OBJECTSTORE

RELEASE 5.1

999999999

ObjectStore C++ AP Reference
ObijectStore Release 5.1, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Obiject Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-REF-510

Chapter 1

Chapter 2

Release 5.1

Contents

Preface... ix
Introduction................. ... 1
ObjectStore Database Services. 2
ClassLibrary............ 7
ObjecCtstore 11
os_access_modifier 44
os_address_space marker i, 45
0s_anonymous_indirect type........o 49
os_app_schema 50
os_application_schema_info............................ 51
OS_aImay tYPE. ..t 52
os base class 54
0s_Class_type. 57
Os_comp_schema ..., 70
os database............ 71
os_database reference 101
os database root............. 103
os_database schema................................. 105
os dbutil.... 106
os DLL finder 128
os DLL schema_info 130
os_ dynamic_extent i 132
OS_ ENUM _tYPE . .o 135
os_enumerator_literal 137

iii

Contents

os_evolve_subtype fun_binding 138
os failover_server........ 139
os_field_member variable 141
os_function_type. 142
os_indirect_type 144
os_instantiated_class_type i 145
os_integral_type 146
os literal. 148
os_literal_template_actual_arg 151
0s_lock timeout_exception 152
os member...... ... 154
os_member_function.......... ... 159
os_member_namespace........... ... i 164
os_member_type ... 165
0os_member variable................. 166
OS MOP oottt ettt 170
os_named_indirect_ type i 174
OS NAMESPACE . . .o o ettt et 175
os _notification.............. 176
os object cluster 186
0S ObjecCt CUrsor. ... e 189
0s_pathname_and_segment_number.................. 191
os_pointer_literal. 192
0s_pointer to_ member_ type 193
OS_pPoiNter type. 194
OS _PragMa . . oottt et et e 195
OS PVaAI ottt 196
OS rawfs_entryt 199
Os_real type. 202
Os Reference. i 203
os reference 209
os Reference local........... i, 215
os reference local................., 220
0s_Reference protected 224
os_reference_protected. 231
os_Reference_protected local 237

ObjectStore C++ API Reference

Release 5.1

Contents

os_reference_protected local 242
os Reference this DB i 247
os reference_this DB.................................. 252
0s_Reference_transient.o 257
os_reference_transient 262
os reference_type 266
os_relationship_member_variable...................... 267
os retain_address. i 268
oS sChema i e 270
os_schema_evolution 272
os schema handle 289
os schema_info......... 293
os_schema_install_options. 294
0S_SEOMENt. . ..ottt 295
0S_SEgMENt_ACCESS. . . vttt t et 307
OS5 _SEIVET . .\ttt et e e 311
OS St _CONV . ..o 314
Os_subscription 318
os_template 321
os_template_actual arg................ ... o 323
os_template_formal_arg............. 325
os_template_instantiation..............., 327
os_template_type formal............ 329
os_template_value_formal.............. 330
os transaction i 331
os_transaction_hook 339
os_transformer_binding.............. 341
OS LYPE. . 342
os_type template............... .. 354
os_type_template_actual_arg 355
OS type type ... 356
os_typed_pointer_void 357
OS tYPESPEC 358
OS VOId_type ... 363
os_with_ mapped....... 364

"4

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Vi

System-Supplied Global Functions............... 365
coperatordelete() ... 366
roperator NeW() ..o 367
sos fetch() ... 370
mos fetch_ address().o 373
0SS StOre() .o 374
System-Supplied Macros.......................... 377
OS_BEGIN_TXN(),

OS_BEGIN_TXN_NAMED(), and

OS END_TXNQ) oo 378
OS_ESTABLISH_FAULT_HANDLER and

OS_ END_FAULT HANDLER.o 383
OS_MARK_QUERY_FUNCTIONQ). ..o oo oo 385
OS_MARK_SCHEMA_TYPE()

OS_MARK_SCHEMA TYPESPEC()covveeernn. .. 386
Component Schema Macros. 387
User-Supplied Functions........................... 389
Discriminant Functions. 390
CLibraryInterface 393
OVEIVIBW . . o 395
Getting Started 397
BuildingBlocks 398
objectstore Functions.................. 402
0s_database Functions 410
os_database reference Functions...................... 422
0os_database root Functions........................... 423
os_dbutil Functions 424
os _keyword arg Functions............................. 433
os_keyword_arg_list Functions......................... 436
os_lock_timeout_exception Functions.................. 437
Metaobject Protocol Functions 439
os_notification Functions................ 500

