writes the pathname that you specify -asdb in the
application schema source file (object file for Visual
C++).
238 ObjectStore Management

Chapter 4: Utilities
-mrlcp or -make_reachable_library_
classes_persistent

Causes every class in the application schema that is
reachable from a persistently marked class to be
persistently allocatable and accessible.

This option is supplied for compatibility purposes only.
The use of the -mrlcp option is discouraged. Specify
-mrscp instead.

When you specify this option, you cannot neutralize the
schema for use with a heterogeneous application. If you
are building a heterogeneous application, you must
either mark every persistent class in the schema source
file or specify the -mrscp option.

If you do not mark any types in the schema source file
and you specify -mrlcp when you run ossg , then the
application schema does not include any types. You
must mark at least one type for there to be any
reachable types.

Optional. The default is that only marked classes are
persistently allocatable and accessible.

See also ObjectStore Building C++ Interface Applications,
Determining the Types in a Schema.
Release 5.1 239

ossg: Generating Schemas
-mrscp or
-make_reachable_source_classes_
persistent

Causes every class that is both

• Defined in the schema source file

• Reachable from a persistently marked class

to be persistently allocatable and accessible.

The difference between -mrscp and -mrlcp is that when
you specify -mrscp it applies to the schema when ossg
is translating from source to schema. This allows the
schema generator to recognize which types you plan to
persistently allocate. The -mrlcp option applies to the
application schema after the merging of constituent
schemas.

The benefit of specifying the -mrscp option is that it
allows you to perform a persistent new for a type that
you did not explicitly mark in the schema source file.
The drawback is greater execution time and executable
size overhead.

If you do not mark any types in the schema source file
and you specify -mrscp when you run ossg , then the
application or compilation schema does not include any
types. You must mark at least one type for there to be
any reachable types.

Optional. The default is that only marked classes are
persistently allocatable and accessible.

See also ObjectStore Building C++ Interface Applications,
Determining the Types in a Schema.
240 ObjectStore Management

Chapter 4: Utilities
-no_default_includes or -I- When you specify this option, ossg does not
automatically specify any include directories to the C++
preprocessor. However, the preprocessor can have
default include directories built in to it and ossg does
check these built-in directories. Typically, the
preprocessor uses built-in include paths to find
standard include files such as stdio.h . Except for these
built-in directories, when you specify this option, you
must explicitly specify directories that contain included
files.

For example, on some UNIX systems, when you do not
specify this option, the C++ preprocessor looks for
include files in the /usr/include directory.

Note that if you want the schema generator to pass the
ObjectStore include directory to the preprocessor as a
directory for finding included files, you must always
specify it. For example:

UNIX: -I$OS_ROOTDIR/include

Windows and OS/2: /I$(OS_ROOTDIR)\include

The -I- option is the letter I as in Include. Specifying -I- is
the same as specifying -no_default_includes .

Optional. The default is that the preprocessor checks
default directories for included files.

-no_weak_symbols Disables mechanisms that suppress notification about
missing vftbls and discriminants. This option allows
you to check whether any vtbl or discriminant function
symbol referenced is undefined.

If you specify -rtdp maximal -no_weak_symbols, the
linker provides messages about what is missing. You
can use this information to determine which additional
classes you need to mark. These missing symbols are
only a hint about what you might consider marking.
They might also be the result of a link line error.

If, in releases prior to 5, you used os_do_link with the
-link_resolve_vtbls_and_disc option, you can now
specify -no_weak_symbols to perform the same
function.

This default option specifies that the schema generator
notify you about missing vftbls and discriminants. To
change this behavior, specify the option -weak_symbols .
Release 5.1 241

ossg: Generating Schemas
-pfb or -parse_function_body Causes ossg to parse the code in function bodies.

This option ensures that any types that are marked
inside a function are parsed by ossg. If you do not
explicitly use this option and you have any types
marked inside functions, an error is reported. See ossg
Troubleshooting Tips for further information.

Optional. The default is that the -sfbp option is in effect.

-rtdp or -runtime_dispatch
{minimal | derived | full |
maximal }

Specifies the set of classes for which the schema
generator makes vftbls and discriminant functions
available.

minimal specifies marked classes, classes embedded in
marked classes, and base classes of marked classes.

derived specifies the minimal set plus classes that derive
from marked classes and classes embedded in the
derived classes.

full specifies the derived set plus the transitive closure
over base classes, derived classes, and classes that are
the targets of pointers or references. The full
specification does not include nested classes or
enclosing classes unless they meet one of the previous
criteria.

maximal specifies the full set plus nested types. In
previous ObjectStore releases, this was the default. If
your application used an earlier release of ObjectStore
and you do not specify this option, you might need to
mark classes that you did not previously mark.

Optional. The default is derived .

-sfbp or -skip_function_body_
parsing

Default. Specifies that code within function bodies is
not parsed.
242 ObjectStore Management

Chapter 4: Utilities
-store_member_functions Causes ossg to create an instance of os_member_
function for each member function in each class in the
schema source file. It then puts these instances in the
list of class members, which includes member types
and member variables.

This is useful when you intend to use the MOP to
inspect the member functions. If you are not planning
to inspect member functions, you should not specify
this option because it wastes disk space.

When you generate an application schema, you might
specify a library or compilation schema. If you want to
capture the member functions from the library or
compilation schema you must have specified the -store_
member_functions option when you generated the
library or compilation schema. You must also specify
the -store_member_functions option when you generate
the application schema.

Optional. The default is that ossg generates a schema
that includes member types and member variables, but
not member functions.

-weak_symbols Enables mechanisms that suppress notification about
missing vftbls and discriminants. This option overrides
the default behavior described at -no_weak_symbols on
page 241.

-assf app_schema_source_file or
-asof app_schema_object_file.obj

Specifies the name of the application schema source file
or application schema object file to be produced by
ossg . For all compilers except Visual C++, the schema
generator produces a source file that you must compile.
When you use Visual C++, the schema generator
directly produces the object file.

Required when generating an application schema. No
default.
Release 5.1 243

ossg: Generating Schemas
-asdb app_schema_database Specifies the name of the application schema database
to be produced by ossg . If the schema database exists
and is compatible with the type information in the
input files, the database is not modified.

This pathname must be local to a host running an
ObjectStore Server.

The pathname should have the extension .adb . If you
want to specify an existing application schema database
with ossg , the application schema must have .adb as its
extension.

Required when generating an application schema. No
default.

-csdb comp_schema.cdb Specifies the pathname of the compilation schema
database to be generated by ossg . Object Design
recommends, but does not require, that the pathname
end in .cdb .

This pathname must be local to a host running an
ObjectStore Server.

Required when generating a compilation schema. No
default.

-lsdb lib_schema.ldb Specifies the pathname of the library schema database
to be generated by ossg . The pathname must end in
.ldb .

This pathname must be local to a host running an
ObjectStore Server.

Required when generating a library schema. No
default.

schema_source_file Specifies the C++ source file that designates all the
types you want to include in the schema. It should
include all classes that the application uses in a
persistent context.

Almost always required. No default. The schema
source file is not required when you use a compilation
schema to generate an application schema.

Also, you can omit the schema source file if you are
generating an application schema and you specify one
or more library schemas that contain all persistent types
that your application uses.
244 ObjectStore Management

Chapter 4: Utilities
Neutralization Options

lib_schema.ldb ... Specifies the pathname of a library schema database.
The name must end in .ldb . This can be an ObjectStore-
provided library schema or a library schema that you
created with ossg .

The schema generator reads schema information from
the library schema database specified and modifies the
application schema database to include the library
schema information. You can specify zero or more
library schema databases.

Optional. The default is that library schemas are not
included.

-cd
OS/2 only

On OS/2 platforms, when you invoke ossg, you must
specify the -cd option with the name of the class
definition file for the application. The class definition
file, also called the schema header file, contains the
definitions for all classes that you want in the schema.

-arch setn The schema that is generated or updated is neutralized to be
compatible with the architectures in the specified set.
Applications running on these architectures can access a database
that has the schema.

Required when you are neutralizing schema. No default. You can
specify one of the following sets.

set1 Some 32-bit architectures:

HP HP–UX HP C++

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT Visual C++

Intel Windows 95 Visual C++

RS/6000 AIX C Set ++

SGI IRIX SGI C++

SPARC Solaris 2 Sun C++

set2 set1 without some cfront
architectures:

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT Visual C++

Intel Windows 95 Visual
C++

RS/6000 AIX C Set ++

SPARC Solaris 2 Sun C++

set3 Some cfront architectures:

HP HP–UX HP C++
Release 5.1 245

ossg: Generating Schemas
set4 Some IBM architectures:

IBM VisualAge C++ for OS/2

set5 set1 plus AXP Digital UNIX DEC C++ 5.0, with the restriction that
your schema cannot contain a data member of type long :

AXP Digital UNIX DEC C++ 5.0

HP HP–UX HP C++

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT Visual C++

Intel Windows 95 Visual
C++

RS/6000 AIX C Set ++

SGI IRIX SGI C++

SPARC Solaris 2 Sun C++

set6 set5 without some cfront architectures, and also with the
restriction that your schema cannot contain a data member of
type long :

AXP Digital UNIX DEC C++

IBM VisualAge C++ for OS/2

Intel Solaris 2 Sun C++

Intel Windows NT Visual C++

Intel Windows 95 Visual
C++

RS/6000 AIX C Set ++

SPARC Solaris 2 Sun C++

-neutral_info_output filename
or -nout filename

Indicates the name of the file to which neutralization
instructions are directed.

Optional. The default is that the schema generator sends
output to stderr .

-noreorg or -nor Prevents the schema generator from instructing you to
reorganize your code as part of neutralization.

This is useful for minimizing changes outside your header
file, working with unfamiliar classes, or simply padding
formats.

When you include -noreorg , your application might not
make the best use of its space. In fact, it is seldom possible to
neutralize a schema without reorganizing classes.

When you use virtual base classes, it is very unlikely that
you can neutralize your schema when you include this
option.

Optional. The default is that the schema generator provides
reorganization instructions.
246 ObjectStore Management

Chapter 4: Utilities
API None.

-pad_maximal or -padm -pad_
consistent or -padc

Indicates the type of padding requested.

-pad_maximal or -padm indicates that maximal padding
should be done for any ObjectStore-supported architecture.
This means all padding, even padding that the various
compilers would add implicitly.

-pad_consistent or -padc indicates that padding should be
done only if required to generate a consistent layout for the
specified architectures.

Optional. The default is -padc .

-schema_options option_file
or -sopt option_file

Specifies a file in which you list compiler options being used
on platforms other than the current platform. The options in
this file usually override the default layout of objects, so it is
important for the schema generator to take them into
account. See ObjectStore Building C++ Interface Applications,
Listing Nondefault Object Layout Compiler Options in
Chapter 5, for details about the content of the option file.

Optional. No default.

-show_difference or -showd
-show_whole or -showw

Indicates the description level of the schema neutralization
instructions.

Optional. The default is -show_whole .
Release 5.1 247

ossize: Displaying Database Size
ossize: Displaying Database Size

The ossize utility displays the size of the specified database and
the sizes of its segments.

Syntax

ossize [options] pathname]

Options

pathname Specifies the file or rawfs database whose size you
want to display.

-a Displays the total length of the information
segment immediately after the length of the data
segment.

-A Displays access control information.

-c Displays the type contents for each segment.

-C Displays the type contents for the entire
database.

-f Displays information about the location of all
free blocks of storage in a segment.

-n segment-
number

Displays information only about the segment
specified as segment-number. segment-number is a
data segment number such as those displayed
by the -a (/INFO) option. This option is useful
with the -o (/DEBUG) and -c (/SEGMENT) options
because it reduces the amount of output.

-o Displays a complete table of every object in the
segment, showing its offset and size. The data in
this table can be useful in debugging. Do not
confuse this with the -0 option, described below.

-sn Displays the type summaries by the number of
instances of each type.

-ss Displays the type summaries by the space used
by the instances of each type. (This is the
default.)

-st Displays the type summaries alphabetically by
type name.
248 ObjectStore Management

Chapter 4: Utilities
Description

The ossize utility does not distinguish persistently allocated
pointers (that is, pointers to pointers, such as new(db) thing* or
new(db) thing*[100]) as separate types. They are displayed
together.

The ossize utility displays the comment for each segment that has
a comment with a nonzero length. See os_segment::set_
comment() in the ObjectStore C++ API Reference.

PRM format The ossize utility notes the type of PRM entries the database
contains. The type can be standard or enhanced. For example:

ossize <database path>
Name: /h/kellen/ctdb_1
Size: 74752 bytes (70 Kbytes)
Created: Fri Aug 23 14:59:40 1996

Created by: a SPARC-architecture CPU with 4K pages with Sun C++
4.x PRMs are in enhanced format
...

ossize <database path>
Name: /h/kellen/ctdb_1

-w workspace-
name

Runs ossize with the current workspace set to
workspace-name, which must be the name of a
workspace stored in the specified database. This
allows you to examine the size (and contents,
with -c (/SEGMENT) and -f (/FREE)) of a
particular version of the database. If you do not
provide this argument, the transient workspace
is used as the current workspace (that is, the
usual default). If there is a segment that is not
known by the current workspace, ossize
displays Error: there is no version of this segment in
this work space.

-W Displays a list of all named workspaces that are
stored in the specified database. When specified
without other arguments, this option displays
only workspace names, with no information
about database size.

-0 (zero) (Zero, not uppercase O) Causes ossize to
include the internal segment 0 in type
summaries. On UNIX and OS/2, this implies -c
if neither -c nor -C is set.
Release 5.1 249

ossize: Displaying Database Size
Size: 74752 bytes (70 Kbytes)
Created: Fri Aug 23 15:00:53 1996

Created by: a SPARC-architecture CPU with 4K pages with Sun C++
4.x PRMs are in standard format

Schema protection When developing an application, if you are running this utility on
a protected schema database, ensure that the correct key is
specified for the environment variables OS_SCHEMA_KEY_LOW
and OS_SCHEMA_KEY_HIGH . If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."
250 ObjectStore Management

Chapter 4: Utilities
Examples

Rawfs database > ossize lame::/db1
Name: lame::/db1
Size: 44544 bytes (42 Kbytes)
Created: Thu Jan 26 17:19:11 1996
Created by: a SPARC-architecture CPU with 4K pages
There is 1 root:
Name: head Type: note
There are no external database pointers.
There are no external references.
The schema is local.
There is 1 segment:
Data segment 2:
Size: 512 bytes (1 Kbytes)
>

-a Specifying the -a option displays space use information for the
information segment. For example:

Info segment usage:

-o Specifying the -o option displays fixed cluster locations for each
segment. For example:

Header/Ovrflw: 512 bytes (1 * 512)

Tag btree: 512 bytes (1 * 512)

Tag leaves: 3584 bytes (7 * 512)

Relocation map: 512 bytes (1 * 512)

Free Tree: 3584 bytes (7 * 512)

Hugespace: 2048 bytes (4 * 512)

Fixed Cluster: 512 bytes (1 * 512)

String Pool: 2048 bytes (4 * 512)

Unused: 1024 bytes (2 * 512)

Total Size: 14336 bytes (28 * 512)

Fixed Offset Cluster Size

0 4096

0x1000 8192

0x3000 16384

0x7000 32768

0xf000 4096

0x10000 65536

0x20000 8192
Release 5.1 251

ossize: Displaying Database Size
API Class: os_dbutil
Method: ossize

0x22000 16384

0x26000 32768

0x30000 65536

Fixed Offset Cluster Size

0 4096
252 ObjectStore Management

Chapter 4: Utilities
ossvrchkpt: Moving Data Out of the Server
Transaction Log

The ossvrchkpt utility performs a checkpoint for a specified
Server host. It ensures that all data is copied from the transaction
log of the Server host to the database or databases that were
changed.

Syntax

ossvrchkpt hostname

FAT name ossvrchk

Description

This command does not return until the propagation is complete.
It can return the following values:

When needed Run this utility when you want to

• Ensure that a Server is restarted as fast as possible

• Use operating system file commands such as copy or move on
a file database

• Reinstall or upgrade ObjectStore

Example

ossvrchkpt hostess

Data in the Server transaction log on the host called hostess is
copied to the databases that were modified.

API Class: os_dbutil
Method: svr_checkpoint

hostname Specifies the name of the host of the Server whose
log you want to propagate.

0 Success.

1 There is an error when passing the command to the
Server.

2 The Server is unable to complete the checkpoint.
Release 5.1 253

ossvrclntkill: Disconnecting a Client Thread on a Server
ossvrclntkill: Disconnecting a Client Thread on a
Server

The ossvrclntkill utility disconnects a client thread on the Server
running on the specified host. This disconnects the client from the
Server and releases the client locks.

Syntax

ossvrclntkill hostname -h client-host | -p client-pid | -n client-name
[-a]

ossvrclntkill hostname client-pid

(The second form is supported for compatibility with earlier
releases.)

Options

Description

Run the ossvrclntkill utility on the Servers connected to the client
that you want to kill.

You can use ossvrstat to determine the client-hostname and client-
pid.

When needed Use the ossvrclntkill utility when a client that no longer exists is
still attached to the Server. This can happen because of network

hostname Specifies the name of the host of the Server
that is connected to the client process being
disconnected.

-h client-host Specifies the name of the host of the client
being disconnected, as determined with
ossvrstat .

-p client-pid Specifies an unsigned number that is the
process ID of the client process being
disconnected.

-n client-name Specifies the name of the client process
being disconnected. This name is set by
objectstore::set_client_name() .

-a Specifies that all clients matching the
specified criteria should be disconnected.
254 ObjectStore Management

Chapter 4: Utilities
failure or when the client process terminates abnormally. In most
cases, the operating system disconnects the client from the Servers
gracefully, but some operating systems are not completely
dependable in this regard.

UNIX You must specify -h, -p, or -n. The -a option deletes all matching
clients, otherwise a unique match is required.

If the Server’s authentication is set to something other than NONE
(authentication is SYS by default), the following rule applies:

Any user can disconnect clients that user owns. If the -a option is
used (kill all clients matching the given search pattern), the user
must own all matching processes, otherwise authentication fails
and no clients are killed.

Otherwise, no authentication is required.

Example

ossvrclntkill hostess -h cupcake -a

This disconnects all clients on cupcake that are attached to the
Server on hostess .

API Class: os_dbutil
Method: svr_client_kill
Release 5.1 255

ossvrdebug: Setting a Server Debug Trace Level
ossvrdebug: Setting a Server Debug Trace Level

Syntax

ossvrdebug hostname n

Options

Description

Sets the Server debug trace level of the Server. Using this
command is equivalent to starting the server with the -d n
command-line option. The requested trace output is put into the
/tmp/ostore/oss_out file (on UNIX) once the Server receives the
message.

Example

ossvrdebug kellen 5

Sets the Server debug trace level of the server kellen to 5.

API Class: os_dbutil
Method: ossvrdebug

hostname Server host to be debugged.

n Number that specifies the trace level of the Server.
256 ObjectStore Management

Chapter 4: Utilities
ossvrmtr: Displaying Server Resource Information

The ossvrmtr utility provides information about resource use for
the Server process running on the specified host.

Obsolete This utility actually calls the ossvrstat utility. Any information
you can obtain by running ossvrmtr , you can also obtain by
running ossvrstat . The ossvrmtr utility will not be supported in
future releases.

Syntax

ossvrmtr hostname

Description

The ossvrmtr utility summarizes metering information for total
clients and for logs for these intervals:

• The last minute

• The last ten minutes

• The last hour

• Since start-up

You can use the ossvrstat command to see the Server information
and per-client information.

Example

See the ossvrstat example on Messages received on page 262.

API Class: os_dbutil
Method: svr_stat

hostname Specifies the name of the host of the Server for
which you want to display information.
Release 5.1 257

ossvrping: Determining If a Server Is Running
ossvrping: Determining If a Server Is Running

The ossvrping utility reports whether or not a Server is running on
the specified host.

Syntax

ossvrping [-v] [hostname]

Options

Description

If you are having any problems with a Server, the first thing to do
is run ossvrping to see if the Server is running.

If you do not specify a host, the default is the local host.

Examples

ossvrping elvis
The ObjectStore Server on host elvis is alive.

API Class: os_dbutil
Method: svr_ping

hostname Specifies the name of the host on which you
want to know whether or not a Server is
running.

-v Indicates that you want more information
when a Server is not running on the specified
host.
258 ObjectStore Management

Chapter 4: Utilities
ossvrshtd: Shutting Down the Server

The ossvrshtd utility immediately shuts down the Server running
on the specified host. This is regardless of whether or not clients
are connected to the Server.

Syntax

ossvrshtd [-f] hostname

Options

Description

Before shutting down the Server, run the ossvrstat utility to
determine if there are clients using the Server. If there are, notify
them to exit.

Clearing the log Shutting down the Server automatically propagates everything in
the transaction log.

If any clients are connected to the Server when you shut it down,
the next time those clients try to contact the Server they receive the
message err_broken_server_connection. The client can call os_
server::reconnect to try to reconnect.

When needed ObjectStore needs to be shut down when you

• Boot or halt the host

• Modify Server password or parameters

• Reallocate the Server transaction log

• Add a partition to the rawfs

-f Specifies that shutdown should be immediate.
When you do not include this option,
ObjectStore prompts you to confirm that you
really want to shut down the Server. When you
include this option, there is no confirmation
prompt.

hostname Specifies the name of the host of the Server that
you want to shut down.
Release 5.1 259

ossvrshtd: Shutting Down the Server
UNIX If the Server’s authentication is set to NONE (authorization is SYS
by default), you must be the user ID that owns the running Server
process, or the superuser, to run this utility.

If the Server’s authentication is set to something other than NONE,
ossvrshtd must be run as root .

Windows NT On Windows NT, you can shut down the Server using the Service
Control Manager. Click on the Services icon in the Control Panel
or issue the command net stop "ObjectStore Server R5.0" .

OS/2 You must be the Administrator to run this utility.

Starting a Server For instructions for starting a Server, see the chapter in this book
for your platform.

Example

ossvrshtd hostess
Are you sure that you wish to shut down the server
on host hostess (yes/no) [no]: yes

API Class: os_dbutil
Method: svr_shutdown
260 ObjectStore Management

Chapter 4: Utilities
ossvrstat: Displaying Server and Client Information

The ossvrstat utility displays settings of Server parameters, Server
use meters, and information for each client connected to the
Server running on the specified host.

Syntax

ossvrstat hostname [options]

Options

Description

Specifying both -meters and -clients displays the use meters for all
clients, as well as the information described above.

ObjectStore identifies each client by host name and then displays
the program name (if there is one) with the process ID on the client
host. Program names are set with objectstore::set_client_name .
When there is no program name, ObjectStore displays default_
client_name .

Numbers are relative The table on the next few pages describes the information that
ossvrstat supplies in terms of high and low numbers. This is
entirely relative to your application. For high and low to have
meaning, run ossvrstat to determine a baseline.

hostname Specifies the name of the host of the Server for
which you want information.

-meters Displays performance meters for the specified
Server.

-clients Displays the state of each client connected to
the specified Server, and shows which clients,
if any, are contending for locks.

-parameters Displays Server parameter values. The
following parameters are not displayed if they
are not enabled: Allow NFS Locks , Allow
Remote Database Access , and Host Access
List .

-rusage UNIX only: displays Server process
information.
Release 5.1 261

ossvrstat: Displaying Server and Client Information
Display all To display all information, do not include any options. The
following table describes the meters that ossvrstat provides.

Meter Description

Current log size Number of sectors in the transaction log. This meter appears in the
middle of the list of Server parameters because it is most useful
when you are determining how to adjust other Server parameters.

Messages received Number of messages the Server has received from clients. A
message can be a request for an action such as opening a database,
sending data, updating a database, committing a transaction,
aborting a transaction, or closing a database. This indicates how
often clients are communicating with the Server. When the
number is low, the demand on the Server is less.

Callback messages sent Number of callback messages the Server sent to clients. A callback
message is the message a Server sends to clientA when clientB
requests data on a page that is locked by clientA. When this
number is high, it means that an application is often modifying
data that other clients also want to modify. This might mean that
the program is poorly designed.

Callback sectors Number of sectors that have been called back in callback
messages. This is not necessarily the same as the number of sectors
for which locks have actually been shared or released. Also, the
Server might send many callback messages but they might not be
for a large number of sectors. Usually, callbacks are for pages (4
KB on most machines). Sometimes the Server calls back larger
chunks.

Succeeded sectors Number of sectors for which the Server sent a callback message
and the client with the lock (clientA) either shared the lock with
clientB or relinquished the lock to clientB. If Callback sectors is
comparable to Succeeded sectors , you know that clients are not
waiting too long. If Succeeded sectors is much smaller, then more
clients are being locked out of data they need.

KB read Number of kilobytes of data that the Server sent to clients to read.
Monitor this statistic to help determine whether or not you need to
enlarge client cache files. Compare kilobytes read for a given client
with the number of commits and the size of the client cache file.

KB written Number of kilobytes of modified data that the clients have sent to
the Server. Written data is data involved in a commit. It must be
buffered and it is logged if it cannot go directly to a database
because it is being written past the current end of a segment.
When analysis is concerned with the number of transactions per
second, the number of kilobytes written is an important factor.
262 ObjectStore Management

Chapter 4: Utilities
Commits Number of committed transactions that the Server knows about. If
a client does not modify data during a transaction, the client might
not inform the Server that a transaction was committed. You can
use this number to estimate the number of transactions per
second.

Readonly commits Number of committed transactions that the Server determined did
not involve any data changes. Typically, the client does not inform
the Server about such commits, so this number should be low. An
example of this is when the client releases ownership needed by
another client. In this case, the client sometimes performs a
commit even on a read-only transaction. Read-only commits are
like simple aborts; the cost is near zero.

Aborts Number of aborted transactions that the Server knows about. If
the client has not sent any changes to the Server, the client can
abort a transaction without informing the Server. Most
applications abort transactions only because of lock conflicts. In
this case, you can use this number to determine the number of
conflicts.

Two phase transactions Number of committed transactions that involved changes to
databases on more than one Server. Typically, one Server is
involved in a commit. A two-phase commit requires additional
overhead, so it is useful to know how often it is happening.

Lock timeouts Number of times all clients fail to obtain a lock because a lock
timeout time is set on the client and the lock needed was not
released before the lock timeout elapsed.

Lock waits Number of times all clients had to wait to obtain a lock on a page
because a lock by another client was already in place. The utility
also provides the average time that a client waits for a lock. This
appears in parentheses next to Lock waits and is in microseconds.
ObjectStore divides the total time waiting for locks by the number
of lock waits.

Deadlocks Number of times the Server chose a client to be a deadlock victim
and notified it that it had to abort a particular transaction so that
other clients could complete their transactions. If you specify
-clients when you run ossvrstat , the utility displays information
about which clients are waiting for locks and which clients
currently have those locks.

Meter Description
Release 5.1 263

ossvrstat: Displaying Server and Client Information
Message buffer waits Number of times a message from a client to the Server must wait
to use a message buffer. The Message Buffers Server parameter
specifies how many message buffers the Server uses to
communicate with clients. If the number of Message buffer waits is
high, consider increasing the value specified for Message Buffers .
See Message Buffers on page 86.

Notifies sent Number of notification messages the Server sent to all Cache
Managers for delivery to clients on that Cache Manager’s host.
When the values for Notifies sent and Notifies received are both
zero, ObjectStore does not print information for these two meters.

Notifies received Number of notification messages the Server received from all
clients. The Server then sends these messages to the Cache
Manager on the host of the client that the message is for. When the
values for Notifies sent and Notifies received are both zero,
ObjectStore does not print information for these two meters.

Log records Number of records written to a log record segment of the
transaction log. Each committed transaction writes a record to the
log. This is a throughput number. Space in the log is continually
reused.

Record segment
switches

Number of times the Server switches from writing commit records
in one log record segment to writing commit records in the other
log record segment. For descriptions of the segments in the
transaction log, see Log File Terms on page 17.

To switch segments, the Server must ensure that all changes that
are recorded in the log record segment being switched to have
been propagated to the databases. When the Server needs to
switch log record segments, if not everything is propagated then
the Server forces the propagations to happen quickly.

Too large a number here indicates that the log record segments are
not big enough. You can improve performance by increasing the
log record segment initial size. See Log Record Segment Initial Size
on page 84.

Flush data Number of flushes to disk of data that was in the data segment of
the transaction log. A flush ensures that the data is on the disk. It
does not free the space the data occupies in the log. ObjectStore
determines when to flush data.

Flush records Number of flushes to disk of records that were in a log record
segment of the transaction log. A flush ensures that the changes
are on the disk. It does not free the space the records occupy in the
log. ObjectStore determines when to flush records.

Meter Description
264 ObjectStore Management

Chapter 4: Utilities
KB data Number of kilobytes of data that the Server wrote to the data
segment of the transaction log. When this number is high, it means
one of the following:

• The client is returning a lot of data to the Server before
transactions commit. Data returned prior to commit always goes
directly to the database or the log data segment.

• More data is being returned at commit than fits in the log record
buffer and therefore the Server wrote it to the log data segment.

This is a throughput number. Space in the log is continually
reused.

KB records Number of kilobytes of records that the Server wrote to a log
record segment of the transaction log. Each committed transaction
writes a record to the log. This is a throughput number. Space in
the log is continually reused.

KB propagated Number of kilobytes of committed data that was propagated from
the transaction log to the database it belongs in. The Server
performs propagation in small chunks that do not interfere with
client activity. Propagation can include writing to databases,
flushing data and records that are in the log, and, sometimes,
reading from the log data segment. After propagation, the space
that the propagated data and records occupied in the log becomes
available for new log entries.

The number of kilobytes propagated can be smaller than the
number of kilobytes written if the same data is written multiple
times. ObjectStore propagates the last modification and discards
earlier modifications.

KB direct Number of kilobytes of uncommitted data that the Server stored
directly in databases. A high number here is good because it
means that the data did not have the overhead of going through
the log.

The Server stores uncommitted data in the database when an
application tries to write data past the end of the database
segment in which it needs to be stored.

The Direct To Segment Threshold Server parameter controls how
far the Server can write past the current end of the database
segment before the Server writes the data directly to the database.
See Direct to Segment Threshold on page 81.

Meter Description
Release 5.1 265

ossvrstat: Displaying Server and Client Information
Example

ossvrstat kellen
ObjectStore Release 5.0 Database Server
Client/Server protocol version 1.8
Compiled by staff at 97-02-18 17:40:42 in
/h/kellen/1/r5core/obj/sun4/opt/nserver

Allow Shared Communications: Yes
Authentication Required: SYS, DES, Name Password
Cache Manager Ping Time:300
Cache Manager Ping Time In Transaction:300
DB Expiration Time: 5 seconds
Deadlock Victim: Work
Direct To Segment Threshold: 128 sectors (64KB)
Log File: /kellen/log_file_DB
Current Log Size43024 sectors (21512KB)
Log Data Segment Growth Increment: 2048 sectors (1MB)
Log Data Segment Initial Size: 2048 sectors (1MB)

Propagations Number of times the Server propagated data from the log to
databases. The Server moves small chunks of data each time it
performs propagation.

If the number of propagations per second is high, the Server is
probably forced to propagate for one or more of the following
reasons:

• The Server needs to switch log record segments but has not
finished propagating changes in the next segment. In this case,
increase the log record segment size. See Log Record Segment
Initial Size on page 84.

• The log data segment is full. Check KB data to see if that is high
in relation to the size of the log data segment. If it is, increase the
log data segment size. See Log Data Segment Initial Size on
page 82.

• The setting for the Server parameter Propagation Buffer Size or
Max Data Propagation Threshold might not be high enough.
Check KB written to see if this number, when looked at as
kilobytes per second, is high in relation to the parameters. If it is,
increase the settings for the parameters if this is appropriate for
the amount of physical memory on the Server.

For information about how to specify the amount of data moved
in one propagation, see Max Data Propagation Per Propagate on
page 85.

Meter Description
266 ObjectStore Management

Chapter 4: Utilities
Log Record Segment Buffer Size: 1024 sectors (512KB)
Log Record Segment Growth Increment: 512 sectors (256KB)
Log Record Segment Initial Size: 1024 sectors (512KB)
Max AIO Threads3
Max Connect Memory Usageunlimited
Max Data Propagation Per Propagate: 512 sectors (256KB)
Max Data Propagation Threshold: 8192 sectors (4MB)
Max Memory Usageunlimited
Max Two Phase Delay30
Message Buffer Size: 512 sectors (256KB)
Message Buffers: 4
Notification Retry Time: 60 seconds
Preferred Network Receive Buffer Size16384 bytes
Preferred Network Send Buffer Size16384 bytes
Propagation Sleep Time: 60 seconds
Propagation Buffer Size: 8192 sectors (4MB)

Server Machine Usage:
User time:58123.6 secs
System time:3151.1 secs
Max. Res. Set Size:6639
Page Reclaims:1400444
Page Faults:54510
Swaps:0
Block Input Operations:20339
Block Output Operations:387732
Signals Received:1
Voluntary Context Switches:775502
Involuntary Context Switches:645611

Server Meters:
Total since server start up:

Client Meters:
1314496 messages received 23575 callback messages sent
211960 callback sectors 94240 succeeded sectors
3192253KB read 3691926 KB written
211351 commits 89572 readonly commits
19749 aborts 0 two phase transactions
0 lock timeouts341lock waits (average 7555 us)
74 deadlocks 0 message buffer waits
14896notifies sent14938notifies received

Log Meters:
219314 log records 1514 record segment switches
52115 flush data 225902 flush records
0 KB data 0 KB records
576954 KB propagated 201924 KB direct
28302 propagations

Total over past 60 minute(s):
Client Meters:

2135 messages received 0 callback messages sent
0 callback sectors 0 succeeded sectors
Release 5.1 267

ossvrstat: Displaying Server and Client Information
7416 KB read 2759 KB written
40 commits 20 readonly commits
91 aborts 0 two phase transactions
0 lock timeouts0lock waits
0 deadlocks 0 message buffer waits
1843notifies sent1772notifies received

Log Meters:
116 log records 10 record segment switches
14 flush data 187 flush records
0 KB data 0 KB records
1799 KB propagated 787 KB direct
102 propagations

Total over past 10 minute(s):
Client Meters:

1056 messages received 0 callback messages sent
0 callback sectors 0 succeeded sectors
3708 KB read 1383 KB written
20 commits 10 readonly commits
44 aborts 0 two phase transactions
0 lock timeouts0lock waits
0 deadlocks 0 message buffer waits
1843notifies sent1772notifies received

Log Meters:
57 log records 5 record segment switches
7 flush data 73 flush records
0 KB data 0 KB records
901 KB propagated 395 KB direct
51 propagations

Total over past 1 minute(s):
Client Meters:

0 messages received 0 callback messages sent
0 callback sectors 0 succeeded sectors
0 KB read 0 KB written
0 commits 0 readonly commits
0 aborts 0 two phase transactions
0 lock timeouts0lock waits
0 deadlocks 0 message buffer waits
0 notifies sent0notifies received

Log Meters:
0 log records 0 record segment switches
0 flush data 1 flush records
0 KB data 0 KB records
0 KB propagated 0 KB direct
0 propagations

No active clients

Server machine usage On UNIX systems, the ossvrstat output under the Server Machine
Usage heading is provided by the getrusage utility. The output
varies according to the platform on which the Server is running.
268 ObjectStore Management

Chapter 4: Utilities
For information about what the output categories mean, see the
man page for getrusage on the Server machine.

On non-UNIX platforms, the Server fills in zeros for these output
categories, which indicates that the measurement is not available
on that platform.

Active clients When there are active clients, the ossvrstat utility also displays
something like the following:

Client connections awaiting a client message:
Client #3 (atiq/26896/(unknown))

priority=0x8000, duration=4652 seconds, work=0, no transaction on server
Client #5 (nanook/1346/(unknown))

priority=0x8000, duration=2 seconds, work=2, transaction in progress
Client #7 (yukiko/14916/(unknown))

priority=0x8000, duration=136 seconds, work=0, no transaction on server

This is a list of the clients that have initiated a connection to the
Server. In the previous example, the Server is waiting for the next
message from each client. Next to the client number, the
information in parentheses indicates the

• Host name of the client machine.

• Process ID of the client process on the client machine.

• Name of the client process. If you did not use the API to give
the client process a name, ObjectStore displays (unknown).

The other information provided is as follows:

priority A hexadecimal number that indicates the priority
assigned to this transaction with the os_
transaction::set_transaction_priority() method.
ObjectStore uses this to determine the victim if
there is a deadlock. The transaction with the lower
number is the victim.

duration The number of seconds since the last successful
commit by the client.

work The amount of work done by the client, as
measured by remote procedure calls to the Server
during the current transaction. Each message to the
Server counts as one work unit.

comment Indicates whether or not a transaction is in
progress.
Release 5.1 269

ossvrstat: Displaying Server and Client Information
API Class: os_dbutil
Method: svr_stat
270 ObjectStore Management

Chapter 4: Utilities
ostest: Testing a Pathname for Specified Conditions

The ostest utility indicates whether or not a pathname meets a
specified condition.

Syntax

ostest [option] pathname

Options

Description

You can specify one option when running this utility. The ostest
utility returns an exit code of

When you specify a file database, you cannot specify a remote file-
server host in the pathname of the file database. The ostest utility
passes the operation to a local native utility. If you specify a
remote file-server host name, ObjectStore informs you that you
specified an illegal pathname.

API Class: os_dbutil
Method: stat

pathname The pathname of a database or directory.

-d pathname is a rawfs directory.

-f pathname is a rawfs database.

-p pathname is a file pathname.

-r I (requestor) have read access to pathname.

-s pathname is a database with a nonzero size.

-w I (requestor) have write access to pathname.

0 When the specified condition is true

Nonzero When the specified condition is false
Release 5.1 271

osupgprm: Upgrading PRM Formats
osupgprm: Upgrading PRM Formats

Upgrades a database’s address-space format.

Syntax

osupgprm database-name ...

Description

This utility changes the address space format for a database to use
a PRM (persistent relocation map) format derived from deferred
address space reservation.

Immediate
assignment

Prior to Release 5, address space for a segment was always
reserved immediately. Immediate reservation means that the first
time any page in a segment is accessed, all of the address space
required for that segment, including pointers out of the segment
to other segments, is reserved. In some cases, this results in
excessive use of address space.

Deferred assignment Deferred assignment means that the first time that a page in a
segment is accessed, the minimal amount of address space
required for that page, including pointers out of that page, is
reserved. Any new databases created with Release 5 are
automatically created using enhanced PRM entries, unless you
explicitly specify the standard format.

Upgrade is
recommended

In order to take advantage of deferred address assignment,
existing databases created from previous releases of ObjectStore
should be upgraded to a new enhanced PRM format. Object
Design recommends this upgrade in almost all cases. Release 4
clients can only access databases using the standard (old) PRM
format.

The choice of immediate as opposed to deferred assignment for a
segment is made every time the segment is put in use for the first
time in a transaction. The type of assignment must remain
constant for the duration of a transaction.

First run osprmgc Before upgrading a database, use osprmgc to conserve currently
reserved address space for the database.

Cross-database
pointers

Release 5 clients can access databases that use either the standard
(pre-release 5) or enhanced PRM format, but the cross-database
272 ObjectStore Management

Chapter 4: Utilities
pointers must be between databases that use the same PRM
format. Specify the database you want to upgrade and its target
databases in any order. Target databases are also upgraded to use
deferred address space reservation.
Release 5.1 273

osverifydb: Verifying Pointers and References in a Database
osverifydb: Verifying Pointers and References in a
Database

The osverifydb utility verifies all pointers and references in a
database.

Syntax

osverifydb [options] pathname

Options

pathname Specifies a file or rawfs database whose pointers
you want to verify.

-all Verifies all segments including the internal segment
0.

-end_offset integer Specifies the end offset (in bytes) within the
segment where verification is done. Defaults to 0,
which starts verifications at the end of the segment.

-ignore_references Suppresses verification of references.

-illegal_pointer_action
{null | ask}

When used with the -all option and null argument,
sets the illegal pointer to null. With the ask
argument, uses the reference value that is supplied
in response to the query.
274 ObjectStore Management

Chapter 4: Utilities
-info_sector_tag_
verify_opt option

Checks that a database created on an SGI machine
with a 16 K page size in an ObjectStore release prior
to 5.0 can be used by heterogeneous ObjectStore
applications. This option can also be used to
upgrade such a database for use with
heterogeneous applications if needed.

Valid option values are:

0 - Skips verifying info segment sector tags
(default).

1 - Verifies info segment sector tags and reports.
whether the database can be used heterogeneously.

2 - Upgrades the database for heterogeneous
accessibility.

5 - Causes osverifydb to report information for this
option only. Other verifications usually performed
by osverifydb are not made.

6 - Performs an upgrade only. Other verifications
usually performed by osverifydb are not made.

-L server-log-name When specified, the named file is used for the
Server log file. When unspecified, a temporary file
is used.

This option is only applicable when you are
running the utility as an ObjectStore/Single
application. If the file already exists, it must be a
properly formed Server log.

-n segment-number Verify only the segment specified by segment-
number.

-nocoll Suppresses integrity checks that ensure that the
ObjectStore collections in the database are valid.
Object Design recommends that you use this option
only on databases that do not contain collections.

-o Displays each object in the database using the
metaobject protocol.

-start_offset integer Specifies the start offset (in bytes) within the
segment where verification is done. Defaults to 0,
which means start verifying at the beginning of the
segment.

-tag Displays the tag value on an error.

-v Displays the value for each pointer.
Release 5.1 275

osverifydb: Verifying Pointers and References in a Database
Description

Verification means

• There are no transient pointers.

• Persistent pointers point to valid (not deleted) storage.

• The declared type for a pointer as determined from the schema
matches the actual type of the object pointed to.

• References are consistent.

When osverifydb detects an invalid pointer, it indicates the
location and the value of the pointer. Whenever possible, it
displays a symbolic path to the bad pointer, starting with the
outermost enclosing object.

The osverifydb utility runs integrity checks to ensure that the
ObjectStore collections in the database are valid. You can suppress
verification of collections by specifying the -nocoll option when
you run osverifydb .

Verifying references Reference verification requires that the reference be resolved to an
address before it can be verified. This requires additional address
space resources. In some cases, the osverifydb utility might run
out of address space. Turning off reference verification allows
verification of a database in such circumstances.

You would not normally include the -ignore_references option
unless you had already tried to verify the database and
verification failed because the utility ran out of address space.

How often How often you should verify database pointers and references
depends on how often your data changes. Verifying databases
before backups is a good practice, but verification can be time-
consuming. You might want to verify databases every evening.

Schema protection When developing an application, if you are running this utility on
a protected schema database, ensure that the correct key is
specified for the environment variables OS_SCHEMA_KEY_LOW
and OS_SCHEMA_KEY_HIGH . If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,

-whohas hex_address Lists objects that point to the object identified by the
pointer.
276 ObjectStore Management

Chapter 4: Utilities
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

Example

osverifydb -all -illegal_pointer_action null vtest1.db

The null argument causes osverifydb to null all illegal pointers.

osverifydb -illegal_pointer_action ask vtest2.db

The ask argument permits selective repair; that is, it causes
osverifydb to prompt for an alternative value for the illegal pointer
in the format used by os_reference::load() . Here is some sample
output from osverifydb in such a circumstance:

The object at 0x6020000 (</daffy/home/daffy/daffy0/dbs/verifydb1 | 2 |
0>)(type "c1"), contains a pointer at 0x6020000(c1.m1) with the illegal
value 0x1. It points to nonpersistent storage.
Enter replacement pointer value in reference dump format (<database
path | segment number | hex offset>:

You can then press Enter, in which case the illegal pointer is set to
null, or you can enter a valid reference string such as
/daffy/home/daffy/daffy0/dbs/verifydb1 | 2 | 64 identifying an object
at offset 64 in segment 2, in the database verifydb1 . The new
pointer value, if valid, is used as the replacement value for the
pointer in the database.

Caution It is very important to use the null option with caution because
using it indiscriminately can result in a corrupted database.

The following output is the result of running osverifydb on a
database that contains an object of type c1, with the bad pointers
identified by the error messages.

beethoven% osverifydb /camper/van

Verifying database beethoven::/camper/van
Verifying segment 2 Size: 8192 bytes

Pointer to nonpersistent storage.
Pointer Location: 0x6010000. Contents: 0x1.
Lvalue expression for pointer: c1::m1

Pointer type mismatch; the declared type is incompatible with the actual
type of the object
Pointer Location: 0x6010004. Contents: 0x601003c.
Declared type c2*. Actual type: c3*.
Lvalue expression for pointer: c1::m2

Pointer to deleted storage
Release 5.1 277

osverifydb: Verifying Pointers and References in a Database
Pointer Location: 0x6010008. Contents: 0x6010040.
Declared type c2*.
Lvalue expression for pointer: c1::m3

Pointer type mismatch; the declared type is incompatible with the actual
type of the object
Pointer Location: 0x601000c. Contents: 0x6010028.
Declared type c2*. Actual type: c1*.
Lvalue expression for pointer: c1::m4
Lvalue expression for pointed to object: c1::ma[5]

Pointer type mismatch; the declared type is incompatible with the actual
type of the object
Pointer Location: 0x6010010. Contents: 0x6010044.
Declared type c2*. Actual type: char*.
Lvalue expression for pointer: c1::m5
Lvalue expression for pointed to object: char[0]

Pointer to nonpersistent storage.
Pointer Location: 0x6010068. Contents: 0x1.
Lvalue expression for pointer: void*[5]
Verified 5 objects in segment

Verified 5 objects in database
beethoven%

API Class: os_dbutil
Method: osverifydb
278 ObjectStore Management

Chapter 4: Utilities
osversion: Displaying the ObjectStore Version in
Use

The osversion utility displays the version of ObjectStore that is in
use on your machine.

Syntax

osversion

Examples

SPARCstation elvis% osversion
ObjectStore Release 5.1 for SPARC Solaris 2

Windows [D\:] osversion
ObjectStore Release 5.1 for Windows NT Systems

OS/2 [D\:] osversion
ObjectStore Release 5.1 for OS/2

API Class: os_dbutil
Methods: release_name
release_major
release_minor
release_maintenance

Also see the file include/ostore/osreleas.hh .
Release 5.1 279

osversion: Displaying the ObjectStore Version in Use
280 ObjectStore Management

Chapter 5
Using Locator Files to Set
Up Server-Remote
Databases

This chapter provides information for using a locator file to set up
access to databases that do not reside on the same host as a Server.

The topics discussed include

What Is a Server-Remote Database? 282

Description of the Locator File 285

Declaring Hosts 288

Specifying Locator Rules 289

Using Character String Patterns in Locator Files 294

Overriding the Default Locator File 299

When Multiple Servers Can Concurrently Access a Database 300

Sample Locator Files 301

Limitations When Using NFS to Access Remote Databases 306

Troubleshooting 308
Release 5.1 281

What Is a Server-Remote Database?
What Is a Server-Remote Database?

When an ObjectStore application accesses a file database, the
ObjectStore Server handling that access is required to be running
on the file server host containing the database; that is, the database
must be Server-local. However, you can override this default for
file databases, and allow access to Server-remote databases, that is,
access to databases that are not stored on an ObjectStore Server
host.

Rawfs databases This discussion of Server-remote databases applies only to file
databases and not to rawfs databases.

What Are the Advantages?

The advantages of Server-remote databases are that

• Individual ObjectStore users can create databases on a host
without first ensuring that an ObjectStore Server is running
there.

• Databases can be stored on dedicated file servers.

What Are the Disadvantages?

The disadvantages of Server-remote databases are that

• Network overhead increases.

• Performance is slower than for Server-local databases.

• Network failure can cause a database to be inaccessible or to
become inconsistent.

Caution You must use NFS to access Server-remote databases. When using
NFS, you cannot be sure that a write transaction actually
completes. This is because NFS is a stateless protocol. (This is a
problem when you are modifying any file by means of NFS, not
just a database.)