ObjectStore C++ API Reference

Appendix A

Appendix B

Release 5.1

Contents

0s_object_cluster Functions 505
0S_object_cursor Functions............................ 507
0S_pvar FUNCLONS.t e 509
os_rawfs_entry Functions.............................. 510
0s_segment FUNCLioNS.........., 513
0S_segment_access Functions......................... 520
0s_server FUNCLIONSo 521
0s_transaction Functions 523
0S_typespec FUNCLONSt 526
Reference Functions 529
Schema Evolution Functions 543
TIXFUNCLIONS e 552
Exception FacilityL. 555
MaCIOS . . . 556
ClasSeS .« o 559
Sample TIX Exception-Handling Routine 566
Predefined TIX Exceptions 569
ParentExceptions. i 570
General ObjectStore Exceptions 571
Schema Evolution Exceptions. 579
RPC EXCEPtiONSo 581
Component Schema Exceptions. 583
INdex....... . 585

vii

Contents

viii ObjectStore C++ API Reference

Purpose

Audience

Scope

Preface

The ObjectStore C++ AP Reference provides a reference on the core
C++ programming interface to ObjectStore. It is supplemented by
the ObjectStore Collections C++ AP Reference, which describes the
programming interface for using ObjectStore collections, queries,
and indexes.

This book assumes the reader is experienced with C++.

Information in this book assumes that ObjectStore is installed and
configured. This book supports ObjectStore Release 5.1.

How This Book Is Organized

Introduction

Class library

System-supplied
global functions

System-supplied
macros

Release 5.1

The manual has seven chapters and an appendix.

The introduction describes the ObjectStore database services. See
Chapter 1, Introduction, on page 1.

The class library chapter describes the system-supplied C++
classes, whose members and enumerators provide an interface to
database features. The classes are listed alphabetically by class
name. Within the entry for each class, the class’s members, as well
as enumerators defined within the class’s scope, are listed
alphabetically. See Chapter 2, Class Library, on page 7.

Some system-supplied interface functions are not members of any
class, but are global C++ functions (operator new() and operator
delete()). These are listed alphabetically in Chapter 3, System-
Supplied Global Functions, on page 365.

Some ObjectStore functionality is accessed through the use of
macros (such as those for starting and ending transactions). These
are listed alphabetically in Chapter 4, System-Supplied Macros,
on page 377.

Preface

User-supplied
functions

C library interface

Exception facility

Predefined
exceptions

Notation Conventions

Access to database services sometimes requires support from
user-defined functions. The required functions are listed
alphabetically in Chapter 5, User-Supplied Functions, on

page 389.

In addition to C++ class and function libraries, ObjectStore
provides C functions and macros analogous to those provided in
the C++ libraries so that it is possible for C programs to access all
ObjectStore functionality. These are listed in Chapter 6, C Library
Interface, on page 393.

ObjectStore uses an exception facility added onto C++ by Object
Design, Inc. An appendix is included that provides an account of
signaling and handling exceptions. See Appendix A, Exception

Facility, on page 555.

This appendix is an alphabetical listing of the predefined
exceptions that can be signaled by ObjectStore at run time. See
Appendix B, Predefined TIX Exceptions, on page 569.

This document uses the following conventions:

Convention

Bold

Sans serif

Italic sans serif

Italic serif
[]
{alb]c}

Meaning

Bold typeface indicates user input or code.

Sans serif typeface indicates system
output.

Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

In text, italic serif typeface indicates the
first use of an important term.

Brackets enclose optional arguments.

Braces enclose two or more items. You can
specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

ObjectStore C++ API Reference

Preface

Convention Meaning

Indicates that the operating system named
@ @ inside the circle supports or does not
support the feature being discussed.

ObjectStore Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
online in web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Internet Sources for More Information

World Wide Web

Internet gateway

Automatic email
notification

Release 5.1

Object Design’s support organization provides a number of
information resources. These are available to you through a Web
browser such as Mosaic or Netscape. You can obtain information
by accessing the Object Design home page with the URL
http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file /FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be

Xi

Preface

Training

Your Comments

Xii

notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the online support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674. 5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.