Caution In accessing Server-remote databases with NFS, if the file host
crashes or suffers a network outage, the ObjectStore Server is
likely to hang until the file host comes back up. This can cause
other clients to wait.
282 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
What Are the Steps for Allowing a Server-Remote Database?

After you set up the appropriate hardware and software to
connect your systems, there are two ObjectStore-specific steps for
allowing Server-remote databases.

• Provide a locator file on the host of the client that needs to access
the Server-remote database.

• Set the Server parameter Allow Remote Database Access to Yes
for each Server with the potential to access a database that is
not local.

Locator file ObjectStore clients use locator files to determine which
ObjectStore Server should handle access to which Server-remote
databases. Locator files do not need to include information about
Server-local databases.

Put the locator file in the directory $OS_ROOTDIR/etc and name it
locator . If the file known to a client host as $OS_
ROOTDIR/etc/locator exists, ObjectStore uses it to determine
which Server should handle access to a Server-remote database
for ObjectStore applications running on that client. It does not
matter whether there is a local ObjectStore Server. If there is a
locator file, ObjectStore uses it.

Shared $OS_
ROOTDIR

When you use a locator file, you can use an $OS_ROOTDIR
directory that is shared by multiple machines on a network.

You do not need a locator file if you do not have Server-remote
databases.

Overriding locator file ObjectStore clients can override this specification of a locator file,
and specify their own locator file with either a client environment
variable or an API call. These are discussed in Overriding the
Default Locator File on page 299.

Server parameter
Allow Remote
Database Access

If ObjectStore determines from a locator file that a particular
ObjectStore Server should handle access to a particular Server-
remote database, and that Server has a value of Yes for the
parameter Allow Remote Database Access , the Server handles
access to the database. If the Server does not have a value of Yes
for Allow Remote Database Access , the exception err_file_not_local
is signaled.
Release 5.1 283

What Is a Server-Remote Database?
One Server for
each database

You should assign only one ObjectStore Server to a Server-remote
database. This Server would handle all access to the remote-
Server database by all applications. This is because when one
Server handles access to a database, it can prevent concurrent
access by other ObjectStore Servers. This is discussed further in
When Multiple Servers Can Concurrently Access a Database on
page 300.

Prototype and study When you have many Server-remote databases, network
overhead increases and performance is slower than for local
databases. If you are considering having Server-remote databases,
it is prudent to set up a prototype and determine if it meets your
needs.
284 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Description of the Locator File

The locator file contains one or more host declarations and one or
more locator rules. It can also include comments.

Each host declaration specifies a host name or a group of host
names and the host machine type.

Each locator rule specifies

• The name of the host (file server) where the database resides

• The pathname of a database or group of databases

• Which ObjectStore Server controls access to the specified
database

• How to translate the database name from its form on the file
server to the form needed by the ObjectStore Server

Format

Each locator file has the following format:

host-declaration-1
host-declaration-2
...
host-declaration-n
locator-rule-1
END
locator-rule-2
END
...
locator-rule-n
END

Example

This example file contains two host declarations, one locator rule,
and one comment.

HOST redwood unix
HOST oak pc

FILE_HOST oak
FILE_PATHNAME c:\oak1\test1\.+
SERVER_HOST redwood
REPLACE c:\oak1\test1 \suite1
REPLACE_DELIMITERS
END
Release 5.1 285

Description of the Locator File
#end of locator file

Host declarations The host declarations are the first two lines. They inform
ObjectStore about the operating systems running on the hosts
referred to in the locator rules that follow. This allows ObjectStore
to execute the REPLACE_DELIMITERS command, explained
below.

Locator rule The locator rule in this file indicates that the ObjectStore Server on
the host named redwood controls access to any file database that
meets both of these conditions:

• The database resides on the file server host named oak .

• The pathname by which it is known to that file server is
c:\oak1\test1\ followed by one or more characters (any
characters).

The locator rule specifies that the pathname by which this file
database is known to the ObjectStore Server (redwood) can be
obtained by

1 Replacing c:\oak1\test1 with \suite1 in the pathname by which
the database is known to the file server.

2 Replacing the standard delimiter used by oak ’s operating
system (\) with the standard delimiter used by redwood ’s
operating system (/).

The END statement indicates the end of a locator rule.

Applying the rule If an application contains the call

os_database::open("/suite1/test1.db");

and the host of the application has oak ’s directory c:\oak1\test1
mounted as /suite1 , ObjectStore translates /suite1/test1.db into a
pathname that is canonical for the file server host oak , that is,
c:\oak1\test1\test1.db . This translation is the pathname by which
the database is known to the file server, and it is used as input to
the locator file.

The rule above applies in this case, because the file server host has
the specified name (oak) and the input pathname
c:\oak1\test1\test1.db matches the pattern in the rule:
c:\oak1\test1\.+ .
286 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
The rule specifies that the ObjectStore Server on redwood should
handle access to the database. The rule also specifies that this
database is known to redwood as /suite1/test1.db , the result of
substituting \suite1 for c:\oak1\test1 in c:\oak1\test1\test1.db and
then substituting “/” for “\”.

A database to which the locator rule does not apply is handled just
as if there were no locator file; it is handled by the ObjectStore
Server running on the file server host containing the database.

Comments Comments begin with # and go to the end of the line.

Case sensitivity Case is not significant for keywords in locator files.
Release 5.1 287

Declaring Hosts
Declaring Hosts

A locator file begins with one or more host declarations. Each host
declaration has the form

HOST host-name-pattern { unix | pc | unc }

where host-name-pattern is a character string pattern that specifies
a set of host names. The rules about how character string patterns
are written and used are discussed in Using Character String
Patterns in Locator Files on page 294. For example, to specify that
all hosts are UNIX systems, you would include this statement:

HOST .* UNIX

ObjectStore uses the earliest HOST declaration whose host-name-
pattern matches a given host name. The declaration ObjectStore
uses for a given host name determines the host’s associated
standard delimiter as used by the REPLACE_DELIMITERS
translation command. See Specifying Translation Commands on
page 290.

The following table shows how a host declaration determines an
associated standard delimiter:

Operating System Delimiter

unix /

pc \

unc \
288 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Specifying Locator Rules

After the host declarations, a locator file contains a sequence of
one or more locator rules. Each rule has the following form:

Syntax for
locator rules

FILE_HOST file-server-host-name-pattern
FILE_PATHNAME pathname-pattern
SERVER_HOST ObjectStore-Server-host-name
[translation-command-1
 translation-command-2
...
 translation-command-n]
[access-specification]

When does a rule
apply to a database?

ObjectStore applies a locator rule to a database when these
conditions are both true:

• The database resides on a file server host whose name has the
form specified in the FILE_HOST statement.

• The name by which the database is known to the file server has
the form specified in the FILE_PATHNAME statement.

The first locator rule in a file that applies to a database determines

• The ObjectStore Server to handle access to that database

• The pathname by which that database is known to that
ObjectStore Server

If ObjectStore does not find a rule that applies to a database, then
the Server running on the host containing the database handles
access to the databases. This always occurs when there is no
locator file.

Specifying FILE_HOST Statements

A FILE_HOST statement specifies the host name of a system where
a Server-remote database is stored. The statement has the form

FILE_HOST file-server-host-name-pattern

where file-server-host-name-pattern is a character string pattern for
the name of a file server. See Using Character String Patterns in
Locator Files on page 294.

If a database specified in an application resides on a file server
host whose name has this form, then the rule containing this
statement might apply to the database (see FILE_PATHNAME
Release 5.1 289

Specifying Locator Rules
statement that follows). If the database’s file server host has a
name that does not match file-server-host-name-pattern, the rule
does not apply to the database.

There is one special file-server-host-name-pattern:

@LOCALHOST

This value indicates the host of the ObjectStore application.

Specifying FILE_PATHNAME Statements

A FILE_PATHNAME statement specifies a pathname by which a
database is known to its host. This statement has the form

FILE_PATHNAME pathname-pattern

where pathname-pattern is a character string pattern. See Using
Character String Patterns in Locator Files on page 294.

If the name by which a database is known to the file server
matches pathname-pattern, then the rule containing this statement
applies to the database, provided the database’s file server host
has a name that matches the rule’s file-server-host-name-pattern. If
the database’s name does not match the pathname-pattern, the rule
does not apply to the database.

Specifying SERVER_HOST Statements

The SERVER_HOST statement specifies the name of a host
running an ObjectStore Server. This statement has the form

SERVER_HOST ObjectStore-Server-host-name

where ObjectStore-Server-host-name is the name of a host running
an ObjectStore Server. You can enclose this name in quotation
marks (" "). If a locator rule applies to a database, this statement
specifies the name of the ObjectStore Server that handles access to
the database.

There are two special ObjectStore-Server-host-names:

• @LOCALHOST specifies the ObjectStore Server running on the
host of the application.

• @INVALID_SERVER indicates that ObjectStore should signal an
error if the locator rule including it applies to a database.

Specifying Translation Commands
290 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Each locator rule can contain an optional sequence of one or more
translation commands. If a rule applies to a database, this
sequence specifies how to translate from the name by which a
database is known to the file server containing it to the name by
which the database is known to the ObjectStore Server specified
by the rule.

A translation command has one of the following forms:

• REPLACE pattern substitution-string

• REPLACE_DELIMITERS

• ALL_UPPERCASE

• ALL_LOWERCASE

Execution order All REPLACE commands are executed before any other
commands in the sequence of translation commands. The first
REPLACE command in the sequence applies to the input
pathname. This is the pathname by which a database is known to
the file server on which it resides. Each subsequent REPLACE
command applies to the output of the previous REPLACE
command.

The output of the last REPLACE command is then used as input to
the REPLACE_DELIMITERS command (if there is one). The output
of that is then used as the input to the ALL_UPPERCASE or ALL_
LOWERCASE command (if there is one). Supplying both an ALL_
UPPERCASE and an ALL_LOWERCASE command results in an
error.

REPLACE syntax The REPLACE command has the form

REPLACE pattern substitution-string

It indicates that the first substring of the input pathname (FILE_
PATHNAME pattern) that matches pattern should be replaced by
substitution-string.

The substitution-string can be empty, and is optionally enclosed in
quotation marks ("x"). If you want the quotation marks to be
interpreted literally, use two consecutive quotation marks (""x"").

The special variable $f (where $ is the escape character) designates
the string that matches the database host name in the current rule.

Parentheses ((and)) in pattern do not affect which pattern is
matched, but make it possible for a replacement string to include
Release 5.1 291

Specifying Locator Rules
the input substring that matches the parenthesized part of the
character string pattern. The variable $1 in a substitution-string
refers to the substring that matches the first parenthesized
expression in pattern, $2 refers to the substring that matches the
second parenthesized expression, and so on.

You need not specify an escape character for parentheses in
character string patterns.

Any string designated by a variable such as $1 appears as all
lowercase in the output.

Example For example, if the string that matches file-server-host-name-pattern
in the current rule is inuk and the input string is

/kayak/usr1/foo/bar/file.db

then the translation command

REPLACE /foo/(bar)/file$.db /newdirectory/$1/$f/file.db

generates

/kayak/usr1/newdirectory/bar/inuk/file.db

The first two elements of the input string are used unchanged. The
replacement begins with the third element, /foo , and proceeds as
follows:

REPLACE_
DELIMITERS

The REPLACE_DELIMITERS command indicates that each
occurrence in the input of the standard delimiter associated with
the file server host should be replaced with the standard delimiter

Original
Expression

Replacement
Expression

Explanation

/(bar) $1 The $1 variable matches the first
parenthesized expression, in this
case bar.

Not
applicable

$f The variable $f says to substitute
the database host name, in this
case, inuk .

file$.db file.db Substitutes file.db for file$.db .
The $ in the original expression is
required as an escape character
for the file extension delimiter
“.”.
292 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
associated with the ObjectStore Server host. See Declaring Hosts
on page 288.

ALL_UPPERCASE The ALL_UPPERCASE command indicates that the output should
be the same as the input except that lowercase characters in the
input should appear in uppercase in the output.

ALL_LOWERCASE The ALL_LOWERCASE command indicates that the output should
be the same as the input except that uppercase characters in the
input should appear in lowercase in the output.

Specifying Read or Write Access

Each locator rule can contain an optional access specification. This
specification is one of

• READ_ONLY

• READ_WRITE

ObjectStore signals an error if the access specification does not
match the access specified in the call to os_database::open() or
create() .
Release 5.1 293

Using Character String Patterns in Locator Files
Using Character String Patterns in Locator Files

In some parts of locator files, you can specify a character string
pattern. This allows you to write rules that can apply to more than
one specific input. For example, if all machines using ObjectStore
use a PC syntax for file pathnames, then a single HOST declaration
that covers them all would be

HOST declaration
example

HOST .+ pc

The alternative to using a character string pattern is to write a
HOST declaration for each PC, for example:

HOST foo pc
HOST bar pc
HOST amnesiac pc
HOST snoball pc

Specifying the character string pattern .+ is better than listing each
host because you do not need to modify the locator file when you
add a new PC host to the network.

Directory specification
example

Here is another example. Suppose there is a directory named
c:\home\place\stuff that contains many files and directories,
including

c:\home\place\stuff\more\file.db
c:\home\place\stuff\less\deeper\nota.db

You want to describe all files and directories that are in the
directory c:\home\place\stuff and below. You can specify this with
the character string pattern

c:\home\place\stuff\.+

Maximum length The maximum length of a character string pattern is 512
characters.

There are three rules to know when writing character string
patterns. An understanding of the following terms is needed to
correctly apply the rules.

Definitions of terms The target is character string input. For example, the pathname an
application specifies for a database is the target.

The pattern is a character string pattern in a locator file.

Pattern matching is the process that compares a target with a
pattern.
294 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
If the target matches the pattern, the result is true . If the target
does not match the pattern, the result is false .

Rules for Writing Character String Patterns

Here are the three rules for writing character string patterns.

Pattern and target
can be the same

You can specify the pattern as the exact characters that are
expected in the target.

This is the simplest kind of pattern. For example, if the only UNIX
host is a machine named dog , the simplest HOST declaration that
contains a pattern that matches the target is

HOST dog unix

When pattern matching seems to be causing problems, it often
helps to simplify all patterns according to this rule.

Use metacharacters You can specify metacharacters in a pattern. This allows a single
pattern to match more than one target.

The table in the next section describes the metacharacters you can
specify in a pattern. Metacharacters you can specify were chosen
to avoid confusion with characters that commonly occur in
targets.

A frequently used metacharacter is the period (.), which matches
any single character. Another is the plus sign (+), which matches
one or more repetitions of what it immediately follows. For
example:

.+

This matches any target that is at least one character long.

Mix exact strings with
metacharacters

You can build complicated patterns from simple patterns by
following one with another. For example:

dog.+

This matches any target that is at least four characters long and
whose first three characters are dog .

Using Metacharacters in Patterns

The following table describes the metacharacters you can specify
in a pattern.
Release 5.1 295

Using Character String Patterns in Locator Files
Metacharacter Description

. A period represents any single character. A period
matches a single character in the target.

* An asterisk represents zero or more repetitions of the
group to the immediate left. A group is one of the
following:

• Single character

• Period metacharacter

• Something enclosed in parentheses

• Something enclosed in brackets ([])

For example:

• a* matches "", a, aa, aaaaaaa, and so on.

• .* matches anything, including nothing.

• (abc)* matches "", abc , abcabc , and so on.

• [05-9]* matches "", 0, 567, 98, and 99999960, but not
1234, and so on.

+ A plus sign represents one or more repetitions of the
group to the immediate left. A group is one of the
following:

• Single character

• Period metacharacter

• Something enclosed in parentheses

• Something enclosed in brackets ([])

For example:

• a+ matches a, aa, aaaaaaa, and so on.

• .+ matches anything, except nothing.

• (abc)+ matches abc , abcabc , and so on.

• [05-9]+ matches 98, 90, 99999960005, and so on.

[and] Brackets enclose a character class. A character class is a
special kind of pattern. If any character in the character
class matches a single character in the target, the result
is true . For example, the character class [abcd] matches
the target a, but not e.

Inside the brackets, the metacharacters’ meanings do
not apply, with two exceptions.
296 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
When a caret (^) is the first character after the left
bracket, the sense of the match is reversed. In other
words, the result is false when a target matches any
character in the character class. For example, [^a]
matches any single character except a. A caret has no
special meaning when it appears in a character class
but is not the first character. For example, [a^] matches
either a or ^ and nothing else.

When a hyphen (-) is not the first or last character in a
character class, the result is true for everything that is
in the range of the two values on either side of the
hyphen. For example, the character class [0-9] matches
any single digit. If a hyphen is the first or last
character, it has no special meaning.

The exact set of characters defined when you specify a
hyphen depends on the collating sequence of the
machine, so some caution is advised. It is safe to
assume that [0-9] means the ten digits on any ASCII
system.

(and) An open parenthesis starts a grouping. A close
parenthesis ends a grouping. Parentheses group
multiple characters so that the software can treat them
as a unit. This is useful if sequences might repeat in the
target, as shown in the examples above for asterisk and
plus. Parentheses are also especially useful to delineate
a grouping when you are doing string replacements.
See the discussion of the REPLACE command in
REPLACE syntax on page 291.

$ A dollar sign is an escape character.

The purpose of the escape character is to provide a
work around when the target might contain something
that is a metacharacter if it appears in a pattern. For
example, if the target is +, the pattern + would not
match it because the plus sign is a metacharacter and
has a special meaning in patterns. You need to escape
the plus sign in this way, $+, when you want it to
match a target with the value +.

Metacharacter Description
Release 5.1 297

Using Character String Patterns in Locator Files
You must escape the following characters when they
are not used as metacharacters: . * + [] () $ ^ .

The backslash (\) character has no meaning as a
metacharacter; you do not need to use an escape
character with it.

The escape character is different from the other
metacharacters because you can change it. However, it
is not a good idea to do so. By default, the escape
character is the dollar sign. You can use the OS_
LOCATOR_ESCAPE_CHAR environment variable to
change the escape character to something other than
the dollar sign. See OS_LOCATOR_ESCAPE_
CHARACTER on page 111.

" " Quotation marks optionally start and end a pattern.
For example, "(abc)" is the same as (abc) . You can use
quotation marks for clarity.

To embed quotation marks in a pattern or target,
specify two consecutive quotation marks. For example,
"a""a" is the three-character pattern made up of
lowercase a, quotation marks, and lowercase a.

^ When you specify a caret outside a character class,
precede it with the escape character. For example, "$^" .
Outside a character class, the use of the caret is
reserved unless you precede it with an escape
character.

Metacharacter Description
298 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Overriding the Default Locator File

The locator file for all ObjectStore clients is

To specify a different locator file for a particular client or
application, you can either call an ObjectStore function from the
application or set a client environment variable.

Calling an ObjectStore Function

The objectstore::set_locator_file() function specifies a locator file.
Its declaration is

static void set_locator_file(const char *file_name)

The file_name argument points to the name of the locator file to be
used the next time a database is opened. If you specify 0 for file_
name , the application uses the client environment variable OS_
LOCATOR_FILE to determine the locator file. A nonzero argument
overrides any setting of OS_LOCATOR_FILE . If the specified file
does not exist, ObjectStore signals the err_locator_misc exception. If
the first character of the string pointed to by file_name is a white-
space character or #, ObjectStore assumes the string is the contents
of a file rather than a file name.

The objectstore::ignore_locator_file() function ensures that no
locator file is associated with the application, regardless of the
setting of OS_LOCATOR_FILE or calls to set_locator_file() .

Setting a Client Environment Variable

You can set the client environment variable OS_LOCATOR_FILE to
any legitimate argument for objectstore::set_locator_file() , with
the same meaning. Calls to set_locator_file() override this
environment variable.

Or, you can set OS_IGNORE_LOCATOR_FILE to ensure that no
locator file is associated with the application. This overrides all
other settings and function calls, including $OS_
ROOTDIR/etc/locator .

UNIX $OS_ROOTDIR/etc/locator

Windows and OS/2 %OS_ROOTDIR%\etc\locator
Release 5.1 299

When Multiple Servers Can Concurrently Access a Database
When Multiple Servers Can Concurrently Access a
Database

When an ObjectStore Server handles access to a Server-remote
database, the Server holds a lock on the database as long as the
database is open. If the database is open for read-only, the Server
holds a read lock; if the database is open for read/write, the Server
holds a write lock.

Read lock When an ObjectStore Server holds a read lock on a database,

• The Server allows read access by other Servers.

• The Server prevents write access by other Servers.

Write lock When an ObjectStore Server holds a write lock on a database,

• The Server prevents other Servers from acquiring either a read
lock or a write lock on the database.

• The Server allows read access by other applications for which
it is providing services.

When ObjectStore blocks a Server from acquiring a lock, it signals
the err_database_lock_conflict exception. ObjectStore does not
automatically try again to obtain the lock.

Turn off locking You can turn off database-level locking by setting the Server
parameter Allow NFS Locks to No. You must use extreme caution if
you turn off locking. Concurrent database access by different
Servers can corrupt the database. A mistake in a locator file can
cause unintentional concurrent access of this sort.

Caution The recommended mode of operation is

• Database-level locking is on (the default).

• Each database that is ever opened for read/write has exactly
one ObjectStore Server assigned to it. This Server handles
access to the database by all applications at your site. Follow
this recommendation to ensure that two different clients do not
contact different Servers for access to the same database.
300 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Sample Locator Files

The following locator file allows access to databases on a UNIX
server from a Windows ObjectStore Server. The ObjectStore
Server is on the local host.

UNIX file host To access Server-remote databases on a UNIX host from a
Windows ObjectStore Server, you can modify the locator file as
shown.

HOST @LOCALHOST pc
HOST andover unix

FILE_HOST andover
FILE_PATHNAME /h/andover/1/.+
SERVER_HOST @localhost
REPLACE /h/andover/1 u:
REPLACE_DELIMITERS

FILE_PATHNAME .*
SERVER_HOST @LOCALHOST

END

Remember that case is not significant for locator file keywords, so
@localhost is acceptable. The REPLACE statement is important
because ObjectStore must translate the Windows pathnames to
UNIX pathnames. The REPLACE_DELIMITERS statement is also
necessary for correct pathname translation.

Wildcards in host
declarations

Suppose you want to set up access to databases on a large number
of Server-remote hosts. This example shows an easy way to do it.

HOST andover unix
HOST .* pc

FILE_HOST andover
FILE_PATHNAME /h/andover/1/.+
SERVER_HOST @localhost
REPLACE /h/andover/1 u:
REPLACE_DELIMITERS
END
FILE_HOST .*

FILE_PATHNAME .*
SERVER_HOST @LOCALHOST
END

Use a wildcard to specify the largest group of hosts that are the
same type. This works because ObjectStore searches locator rules
Release 5.1 301

Sample Locator Files
sequentially and uses the first rule that applies. It is not an error
for multiple rules to apply.

NFS-mounted $OS_
ROOTDIR with same
architectures

Here is an example of a locator file for an NFS-mounted $OS_
ROOTDIR. The machine called registry has $OS_ROOTDIR
mounted from towanda . The machine called towanda has its own
$OS_ROOTDIR and is running an ObjectStore Server. Both
machines have the same UNIX architecture.
registry:/home/registry/linda is NFS-mounted onto towanda as
/registry_linda .

In towanda ’s $OS_ROOTDIR/etc directory, the towanda_server_
parameters file must be modified to have the line

Allow Remote Database Access: Yes

The locator file is in towanda ’s $OS_ROOTDIR/etc directory. With
this locator file, you can build ObjectStore applications on registry .

HOST towanda unix
HOST registry unix

FILE_HOST registry
FILE_PATHNAME /home/registry/linda/.+
SERVER_HOST towanda
REPLACE /home/registry/linda /registry_linda
END

A locator file for an
application that uses
three machines

In this scenario, there are three Windows machines. One machine,
bessie , is the ObjectStore Server host. Another machine, clover, is
the File Server (NT) and is not running an ObjectStore Server. The
remaining machine, jeep , is the ObjectStore client.

Here is the locator file that is placed in the %OS_ROOTDIR%\ETC
directory of the ObjectStore client.

HOST bessie pc
HOST clover pc
FILE_HOST jeep
FILE_PATHNAME \\clover\share\\my-dir.+
SERVER_HOST bessie
REPLACE \\clover\share\my-dir t:\my-dir
END

The ObjectStore Server host bessie has the file server partition
mounted as drive t: . This is necessary. You cannot expect the
ObjectStore Server host to use UNC to access the file server. The
file server must be mounted using the File Manager/Explorer or
the net use command.
302 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
With this locator file, the ObjectStore client could access the
database \\clover\share\my-dir\metaschm.db in either of the
following ways:

• \\clover\share\my-dir\metaschm.db

• bessie:t:\share\metaschm.db

If the ObjectStore client has \\clover\share mounted to itself as
drive G:, it could also use the following access patterns:

• g:\my-dir\metaschm.db

• metaschm.db

The last pattern works, assuming that the working directory is
g:\my-dir .

Mounting $OS_
ROOTDIR and mixing
UNIX architectures

The following example is a locator file for different UNIX
architectures where one of the machines mounts $OS_ROOTDIR
from another machine. The machine named screamer is an HP
with its own $OS_ROOTDIR, but without a local Server. The
machine towanda is a Sun with its own $OS_ROOTDIR and a
Server.

screamer:/home/screamer/box/linda is NFS-mounted onto towanda
as /screamer_linda .

Again, in towanda ’s $OS_ROOTDIR/etc directory, the towanda_
server_parameters file must be modified to have the line

Allow Remote Database Access: Yes

The locator file is in screamer ’s $OS_ROOTDIR/etc directory. With
this locator file, you can build ObjectStore applications on
screamer .

#Good locator file:
HOST towanda unix
HOST screamer unix

FILE_HOST screamer
FILE_PATHNAME /home/screamer/box/linda/.+
SERVER_HOST towanda
REPLACE /home/screamer/box/linda /screamer_linda
END

Accessing databases
on another Server host

The next locator file shows how an application that is local to an
ObjectStore Server can access databases on other Server hosts. The
application starts on Server host venus and then creates (opens)
Release 5.1 303

Sample Locator Files
databases on disks that are local to the Server hosts mars and
pluto .

HOST venus unix
HOST mars unix
HOST pluto unix

FILE_HOST mars
FILE_PATHNAME /local/directory/on/mars/.+
SERVER_HOST venus
REPLACE /local/directory/on/mars /mounted/directory/on/venus
END

FILE_HOST pluto
FILE_PATHNAME /local/directory/on/pluto/.+
SERVER_HOST venus
REPLACE /local/directory/on/pluto /mounted/directory/on/venus
END

Always using same
ObjectStore Server

The following locator file always forces the use of the same
ObjectStore Server regardless of where the database is. In this
example, the hosts are all UNIX systems and tokyo is the host of
the Server that you want all databases to use.

HOST .+ unix
FILE_HOST .+
FILE_PATHNAME .+
SERVER_HOST tokyo
END

Incorrect REPLACE
line in locator file

Here is an example of an incorrect locator file that tries to
accomplish the same setup:

#Bad locator file: do NOT put machine: in the REPLACE line
HOST towanda unix
HOST screamer unix

FILE_HOST screamer
FILE_PATHNAME /home/screamer/box/linda/.+
SERVER_HOST towanda
REPLACE screamer:/home/screamer/box/linda /screamer_linda
END
#end of locator file

This locator file would display a message like this:

schema2.cc line 20: error: the compilation schema database could not be
opened because: The directory was not found
re /home/screamer/box/linda/tutorial_IIA.comp_schema while
creating file database
/home/screamer/box/linda/tutorial_IIA.comp_schema (host "towanda")
304 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Missing matching
pattern in locator file

Here is another example of an incorrect locator file:

#Bad locator file: Need the "/.+" after the file pathname for matching
HOST towanda unix
HOST screamer unix
FILE_HOST screamer

FILE_PATHNAME /home/screamer/box/linda
SERVER_HOST towanda
REPLACE /home/screamer/box/linda /screamer_linda
END

This locator file would display a message like this:

"schema2.cc", line 20: error: the compilation schema database could not
be opened because:
The server refused the connection
Attempted to connect to server on local host, looking up database
"/home/screamer/box/linda/tutorial_IIA.comp_schema" on host
"screamer" failed: <err-0003-0004>Host refused connection.
(err_net_connection_refused). Possibly there is no server running
on this host. You can try the command
"/home/screamer/box/ostore/hp310/bin/ossvrping screamer" to check.
(err_server_refused_connection)
Release 5.1 305

Limitations When Using NFS to Access Remote Databases
Limitations When Using NFS to Access Remote
Databases

The ObjectStore Server needs to act on behalf of its client processes
and so it accesses files over the network, thereby relying on NFS.
Where NFS fails, the ObjectStore Server also fails. The following
table below describes NFS problems that can occur when you use
locator files. These limitations are because of known NFS
problems and do not necessarily apply when using other remote
file access protocols.

Symptom Reason Workaround

Server crash. The
oss_out file
contains references
to stale file handles.
This most often
occurs in
conjunction with
using the
automounter.

The ObjectStore Server needs to access the file handle.
When the file handle goes stale, the Server loses its
ability to communicate with the database, and thus
crashes. When the ObjectStore Server accesses the
database, it does not exercise the automounter.
Therefore, when you use the automounter there is an
increased chance of seeing this problem. Object Design
recommends not using the automounter. However,
even hard mount points can become stale.

None. Object
Design
recommends
that you do
not use the
automounter.

Server crash. The
oss_out file
contains references
to permission
problems.

Poorly configured NFS. You must configure NFS such
that anon =0. When an application creates or opens a
database, the Server acts on behalf of the user who is
requesting the open/create. However, after the
database is open, all reads and writes occur as root .
When root attempts to log in to another machine, if
anon =0 is not set, then the root must log in as the
equivalent of noone , with no privileges. Setting
anon =0 allows root on one machine (the Server
machine) to have the same privileges as root on the
other machine (where the database resides).

Configure
NFS with
anon =0.
306 ObjectStore Management

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Server crash. The
oss_out file
contains references
to missing files.

Suppose a Server has started accessing a database and
someone removes or renames the file. If the removal is
done on a machine other than the database host, then
NFS maintains a copy of the database so that the
Server can continue to access it. However, if the
removal occurs on the machine with the database (and
the machine is not the Server host), then NFS does not
retain a copy of the database for the Server process to
continue using. Suddenly there is no database to
access, even though the Server was already accessing
it. It is also impossible to determine where the Server
was in the access stage.

None.

Server crash. oss_
out file contains
references to
remote file
system’s being full.

There is a Sun bug that prevents state flags from being
correctly reset. Consequently, it is possible to fill a file
system, remove a file, or decrease the size of a file, and
have a system flag that continues to report that the file
system is full.

Obtain a patch
from Sun.

Server hang (wait
state).

The Server requires the lock manager to be running on
the machine that the Server is running on. If the lock
manager is not running, the Server cannot do its job.
The Server waits (appears to be hung) for the lock
manager to be restarted. Once the lock manager is
running, the Server can and will respond.

When a
system
reboots,
ensure that
the lock
manager is
running
before the
autostart of
the Server.

Server hang (wait
state).

Slow response from NFS. If, for any reason, NFS is
slow to respond to requests for service, the Server
must wait for those responses, just like any other client
of NFS.

None.

Symptom Reason Workaround
Release 5.1 307

Troubleshooting
Troubleshooting

If your locator file is not functioning the way you intend, first
carefully check the locator file for these common mistakes:

• Did you reverse the SERVER_HOST and FILE_HOST
arguments? The SERVER_HOST statement specifies the name
of the host of the ObjectStore Server. The FILE_HOST statement
specifies the name of the host on which the database you want
to access is stored.

• Can the value specified for FILE_PATHNAME match the
database name provided? If you are only using one directory
for a database, you can specify .+ to match anything. If you are
using more than one directory, you can specify something like
/dir/subdir/.+.

• Did you specify REPLACE_DELIMITERS for translation
between systems that use different delimiters?

• Did you accurately specify any REPLACE statements?

In addition to carefully proofreading the locator file, you can set
the OS_DEBUG_LOCATOR_FILE client environment variable to 1.
When this variable is set, ObjectStore sends diagnostic
information on the processing of the locator file translation to
stderr .
308 ObjectStore Management

Chapter 6
High Availability of Data

Object Design provides a number of facilities for increased levels
of reliability. In descending order of reliability the tools and
capabilities are

• Warm failover

• Asynchronous replication

• osbackup (See Chapter 1, Overview of Managing ObjectStore,
General Backup Practices on page 41)

• osarchiv (See Chapter 1, Overview of Managing ObjectStore,
Archive Logging on page 43)

This chapter discusses

Warm Failover 310

The Failover API 314

Asynchronous Replication 317

Warm failover addresses the issue of local availability of data in
the face of a system hardware or software failure. It consists of two
sets of failover features — Server failover features and ObjectStore
APIs useful to an ObjectStore client application writer.

Asynchronous replication addresses the issue of wide-area
availability by providing a method for replicating data to another
system, potentially at another geographic location.
Release 5.1 309

Warm Failover
Warm Failover

ObjectStore failover features help solve the local availability
problem in cases of system hardware or software failure. The
ObjectStore Release 5.1 failover system provides a two-part set of
failover features. The Server-side failover system enables a
database administrator to set up a configuration that provides the
Server failover system. Client-side failover capabilities consist of
a new set of ObjectStore APIs that enable client application writers
to take advantage of this facility.

Failover provides nonstop service of client applications so that a
single Server failure does not affect a running application. It does
this by shifting processing to a secondary Server system in the
event of a failure of the primary system.

A failover system is made up of two ObjectStore Servers, running
on different machines, that share a disk. If the primary Objectstore
Server fails, the client process continues operation by connecting
to the secondary Server. Service is uninterrupted and you can
continue to access and modify the database.

The primary Server process accepts connections from an
ObjectStore client. The secondary Server does not accept
connections from clients, but waits offline, ready to take over
should the primary Server fail.

Restrictions Failover can be used with rawfs partition databases. File
databases are not accessible by a failover Server (nor are two-
phase commits allowed).

Warm failover alone cannot guarantee 100% fault tolerance as the
shared disk can crash, the network can fail, and so on.

Each of the ObjectStore Servers that implements a failover Server
must have a rawfs and log file on a disk that is shared by the two
machines upon which the Servers are running. They must also be
running on the same software architecture.

The ObjectStore client run time, through the use of the new APIs,
locates the on-line Server of the failover Server using a locator file
that is local to the client. The locator file declares configuration
information for a failover Server.
310 ObjectStore Management

Chapter 6: High Availability of Data
Configuration of the Shared Disk

The configuration depends on a shared, reliable disk (such as
RAID 5) connected to both the primary and secondary Servers.
The connection might be either by a dual-ported reliable disk (for
Sun machines, for example), or by the disk, with the primary and
secondary Servers being on the same bus (for Digital or HP
systems, for example).

Server Configuration

Each Server in the failover Server pair has a parameter file. The
parameter file must specify two things, the heartbeat time and the
physical rawfs partitions. The Server parameter files for a failover
Server pair must share the same physical partition and log file.
The log file must be in the rawfs, not in a file.

You must set the Failover Heartbeat Time parameter in the Server
parameter file and restart the Server with the -upgradeRAWFS
switch set. To reconfigure without failover, remove the parameter
from the Server parameter file and restart the Server with the
-upgradeRAWFS switch. The next paragraph describes this
parameter.

Failover Heartbeat
Time

The Failover Heartbeat Time parameter must be specified if you are
using a failover Server. This parameter can be set to between 2 and
60 seconds. The parameter defines how often a heartbeat message
is written to disk. In the event of a failure, it takes five times
Failover Heartbeat Time for the secondary Server to recognize the
failure, initialize, and take over.

Example Partition0: partition /dev/rdsk/c0t0d0s3
Failover Heartbeat Time: 2

How a Failover Database Is Located by the Client Application

The locator file provides a way of defining pairs of ObjectStore
Servers that compose a failover Server. If a Server is not available
and the locator file has an alternative Server, the client tries this
Server to see if it can provide access to the rawfs database.

Logical Server Names

There are two physical Server processes responsible for serving
one logical rawfs. Only one of the Server hosts should ever be
Release 5.1 311

Warm Failover
recorded in the database pathnames referring to databases
maintained on a failover Server. The Server host that is recorded
as part of the rawfs database path is referred to as the logical Server
host name.

The ObjectStore client application should always use the logical
Server host name when manipulating a database on a failover
Server. This is because, when an application creates a database on
the failover Server and the secondary Server is on line, the
pathname of the database includes the logical Server host name,
not the name of the secondary Server that created the database. If
the application uses the nonlogical Server name in a pathname,
the exception err_not_supported is raised.

Declaring a Failover Server in a Locator File

See Chapter 5, Using Locator Files to Set Up Server-Remote
Databases, on page 281, for general information about locator
files.

When using locator files to implement failover Servers, be certain
that the locator file is in a file that is local to the client application
so NFS is not involved in a failover situation.

Do not add failover Server declarations to pre-5.0 ObjectStore
client system locator files. ObjectStore clients will fail when trying
to parse a locator file containing failover Server declarations.

Locator file syntax has been extended to support failover Servers,
as shown in the following failover Server clause:

FAILOVER_SERVER server_host_1
ALTERNATIVE_SERVER server_host_2
RECONNECT_TIMEOUT integer # in seconds
RECONNECT_RETRY_INTERVAL integer # in seconds

END

server_host_1 is also the logical Server host name that is recorded
in all database pathnames to databases of this failover Server.
server_host_2 specifies the backup Server of a failover Server pair.
Both values are required.

RECONNECT_TIMEOUT is the maximum amount of time that a
client will attempt to reconnect to a failover Server before raising
the exception err_broken_replicated_server_connection.
312 ObjectStore Management

Chapter 6: High Availability of Data
RECONNECT_RETRY_INTERVAL specifies how often the two
failover Servers are pinged during the RECONNECT_TIMEOUT.
RECONNECT_RETRY_INTERVAL should be less than or equal to
RECONNECT_RETRY_TIMEOUT.

Also, RECONNECT_RETRY_INTERVAL cannot be zero if
RECONNECT_TIMEOUT is nonzero. The exception err_locator_
syntax is raised if these constraints are violated.

The locator file is read the first time it is needed by the ObjectStore
run time. The locator file is not read again by the application
unless the method objectstore::set_locator_file() is called. Then,
the locator file is reread the next time the ObjectStore run time
uses its contents.

Notes for Writing Client Applications

If an application is written using lexical transactions (that is, the
transaction macros), the retry mechanism in the client is done
automatically.

This means that client programs written using lexical transactions
do not need to be modified to take advantage of the failover
feature.
Release 5.1 313

The Failover API
The Failover API

Failover features available to client application writers include a
set of APIs that can be incorporated into client applications. These
allow applications to access environment information for failover.

Use of these interfaces is not required. They include the os_
failover_server class and functions in other classes, all described
here.

objectstore::get_locator_file()

static char* get_locator_file() ;

Returns a string representing the locator file. If the first character
of the string is a white-space character or #, the string is the
contents of the file rather than a file name.

The caller should delete the returned value.

os_server::get_host_name()

char* get_host_name();

For failover Servers, this function returns the logical failover
Server host name. Note that the logical Server name is not always
identical to the Server name for the machine providing access to
the database. The caller should delete the returned value. See os_
failover_server::get_online_server() .

os_server::is_failover()

os_boolean is_failover() const;

Returns true if and only if the Server is also a failover Server.

This method is used to identify the os_failover_server in the list of
Servers returned by objectstore::get_all_servers() .

The os_failover_server Class

class os_failover_server : public os_server

This class is derived from os_server .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.
314 ObjectStore Management

Chapter 6: High Availability of Data
Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if ObjectStore collections are used).

os_failover_server::get_logical_server_hostname()

char* get_logical_server_hostname() const;

Returns the logical name of a failover Server. A failover Server
should always be referred to by its logical Server name.

The caller should delete the returned value.

os_failover_server::get_online_server_hostname()

char* get_online_server_hostname() const;

Returns the Server that the client is currently connected to, either
the logical Server, alternative Server, or the empty string if there
is no connection.

The caller should delete the returned value.

os_failover_server::get_reconnect_retry_interval()

os_unsigned_int32 get_reconnect_retry_interval() const;

Returns the frequency with which to ping both Servers composing
a failover Server pair while attempting to reconnect to them.

os_failover_server::get_reconnect_timeout()

os_unsigned_int32 get_reconnect_timeout() const;

Returns the maximum amount of time that a client application
will attempt to reconnect to a broken failover Server connection.

After this amount of time passes, the following exception is raised:

err_broken_failover_server_connection

os_failover_server::set_reconnect_timeout_and_interval()

os_boolean set_reconnect_timeout_and_interval(
os_unsigned_int32 total_timeout_secs,
os_unsigned_int32 interval_secs);

Sets the total amount of time to try to reconnect a broken
connection to a failover Server. The interval_secs argument is
used to control how frequently the Servers of a failover Server
pair are pinged to see if they are available.
Release 5.1 315

The Failover API
Returns true if the reconnect timeout has been reset with the
specified parameters.

If the parameters are invalid, the function returns the value false
and does not change the reconnect_timeout or reconnect_retry_
interval .

Invalid parameters are those for which

• interval_secs is greater than timeout_secs .

• interval_secs is set to 0 when timeout_secs is nonzero.

Exceptions and Error Messages for Failover

This section presents run-time exception cases that can occur with
failover.

err_failover_server_refused_connection

Raised when the initial connection to a failover Server pair cannot
be made.

err_broken_failover_server_connection

Raised when neither the logical nor alternative Servers comes
back up in some predetermined maximum amount of time that a
client process should wait for either Server to come up on its own.

err_server_restarted

Raised when a failover Server connection is discovered to be lost,
and then one of the logical or alternative Servers comes back up
before RECONNECT_TIMEOUT. Lexical transactions are restarted
when the exception err_server_restarted is raised within them.

err_not_supported

Raised when the alternative Server name is used directly to
reference a database. An Objectstore application should only
reference the logical Server name of a failover Server pair.

Also raised when os_dbutil::ping_failover_server is called and the
locator file does not declare hostname as a failover Server.

err_conflicting_failover_configuration

Raised by os_dbutil::ping_failover_server() if both Servers
composing the failover Server pair are alive or if a server stat of
the on-line Server indicates that it is not a failover Server.
316 ObjectStore Management

Chapter 6: High Availability of Data
Asynchronous Replication

ObjectStore provides the osreplic utility, which produces a
continuously updated copy (or replica) of one or more user
databases. The utility works by coordinating the actions of a
source ObjectStore Server running archive logger, and of a target
ObjectStore Server running recover, providing a read-only
(MVCC) copy of a database that is dynamically updated from the
master database.

ObjectStore Release 4 and later databases and rawfs directories
can be replicated, as well as all ObjectStore Release 4 file
databases. Native file system directories cannot be replicated.

See osreplic: Replicating Databases on page 213 for further
information.
Release 5.1 317

Asynchronous Replication
318 ObjectStore Management

Chapter 7
Managing ObjectStore on
UNIX

This chapter provides information about managing ObjectStore
on UNIX systems. For complete information, you should consult
the first six chapters in this book along with this chapter.

The topics discussed in this chapter include

Database and Executable Pathnames 320

Setting Server Parameters 323

Starting the Server 325

Creating a Rawfs 328

Setting Cache Manager Parameters 333

Increasing the Size of the Cache 337

Description of ObjectStore Directories 338

Finding Files Containing ObjectStore Messages 339

Using Tapes with the osbackup Utility 340

ObjectStore Use of /tmp/ostore 341

AIX Considerations 342
Release 5.1 319

Database and Executable Pathnames
Database and Executable Pathnames

You specify a file database with an operating system pathname.
For example:

os_database::open("/usr3/fauntleroy/my_file_db")

You can also specify a relative pathname.

ObjectStore treats links in the usual manner.

Automount pathnames are acceptable. If you are using
automount , the pathname you specify cannot include the
automount prefix, usually /tmp_mnt . Referring to the file with this
prefix does not cause automount to keep it mounted and can cause
the file to appear deleted.

Unless you set up a database to be a Server-remote database (see
Chapter 5, Using Locator Files to Set Up Server-Remote
Databases, on page 281), you must store file databases on a host
that is running an ObjectStore Server. ObjectStore determines
which Server to use based on the NFS mountings of the client that
creates the database.

Colons in file pathnames are interpreted as alphabetic characters
if a slash character precedes the colon in the pathname. For
example:

File Name Expansion

When you specify a rawfs database name, ObjectStore commands
use wildcard (*, ?, {} , and []) name expansion.

You must insert a back slash (\) as an escape character
immediately before a wildcard character. For example:

sax::/charlie*.

/usr1/moe/a:b Specifies a file named a:b in the /usr1/moe
directory, in the local host’s name space.

bill:/usr2/dbs:abc Specifies a file named dbs:abc in the /usr2
directory, on Server bill , in the Server’s name
space.

fifi/mimi:lulu Specifies a file named mimi:lulu in the fifi
directory, relative to the working directory, in
the local host’s name space.
320 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Where you specify a file database name, the shell performs
wildcard expansion. This means that it does not usually matter
whether wildcards have preceding escape characters (back
slashes). For example, the following two commands have an
identical effect:

osls -d /oshome/bin/osse*
osls -d /oshome/bin/osse*

In the first case, the shell expands the wildcard, and the
expansions are all passed to osls ; osls determines that they
represent file pathnames, and passes them on to the shell
command ls . In the second case, the shell passes the unexpanded
string to osls , which determines that it represents a file pathname,
and passes it to the shell command ls , which then does the
expansion.

Executable Pathnames

Pathnames for the executables for ObjectStore utilities have the
following format:

$OS_ROOTDIR/bin/ utility-name

ObjectStore utilities
and shell commands

ObjectStore utilities have the prefix os , and most are analogous to
shell commands. The utilities include oschgrp , oschmod ,
oschown , osls , osmkdir , osmv , osrm , and osrmdir . In most cases,
you can use ObjectStore utilities and their corresponding shell
commands interchangeably on operating system files and
directories containing ObjectStore file databases; any differences
are noted in the documentation for a particular utility.

Where the input name is a file database name, the commands
(except oscp and osmv) pass the name on to the corresponding
system command. Those commands that modify an individual
database file in any way (oschgrp , oschmod , oschown , osmv , and
osrm) attempt to verify that the file being operated on is in fact a
database, by calling os_database::lookup() on the path before
operating on it. This verification is only done, however, if neither
-f (force) nor -R (recursive) is specified. If the force or recursive flag
is specified, the paths are simply passed to the shell without
further checking. This means, for example, that

osrm /foo/bar

removes /foo/bar only if it is a database, while
Release 5.1 321

Database and Executable Pathnames
osrm -f /foo/bar

removes /foo/bar regardless of what type of file it is.

Note: ObjectStore utilities return a zero to indicate success and a
nonzero value to indicate otherwise.
322 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Setting Server Parameters

Each Server parameter that you can specify is described in
Chapter 2, Server Parameters, on page 69.

All Server parameters have default values. Object Design
recommends that you use the default value for each parameter,
which requires no action on your part. You can, however, modify
Server parameters in two ways:

• You can use the osconfig utility.

• You can create a parameter file.

After you modify a Server parameter, you must shut down and
restart the Server for any changes to parameters to take effect.

Using the osconfig Utility

When you create a rawfs with osconfig rawfs , the utility prompts
you for a partition name. This results in a modification to the
Server parameters.

When you run osconfig , the utility prompts you for the name of
the Server log file. If you do not accept the default, this also results
in a modification to the Server parameters.

Creating a Parameter File

A parameter file has the following format:

Parameter file format • One parameter and its value can appear on a line.

• A parameter has a name, such as Deadlock Victim .

• The parameter name is followed by a colon.

• The colon is followed by the parameter’s value. According to
the parameter, this can be numeric or text.

• The colon and value are separated by tabs or spaces.