If you are outside North America, call your Object Design sales
representative.

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to

support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.

ObjectStore C++ API Reference

Persistence

Query processing

Integrity control

Access control
Concurrency control

Fault tolerance
Dynamic schema
access

Schema evolution

Data compaction

Release 5.1

Chapter 1
Introduction

This document describes the application programming interface
to the functionality provided by the ObjectStore object-oriented
database management system. ObjectStore seamlessly integrates
the C and C++ programming language with the database services
required by complex, data-intensive applications. These services
include support for the following:

Provision of a central repository for information that persists
beyond the lifetime of the process that recorded it

Support for associative data retrieval, such as lookup by name or
ID number

Services that maintain data consistency based on specified
database constraints

Services that protect data against unauthorized access
Services that allow shared, concurrent data access

Services that protect data consistency and prevent data corruption
even in the face of system crashes or network failures

Services that allow the programmatic manipulation of database
schema information

Services that support schema change and automatic modification
of database objects to conform to new schemas

Services that support data reorganization to eliminate
fragmentation

ObjectStore Database Services

ObjectStore Database Services

Persistence

Query processing

This section summarizes the functionality of each ObjectStore
database service.

ObjectStore provides direct, transparent access to persistent data
from within C++ programs. No explicit database reads or writes
are required, and persistence is entirely orthogonal to type. This
means that the same type can have both persistent and
nonpersistent instances, and the same function can take both
persistent and nonpersistent arguments. Moreover, the instances
of any built-in C++ type can be designated as persistent.

Persistent allocation is performed with an overloading of the C++
new operator. This variant of new allows for the specification of
clustering information, so that objects that should exhibit locality
of reference can be clustered into the same database segment or
object cluster. Segments are variable-size portions of database
storage that can be used as the unit of transfer to and from the
database. Object clusters are fixed-size portions of database
storage that live within segments.

ObjectStore supplies a class that provides the ability to name an
object to serve as a database entry point. This class also provides
a function allowing the entry point object to be looked up by its
name, so that it can serve as a starting point for navigational or
guery access. Navigational access is performed by following
pointers contained in data structure fields, just as would be done
in a regular, nondatabase C or C++ program. Pointer
dereferencing causes transparent database retrievals when
needed. Query access is described below.

A single ObjectStore application can open several databases at a
time. In addition, several applications can access the same
database concurrently, as described in the section on Transactions
and Concurrency Control, below.

Many application types require two forms of data access:
navigational access and associative access. Navigation accesses
data by following pointers contained in data structure fields. In
C++, the data member access syntax supports navigational data
access. Associative access, on the other hand, is the lookup of
those data structures whose field values satisfy a certain condition

ObjectStore C++ API Reference

Integrity control

Release 5.1

Chapter 1: Introduction

(for example, lookup of an object by name or ID number).
ObjectStore supports associative access, or query, through
member functions in the ObjectStore Class Library.

Queries involve collections, which are objects such as sets, bags, or
lists, that serve to group together other objects. ObjectStore
provides a library of collection classes. These classes provide the
data structures for representing such collections, encapsulated by
member functions that support various forms of collection
manipulation, such as element insertion and removal. Retrieval of
a given collection’s elements for examination or processing one at
a time is supported through the use of a cursor class.

Queries return a collection containing those elements of a given
collection that satisfy a specified condition. They can be executed
with an optimized search strategy, formulated by the ObjectStore
query optimizer. The query optimizer maintains indexes into
collections based on user-specified keys, that is, data members, or
data members of data members, and so on. By using these
indexes, implemented as B-trees or hash tables, the number of
objects examined in response to a query can be minimized.
Formulation of optimization strategies is performed
automatically by the system. Index maintenance can also be
automatic — the programmer need only specify the desired index
keys.

See ObjectStore Collections C++ AP | Reference for more information
on collections, queries, and indexes.

Many design applications create and manipulate large amounts of
complex persistent data. Frequently, this data is jointly accessed
by a set of cooperative applications, each of which carries the data
through some well-defined transformation. Because the data is
shared, and because it is more permanent and more valuable than
any particular run of an application, maintaining the data’s
integrity becomes a major concern and requires special database
support.