• Comment lines must contain a # as the first nonblank character.

• Case is not significant for parameter names.

• Embedded spaces are significant.

• If the same parameter name appears twice in the parameter file,
only the first occurrence is read.
Release 5.1 323

Setting Server Parameters
Example A parameter file can include one or more parameter
specifications. The example below provides definitions for the
Log File , Partition N, and Authentication Required parameters:

Log File: /support2/local/ostore/sun4.r300/.log
Partition0: /support2/local/ostore/sun4.r300/.part0
Authentication Required: Unix Login

Search order When you start an ObjectStore Server, ObjectStore looks for a
parameter file in the following places in the order shown below. It
uses the first parameter file that it finds.

1 File specified with the -p option to osserver.

2 $OS_ROOTDIR/etc/host_server_parameters , where host is the
name of the local host.

OS_ROOTDIR is an environment variable set to the top-level
directory in the part of the source hierarchy containing
ObjectStore files.
324 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Starting the Server

The ObjectStore Server usually starts when you boot your system.
You can also start the Server with the osserver utility. However
you start the Server, you can configure it with command-line
options and parameter file options that the Server reads when it
starts.

The pathname of the Server executable is $OS_
ROOTDIR/lib/osserver. See the installation instructions for setting
OS_ROOTDIR).

Syntax

$OS_ROOTDIR/lib/osserver [options]

Options

Ordinarily, you use Server parameters to control Server behavior.
You can also specify options when you execute the osserver
utility.

-c Checkpoint. Forces all data to be propagated from
the log to the database. The Server does not start
after this checkpoint.

-d int Starts the Server in debug mode. Specify an integer
from 1 through 50. The larger the number, the more
information ObjectStore provides. You can also
specify the -F option so that ObjectStore displays
the information on the screen.

ObjectStore copies debug output to the
/tmp/ostore/oss_out file, unless you redirect it to
another file.

-F Foreground. Runs the Server process in the
foreground. ObjectStore displays the information
on the screen.This reverses the normal behavior,
where the Server runs as a background process.

When run without -F, osserver returns 0 from a
successful start-up of the background daemon;
otherwise it returns 1.

-i Initializes the Server log file and the rawfs, if you
have one, with a confirmation prompt. Use with
caution.
Release 5.1 325

Starting the Server
Description

After starting, the Server displays the message Server started on
the system (host) console to let you know that it is ready to accept
requests from clients on the network.

Debug mode Output from debug mode can be very useful to Object Design
personnel trying to help you solve a problem. When you no
longer need the debug output, shut down the Server and restart it
without the debug option. Running the Server in debug mode
slows it down but does not affect clients. You should run the
Server in debug mode only when you are experiencing a problem.
In most cases, you want to specify -d 50 so you can obtain all
possible information.

Use -i and -I with
caution

Be sure to move all data out of the log before you initialize it. See
ossvrchkpt: Moving Data Out of the Server Transaction Log on
page 253. Be sure to back up all data in the rawfs before you
initialize it. See osbackup: Backing Up Databases on page 139.

When you initialize the transaction log, anything in the log is lost.
The Server resizes the log to the values specified by the Log Data
Segment Initial Size and Log Record Segment Initial Size Server
parameters. When the log is in the rawfs, this frees space for use
by other files. When the log is in the native file system, this
reallocates space dedicated to the transaction log. The size of the
log does not change.

Initializing when you
have a rawfs

If you have a rawfs, specifying the -i or -I option with osserver
initializes the rawfs and the transaction log. When you specify -i,
ObjectStore responds with

The entire ObjectStore file system on this host is about to be initialized,
thus destroying any data currently in it. Unless you have a backup of the

-I (Uppercase I) Initializes the Server log file and the
rawfs, if you have one, without a confirmation
prompt. Use with extreme caution.

-p
pathname

Specifies a file containing Server parameter settings
that override the default settings. If you do not
specify this option, ObjectStore uses only the
default parameter file $OS_ROOTDIR/etc/host_
server_parameters .

-v Displays Server parameter values at start-up.
326 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
ObjectStore file system, it will be impossible to recover the old contents
once the initialization is started. Are you sure that you want to reinitialize
the ObjectStore file system?

When you specify -I, this message does not appear.

Initializing when
there is no rawfs

If you do not have a rawfs, then specifying the -i or -I option with
osserver initializes only the transaction log. When you specify -i,
ObjectStore responds with

You have asked for initialization which will create a new transaction log,
deleting any old log that might exist, thus destroying any recovery data in
the old log. This might leave some file databases in a broken state. Are
you sure that you want to create a new log?

When you specify -I, this message does not appear.

Nonroot Server Start-Up

Normally, you start the Server as root . However, this is not
required. If you start the Server from a non-root account,
ObjectStore allows access to rawfs databases but does not allow
access to file databases. You can change this behavior with the
Restricted File DB Access Server parameter. See Restricted File DB
Access on page 87.
Release 5.1 327

Creating a Rawfs
Creating a Rawfs

Maintaining a rawfs provides a fast, convenient way to manage all
ObjectStore databases at your site.

Before you can create a rawfs, you must set aside some partitions
to be in the rawfs.

• For raw partitions, you might need to reorganize your disk
space unless you have a new disk.

• For a file partition, create a file. If there is anything in the file,
ObjectStore overwrites it.

When you create your rawfs, the preferred method of doing so is
to use osconfig rawfs . This utility prompts you for a pathname for
the partition and then initializes it. See your installation guide for
details.

Restrictions A file partition can be no larger than two gigabytes. There are no
ObjectStore restrictions on the size of a rawfs partition; however,
the allowable size depends on the operating system. Most 32-bit
systems do not allow file partitions greater than 2 GB.

On SGI with XFS, file partitions can be greater than 2 GB.

The maximum number of partitions for a single Server is 32.

Specifying the Partitions in a Rawfs

The Partition N Server parameter specifies the partitions in the
rawfs. You add a partition to the rawfs by adding a Partition N
statement to the Server parameter file. Each Partition N statement
has the following form:

Partition N: type pathname {expandable | nonexpandable}

N Specifies a positive integer from 0 to n. Partition N
statements can appear in the Server parameter file in
any order, but empty slots are not allowed. For
example, if you have four partitions, they must be
numbered 0 through 3. Required.
328 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
type Specifies whether the partition is a raw partition or a
file partition. Required.

The value for type can be PARTITION or UNIX (except on
AIX, HP–UX, and SGI IRIX; see below). If you specify
PARTITION, the value of pathname must be the raw
device name, for example, /dev/rsd0d , of a UNIX disk
partition to be used as the nth partition in the rawfs. If
you specify UNIX, the value of pathname is the absolute
pathname of a UNIX file that is to be used as the nth
partition in the rawfs.

The raw device is also known as a character special file
in UNIX. Typically, each partition is accessible both by
a raw device and by a block special device. The
ObjectStore Server requires the use of the raw device.

AIX On AIX, the value for type can be UNIX, LV, or RAW.

• UNIX indicates the rawfs is stored in an AIX file.

• LV indicates the rawfs is stored in an AIX logical
volume.

• RAW indicates the rawfs is stored in an AIX physical
volume (raw disk).

HP–UX On HP–UX, the value for type can be UNIX, PARTITION,
or DISK.

• UNIX indicates the rawfs is stored in an HP–UX file.

• PARTITION indicates the rawfs is stored in an HP–UX
logical volume.

• DISK indicates the rawfs is stored on a raw device.

SGI IRIX On SGI IRIX, the value for type can be UNIX, LV, or
PARTITION.

• UNIX indicates the rawfs is stored in an SGI IRIX file.

• LV indicates the rawfs is stored in an SGI IRIX logical
volume.

• PARTITION indicates the rawfs is stored on a raw
device.

pathname Specifies the pathname of the partition. It must begin
with a slash. For a raw partition, it is the device name.
For a file partition, it is the absolute pathname.
Release 5.1 329

Creating a Rawfs
It is unnecessary to specify more than one file in the same
partition.

Modifying Partition Size

You can expand raw partitions only by setting aside additional
raw space, adjusting the Partition N statements as needed, and then
restarting the Server.

AIX On AIX, specify

• An absolute pathname if you specify UNIX for type

• The LV name if you specify LV for type, for example,
oslv

• The PV name if you specify RAW for type, for
example, hdisk6

HP–UX On HP–UX, specify

• An absolute pathname if you specify UNIX for type.

• The LV name if you specify PARTITION for type. You
can use the block special device or a raw device name.
For example, /dev/vg00/lvol2 or /dev/vg00/rlvol2 where
00 is the volume group number and 2 is the logical
volume.

• The pathname for the raw device if you specify DISK
for type. For example, /dev/dsk/c207d6s0 .

SGI IRIX On SGI IRIX, specify

• An absolute pathname if you specify UNIX for type.

• The pathname of the raw device associated with the
logical volume if you specify LV for type. For
example, /dev/rdsk/lv0 .

• The pathname of the raw device if you specify
PARTITION as type. For example, /dev/rdsk/dks1d457

expandable |
nonexpandable

Indicates whether the partition is expandable in size or
nonexpandable. By default, raw partitions are
nonexpandable and file partitions are expandable.
330 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Rawfs expansion When you use files in a rawfs, you can control expansion of the
rawfs as follows:

• If one file is used, it expands dynamically as needed, as long as
there is room in the partition containing the file.

• If multiple files or a mixture of files and raw partitions is used
for the rawfs, ObjectStore treats them differently with regard to
expansion.

- You can expand raw partitions only when you start the
Server.

- Files can expand dynamically, if you specify expandable in
the Partition N statement.

Example For example, suppose the rawfs contains one raw partition,
/dev/rsd4x , and three files, /usr1/one , /usr2/two , and /usr3/three . If
you want to permit only two of the files to expand, your Server
parameter file might include

Partition0: UNIX /usr1/one expandable
Partition1: UNIX /usr2/two expandable
Partition2: UNIX /usr3/three nonexpandable
Partition3: PARTITION /dev/rsd4x

Increase partition size To increase the size of one or more existing partitions, check the
sizes of the partitions with the dkinfo (8) command. The new
partition must be no smaller than the partition it is replacing. To
copy the data from an existing small partition to a new larger one
use dd(1) or the osbackup and osrestore utilities. Then substitute
each new name for the corresponding old one in the Server
parameter file.

Shrink rawfs You cannot shrink the size of a rawfs by removing one of its
partitions.

Adding partitions Use the osconfig utility to establish your rawfs. You can use the
following procedure to add partitions to the rawfs.

1 Make sure your raw partition is in place or that you created the
file that will be your file partition.

2 Use the ossvrshtd utility to shut down the Server.

3 Edit the file $OS_ROOTDIR/etc/<hostname>_server_parameters.
Add a Partition N for each new partition. See Specifying the
Partitions in a Rawfs on page 328.

4 As root , restart the Server with the osserver utility.
Release 5.1 331

Creating a Rawfs
The Server initializes only the new partitions. The content of
existing partitions remains intact.

To reinitialize the entire rawfs, see Reconfiguring the Rawfs on
page 32.
332 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Setting Cache Manager Parameters

If a Cache Manager is not already running, the Cache Manager
starts automatically when a client application starts.

You can specify the following Cache Manager parameters:

• Cache Directory

• Commseg Directory

• Hard Allocation Limit

• Mount Table Pathname

• Soft Allocation Limit

• Temporary Files Permission

If you modify a Cache Manager parameter, the parameter does
not take effect until the Cache Manager is shut down and
restarted.

Specifying the Cache Directory Parameter

Default: /tmp/ostore The Cache Directory parameter specifies the directory in which
ObjectStore places the client cache file. This directory should not
be an NFS mount point because this can result in slower client
performance and can create the potential for problems with
memory mapping over NFS.

If the environment variable OS_CACHE_DIR is set, ObjectStore
uses that directory. Cache and commseg files should be in the
same directory.

Make sure that this directory exists. The Cache Manager does not
automatically create it.

Specifying the Commseg Directory Parameter

Default: /tmp/ostore The Commseg Directory parameter specifies the directory in
which ObjectStore places the communications segment. This
directory should not be an NFS mount point because this can
result in slower client performance and can create the potential for
problems with memory mapping over NFS.

If the environment variable OS_COMMSEG_DIR is set, ObjectStore
uses that directory. Cache and commseg files should be in the
same directory.
Release 5.1 333

Setting Cache Manager Parameters
Specifying the Hard Allocation Limit Parameter

Default: 0 The Hard Allocation Limit parameter specifies the upper bound, in
bytes, on the amount of disk space that the Cache Manager can
allocate for its cache files and commseg files. If you try to exceed
this limit, you receive an error message similar to the following at
ObjectStore initialization time (for example, when you call
objectstore::initialize() or open or create a database):

Cache Manager hard limit (NNNNN) exceeded by request for MMMMM
bytes of cache and/or commseg

This parameter allows you to prevent ObjectStore files from using
too much disk space.

The default of 0 means that no limit is enforced.

Specifying the Mount Table Pathname Parameter

Default: /etc/mtab The Mount Table Pathname parameter specifies the pathname of
the mount table. The mount table indicates which UNIX file
systems are mounted, and where they are in your file system. For
example, if grizzly has a directory named /archive/two and you
have it mounted on your file system as /arc2 , NFS uses the mount
table to translate the file name /arc2/x/y to /archive/two/x/y .

HP–UX and System V This parameter instructs ObjectStore to use a mount table that is
not in the default location. For HP–UX and System V platforms,
except SGI, the default pathname is /etc/mnttab .

Object Design expects that few users will ever need this
parameter. It is provided for the very unlikely situation in which
you have something in your default mount table that ObjectStore
cannot parse.

Specifying the Soft Allocation Limit Parameter

Default: 0 The Soft Allocation Limit parameter specifies the suggested upper
bound, in bytes, on the amount of disk space that the Cache
Manager can allocate for its cache files and commseg files. An
application is allowed to exceed this limit in order to run to
completion; when it finishes, the Cache Manager automatically
deletes the cache and commseg files if the soft limit has been
exceeded. Doing so frees disk space, but can make application
start-up slower by forcing ObjectStore to create new cache and
commseg files.
334 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
This parameter allows you to prevent ObjectStore cache files from
using too much disk space.

The default of 0 means that no limit is enforced.

Specifying the Temporary Files Permission Parameter

When f is set to an octal value (for example, 0666), the Cache
Manager creates commseg and cache files with file permissions
equal to that value. If you do not use this parameter, the Cache
Manager creates new cache and commseg files with the
permission 0660.

Note that the Cache Manager file permissions setting can also be
affected by the umask of the shell that started the Cache Manager.
For this reason, you should set the umask to 0 when using this
parameter.

Cache Manager Parameter File Location

The Cache Manager parameter file is similar to the Server
parameter file in terms of location and internal format.
ObjectStore searches the following locations in the following
order and uses the first Cache Manager parameter file that it finds.

1 $OS_ROOTDIR/etc/host_cache_manager_parameters , where
host is the name of the current host as returned by the hostname
program. OS_ROOTDIR is an environment variable.

2 $OS_ROOTDIR/etc/cache_manager_parameters .

Cache Manager Parameter File Format

The Cache Manager parameter file has the same characteristics as
the Server parameter file:

• Each line in a parameter file contains one parameter and its
value.

• Parameters have text names, such as Cache Directory .

• Each parameter name is followed by a colon, some white space
(tabs or spaces), and a value (either numeric or text, depending
on the parameter).

• Comment lines must contain a # as the first nonblank character.

• Case is not significant for parameter names. Embedded spaces,
however, are significant.
Release 5.1 335

Setting Cache Manager Parameters
• If the same parameter name appears twice in the parameter file,
only the first occurrence is read.

Example of a Cache Manager Parameter File

A Cache Manager parameter file can include one or more
parameter specifications. Here is an example of a Cache Manager
parameter file:

Cache Directory: /support2/local/ostore/tmp
Commseg Directory: /support2/local/ostore/tmp
Mount Table Pathname: /new/mount/pathname
Hard Allocation Limit: 10000000
336 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Increasing the Size of the Cache

A larger cache size does not necessarily improve performance.

On UNIX, an ObjectStore cache is a memory mapped file. Now,
suppose you have a system where the size of this memory
mapped file is a significant percentage of the system’s real
memory. In this situation, an application that is performing
memory mapping for a large file and subsequently doing a lot of
processing that does not involve the memory mapped file can
suffer a much poorer performance than if the application had not
memory mapped the file — that is, if the application used straight
UNIX file I/O.

The reason for this is that overall system swapping is increased by
the presence of the semiactive memory mapped file. That is, the
application is not using or reusing the cached database pages
frequently enough to benefit from a large cache file.

An example of such an application is a program that populates a
database by inserting a large number of objects into a collection.
In this case, with the exception of the actual collection object, the
pages in the cache are not being reused. Such a program benefits
from having a small cache (for example, 2 MB) because the objects
are not being revisited and overall UNIX system swapping is low.

A program that would benefit from having a large cache would be
one that accesses a large number of objects (pages) and then
reaccesses the same objects before replacing the objects (pages) in
the cache with other objects (pages) fetched from the database. Of
course, as the cache size starts to become a larger and larger
percentage of the size of the machine’s physical memory, more
and more system swapping occurs and the performance gain of a
large cache file begins to be lost.

The important issue with a large database is knowing how to
properly cluster and segment it to achieve maximum
performance. Properly designing a database so that it is
clustered/segmented to achieve maximum performance is
usually very application specific.

See OS_CACHE_SIZE on page 98 for information on setting the
cache size.
Release 5.1 337

Description of ObjectStore Directories
Description of ObjectStore Directories

The ObjectStore directory structure appears in the following
illustration. You must set OS_ROOTDIR to Toplevel.

The directory structure for AIX and Solaris 2 each contain one
extra directory, sunpro on Solaris 2 and cset on AIX as shown in
the following illustration. Each of these two directories contain
links to the top level, bin , lib and Other Directories.

The cset and sunpro directories provide backward compatibility.
In previous releases, the AIX and Solaris 2 platforms supported
two compilers, a native C++ compiler and Cfront . Some
components were common to the two compilers and some were
compiler-dependent. The cset and sunpro directories contained
compiler-specific components, and the common components
were contained in a directory called common .

In the modified directory structure of ObjectStore Release 5.1 the
common directories have been eliminated, and the sunpro and
cset directories contain links to bin , lib , and so on. For backward
compatibility, you can set OS_ROOTDIR to Toplevel/cset or
Toplevel/sunpro .

Toplevel

lib Other Directoriesbin

Toplevel

lib Other Directoriesbin cset (on AIX)
sunpro (on Solaris)
338 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
Finding Files Containing ObjectStore Messages

When an ObjectStore daemon process sends output to stdout or
stderr , ObjectStore routes the output to a corresponding file, as
follows:

If the file does not already exist, ObjectStore creates it; if the file
does exist, ObjectStore appends the new information.

ObjectStore daemons seldom send messages to these files except
under certain unusual error conditions. In these cases, this
information can be helpful in understanding and resolving an
error. When you report to Object Design a problem that might
involve one of these daemons, find such a file if it exists, and
provide the contents.

When the daemon process is not running, you can safely delete
the corresponding file. Usually, very little is ever sent to these
files, so they are unlikely to occupy much disk space.

Cache Manager /tmp/ostore/osc4_out

Server /tmp/ostore/oss_out
Release 5.1 339

Using Tapes with the osbackup Utility
Using Tapes with the osbackup Utility

When you execute the osbackup utility, you can use standard
UNIX tape drives, including quarter-inch cartridge and 8mm
cartridge drives. Some standard tape formats and sizes are

Format Capacity in Megabytes

QIC–11 30

QIC–24 60

QIC–150 150

QIC–525 525

EXB–8200 2200

EXB–8500 5000
340 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
ObjectStore Use of /tmp/ostore

ObjectStore uses /tmp/ostore as the default location for the
following files:

File For Information See

Cache OS_CACHE_DIR on page 98

Commseg OS_COMMSEG_DIR on page 101

oss_out Server output file

osc4_out Cache Manager
output file

Finding Files Containing
ObjectStore Messages on page 339

UNIX domain sockets Modifying Network Port Settings
on page 51
Release 5.1 341

AIX Considerations
AIX Considerations

The following information provides additional considerations for
ObjectStore Release 5 on AIX.

Using SCSI Tape Drives

When using tapes with the osbackup and osrestore utilities, you
have several choices of how to configure SCSI tape drives as
output devices on the RISC System/6000. These choices offer
tradeoffs between convenience and performance.

You must choose values for these parameters:

• Use Device Buffers as set with chdev or SMIT

• Tape size given to the osbackup command

• Block size for the device as set with chdev or SMIT

• Block size given to the osbackup command

Device buffers Writing a tape is much faster when you use device buffers. To do
this, set Use Device Buffers to yes with chdev or SMIT. When you
use device buffers, you must also specify a tape size to the
osbackup command to ensure that buffered data is not lost.
Without a specified tape size, ObjectStore continues to write data
until the end of the tape, not leaving room for any buffered data.

This situation does not occur when Use Device Buffers is set to no ,
and it is not necessary to specify a tape size to the osbackup
command.

Block size In general, you get the best tape usage by using variable-size
blocks. To select variable-size blocks, you must use SMIT or chdev
to set the block_size attribute to 0.

The use of variable-size blocks on QIC–120 or QIC–150 media is
apparently unique to IBM. If you write variable-size blocks on
such a tape, you will not be able to read it on another system.

You can also use fixed-size records, which can facilitate tape
duplication under certain circumstances.

To use fixed-size records, you must either set block_size in bytes in
SMIT or with chdev , or use the -b control argument to osbackup to
specify the block size in 512-byte sectors. Note that the osbackup
342 ObjectStore Management

Chapter 7: Managing ObjectStore on UNIX
command option overrides the SMIT setting, unlike utilities such
as tar , where the SMIT setting takes precedence.

The block size must be 512 bytes or less. The osbackup utility
cannot work when the block size is greater than 512 bytes.

Setting Up Permissions

When you have a client and a Server on two different AIX
machines, export the file systems as setuid . Also, add the switch

-root= server_host_name

to the exportfs command or to the line in the /etc/exports file.
server_host_name is the name of the host of the ObjectStore Server.

Failing to perform both steps can cause permission errors.

Troubleshooting Permission Denied Error

There is an AIX bug that occurs when the number of processes
allowed per user is too low. You can list the current setting with
the following command:

lsattr -E -l sys0 -a maxuproc
maxuproc 40 Maximum # of processes allowed per user True

To increase the maxuproc parameter, enter the following
command:

chdev -l sys0 -a maxuproc=200
sys0 changed

When the number of processes allowed per user is too low, you
might receive the following error:

No handler for exception:
permission to access this database was denied
re /usr/lpp/ostore/lib/liboscol.ldb while looking up file database
/usr/lpp/ostore/lib
/liboscol.ldb (host "aix_server1")
gmake: *** [AIX/os_schema.C] Error 1
aix_server1> ps -efl | grep ostore
260801 S root 19379 3967 0 60 20 12892 516 Feb 23 - 0:00
/usr/lpp/ostore/lib/cmgr3 -AIX_SRC
 200801 S pbergstr 32347 41739 1 60 20 11051 88 6052824 14:01:27
pts/15 0:00
grep ostore
262801 S pbergstr 40254 3967 0 60 20 9e3 1372 14:00:31 -
0:00 /
usr/lpp/ostore/lib/osserver -AIX_SRC
Release 5.1 343

AIX Considerations
aix_server1>

Uninstalling ObjectStore Release 5

In the event that you want to completely remove ObjectStore
Release 5.0 from your AIX system, use the following procedure.

1 Shut down the Cache Manager ($OS_ROOTDIR/bin/oscmshtd).

2 Shut down the Server ($OS_ROOTDIR/bin/ossvrshtd -f
hostname).

3 Use ossvrchkpt to ensure that all data is copied from the
transaction log to the database that was changed.

4 Check the files $OS_ROOTDIR/etc/yourhostname_server_
parameters and $OS_ROOTDIR/etc/yourhostname_cache_
manager_parameters to see where your transaction log and
temporary files are going, then remove them.

5 Remove the install area (/usr/lpp/ODI by default).

6 Remove links to /usr/bin if you created them with osconfig . Do
not remove /usr/bin/oslevel .

7 Remove links to /usr/lib if you created them (/usr/lib/libos*).

8 Remove the link to $OS_ROOTDIR/include if you created it
(/usr/include/ostore).

9 Remove /etc/rc.objectstore .
344 ObjectStore Management

Chapter 8
Managing ObjectStore on
Windows

This chapter provides information for managing ObjectStore on
Windows NT and Windows 95. For complete information, you
should consult the first six chapters of this book along with this
chapter.

The topics covered include

Using ObjectStore Utilities 346

Memory Requirements for Windows 95 347

Specifying File Database Pathnames 349

Setting Server Parameters 350

Starting the Server 351

Creating a Rawfs 355

Starting the Cache Manager 357

Finding Files Containing ObjectStore Messages 358

Accessing UNIX Databases from Windows 359

About Client/Server Communication 360

Using an NT Server to Access Remote Databases 361
Release 5.1 345

Using ObjectStore Utilities
Using ObjectStore Utilities

During installation, you use the ObjectStore Setup Utility
(SETUP.EXE) to configure ObjectStore daemons and applications
— the Server, Cache Manager, Database Manager, and Browser.

All utility executables are stored in ObjectStore’s BIN directory.

Windows NT

On Windows NT, the INSTALL program installs the Server and
Cache Manager daemons as NT Services. These services start
automatically when the system boots. You can use the utility
program ossvrshtd to stop the Server. You can also start and stop
ObjectStore services using the Service Control Dialog, located in
the Control Panel Services icon.

On Windows NT, run ObjectStore utilities in a command prompt
window.

Windows 95

On Windows 95, the Server daemon is added to the system’s Start-
up program group. This daemon starts automatically when you
start up Windows. The Cache Manager is launched automatically
from the first client program you run. You can also start the
ObjectStore daemons in an MS–DOS prompt window, or by
double-clicking on the icons in the ObjectStore folder, or by using
the Start | Run command.

Exceptions and Memory Leaks

Some Windows NT functions allocate memory in such a way that
it is not freed if an exception is signaled inside a callback function,
but is handled outside the Windows NT function. This can cause
memory leaks.
346 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Memory Requirements for Windows 95

Object Design recommends a minimum of 16 MB memory on
Windows 95 systems. The ObjectStore Server is tuned for high
performance on network servers. Because of this, it sometimes
does not run efficiently on systems with less than 16 MB physical
memory. If you use less than 16 MB physical memory, read this
section carefully to ensure that your system can run ObjectStore
properly. The information here applies to Server-only and client-
only installations. The goal is to minimize memory consumption.

Performance With less than 16 MB physical memory, ObjectStore’s
performance might be degraded, and in some cases Windows 95
itself might be unreliable.

Unsupported
configuration

You should never run a network server on Windows 95 with less
than 16 MB physical memory; Object Design does not support this
configuration. Stand-alone systems with less than 16 MB physical
memory require careful tuning to achieve adequate performance
and efficient resource consumption.

Run only ObjectStore
clients

Generally, systems that run only ObjectStore clients have the
fewest problems with memory consumption.

Virtual memory
requirements

The sum of your physical memory and the swap file size must be
at least 24 MB. For example, if you have 8 MB physical memory,
your swap file must be at least 16 MB. In all cases, Object Design
recommends a minimum 8 MB swap file. Set up the Windows 95
swap file in the Control Panel System icon.

Modifying Server
parameters

When running an ObjectStore Server on a stand-alone system
with less than 16 MB physical memory, you can reduce the
Server’s memory consumption by setting the following Server
parameters as indicated in the following table. You must restart
the Server for the new parameter settings to take effect.

Parameter Setting

Log Record Segment Buffer Size 256 sectors (default is 1024)

Max Data Propagation Per
Propagate

256 sectors (default is 256)

Propagation Buffer Size 512 sectors (default is 8192)
Release 5.1 347

Memory Requirements for Windows 95
Modifying client
environment variables

You can reduce memory consumption by setting the OS_CACHE_
SIZE environment variable to an amount less than its default size
of 8 MB (8388608). The minimum size on Windows 95 is 480 KB
(491520). Generally, on systems with 12 MB physical memory, 3
MB (3145728) is a good value. Some applications that access large
amounts of data simultaneously might require larger values.

The client cache is only filled as persistent data is actually
allocated or referenced. If your application references only a small
amount of persistent data, reducing OS_CACHE_SIZE will
probably have little or no effect.

Reducing OS_AS_SIZE and/or OS_COMMSEG_SIZE to conserve
memory is generally not worthwhile.
348 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Specifying File Database Pathnames

You specify a file database with an operating system pathname.
For example:

os_database::open("d:\\carter\\myfiledb")

UNC pathname The syntax for specifying a UNC pathname is

os_database::open("\\\\ servername\\sharename\\myfiledb")

In C and C++, you must escape the back slash (\) with another
back slash.

You can also specify a relative pathname.

Server-remote
databases

You usually store a file database on a host that is running an
ObjectStore Server. However, you can use a locator file to allow
databases that are remote from the Server. See Chapter 5, Using
Locator Files to Set Up Server-Remote Databases, on page 281.

Server names You can specify a Server name when you open or create a
database. The Server name identifies the Server host on which the
database is located. For example:

This specifies a database, employees , in the directory \usr\barbar
on the host elvis .

This method of specifying a pathname is called a Server-relative
pathname. The token before the first colon names a Server host,
and the rest of the string is parsed by that Server in the syntax
used on the Server host operating system. Among other things,
this is useful when no remote file protocol (such as NFS) is in use
between the client and Server hosts.

Server on a UNIX host: elvis:/usr/barbar/employees

Server on a Windows host: elvis:D:\usr\barbar\employees
Release 5.1 349

Setting Server Parameters
Setting Server Parameters

The Server, Cache Manager, and Browser store their parameters
in a central location.

Each Server parameter that you can specify is described in
Chapter 2, Server Parameters, on page 69.

Windows On Windows NT and Windows 95, parameters are in the
Windows registry database.

Changing parameters You can edit these parameters using the ObjectStore utility
SETUP.EXE. SETUP.EXE allows you to modify all fields except for
license information. ObjectStore license information is written by
the INSTALL program.

To set Server parameters, run SETUP.EXE, select Advanced
Options , and then select Server Parameters . See your ObjectStore
installation guide for additional information about using
SETUP.EXE.

After you modify a Server parameter, you must shut down and
restart the Server for the parameter to take effect.
350 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Starting the Server

There are several ways to start the Server. One way is to use the
ObjectStore setup utility, SETUP.EXE, to configure the Server to
start automatically at system start-up.

Windows NT On Windows NT, you can configure the Server as an NT service.
This is the preferred method.

When starting the Server as an NT service, you can specify
osserver command-line options in the following table in the NT
service administration dialog.

On Windows NT, you can run the Server as an NT console
application. In this case, you run OSSERVER.EXE from an NT
command window, passing -console as the first argument.

At start-up, ObjectStore configures the Server according to
parameter options in the registry database.

Windows 95 On Windows 95, you can start the Server manually by double-
clicking on the ObjectStore Server icon in the ObjectStore folder,
or by using Start | Run, or from an MS-DOS prompt window.

Command-line
options

Ordinarily, you use Server parameters to control the Server’s
behavior. However, you can also specify the following command-
line options to osserver .

-c Checkpoint. Forces all data to be propagated from
the log to the database. The Server does not start
after this checkpoint.

-con or
-console

Windows NT only: runs the Server as a console-
mode application. If you specify this option, it must
be the first option you specify.
Release 5.1 351

Starting the Server
Use -i and -I with
caution

Be sure to move all data out of the log before you initialize it. See
ossvrchkpt: Moving Data Out of the Server Transaction Log on
page 253. Be sure to back up all data in the rawfs before you
initialize it. See osbackup: Backing Up Databases on page 139.

When you initialize the transaction log, anything in the log is lost.
The Server resizes the log to the values specified by the Log Data
Segment Initial Size and Log Record Segment Initial Size Server
parameters. When the log is in the rawfs, this frees space for use
by other files. When the log is in the native file system, this
reallocates space dedicated to the transaction log. The size of the
log does not change.

Initializing when you
have a rawfs

If you have a rawfs, then specifying the -i or -I option with
osserver initializes the rawfs and the transaction log. When you
specify -i, ObjectStore responds with

The entire ObjectStore file system on this host is about to be initialized,
thus destroying any data currently in it. Unless you have a backup of the
ObjectStore file system, it will be impossible to recover the old contents
once the initialization is started. Are you sure that you want to reinitialize
the ObjectStore file system?

When you specify -I, this message does not appear.

-d int Starts the Server in debug mode. Specify an integer
from 1 through 50. The larger the number, the more
information ObjectStore provides. If the
ObjectStore Server Service is running, you must
stop it and restart it. Use the Services applet in the
Control Panel.

Another alternative is to stop the ObjectStore Server
Service. Then you can specify the -con option so
that ObjectStore displays the information on the
screen.

Debug output goes to %OS_TMPDIR%\osserver.txt .

-i Initializes the Server log file and the rawfs, if you
have one, with a confirmation prompt. Use with
caution.

-I (Uppercase I) Initializes the Server log file and the
rawfs, if you have one, without a confirmation
prompt. Use with extreme caution.

-v Displays Server parameter values at start-up.
352 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Initializing when you
do not have a rawfs

If you do not have a rawfs, then specifying the -i or -I option with
osserver initializes only the transaction log. When you specify -i,
ObjectStore responds with

You have asked for initialization which will create a new transaction log,
deleting any old log that might exist, thus destroying any recovery data in
the old log. This might leave some file databases in a broken state. Are
you sure that you want to create a new log?

When you specify -I, this message does not appear.

Start-up message After starting, the Server displays the message Server started to let
you know that it is ready to accept requests from clients on the
network.

Troubleshooting
Windows NT

You might have a situation where you cannot run the Server and
the Cache Manager as NT Services, even after defining autostart
for them. You receive the following error:

Starting process
Process could not start
error 1067: Process terminated unexpectedly

The first thing to assess is if the Server and Cache Manager can be
started in console mode using the -con option to osserver . If they
start properly in console mode, this problem is likely to be a
permission problem or an incorrect definition for the ObjectStore
image path in the registry.

Try the following to determine what is wrong with the
ObjectStore definition of NT Services.

1 If you ran an earlier ObjectStore release, confirm that it was
properly uninstalled prior to installing the new release. This is
necessary so that the image path is properly set for the NT
Services.

2 Ensure that ObjectStore was installed using an account with
Administrative privileges.

3 To run the Server and Cache Manager as NT Services, you must
log on with Administrative privileges.

4 Confirm that the OS_ROOTDIR environment variable is set and
that it points to the proper ObjectStore installation.

5 Make sure that the image path for the Server and Cache
Manager is correct. To check this, run Regedt32 from a window
and follow the path
Release 5.1 353

Starting the Server
HKEY_LOCAL_MACHINE | System | CurrentControlSet | Services
| ObjectStore Cache Manager R4.0

Then, check that the setting for the image path is correct. Do the
same for ObjectStore Server R4.0 .

6 Check that the user account used to log in includes the log in as
a service.... privilege.

If the same executables do not bring up ObjectStore properly even
in console mode (especially if the Server does not start from the
command line using the -con option), then it is not a permission
problem.

If it is not a permission problem, then it is very likely that the
transaction log has not been initialized. In this case, a message can
be seen in the %OS_TMPDIR%osserver.txt output:

When a partition is not specified, the transaction log is needed.

This is usually the last message in osserver.txt or in the Server
start-up output in debug mode. If this is not the case, then in the
window from where you start the Server, enter

>set OS_DEBUG_NETWORK=1

and

>start /min osserver -con -F -v -d 10 > server.out

or

>osserver -con -F -v -d 10 > server.out

if the start command is not recognized.

After that send the server.out file to Object Design support.
354 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Creating a Rawfs

Maintaining a rawfs provides a fast, convenient way to manage all
ObjectStore databases at your site. See Managing the Rawfs on
page 30.

Creating a rawfs To create the rawfs or add partitions to an existing rawfs, use the
SETUP.EXE utility. When you create the rawfs, you specify a disk
drive letter and a file name. After you create the rawfs, you can
add file partitions. See your installation guide for details.

Using SETUP.EXE to Add File Partitions

Be sure to shut down the Server before you run SETUP.EXE. You
cannot run SETUP.EXE while the Server is running.

The Partition N Server parameter specifies the partitions in the
rawfs. It creates the Server partition file if it does not exist, using
the pathname given in the Partition N statement. You add a
partition to the rawfs by specifying a Partition N statement when
prompted to by the SETUP.EXE utility. Each Partition N statement
has the following form:

Syntax Partition N FILE pathname {expandable | nonexpandable}

It is unnecessary to specify more than one file in the same drive
letter.

N Specifies a positive integer from 0 to n.
Partition N statements can appear in the Server
parameters file in any order, but empty slots
are not allowed. For example, if you have four
partitions, they must be numbered 0 through
3. Required.

FILE Specifies that the partition is a file partition.
Required.

pathname Specifies the absolute pathname of the
partition. It must begin with a drive letter,
colon, and back slash.

expandable |
nonexpandable

Indicates whether or not the size of the
partition can increase. Required.
Release 5.1 355

Creating a Rawfs
Example Partition0 FILE c:\mypart0 expandable
Partition1 FILE d:\mypart1 expandable
Partition2 FILE e:\bigpart99 expandable

Modifying Partition Size

Controlling expansion You can control expansion of the rawfs as follows:

• If one file is used, it expands dynamically as needed, as long as
there is room in the partition containing the file.

• If multiple files are used for the rawfs, they can expand
dynamically, if you specify expandable in the Partition N
statement.

For example, suppose the rawfs contains three files (\usr1\one ,
\usr2\two , and \usr3\three). If you want to permit only two of the
files to expand, use SETUP.EXE to specify the partitions as follows:

Example Partition0: FILE c:\usr1\one expandable
Partition1: FILE d:\usr2\two expandable
Partition2: FILE e:\usr3\three nonexpandable

When you exit from SETUP.EXE, it prompts you to indicate
whether or not you want to restart the Server. If you indicate No,
you must run osserver to start the Server.
356 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Starting the Cache Manager

Windows NT The Cache Manager is an NT Service that is usually configured to
start when the system is booted. Alternatively, you can configure
it to start automatically when it is needed. Use the Control Panel
Services applet to configure the Cache Manager for Manual Start-
up.

To start the Cache Manager from your account, you must have
domain user listed as one of your privileges. If you do not, you
might receive the message

Error auto starting Cache Manager. Unable to open service database.
Access is denied.

You might receive this message when you log in to your domain
account rather than logging directly into the computer name
account. If this is the case, you need to ask your system
administrator to check your user privileges in that domain or
configure the Cache Manager for Automatic Start-up.

If you want to start the Cache Manager as a console application,
use the following command:

oscmgr4 -con 0 [debug_level]

Windows 95 On Windows 95, the Cache Manager is started automatically as
needed. If you need to start it manually, use Start | Run | oscmgr4
0 [debug_level].
Release 5.1 357

Finding Files Containing ObjectStore Messages
Finding Files Containing ObjectStore Messages

In some cases, when an ObjectStore daemon process reports an
error, ObjectStore routes the output to a file. These files are

If the file does not already exist, ObjectStore creates it; if the file
does exist, ObjectStore appends to it.

ObjectStore uses the path assigned to the environment variable
OS_TMPDIR to determine the directory in which to place these
files. If OS_TMPDIR is not set, ObjectStore uses the path returned
by the Win32 API GetTempPath() .

ObjectStore daemons seldom send messages to these files except
under certain unusual error conditions. In these cases, this
information can be helpful in understanding and resolving an
error. When you report to Object Design a problem that might
involve one of these daemons, find such a file, if it exists, and
provide the contents.

When the daemon process is not running, you can safely delete
the corresponding file. Usually, very little is ever sent to these
files, so they are unlikely to occupy much disk space.

Server errors OSSERVER.TXT

Cache Manager errors OSCMGR4.TXT
358 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Accessing UNIX Databases from Windows

When accessing UNIX file databases over a network (such as with
Intergraph PCNFS), the ObjectStore client on Windows NT
prompts for a name and password. See Authentication Required
on page 73.

If you want the ObjectStore client to use RPC authentication, use
the Windows NT REGEDT32 utility, and set the following
variables, where x.x is the ObjectStore release number, and
username is your username:

HKEY_LOCAL_MACHINE\Software\Object DesignInc.\ObjectStore x.x\Remote\ username\UNIX.UID
HKEY_LOCAL_MACHINE\Software\Object DesignInc.\ObjectStore x.x\Remote\ username\UNIX.GID

Set these variables (which are strings, such as REG-SZ) to the
numeric values of the UNIX user and group IDs required. Note
that you can edit these values only from a Windows NT account
with Administrator privileges.

Note that the HKEY_LOCAL_MACHINE\Software\Object Design
Inc.\ObjectStore.4.0\Remote has Administrator rights only. This is
to prevent a security breach that can result if ordinary users have
write privileges to this area. If you set up the values for an
ordinary user who does not have Administrator privileges and
the user tries to run an ObjectStore program, the user still must
enter a user name/password to access the Server.

To prevent this, you can change the HKEY_LOCAL_
MACHINE\Software\Object Design Inc.\ObjectStore.4.0\Remote to
have read-only privileges for users with non-Administrator
privileges. You can set the privileges using the Security |
Permissions dialog in the registry editor.
Release 5.1 359

About Client/Server Communication
About Client/Server Communication

Windows clients and Servers can use three network layers:

• Within a single machine, ObjectStore uses an interprocess
communication mechanism based on named shared memory
objects.

• Windows Sockets provide TCP/IP connections. Object Design
tests and supports a limited number of Windows Sockets
implementations.

A Server can and typically does serve all three networks
simultaneously. A client chooses the first network available that
recognizes the name of the Server host.

For more information, see ObjectStore Installation and License for
Windows, Network Support.
360 ObjectStore Management

Chapter 8: Managing ObjectStore on Windows
Using an NT Server to Access Remote Databases

Netware ObjectStore can be used with the Gateway Services for NetWare
GSNW feature.

All Remote Hosts

If a Server is configured to allow remote databases, the Server can
use UNC paths to access such databases. Using UNC paths is the
preferred method because of permissions issues surrounding the
use by a service of mounted drives. Server-relative paths such as

serverhost:\\filehost\sharename\directory\foo.odb

or locator files that redirect all UNC paths to a named server host
take advantage of this feature. In general, it is unnecessary to

• Mount file host drives on your Server host

• Use REPLACE statements in locator files

Use this feature with NT as well as NetWare file hosts.

Access Control for Remote Databases

Windows NT refuses to allow the Server to use credentials
obtained from a remote client host on a remote file host. There are
two alternatives to deal with this issue. They are described in
Microsoft Knowledge Base article Q132679, available on the
Microsoft TechNet CD, or on the web as

http://www.microsoft.com/kb/bussys/winnt/q132679.htm

The first choice is to run the Server normally, as Local System. This
requires that the user Everyone is able to access remote files on
behalf of remote clients. Note that this solution requires you to
create an account for Everyone on non-Windows NT systems.

The second choice is to run the Server as another user. You can set
this up by means of the Control Panel Services applet.
Release 5.1 361

Using an NT Server to Access Remote Databases
362 ObjectStore Management

Chapter 9
Managing ObjectStore on
OS/2

This chapter provides information for managing ObjectStore on
OS/2 systems. For complete information, you should consult the
first six chapters of this book along with this chapter.

The topics discussed are

Specifying File Database Pathnames 364

Setting Server Parameters 365

Starting the Server 366

Using OS/2 Environment Variables 368

Specifying Utility Names 369

Finding Files Containing ObjectStore Messages 370

Creating a Rawfs 371

Capturing Debug Information 373

File Locking with NFS 375
Release 5.1 363

Specifying File Database Pathnames
Specifying File Database Pathnames

You specify a file database with an operating system pathname.
For example:

os_database::open("d:\\carter\\myfiledb")

UNC pathname The syntax for specifying a UNC pathname is

os_database::open("\\\\ servername\\sharename\\myfiledb")

In C and C++, you must escape the back slash (\) with another
back slash.

You can specify a relative pathname.

Server-remote
databases

You usually store a file database on a host that is running an
ObjectStore Server. However, you can use a locator file to allow
databases that are remote from the Server. See Chapter 5, Using
Locator Files to Set Up Server-Remote Databases, on page 281.

Server names You can specify a Server name when you open or create a
database. The Server name identifies the Server host on which the
database is located. For example:

This specifies a database, employees , in the directory \usr\barbar
on the host elvis .

Server on a UNIX host: elvis:/usr/barbar/employees

Server on an OS/2 host: elvis:D:\usr\barbar\employees
364 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
Setting Server Parameters

Each Server parameter that you can specify is described in
Chapter 2, Server Parameters, on page 69.

OSTORE.INI The ObjectStore Server stores its parameters in the OSTORE.INI
file. This file is in the standard format for OS/2 parameters files.
The ObjectStore installation and setup utilities create the
OSTORE.INI file and store it, by default, in the \OS2 directory on
the boot drive.

OSSETUP All Server parameters have default values. Object Design
recommends that you use the default value for each parameter,
which requires no action on your part. However, you can use the
OSSETUP utility to modify parameters in the OSTORE.INI file. See
your installation guide for information.

Using -p If you do not want to use the Server parameters in the OSTORE.INI
file, you can create a standard OS/2 parameters file that contains
the parameter values you want. When you start the Server with
the osserver utility, you can specify this Server parameters file
with the -p option.

OS2.INI
OS2SYS.INI

Alternatively, you can remove the OSTORE.INI file and place
Server parameters in the OS/2 user profiles, OS2.INI and
OS2SYS.INI.

Search order ObjectStore uses the following search order to find parameter
settings:

1 File specified with the -p option to osserver

2 OSTORE.INI file created by OSSETUP

3 OS/2 user profiles (OS2.INI and OS2SYS.INI)

If ObjectStore does not find a parameters file, it displays a
message.

After you modify a Server parameter, you must shut down and
restart the Server for the parameter to take effect.
Release 5.1 365

Starting the Server
Starting the Server

You can start the Server

• Automatically when OS/2 is started. You specify this with
OSSETUP, the ObjectStore setup utility. This is the usual
method.

• From an icon.

• By running the OSSERVER utility.

Regardless of when it is started, you can configure the Server with
various command-line options and parameter file options that are
read at start-up.

Command-line
options

When you start the ObjectStore Server with the osserver utility,
you can specify the following options:

-c Forces all data to be propagated from the log to the
database. The Server is not started following this
checkpoint.

-d int Starts the Server in debug mode. Specify an integer
from 1 through 50. The larger the number, the
more information ObjectStore provides. You can
also specify the -F option so that ObjectStore
displays the information on the screen.

ObjectStore copies debug output to the
OSSERVER.TXT file, unless you redirect it to
another file.

-F Foreground. Runs the Server process in the
foreground. This reverses the normal behavior,
where the Server runs as a background process.

-i Initializes the Server log file and the rawfs, if you
have one, with a confirmation prompt. Use with
caution.

-I (Uppercase I) Initializes the Server log file and the
rawfs, if you have one, without a confirmation
prompt. Use with extreme caution.

-p pathname Specifies a file containing parameter settings that
override those in OSTORE.INI.

-v Shows Server parameter values at start-up.
366 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
After starting, the Server displays the message Server started to let
you know that it is ready to accept requests from clients on the
network.

Use -i and -I with
caution

Be sure to move all data out of the log before you initialize it. See
ossvrchkpt: Moving Data Out of the Server Transaction Log on
page 253. Be sure to back up all data in the rawfs before you
initialize it. See osbackup: Backing Up Databases on page 139.

When you initialize the transaction log, anything in the log is lost.
The Server resizes the log to the values specified by the Log Data
Segment Initial Size and Log Record Segment Initial Size Server
parameters. When the log is in the rawfs, this frees space for use
by other files. When the log is in the native file system, this
reallocates space dedicated to the transaction log. The size of the
log does not change.