In addition to the integrity control provided by compile-time type
checking, ObjectStore provides facilities to help deal with some of
the most common integrity maintenance problems.

One integrity control problem concerns pairs of data members
that are used to model binary relationships. A binary relationship,

ObjectStore Database Services

Access control

Concurrency control

Fault tolerance

such as the part/subpart relationship, for example, can be
modeled by a pair of data members, parent_part and child_part.
Modeling the relationships with both these data members has the
advantage of allowing navigation both up and down the parts
hierarchy. However, the data members must be kept in a
consistent state with respect to one another: one object is the
parent of another if and only if the other is a child of the first. This
integrity constraint can be enforced by declaring the two data
members as inverses of one another. ObjectStore automatically
implements the constraint as an update dependency.

Another integrity control problem concerns illegal pointers.
ObjectStore can dynamically detect pointers from persistent to
transient memory, as well as cross-database pointers from
segments specified by the user to disallow such pointers.
ObjectStore’s schema evolution facility can also detect pointers to
deleted objects and incorrectly typed pointers.

ObjectStore provides two general approaches to database access
control. With one approach, you can set read and write
permissions for various categories of users, at various
granularities. With the other approach, you can require that
applications supply a key in order to access a particular database.
ObjectStore also supports Server authentication services.

The concurrency control scheme employed by ObjectStore is
based on transactions with two-phase locking. Locking is
automatic and completely transparent to the user. The act of
reading (or writing) an object causes a read (write) lock to be
acquired for the object, so there is no need to insert any special
locking commands into the application code. Locking information
is cached on both client and Server, to minimize the need for
network communication when the same process performs
consecutive transactions on the same data.

ObjectStore also supports multiversion concurrency control,
which allows nonblocking database reads. This form of
concurrency control is implemented using a technique of delaying
propagation of data from the Server log.

ObjectStore’s fault tolerance is based on transactions and logging.
Fault tolerance endows transactions with a number of important
properties. Either all of a transaction’s changes to persistent

memory are made successfully, or none are made at all. If a failure

ObjectStore C++ API Reference

Dynamic schema
access

Schema evolution

Data compaction

Release 5.1

Chapter 1: Introduction

occurs in the middle of a transaction, none of its database updates
is made. In addition, a transaction is not considered to have
completed successfully until all its changes are recorded safely on
stable storage. Once a transaction commits, failures such as server
crashes or network failures cannot erase the transaction’s
changes.

ObjectStore’s metaobject protocol supports access to ObjectStore
schema information, stored in the form of objects that represent
C++ types. These objects are actually instances of ObjectStore
metatypes, so called because they are types whose instances
represent types. Schema information is also represented with the
help of various auxiliary classes that are not in the metatype
hierarchy, such as ones whose instances represent data members
and member functions. The metaobject protocol supports run-
time read access to ObjectStore schemas, as well as dynamic type
creation and schema modification.

The term schema evolution refers to the changes undergone by a
database’s schema during the course of the database’s existence.
It refers especially to schema changes that potentially require
changing the representation of objects already stored in the
database.

Without the schema evolution facility, a database schema can be
changed only by adding new classes to it. Redefinition of a class
already contained in the schema, except in ways that do not affect
the layout the class defines for its instances, is not allowed.
(Adding a nonstatic data member, for example, changes instance
layout, but adding a nonvirtual member function does not.)

The schema evolution facility, however, allows arbitrary
redefinition of the classes in a database’s schema — even if
instances of the redefined classes already exist. Invoking schema
evolution directs ObjectStore to modify a database’s schema, and
change the representation of any existing instances in the
database to conform to the new class definitions. If desired, these
representation changes can be directed by user-supplied routines.

ObjectStore databases consist of segments containing persistent
data. As persistent objects are allocated and deallocated in a
segment, internal fragmentation in the segment can increase
because of the presence of holes produced by deallocation. Of
course, the ObjectStore allocation algorithms recycle deleted

ObjectStore Database Services

storage when objects are allocated, but there might nevertheless
be a need to compact persistent data by squeezing out the deleted
space. Such compaction frees persistent storage space so that it
can be used by other segments.

6 ObjectStore C++ API Reference

Chapter 2
Class Library

This chapter describes the system-supplied C++ classes, whose
members and enumerators provide an interface to database
features. The classes are listed alphabetically by class name.
Within the entry for each class, the class’s members, as well as
enumerators defined within the class’s scope, are listed
alphabetically.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

On AlX, Sun, and HP platforms, you can use EUC or SJIS

encoding for strings passed to char* formal parameters.
ObijectStore classes objectstore 11

os_access_modifier 44

0s_address_space_marker

0s_anonymous_indirect_type 49

0s_app_schema 50

os_application_schema_info

os_array_type 52
0os_base_class 54
os_class_type 57
0s_comp_schema 70
os_database 71
os_database_reference 101
os_database_root 103

Release 5.1 7

0s_database_schema
os_dbutil

os_DLL_finder
os_DLL_schema_info
os_dynamic_extent
0S_enum_type
0S_enumerator_literal
os_evolve_subtype_fun_binding
os_failover_server
os_field_member_variable
os_function_type
os_indirect_type
0s_instantiated_class_type
os_integral_type

os_literal
os_literal_template_actual_arg
os_lock_timeout_exception
0S_member
0s_member_function
0S_member_namespace
0S_member_type
0S_member_variable
0S_mop
os_named_indirect_type
0S_namespace
os_notification
os_object_cluster
0s_object_cursor
os_pathname_and_segment_number
0s_pointer_literal
0S_pointer_to_member_type
0S_pointer_type

0s_pragma

0s_pvar

105
106
128
130
132
135
137
138
139
141
142
144
145
146
148
151
152
154
159
164
165
166
170
174
175
176
186
189
191
192
193
194
195
196

ObjectStore C++ API Reference

Release 5.1

os_rawfs_entry
os_real_type
os_Reference
os_reference
os_Reference_local
os_reference_local
os_Reference_protected
os_reference_protected
os_Reference_protected_local
os_reference_protected_local
os_Reference_this_DB
os_reference_this_DB
os_Reference_transient
os_reference_transient
os_reference_type
os_relationship_member_variable
os_retain_address
0os_schema
0s_schema_evolution
os_schema_handle
os_schema_info
os_schema_install_options
0s_segment
0S_segment_access
0s_server

0s_str_conv
0s_subscription
os_template
os_template_actual_arg
os_template_formal_arg
os_template_instantiation
os_template_type_formal
os_template_value_formal

0s_transaction

Chapter 2: Class Library

199
202
203
209
215
220
224
231
237
242
247
252
257
262
266
267

270
272
289
293
294
295
307
311

318
321
323
325
327
329
330
331

10

os_transaction_hook
os_transformer_binding
o0s_type

os_type_template
os_type_template_actual_arg
0s_type_type
os_typed_pointer_void
os_typed_pointer_void
0s_void_type

os_with_mapped

339
341
342
354
355
356
357
357
363
364

ObjectStore C++ API Reference

objectstore

Required header files

Chapter 2: Class Library

This class provides static members related to persistence,
performance tuning, and performance monitoring.

All ObjectStore programs must include the header file
<ostore/ostore.hh >.

objectstore::abort_in_progress()

static os_boolean abort_in_progress();

Returns nonzero if an abort is in progress; returns 0 otherwise.

objectstore::acquire_lock()

Release 5.1

enum os_lock_type { os_read_lock, os_write_lock, os_no_lock } ;

static os_lock_timeout_exception *acquire_lock(

void *addr,

os_lock_type lock_type,

0s_int32 milliseconds,

0s_unsigned_int32 bytes_to_lock = 1
)i
Attempts to acquire a lock of the type specified by lock_type
(either os_read_lock or os_write_lock) on the page(s) containing
the memory starting at addr and spanning bytes_to_lock bytes.

If the lock is successfully acquired, 0 is returned.

Specifying a -1 value for the milliseconds arguments means that
acquire_lock uses the segment’s current readlock_timeout or
writelock_timeout value depending on the type of lock being
acquired.

If the caller wants an infinite timeout and the segment’s timeout
values are not -1, the caller could pass a very large value for the
timeout (to be effectively infinite). It could also use one of the
objectstore::set_readlock_timeout Or objectstore::set_writelock
timeout entrypoints to set the default to -1 temporarily.

Specifying a 0 value for the milliseconds arguments means that
the attempt to acquire the lock will not wait at all if any
concurrency conflict is encountered.