Initializing when you
have a rawfs

If you have a rawfs, then specifying the -i or -I option with
osserver initializes the rawfs and the transaction log. When you
specify -i, ObjectStore responds with

The entire ObjectStore file system on this host is about to be initialized,
thus destroying any data currently in it. Unless you have a backup of the
ObjectStore file system, it will be impossible to recover the old contents
once the initialization is started. Are you sure that you want to reinitialize
the ObjectStore file system?

When you specify -I, this message does not appear.

Initializing when you
do not have a rawfs

If you do not have a rawfs, then specifying the -i option with
osserver initializes only the transaction log. When you specify -i,
ObjectStore responds with

You have asked for initialization which will create a new transaction log,
deleting any old log that might exist, thus destroying any recovery data in
the old log. This might leave some file databases in a broken state. Are
you sure that you want to create a new log?

When you specify -I, this message does not appear.

Starting Cache
Manager

The Cache Manager runs automatically when it is needed; no
command is necessary to start it. However, if you do want to start
the Cache Manager explicitly, use this command:

START /N OSCMGR4 0

Controlling access to
Server

The host list on an OS/2 Server determines which hosts can access
databases.
Release 5.1 367

Using OS/2 Environment Variables
Using OS/2 Environment Variables

You can use these NFS client software variables

UNIX.GID

Default: not set For ObjectStore on OS/2, specifies the group ID (GID) for a UNIX
client process.

UNIX.UID

Default: not set Specifies the UNIX user ID (UID) for a client process being
accessed from an OS/2 Server.
368 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
Specifying Utility Names

FAT names The File Allocation Table (FAT) file system restricts file names to
an eight-character file name and three-character file name
extension. Consequently, ObjectStore utility names are truncated
to eight characters when ObjectStore is installed on a FAT file
system.

HPFS names When installed on a High Performance File System (HPFS),
ObjectStore utilities use their full command names.

This book refers to ObjectStore utilities by their full names.

Utility executables All utility executables are stored in ObjectStore’s BIN directory.
For example:

%OS_ROOTDIR%\BIN\OSSERVER.EXE
Release 5.1 369

Finding Files Containing ObjectStore Messages
Finding Files Containing ObjectStore Messages

In some cases, when an ObjectStore daemon process reports an
error, ObjectStore sends the output to a file. These files are

If the file does not already exist, ObjectStore creates it. If the file
does exist, ObjectStore appends to it.

ObjectStore uses the path assigned to one of the environment
variables listed below to determine the directory in which to place
these files. It searches in the following order:

Search order 1 %OS_TMPDIR%

2 %TEMP%

3 %TMP%

ObjectStore daemons seldom send messages to these files except
under certain unusual error conditions. In these cases, this
information can be helpful in understanding and resolving an
error. When you report to Object Design a problem that might
involve one of these daemons, find such a file, if it exists, and
provide the contents.

Deleting error files When the daemon process is not running, you can safely delete
the corresponding file. Usually, very little is ever sent to these
files, so they are unlikely to occupy much disk space.

Server errors OSSERVER.TXT

Cache Manager errors OSCMGR4.TXT
370 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
Creating a Rawfs

Maintaining a rawfs provides a fast, convenient way to manage all
ObjectStore databases at your site. See Managing the Rawfs on
page 30.

Creating a rawfs To create the rawfs or add partitions to an existing rawfs, use the
OSSETUP utility. When you create the rawfs, you specify a disk
drive letter and a file name. After you create the rawfs, you add
Server partitions. See your installation guide for details.

Using OSSETUP to Add File Partitions

Be sure to shut down the Server before you run OSSETUP. You
cannot run OSSETUP while the Server is running. When you exit
from OSSETUP, it prompts you to indicate whether or not you
want to restart the Server. If you indicate No, you must run
osserver to start the Server.

The Partition N Server parameter specifies the partitions in the
rawfs. It creates the Server partition file if it does not exist, using
the pathname given in the Partition N statement. You add a
partition to the rawfs by specifying a Partition N statement when
prompted to by the OSSETUP utility. Each Partition N statement
has the following form:

Syntax Partition N FILE pathname {expandable | nonexpandable}

It is unnecessary to specify more than one file in the same
partition.

N Specifies a positive integer from 0 to N.
Partition N statements can appear in the Server
parameter file in any order, but empty slots are
not allowed. For example, if you have four
partitions, they must be numbered 0 through 3.
Required.

FILE Specifies that the partition is a file partition.
Required.

pathname Specifies the absolute pathname of the
partition. It must begin with a back slash.

expandable |
nonexpandable

Indicates whether or not the size of the
partition can increase. Required.
Release 5.1 371

Creating a Rawfs
Example Partition0 FILE c:\mypart0 expandable
Partition1 FILE d:\mypart1 expandable
Partition2 FILE e:\bigpart99 expandable

Modifying Partition Size

Controlling expansion You can control expansion of the rawfs as follows:

• If one file is used, it expands dynamically as needed, as long as
there is room in the partition containing the file.

• If multiple files are used for the rawfs, they can expand
dynamically, if you specify expandable in the Partition N
statement.

For example, suppose the rawfs contains three files (\usr1\one ,
\usr2\two , and \usr3\three). If you want to permit only two of the
files to expand, use OSSETUP to specify the partitions as follows:

Example Partition0: FILE c:\usr1\one expandable
Partition1: FILE d:\usr2\two expandable
Partition2: FILE e:\usr3\three nonexpandable
372 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
Capturing Debug Information

If you need help from Object Design support, follow these steps to
capture debug information.

1 On all machines, create the c:\temp directory if it is not already
there.

2 Set the OS_TMPDIR environment variable to c:\temp by adding
the following line to the config.sys file:

SET OS_TMPDIR=c:\temp

3 Reboot all machines.

ObjectStore looks for OS_TMPDIR, then TEMP, and finally TMP.
If none of these are defined, ObjectStore writes to the boot
drive.

4 On the Server machine, open a window and stop the Server:

ossvrsht -f hostname

5 Set the OS_DEBUG_NETWORK environment variable to 1.

6 Start the Server with the following command:

osserver -F -v -d 10

You do not need to redirect the output. ObjectStore places the
output in the oss.out and osserver.txt files in the c:\temp
directory, using the OS_TMPDIR environment variable.

The osserver options have the following meanings:

7 On each client,

a Open a window and shut down the Cache Manager with the
oscmshtd utility.

-F Runs the Server in the foreground.

-v Runs the Server in verbose mode. This outputs a
lot of information about what the Server is
doing.

-d Indicates that the following number is a debug
level.

10 Specifies the debug level. The debug levels that
you typically use are 1, 3, 5, or 10, depending on
the level of detail required for the trace.
Release 5.1 373

Capturing Debug Information
b Set the OS_DEBUG_NETWORK environment variable to 1.

c Start the Cache Manager with the command

oscmgr4 0 50 0 1 1

You do not need to redirect the output. ObjectStore uses OS_
TMPDIR to send the output to the osc4.out file. The oscmgr4

options have the following meanings:

Before activating any client, open a window and set the
environment OS_DEBUG_NETWORK variable to 1 in that
window.

8 From that window, run the client to produce the error,
redirecting the network debug information to a file in order to
capture it.

9 Send the following output to Object Design:

- For the Server, located in the c:\temp directory , the files
oss.out , osc4.out , and osserver.txt

- For each client, located in its c:\temp directory, the file
osc4.out

- For each client, the redirected network debug output

0 Indicates that the Cache Manager was not
automatically loaded with a previous
connection to the first client.

50 Specifies the Cache Manager debug level.

0 Required queue length.

1 Turns on debug messages for individual Cache
Manager threads.

1 Sends debug output to the osc4.out file.
374 ObjectStore Management

Chapter 9: Managing ObjectStore on OS/2
File Locking with NFS

You can access a remote database with the syntax

host:drive:\path

However, the IBM NFS implementation for OS/2 does not allow
locking a file across an NFS volume. Doing so is not safe for
databases that are remote to the ObjectStore Server. But it is quite
safe if the database is physically located on the ObjectStore Server.

For example, a client can access a database by means of NFS. The
client NFS mounts the drive from the ObjectStore Server so that it
appears as a local drive on the client. Now the client can reference
the database as, for example,

g:\my\path\to\database

ObjectStore translates that path to something the ObjectStore
Server can understand, and since it is physically on the
ObjectStore Server, it can locate the Server-local file.

There is another scenario that is not safe. In this case, the database
is not physically resident on the ObjectStore Server. By default,
ObjectStore does not allow this. You can, however, set up a locator
file to allow it. See Chapter 5, Using Locator Files to Set Up Server-
Remote Databases, on page 281. In this unsafe scenario, the
database is physically resident on a third machine, the NFS server,
which might be the client machine. The ObjectStore Server needs
to lock the database by means of NFS. On OS/2, this is not
possible. You cannot lock across NFS volumes, which makes it
difficult to guarantee the integrity of the database.
Release 5.1 375

File Locking with NFS
376 ObjectStore Management

Release 5.1
Index
A
address space

amount needed 28
assigning 93
defaults for each platform 95
definition 22
exhausting resources 27
kinds of addresses 23
limiting amount used 27
managing the pieces 28
mapping 93
memory fault 108
optimization 121
persistent storage region

default size 93
definition 23
starting address 94

Admin Host List Server parameter
description 70

Admin User Server parameter
description 71

administrative user 70
AIX

ObjectStore directory structure 338
SCSI tape drives 342
setting permissions 343

Allow NFS Locks Server parameter
description 71
locator files 300

Allow Remote Database Access Server
parameter

description 72
locator files 283

Allow Shared Communications Server
parameter

description 73
applications

client process description 8
copying 229
deploying with protected schemas 123
moving 229
patching executable to find application

schema 229
running from CDROM 33

archive logging
commands 134
description 135
examples 136
options 132
overview 38
syntax 132
tradeoffs 136

archive record file 44
assigning addresses 93
asynchronous replication 317
377

B

authentication
description 73
examples 76
OS_SECURE_RPC_DOMAIN

environment variable 124
types of 74
user interface to 78

Authentication Required Server parameter
description 73

automating backups 41
automounter pathnames 320

B
backing up data

description 142
examples 143
options 139
overview 38
UNIX tapes 340

backup strategies 41
backup strategy example 42
backups for large databases 45
backups, automated 41
Browser

numeric output format 97

C
cache

See client cache
Cache Manager

communication with ObjectStore
processes 12

debugging 15
debugging start-up problems 62
deleting cache and commseg files 158
demand on resources 21
description 9

output file
OS/2 370
UNIX 339
Windows 358

ownership and locks 58
parameter file on UNIX 333
port number 52
shutting down 159
starting 13

OS/2 367
UNIX 333
Windows 357

start-up lock file 99
status, displaying 160
UNIX parameters 333

Cache Manager Ping Time In Transaction
Server parameter

description 79
Cache Manager Ping Time Server parameter

description 78
callback messages

background information 58
description 9
number sent 262

capacity planning 35
CDROM, running application from 33
cfront directory on UNIX 338
chained list blocks

allocating 100
changing Server parameters

OS/2 365
UNIX 323
Windows 350

checkpoints
osserver -c 227
ossvrchkpt 253

cl preprocessor 116
378 ObjectStore Management

Index
client cache
default directory on UNIX 98
deleting 158
description 8
increasing size 28
not enough space 27
page eviction 97
size 98
UNIX cache size and performance 337

client, ObjectStore
description 8

clients
address space 22
authentication 77
communication with ObjectStore

processes 12
demand on resources 21
description 8
disconnecting from Server 254
displaying information 261
locating a database 56
port number 52
starting 13
stopping 14
turning on counters 116
using virtual file systems 67

common directory on UNIX 338
commseg

deleting 158
description 10
initial size 102
maximum size 101
starting address 102
UNIX default directory 101

compactor
oscompact utility 164

comparing schemas 225
contention management 35
copying applications 229

copying databases
database size 169, 173
description 169, 172
examples 173
options 168, 171
pathname interpretation 169, 173
schema protection 169, 173

cpp preprocessor 116
CPUs 20

D
data, recovering

description 207
examples 209
options 206
syntax 206
tradeoffs 208

database references, external
changing 146

database schemas
installation mode 109

database utilities
descriptions 127

databases
See also file databases
See also rawfs databases
archive logs, recovering from 206
changing external references 146
changing permission modes 153
compacting 164
copying 168, 171
data set, operating on 36
definition 4
displaying size 248
file databases 5
host name, displaying 193
large 30
management guidelines 37
Release 5.1 379

E

metaschema 112
moving 200
ownership, changing 156
rawfs databases 5
removing 222
removing links 222
restoring from backups 216
schema-protection keys 122
Server-local 56
Server-remote 56
setting up Server-remote 282
transaction log 17
verifying pointers and references 274

DB Expiration Time Server parameter
description 79

Deadlock Victim Server parameter
description 79

debugging
access violations 103
Cache Manager start-up 62
displaying Cache Manager status 160
displaying object offset and size 248
missing vtbls 126
OS/2 373
Server activity

OS/2 366
UNIX 326
Windows 352

setting break points 104
default segment 4
defaults

address space 95
locator files 299
OS_ROOTDIR 122
preprocessor for ossg 116

deleting cache and commseg files 158
deleting databases 222
deleting rawfs directories 224
deleting rawfs links 222

deploying applications
that use oscompact 167
that use ossevol 235

DES authentication type 75
direcory description 338
Direct to Segment Threshold Server

parameter
description 81

directories
changing owners 156
changing permissions 153
creating in rawfs 199
displaying contents 197
moving 200
removing from rawfs 224

discriminant functions
fixing on UNIX 130

disk space
displaying used and available in

rawfs 176
needed by ObjectStore processes 20
organizing 35

DLLs
loaded by default 113

dump/load facility
dumped ASCII 48

dynamic link libraries
See DLLs

E
encached page 58
environment variables

OS_AS_SIZE 93
OS_AS_START 94
OS_BOOTSTRAP_LRU_CACHE_SIZE 97
OS_BROWSER_NUMERIC_FORMAT 97
OS_CACHE_DIR 98
OS_CACHE_SIZE 98
380 ObjectStore Management

Index
OS_CMGR_STARTUP_LOCK 99
OS_COLL_POOL_ALLOC_CHLIST_

BLKS 100
OS_COLL_THREAD_LOCKS 100
OS_COMMSEG_DIR 101
OS_COMMSEG_MAX_LENGTH

obsolete, See OS_COMMSEG_
RESERVED_SIZE

OS_COMMSEG_RESERVED_SIZE
replaces OS_COMMSEG_MAX_

LENGTH 101
OS_COMMSEG_SIZE 102
OS_COMMSEG_START 102
OS_COMP_SCHEMA_CHANGE_

ACTION 103
OS_DEBUG_C0000005 103
OS_DEBUG_LOCATOR_FILE 103
OS_DEBUG_RECURSIVE_

EXCEPTION 103
OS_DEF_BREAK_ACTION 104
OS_DEF_EXCEPT_ACTION 104
OS_DEF_MESSAGE_ACTION 104
OS_DIRMAN_HOST 105
OS_DIRMAN_LINK_HOST 105
OS_DIRMAN_USE_SERVER_PREFIX 106
OS_DISABLE_PRE2_QUERY_SYNTAX_

SUPPORT 106
OS_DISPLAY_INSTALL_

MISMATCHES 106
OS_ENABLE_PRE2_QUERY_SYNTAX_

WARNINGS 107
OS_ENABLE_REALTIME_

COUNTERS 107
OS_EVICT_IN_ABORT 107
OS_FORCE_DEFERRED_

ASSIGNMENT 107
OS_FORCE_HANDLE_TRANS 108
OS_FORCE_STANDARD_PRM_

FORMAT 107, 204
OS_HANDLE_TRANS 108
OS_IGNORE_LOCATOR_FILE 109
OS_IMMEDIATE_THRESH 204

OS_INBOUND_RELOPT_THRESH 109
OS_INC_SCHEMA_INSTALLATION 109
OS_INHIBIT_TIX_HANDLE 110
OS_LANG_OVERRIDE 110
OS_LIBDIR 111
OS_LOCATOR_ESCAPE_

CHARACTER 111
OS_LOCATOR_FILE 112
OS_LOG_TIX_FORMAT 112
OS_MAX_IMMEDIATE_RANGES 204
OS_META_SCHEMA_DB 112
OS_NB_LANA_NUM 113
OS_NETWORK 113
OS_NO_MAPPED 115
OS_NOTIFICATION_QUEUE_SIZE 115
OS_OSSG_CPP 116
OS_PORT_FILE 116
OS_PRINT_CLIENT_COUNTERS 116
OS_RCVBUF_SIZE 116
OS_RELOPT_THRESH 117, 204
OS_RESERVE_AS 120
OS_ROOTDIR 121
OS_SCHEMA_KEY_HIGH 122
OS_SCHEMA_KEY_LOW 122
OS_SECURE_RPC_DOMAIN 124
OS_SNDBUF_SIZE 124
OS_STDOUT_FILE 124
OS_SUPPRESS_PRE2_QUERY_SYNTAX_

WARNINGS 124
OS_THREAD_LOCKS 125
OS_TIX_BUFFER_SIZE 125
OS_TIX_WD 125
OS_TMP_DIR 126
OS_TRACE_MISSING_VTBLS 126
OS_TURN_ON_ENGLISH_

MESSAGES 126
err_authentication_failure exception 78
err_broken_failover_server_connection

exception 316
err_conflicting_failover_configuration

exception 316
Release 5.1 381

F

err_database_lock_conflict exception 72
err_failover_server_refused_connection

exception 316
err_file_not_local exception 72
err_not_supported exception 316
err_server_restarted exception 316
/etc/group file 150
evolving schemas

See schema evolution
exceptions

default message action 104
disabling handling 110
error report buffer size 125
log file 112
unhandled 104

external database references
changing 146

F
file databases

client access to 56
definition 5
storing on a non-Server host 282

file systems
automounted 320
using multiple 57
virtual 67

G
generating schemas

neutralization options 245
options 237
syntax 236

get_host_name()
os_server , defined by 314

get_locator_file()
objectstore , defined by 314

get_logical_server_hostname()
os_failover_server , defined by 315

get_online_server_hostname()
os_failover_server , defined by 315

get_reconnect_retry_interval()
os_failover_server , defined by 315

get_reconnect_timeout()
os_failover_server , defined by 315

group names
changing 149

H
Host Access List Server parameter

description 82
HP–UX

address space defaults 95

I
IBM RS/6000

address space defaults 95
icc preprocessor 116
ignore_locator_file()

objectstore , defined by 299
incremental record file 44
index management 35
installing schemas 109
IRIX

address space defaults 95
is_failover()

os_server , defined by 314

J
Japanese messages 111

L
LANG environment variable 110
large database backups 45
lazy release 59
382 ObjectStore Management

Index
links in rawfs
changing rawfs hosts 151
creating 194
moving 200
removing 222

listing directory content 197
locator files

character string patterns 294
declaring hosts 288
for failover 310
format 285
introduction 283
limitations 306
metacharacters in character string

patterns 295
OS_DEBUG_LOCATOR_FILE

environment variable 103
OS_IGNORE_LOCATOR_FILE

environment variable 109
OS_LOCATOR_ESCAPE_CHARACTER

environment variable 111
OS_LOCATOR_FILE environment

variable 112
overriding the default 299
specifying rules 289
troubleshooting 305

locks
client 254
read/write 58

log data segment 18
Log Data Segment Growth Increment Server

parameter
description 82

Log Data Segment Initial Size Server
parameter

description 82
effect when Server starts 19

Log File Server parameter
description 83

log files
current size 262
description 17
moving data out of 253
number of records written 264
reallocating 19
record segment switches 264
Server parameters 82
shrinking 19
size 18

log record segment 17
Log Record Segment Buffer Size Server

parameter
description 83

Log Record Segment Growth Increment
Server parameter

description 83
Log Record Segment Initial Size Server

parameter
description 84

M
-make_reachable_library_classes_

persistent option to ossg 239
-make_reachable_source_classes_

persistent option to ossg 240
mapping addresses 93
Max AIO Threads Server parameter

description 84
Max Connect Memory Usage Server

parameter
description 84

Max Data Propagation Per Propagate Server
parameter

description 85
Max Data Propagation Threshold Server

parameter
description 85

Max Memory Usage Server parameter
description 85
Release 5.1 383

N

Max Two Phase Delay Server parameter
description 86

memory
address space 20
fault on an address 108
increasing physical memory 28
kinds that ObjectStore uses 29
maximum virtual memory 85
virtual memory 22
Windows requirements 347

Message Buffer Size Server parameter
description 86

Message Buffers Server parameter
description 86

metaschema database 112
moving applications 229
moving data out of log 253
moving databases

changing external references 146
osmv utility 200

moving directories 200
moving links 200
-mrlcp option to ossg

how to use 239
-mrscp option to ossg

how to use 240

N
Name Password authentication type 76
network communications

disconnecting client from Server 254
DLLs to be loaded 113
message buffer size 87
mixing protocols 33
NetBEUI 113
port settings 51
resources needed 20

NFS and locator files 306
NFS mounts

OS/2 file locking 375
Windows to UNIX 359

NONE authentication type 74
non-root start-up of Server 87
Notification Retry Time Server parameter

description 86
NT Local authentication type 76

O
O4NETBIO DLL 113
O4NETNP DLL 113
O4NETNSM DLL 113
O4NETTCP DLL 113
ObjectStore

communication among processes 12
definition 3
process information, obtaining 14
starting processes 12
stopping processes 13
version number, displaying 279

ObjectStore client
See clients

objectstore directory description 338
objectstore , the class

get_locator_file() 314
OS/2

address space defaults 95
cache location 9
commseg location 10
DLLs to be loaded 113
file database pathnames 364
file locking 375
host list 367
moving applications 230
NFS mounts 375
ObjectStore output files 370
%OS_ROOTDIR%\ETC\PORTS file 52
partitions

adding to rawfs 371
rawfs

adding partitions 371
creating 371

schema files directory 111
384 ObjectStore Management

Index
setting default preprocessor 116
setting Server parameters 365
starting Cache Manager 367
starting the Server 366
utility names 369

OS_AS_SIZE environment variable
defaults 95
description 93

OS_AS_START environment variable
defaults 95
description 94

OS_BOOTSTRAP_LRU_CACHE_SIZE
environment variable 97

OS_BROWSER_NUMERIC_FORMAT
environment variable 97

OS_CACHE_DIR environment variable 98
OS_CACHE_SIZE environment variable 98
OS_CMGR_STARTUP_LOCK environment

variable 99
OS_COLL_POOL_ALLOC_CHLIST_BLKS

environment variable 100
OS_COLL_THREAD_LOCKS environment

variable 100
OS_COMMSEG_DIR environment

variable 101
OS_COMMSEG_MAX_LENGTH environment

variable
See OS_COMMSEG_RESERVED_SIZE

OS_COMMSEG_RESERVED_SIZE
environment variable 101

OS_COMMSEG_SIZE environment
variable 102

OS_COMMSEG_START environment
variable 102

OS_COMP_SCHEMA_CHANGE_ACTION
environment variable 103

OS_DEBUG_C0000005 environment
variable 103

OS_DEBUG_LOCATOR_FILE environment
variable 103

OS_DEBUG_RECURSIVE_EXCEPTION
environment variable 103

OS_DEF_BREAK_ACTION environment
variable 104

OS_DEF_EXCEPT_ACTION environment
variable 104

OS_DEF_MESSAGE_ACTION environment
variable 104

OS_DIRMAN_HOST environment variable
description 105
example 56
rawfs/native file system toggle 31