After an attempt to acquire a lock, if the time specified by
milliseconds elapses without the lock’s becoming available, an os_

11

objectstore

12

lock_timeout_exception* isreturned. The timeout is rounded up to
the nearest whole number of seconds. The os_lock_timeout_
exception contains information on the circumstances preventing
lock acquisition. It is the caller’s responsibility to delete the os_
lock_timeout_exception object when no longer needed.

If the attempt causes err_deadlock to be signaled in the current
process, the transaction is aborted regardless of the value of the
specified timeout.

static os_lock_timeout_exception *acquire_lock(
os_database *db,
0s_lock_type access,
0s_int32 milliseconds

)i

Attempts to acquire a lock of the type specified by lock_type
(either os_read_lock or os_write_lock) on the database specified
by db. Locking a database is equivalent to acquiring locks on all
the pages (and segments) of the database. So, for example,
acquiring aread lock on a database is equivalent to acquiring read
locks on all the pages of the database. Acquiring a lock on a
database does not preclude clients from requesting separate locks
on individual pages of the database.

If the lock is successfully acquired, 0 is returned.

Specifying a -1 value for the milliseconds arguments means that
acquire_lock uses the segment’s current readlock_timeout or
writelock_timeout value depending on the type of lock being
acquired.

If the caller wants an infinite timeout and the segment’s timeout
values are not -1, the caller could pass a very large value for the
timeout (to be effectively infinite). It could also use one of the
objectstore::set_readlock_timeout Or objectstore::set_writelock
timeout entrypoints to set the default to -1 temporarily.

Specifying a 0 value for the milliseconds arguments means that
the attempt to acquire the lock will not wait at all if any
concurrency conflict is encountered.

After an attempt to acquire a lock, if the time specified by
milliseconds elapses without the lock’s becoming available, an os_
lock_timeout_exception* isreturned. The timeout is rounded up to
the nearest whole number of seconds. The os_lock_timeout_

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

exception contains information on the circumstances preventing
lock acquisition. It is the caller’s responsibility to delete the os_
lock_timeout_exception object when it is no longer needed.

If the attempt causes err_deadlock to be signaled in the current
process, the transaction is aborted regardless of the value of the
specified timeout.

static os_lock_timeout_exception *acquire_lock(
0S_segment *seg,
0s_lock_type access,
0s_int32 milliseconds

);

Attempts to acquire a lock of the type specified by lock_type
(either os_read_lock or os_write_lock) onthe segment specified by
seg. This must be specified in a top-level transaction.

Locking asegment is equivalent to acquiring locks on all the pages
of the segment. So, for example, acquiring a read lock on a
segment is equivalent to acquiring read locks on all the pages of
the segment. Acquiring a lock on a segment does not preclude that
A client that has acquired a lock on a segment can also request
separate locks on individual pages of the segment.

If the lock is successfully acquired, 0 is returned.

Specifying a -1 value for the milliseconds arguments means that
acquire_lock uses the segment’s current readlock_timeout or
writelock_timeout value depending on the type of lock being
acquired.

If the caller wants an infinite timeout and the segment’s timeout
values are not -1, the caller could pass a very large value for the
timeout (to be effectively infinite). It could also use one of the
objectstore::set_readlock_timeout Or objectstore::set_writelock
timeout entry points to set the default to —1 temporarily.

Specifying a 0 value for the milliseconds arguments means that
the attempt to acquire the lock will not wait at all if any
concurrency conflict is encountered.

After an attempt to acquire a lock, if the time specified by
milliseconds elapses without the lock’s becoming available, an os_
lock_timeout_exception* isreturned. The timeout is rounded up to
the nearest whole number of seconds. The os_lock_timeout_

13

objectstore

exception contains information on the circumstances preventing
lock acquisition. It is the caller’s responsibility to delete the os_
lock_timeout_exception object when it is no longer needed.

If the attempt causes err_deadlock to be signaled in the current
process, the transaction is aborted regardless of the value of the
specified timeout.

objectstore::add_missing_dispatch_table_handler()

typedef void* (*os_missing_dispatch_table_handler_function)
const char* dispatch_table_identifier, const char*
dispatch_table_symbol
)

static void add_missing_dispatch_table_handler(
os_missing_dispatch_table_handler_function

);

Registers the specified os_missing_dispatch_table_handler_

function . During inbound relocation of a given page, if an object’s
vtbl slot is not satisfied by any known vtbls, the handler gets
called with a string denoting a path to the vtbl slot and a string
denoting the platform-dependent linker symbol associated with
the vtbl identifier if known.

For example, given

class A { virtual vf1(); };
class B { virtual vf2(); };
class C : public A, public B { virtual vf3(); };

ObjectStore calls the user's handler function with the string "C@B"
if it cannot satisfy the virtual function table slot for the base class
subobject B in class C. The dispatch_table_symbol is the compiler-
specific linker symbol that ObjectStore associates with the
dispatch table, or null if the vtbl identifier has no entry in the
application schema source file linked in to the application.

The dispatch_table_symbol is provided to allow an application to
load a library dynamically and look up the symbol. It is also useful
for generating a missing vtbl.

objectstore::.change_array_length()

14

static void *change_array_length(
void *array,
0s_unsigned_int32 new_length

ObjectStore C++ API Reference

Chapter 2: Class Library

);

Reallocates the specified persistent array to have the specified
number of elements. Returns the address of the reallocated array.
The reallocation might or might not be in place. If the value
returned is different from the argument, the argument storage has
been deleted and is no longer valid. change_array_length issimilar
to the C function realloc , but it works for persistent objects only.
This function does not execute any constructors or destructors; it
simply changes the amount of persistent storage available for the
array. In future releases, the behavior of this function might
change with regard to when in-place reallocation is performed.

objectstore::compact()

Release 5.1

static void compact(
os_char_p *dbs_to_be_compacted,
os_pathname_and_segment_number_p
*segments_to_be_compacted = 0,
os_char_p *dbs_referring_to_compacted_ones =0,
os_pathname_and_segment_number_p
*segments_referring_to_compacted_ones =0
);
Compacts the data in the specified databases and segments, and
reorganizes any collections that reference compacted objects.

Programs using this function must link with liboscmp.a .

dbs_to_be_compacted is a null-terminated array of pointers to os_
char_p strings identifying the set of databases to be compacted.

os_pathname_and_segment_number_p is a null-terminated array
of pointers to pathname_and_segment_number objects identifying
the segments to be compacted.

dbs_referring_to_compacted_ones is a null-terminated array of
pointers to os_char_p strings identifying the set of databases
containing pointers (or references) to the databases or segments
being compacted.

segments_referring_to_compacted_ones is a null-terminated
array of pointers to os_pathname_and_segment_number_p objects
identifying the segments containing pointers (or references) to the
databases being compacted.

Either the first or second argument, but not both, can be null; the
second argument defaults to null. The set of segments to be

15

objectstore

16

compacted is the union of all the data segments in all databases
specified by the first argument, plus those segments specified in
the optional second argument.

The third and fourth arguments are optional, and if supplied are
sets of database pathnames and segment objects containing
references to objects in the databases and segments to be
compacted. If they are not supplied the compactor assumes that
there are no other pointers or references to the segments being
compacted.

Itis the caller’s responsibility to delete the storage associated with
the arguments when the function returns.

Compaction-specific invalid arguments will result in the
exception err_os_compaction’s being signaled.

The objectstore::compact() function must be invoked outside any
ObjectStore transaction. It is the caller’s responsibility to delete the
storage associated with the arguments to objectstore::compact()
upon its return.

If you want to run compaction in a separate process, the
application can start up another process that calls the function.

The compactor compacts all C and C++ persistent data, including
ObjectStore collections, indexes, and bound queries, and correctly
relocates pointers and all forms of ObjectStore references to
compacted data. ObjectStore os_reference_local references are
relocated, assuming that they are relative to the database
containing them. The compactor respects ObjectStore clusters, in
that compaction will ensure that objects allocated in a particular
cluster remain in the cluster, although the cluster itself might
move as a result of compaction.

This function operates under the following restrictions:

= Unions requiring user discriminant functions: The compactor will
not execute union discriminant functions. Therefore, databases
containing unions cannot be compacted.