OS_DIRMAN_LINK_HOST environment
variable 105

OS_DIRMAN_USE_SERVER_PREFIX
environment variable 106

OS_DISABLE_PRE2_QUERY_SYNTAX_
SUPPORT environment
variable 106

OS_DISPLAY_INSTALL_MISMATCHES
environment variable 106

OS_ENABLE_PRE2_QUERY_SYNTAX_
WARNINGS environment
variable 107

OS_ENABLE_REALTIME_COUNTERS
environment variable 107

OS_EVICT_IN_ABORT environment
variable 107

os_failover_server , the class 314
get_logical_server_hostname() 315
get_online_server_hostname() 315
get_reconnect_retry_interval() 315
get_reconnect_timeout() 315
set_reconnect_timeout_and_

interval() 315
OS_FORCE_DEFERRED_ASSIGNMENT

environment variable 107
OS_FORCE_HANDLE_TRANS environment

variable 108
OS_FORCE_STANDARD_PRM_FORMAT

environment variable 107
Release 5.1 385

O

OS_FORCE_STANDARD_PRM_FORMAT
new environment variable 204

OS_HANDLE_TRANS environment
variable 108

OS_IGNORE_LOCATOR_FILE environment
variable

description 109
example 299

OS_IMMEDIATE_THRESH new environment
variable 204

OS_INBOUND_RELOPT_THRESH
environment variable 109

OS_INC_SCHEMA_INSTALLATION
environment variable 109

OS_INHIBIT_TIX_HANDLE environment
variable 110

OS_LANG_OVERRIDE environment
variable 110

OS_LIBDIR environment variable 111
OS_LOCATOR_ESCAPE_CHARACTER

environment variable 111
OS_LOCATOR_FILE environment variable

description 112
example 299

OS_LOG_TIX_FORMAT environment
variable 112

OS_MAX_IMMEDIATE_RANGES new
environment variable 204

OS_META_SCHEMA_DB environment
variable 112

OS_NB_LANA_NUM environment
variable 113

OS_NETWORK environment variable 113
OS_NO_MAPPED environment variable 115
OS_NOTIFICATION_QUEUE_SIZE

environment variable 115
OS_OSSG_CPP environment variable 116
OS_PORT_FILE environment variable

description 116
how to use 52

os_postlink executable
description 130

OS_POSTLINK , the macro 130
OS_PRINT_CLIENT_COUNTERS

environment variable 116
OS_RCVBUF_SIZE environment

variable 116
OS_RELOPT_THRESH environment

variable 117
effect of address space change 204

OS_RESERVE_AS environment
variable 120

%OS_ROOTDIR directory
shared by multiple machines 283

OS_ROOTDIR environment variable
description 121

OS_SCHEMA_KEY_HIGH environment
variable

description 122
OS_SCHEMA_KEY_LOW environment

variable
description 122

OS_SECURE_RPC_DOMAIN environment
variable 124

os_server , the class
get_host_name() 314
is_failover() 314

OS_SNDBUF_SIZE environment
variable 124

OS_STDOUT_FILE environment
variable 124

OS_SUPPRESS_PRE2_QUERY_SYNTAX_
WARNINGS environment
variable 124

OS_TIX_BUFFER_SIZE environment
variable 125

OS_TIX_WD environment variable 125
OS_TRACE_MISSING_VTBLS environment

variable
description 126
386 ObjectStore Management

Index
OS_TURN_ON_ENGLISH_MESSAGES
environment variable 126

osarchiv logging 43
osarchiv utility 132
osbackup utility 139
osc4_out file on UNIX 339
oschangedbref utility 146
oschgrp utility 149
oschhost utility 151
oschmod utility 153
oschown utility 156
oscmgr4 executable

description 9
OSCMGR4.TXT file

OS/2 370
Windows 358

oscminit executable
description 9
permissions 62

oscmrf utility 158
oscmshtd utility 159
oscmstat utility 160
oscompact utility 164
oscopy utility 168
oscp utility

differences from oscopy 171
osdf utility 176
osexschm utility 188
osglob utility 192
oshostof utility 193
osln utility 194
osls utility 197
osmkdir utility 199
osmv utility 200
osprmgc utility 202
osrecovr utility 206
osreplic utility 317
osrestore utility 216

osrm utility 222
osrmdir utility 224
oss_out file on UNIX 339
osscheq utility 225
osserver utility

general information 227
OS/2 366
UNIX 325
Windows 351

OSSERVER.TXT file
OS/2 370
Windows 358

ossetasp utility 229
ossetrsp utility 231
OSSETUP utility

OS/2 366
Windows 350

ossevol utility 232
ossg utility

setting preprocessor 116
syntax 236

ossize utility 248
ossvrchkpt utility 253
ossvrclntkill utility 254
ossvrdebug utility 256
ossvrmtr utility 257
ossvrping utility 258
ossvrshtd utility 259
ossvrstat utility 261
ostest utility 271
OSTORE.INI file

OS/2 365
osverifydb utility 274
osversion utility 279
ownership

See also permissions
changing 156
description 58
Release 5.1 387

P

P
pages

definition 4
parameter files

Cache Manager on UNIX 335
Server

OS/2 365
UNIX 323
Windows 350

Partition N Server parameter
description 86

partitions 86
adding to rawfs 371

pathnames
automounter 320
file databases

OS/2 364
UNIX 320
Windows 349

file name expansion 192
OS_DIRMAN_USE_SERVER_PREFIX

environment variable 106
Server-relative 57, 349
setting for remote schemas 231
testing for specified conditions 271
translating between platforms 57

performance
address space resources 28
client counters 116
compacting databases 164
enabling counters 107
OS_RESERVE_AS environment

variable 120
rawfs 30
relocation maps 117

permission modes
changing 153

permissions
changing mode 153
database pages 9

permits
description 58

persistent relocation maps 119
persistent storage region

default size 93
description 23
not enough address space 27
optimization 121
starting address 94

physical memory
increasing 28
not enough 27

pinging Server 258
platforms

ports file 52
running on multiple 57

pointers
changing external 146
verifying 274

port settings 52
ports file format 52
Preferred Network Receive Buffer Size Server

parameter
description 87

Preferred Network Send Buffer Size Server
parameter

description 87
preprocessors

ossg 116
processes

communication 12
obtaining information 14
starting 12
stopping 13

propagation
buffer size 87
description 18
interval length 87
Max Data Propagation Per Propagate

Server parameter 85
388 ObjectStore Management

Index
Max Data Propagation Threshold Server
parameter 85

number of times done 266
ossvrchkpt utility 253

Propagation Buffer Size Server parameter
description 87

Propagation Sleep Time Server parameter
description 87

Q
queries

suppressing syntax warnings 124
syntax support 106

R
rawfs

advantages and disadvantages 30
creating

OS/2 371
UNIX 328
Windows 355

creating directories 199
creating links 194
description 5
disk space information 176
link hosts

changing 151
links

See links in rawfs
log file in 17
moving databases, directories, or

links 200
performance 30
reconfiguring 32
removing directories 224
removing links 222
utilities for managing 31
wildcards 31

rawfs databases
alternate pathname interpretation 106
client access to 56
default host name 105
description 5
pathname format 6

rawfs directories
creating 199
deleting 224
removing 224

rawfs link hosts
changing 151

reachable types
specifying -mrlcp 239
specifying -mrscp 240

-ReallocateLog option to osserver 19
recovering data

description 207
examples 209
options 206
overview 38
syntax 206
tradeoffs 208

recovery operations
using osrestore andosrecovr 46
using system backup and osrecovr 47

redundant Server 310
references

changing external 146
verifying 274

relocation optimization 117
remote schema pathnames 231
removing databases 222
removing rawfs directories 224
replicator utility

See osreplic utility
Release 5.1 389

S

restoring data
description 217
examples 219
options 216
overview 38
pathname translation 218
syntax 216

Restricted File DB Access Server parameter
description 87

S
schema evolution

changes utility can be used for 233
deploying applications 235
options 232
ossevol utility 232

schemas
comparing 225
displaying class names 188
generating 236
installation 109
OS_SCHEMA_KEY_HIGH/LOW

environment variables 122
patching executable to find application

schema 229
setting remote schema pathname 231
virtual file systems 67

sectors
definition 18

segments
compacting 164
definition 4
displaying permissions 248
displaying size 248

Server parameters
Admin Host List 70
Admin User 71
Allow NFS Locks 71
Allow Remote Database Access 72
Allow Shared Communications 73
Authentication Required 73

Cache Manager Ping Time 78
Cache Manager Ping Time in

Transaction 79
DB Expiration Time 79
Deadlock Victim 79
Direct to Segment Threshold 81
Host Access List 82
Log Data Segment Growth Increment 82
Log Data Segment Initial Size 82
Log File 83
Log Record Segment Buffer Size 83
Log Record Segment Growth

Increment 83
Log Record Segment Initial Size 84
Max AIO Threads 84
Max Connect Memory Usage 84
Max Data Propagation Per Propagate 85
Max Data Propagation Threshold 85
Max Memory Usage 85
Max Two Phase Delay 86
Message Buffer Size 86
Message Buffers 86
Notification Retry Time 86
Partition N 86
Preferred Network Receive Buffer Size 87
Preferred Network Send Buffer Size 87
Propagation Buffer Size 87
Propagation Sleep Time 87
Restricted File DB Access 87
setting

OS/2 365
UNIX 323
Windows 350

Server parameters, changing
shutting down Server 259

Server-relative pathnames 57
Servers

access control 73
amount of data stored 265
communication among 33
communication with ObjectStore

processes 12
390 ObjectStore Management

Index
concurrent access by other Servers 300
connections, allowing 84
demand on resources 21
description 7
disconnecting client threads 254
displaying information 261
log files 17
message buffers

number of 86
size 86

moving data out of the log 253
multiple on same host 7
output file

OS/2 370
UNIX 339
Windows 358

parameter descriptions 69
pinging 258
port number 52
reallocating the log 19
running two on same host 54
setting parameters

OS/2 365
UNIX 323
Windows 350

setting up remote databases 282
shared memory communications 73
shutting down 259
starting

non-root 87
on all platforms 13
OS/2 366
UNIX 325
Windows 351

stopping, when to 13
virtual file systems 67

set_locator_file()
objectstore , defined by 299

set_reconnect_timeout_and_interval()
os_failover_server , defined by 315

shrinking the log file 19
shutting down Cache Manager 159

shutting down Server 259
SIGSEGV signals

choosing a handler 108
Solaris

address space defaults 95
ObjectStore directory structure 338

stack traces
OS_DEF_BREAK_ACTION environment

variable 104
starting Servers

See Servers
status

Cache Manager 160
Server 261

sunpro directory on UNIX 338
swap space

how ObjectStore uses it 22
increasing 28
not enough 27

symbolic links 194
SYS authentication type 75

T
tapes for UNIX backups 340
Temporary Files Permission Cache Manager

parameter 335
testing pathnames 271
threads

collections lock 100
Max AIO Threads Server parameter 84
OS_THREAD_LOCKS environment

variable 125
/tmp/ostore directory

commseg 101
UNIX commseg location 10
UNIX use 341
client cache 98

TOP_OSTORE_DIR directory on UNIX 338
transaction log

See also log files
Release 5.1 391

U

troubleshooting
before calling support 66
cannot commit 65
cannot open application schema 63
database has fraction length 63
end-of-file reading Cache Manager 62
general strategy 61
invalid address 64
locator files 305
no networks where registered 121
process could not start on Windows

NT 353
Server initialization fails 61
unsupported Server protocol 64

two-phase commit
maximum delay 86
recovery 86

U
UNC path 361
UNIX

access from Windows 359
backing up to tape 340
cache location 8
cache size, increasing 337
changing Server parameters 323
commseg location 10
file name expansion 320
ObjectStore output files 339
$OS_ROOTDIR/etc/ports file 52
partition size, increasing 331
partitions

specifying in rawfs 328
pathnames 320
rawfs, creating 328
rawfs, specifying partitions in 328
setting Cache Manager parameters 333
setting default preprocessor 116
setting Server parameters 323

starting the Server 325
/tmp/ostore directory use 341
vtbls and discriminants, fixing 130

UNIX Login authentication type
See Name Password

-upgrade_vector_headers option to
ossevol 233

users
administrative privileges 70
defining OS_ROOTDIR 49
requirements for developing ObjectStore

applications 50
requirements for running ObjectStore

applications 49
utilities

os_postlink 130
osarchiv 132
osbackup 139
oschangedbref 146
oschgrp 149
oschhost 151
oschmod 153
oschown 156
oscmrf 158
oscmshtd 159
oscmstat 160
oscompact 164
oscopy 168
oscp 171
osdf 176
osexschm 188
osglob 192
oshostof 193
osln 194
osls 197
osmkdir 199
osmv 200
osprmgc 202
osrecovr 206
osreplic 317
392 ObjectStore Management

Index
osrestore 216
osrm 222
osrmdir 224
osscheq 225
osserver

general information 227
OS/2 366
UNIX 325
Windows 351

ossetasp 229
ossetrsp 231
OSSETUP

OS/2 366
Windows 350

ossevol 232
ossg 236
ossize 248
ossvrchkpt 253
ossvrclntkill 254
ossvrdebug 256
ossvrmtr 257
ossvrping 258
ossvrshtd 259
ossvrstat 261
ostest 271
osverifydb 274
osversion 279
Windows use 346

V
verifying schema

See schemas
version number display 279
virtual file systems 67
virtual memory

definition 22
Max Connect Memory Usage Server

parameter 84
Max Memory Usage Server parameter 85

vtbls
relocation 130

W
warm failover 310
Windows

access to UNIX 359
address space defaults 95
authentication 77
cache location 9
client/Server communication 360
commseg location 10
DLLs to be loaded 113
file database pathnames 349
locator files 361
memory requirements 347
NT Local authentication type 76
ObjectStore output files 358
%OS_ROOTDIR%\ETC\PORTS file 52
OS_TMPDIR environment variable 125
performance 347
rawfs, creating 355
remote databases 361
schema files directory 111
setting default preprocessor 116
starting Cache Manager 357
starting the Server 351
using utilities 346

Windows automatic backup 41
Windows REPLACE statement 361
Windows Sockets 360
Release 5.1 393

W

394 ObjectStore Management

	Management
	ObjectStore Management
	Preface
	Chapter 1
	Overview of Managing ObjectStore
	What Is ObjectStore?
	What Is an ObjectStore Database?
	What Kinds of Databases Are There?
	How ObjectStore Controls Storage
	Managing Processes
	Description of the Server Transaction Log
	Managing Computer Resources
	Managing Memory
	Managing the Rawfs
	Planning Your Configuration
	What You Need to Know About the API
	Managing Databases
	Overview of the Backup/Restore Facility
	Backup Strategies
	General Backup Practices
	Archive Logging
	Special Considerations for Large Databases
	Recovery Options

	The Dump/Load Subsystem
	Managing Users
	Modifying Network Port Settings
	How a Client Locates the Server for a Database
	Managing ObjectStore on Multiple Platforms
	Callback Messages Background
	Troubleshooting
	Using Virtual File Systems

	Chapter 2
	Server Parameters
	Admin Host List
	Admin User
	Allow NFS Locks
	Allow Remote Database Access
	Allow Shared Communications
	Authentication Required
	Cache Manager Ping Time
	Cache Manager Ping Time In Transaction
	DB Expiration Time
	Deadlock Victim
	Direct to Segment Threshold
	Failover Heartbeat Time
	Host Access List
	Log Data Segment Growth Increment
	Log Data Segment Initial Size
	Log File
	Log Record Segment Buffer Size
	Log Record Segment Growth Increment
	Log Record Segment Initial Size
	Max AIO Threads
	Max Connect Memory Usage
	Max Data Propagation Per Propagate
	Max Data Propagation Threshold
	Max Memory Usage
	Max Two Phase Delay
	Message Buffer Size
	Message Buffers
	Notification Retry Time
	PartitionN
	Preferred Network Receive Buffer Size
	Preferred Network Send Buffer Size
	Propagation Buffer Size
	Propagation Sleep Time
	Restricted File DB Access

	Chapter 3
	Environment Variables
	Specifying Values for Environment Variables
	OS_AS_SIZE
	OS_AS_START
	OS_AUTH
	OS_BOOTSTRAP_LRU_CACHE_SIZE
	OS_BROWSER_NUMERIC_FORMAT
	OS_CACHE_DIR
	OS_CACHE_SIZE
	OS_CMGR_STARTUP_LOCK
	OS_COLL_POOL_ALLOC_CHLIST_BLKS
	OS_COLL_THREAD_LOCKS
	OS_COMMSEG_DIR
	OS_COMMSEG_RESERVED_SIZE
	OS_COMMSEG_SIZE
	OS_COMMSEG_START
	OS_COMP_SCHEMA_CHANGE_ACTION
	OS_DEBUG_C0000005
	OS_DEBUG_LOCATOR_FILE
	OS_DEBUG_RECURSIVE_EXCEPTION
	OS_DEF_BREAK_ACTION
	OS_DEF_EXCEPT_ACTION
	OS_DEF_MESSAGE_ACTION
	OS_DIRMAN_HOST
	OS_DIRMAN_LINK_HOST
	OS_DIRMAN_USE_SERVER_PREFIX
	OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT
	OS_DISPLAY_INSTALL_MISMATCHES
	OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS
	OS_ENABLE_REALTIME_COUNTERS
	OS_EVICT_IN_ABORT
	OS_FORCE_DEFERRED_ASSIGNMENT
	OS_FORCE_STANDARD_PRM_FORMAT
	OS_FORCE_HANDLE_TRANS
	OS_HANDLE_TRANS
	OS_IGNORE_LOCATOR_FILE
	OS_INBOUND_RELOPT_THRESH
	OS_INC_SCHEMA_INSTALLATION
	OS_INHIBIT_TIX_HANDLE
	OS_LANG_OVERRIDE
	OS_LIBDIR
	OS_LOCATOR_ESCAPE_CHARACTER
	OS_LOCATOR_FILE
	OS_LOG_TIX_FORMAT
	OS_META_SCHEMA_DB
	OS_NB_LANA_NUM
	OS_NETWORK
	OS_NO_MAPPED
	OS_NOTIFICATION_QUEUE_SIZE
	OS_OSDUMP_APPSCHEMA_PATH
	OS_OSLOAD_APPSCHEMA_PATH
	OS_OSSG_CPP
	OS_OUTBOUND_RELOPT_THRESH
	OS_PORT_FILE
	OS_PRINT_CLIENT_COUNTERS
	OS_RCVBUF_SIZE
	OS_RELOPT_THRESH
	OS_RESERVE_AS
	OS_ROOTDIR
	OS_SCHEMA_KEY_HIGH
	OS_SCHEMA_KEY_LOW
	OS_SECURE_RPC_DOMAIN
	OS_SNDBUF_SIZE
	OS_STDOUT_FILE
	OS_SUPPRESS_PRE2_QUERY_SYNTAX_WARNINGS
	OS_THREAD_LOCKS
	OS_TIX_BUFFER_SIZE
	OS_TIX_WD
	OS_TMPDIR
	OS_TRACE_MISSING_VTBLS
	OS_TURN_ON_ENGLISH_MESSAGES

	Chapter 4
	Utilities
	os_postlink: Fixing Vtbls and Discriminants
	osarchiv: Logging Transactions Between Backups
	osbackup: Backing Up Databases
	oschangedbref: Changing External Database Referenc...
	oschgrp: Changing Database Group Names
	oschhost: Changing Rawfs Link Hosts
	oschmod: Changing Database Permissions
	oschown: Changing Database Owners
	oscmrf: Deleting Cache and Commseg Files
	oscmshtd: Shutting Down the Cache Manager
	oscmstat: Displaying Cache Manager Status
	oscompact: Compacting Databases
	oscopy: Copying Databases
	oscp: Copying Databases
	osdf: Displaying Rawfs Disk Space Information
	osdump: Dumping Databases
	Default Equivalence
	When Is Customization Required?
	Performance
	Default Dumper ASCII Format

	osexschm: Displaying Class Names in a Schema
	osgc: Garbage Collection Utility
	osglob: Expanding File Names
	oshostof: Displaying Database Host Name
	osln: Creating Links in the Rawfs
	osload: Loading Databases
	osls: Displaying Directory Content
	osmkdir: Creating a Rawfs Directory
	osmv: Moving Directories and Databases
	osprmgc: Trimming Persistent Relocation Maps
	osprop: Propagating Server Logs
	osrecovr: Restoring Databases from Archive Logs
	osreplic: Replicating Databases
	osrestore: Restoring Databases from Backups
	osrm: Removing Databases and Rawfs Links
	osrmdir: Removing a Rawfs Directory
	osscheq: Comparing Schemas
	osserver: Starting the Server
	ossetasp: Patching Executable with Application Sch...
	ossetrsp: Setting a Remote Schema Pathname
	ossevol: Evolving Schemas
	ossg: Generating Schemas
	ossize: Displaying Database Size
	ossvrchkpt: Moving Data Out of the Server Transact...
	ossvrclntkill: Disconnecting a Client Thread on a ...
	ossvrdebug: Setting a Server Debug Trace Level
	ossvrmtr: Displaying Server Resource Information
	ossvrping: Determining If a Server Is Running
	ossvrshtd: Shutting Down the Server
	ossvrstat: Displaying Server and Client Informatio...
	ostest: Testing a Pathname for Specified Condition...
	osupgprm: Upgrading PRM Formats
	osverifydb: Verifying Pointers and References in a...
	osversion: Displaying the ObjectStore Version in U...

	Chapter 5
	Using Locator Files to Set Up Server-Remote Databa...
	What Is a Server-Remote Database?
	Description of the Locator File
	Declaring Hosts
	Specifying Locator Rules
	Using Character String Patterns in Locator Files
	Overriding the Default Locator File
	When Multiple Servers Can Concurrently Access a Da...
	Sample Locator Files
	Limitations When Using NFS to Access Remote Databa...
	Troubleshooting

	High Availability of Data
	Warm Failover
	Configuration of the Shared Disk
	Server Configuration
	How a Failover Database Is Located by the Client A...
	Logical Server Names
	Declaring a Failover Server in a Locator File
	Notes for Writing Client Applications

	The Failover API
	objectstore::get_locator_file()
	os_server::get_host_name()
	os_server::is_failover()
	The os_failover_server Class
	os_failover_server::get_logical_server_hostname()
	os_failover_server::get_online_server_hostname()
	os_failover_server::get_reconnect_retry_interval()...
	os_failover_server::get_reconnect_timeout()
	os_failover_server::set_reconnect_timeout_and_inte...
	Exceptions and Error Messages for Failover

	Asynchronous Replication

	Managing ObjectStore on UNIX
	Database and Executable Pathnames
	File Name Expansion
	Executable Pathnames

	Setting Server Parameters
	Using the osconfig Utility
	Creating a Parameter File

	Starting the Server
	Nonroot Server Start-Up

	Creating a Rawfs
	Specifying the Partitions in a Rawfs
	Modifying Partition Size

	Setting Cache Manager Parameters
	Specifying the Cache Directory Parameter
	Specifying the Commseg Directory Parameter
	Specifying the Hard Allocation Limit Parameter
	Specifying the Mount Table Pathname Parameter
	Specifying the Soft Allocation Limit Parameter
	Specifying the Temporary Files Permission Paramete...
	Cache Manager Parameter File Location
	Cache Manager Parameter File Format
	Example of a Cache Manager Parameter File

	Increasing the Size of the Cache
	Description of ObjectStore Directories
	Finding Files Containing ObjectStore Messages
	Using Tapes with the osbackup Utility
	ObjectStore Use of /tmp/ostore
	AIX Considerations
	Using SCSI Tape Drives
	Setting Up Permissions
	Troubleshooting Permission Denied Error
	Uninstalling ObjectStore Release 5

	Chapter 8
	Managing ObjectStore on Windows
	Using ObjectStore Utilities
	Memory Requirements for Windows 95
	Specifying File Database Pathnames
	Setting Server Parameters
	Starting the Server
	Creating a Rawfs
	Starting the Cache Manager
	Finding Files Containing ObjectStore Messages
	Accessing UNIX Databases from Windows
	About Client/Server Communication
	Using an NT Server to Access Remote Databases
	All Remote Hosts
	Access Control for Remote Databases

	Chapter 9
	Managing ObjectStore on OS/2
	Specifying File Database Pathnames
	Setting Server Parameters
	Starting the Server
	Using OS/2 Environment Variables
	UNIX.GID
	UNIX.UID

	Specifying Utility Names
	Finding Files Containing ObjectStore Messages
	Creating a Rawfs
	Capturing Debug Information
	File Locking with NFS

	Index