= Data types requiring user transforms when they move: The classic
example of a data structure that might require user
transformation is a hash table that hashes on the offset of an
object within a segment. Since compaction modifies these
offsets, there is no way such an implicit dependence on the

ObjectStore C++ API Reference

Chapter 2: Class Library

segment offset can be accounted for by compaction. Of course,
transformation of ObjectStore collections is supported in the
compactor. Support for invocation of user data transforms will
be provided in a future release.

= Since the ObjectStore retain_persistent_addresses facility
requires that persistent object locations within a segment
remain invariant, no client application using this facility and
referencing segments to be compacted can run concurrently
with the ObjectStore compactor.

= Transient ObjectStore references into a compacted segment
become invalid after compaction completes.

ObjectStore supports two file systems for storing databases, and
the compactor can run against segments in databases in either file
system. In the first and most common case, a single database is
stored in asingle host system file. The segments in such a database
are made up of extents, all of which are allocated in the space
provided by the host operating system for the single host file.
When there are no free extents left in the host file, and growth of
an ObjectStore segment is required, the ObjectStore Server will
extend the host file to provide the additional space. The
compactor permits holes contained in segments to be compacted
to be returned to the allocation pool for the host file, and hence
that space can be used by other segments in the same database.
However, since operating systems provide no mechanism to free
disk space allocated to regions internal to the host file, any such
free space will remain inaccessible to other databases stored in
other host files.

The ObjectStore rawfs, on the other hand, stores all databases in a
single region, either one or more host files or a raw partition.
When you are using the raw file system, any space freed by the
compaction operation can be reused by any segment in any
database stored in the raw file system.

objectstore::discriminant_swap_bytes()

Release 5.1

static void discriminant_swap_bytes(
char *address, char *result, os_int32 n_bytes
)

When you are accessing, from within a discriminant function,
databases created by clients with a different byte ordering, access

17

objectstore

to a data member whose value occupies more than a single byte
must be mediated by objectstore::discriminant_swap_bytes() . This
function performs byte swapping that ObjectStore normally
performs automatically. Use of this function is only required
within discriminant functions.

The address argument is the address of the member whose access
is being mediated by this function. The n_bytes argument is the
number of bytes to swap; possible values are 2, 4, and 8. The result
argument points to memory allocated by the user to hold the
correctly byte-swapped result; the allocated space should contain
n_bytes bytes.

objectstore::embedded_server_available()

static os_boolean embedded_server_available();

ObjectStore/Single Returns nonzero if the ObjectStore/ Single version of libos is
available in the application; returns 0 otherwise.

Functions that report on embedded Servers and on network
Servers are mutually exclusive. That is, objectstore::embedded_
server_available and objectstore::network_servers_available
cannot both return true in the same application.

objectstore::enable_damaged_dope_repair()
static void enable_damaged_dope_repair(os_boolean);

Component Schema Enables or disables automatic repair of incorrect compiler dope
for an object while loading a DLL schema. The default is false.

Damaged dope repair repairs compiler dope damage by
regenerating compiler dope in all cached user data pages of
affected databases.

You can query whether dope damage repair is enabled or
disabled by calling the function objectstore::is_damaged_dope__
repair_enabled().

If dope repair is not enabled, dope damage while loading a DLL
schema throws an err_transient_dope_damaged exception.

If dope damage is enabled, dope damage while loading a DLL
schema causes ObjectStore to examine each cached user (that is,
nonschema) data page, of each segment that contains any
transient dope, of each affected database. If the page is currently

18 ObjectStore C++ API Reference

Compiler Dope

Chapter 2: Class Library

accessible, ObjectStore immediately regenerates its transient dope
(through relocation), otherwise ObjectStore marks the page and
its transient dope is regenerated the next time the page is touched.

Compiler dope is additional information added to the run-time
layout of an object by the compiler,in addition to the nonstatic
data members of the object. The correct compiler dope for an
object can change as a result of loading or unloading a DLL
schema, for example because the compiler dope can point to a
virtual function implementation contained in a DLL that is being
loaded or unloaded.

Note that an object can suffer dope damage when the
implementation of its class changes, even if the object is never
used by the program. This is because ObjectStore brings entire
pages of databases into memory at a time. If an object is on the
same page as another object that is being used, then the first object
is also being used as far as dope damage is concerned.

When the combined program schema is rebuilt because a DLL
schema has been unloaded, compiler dope in cached persistent
objects always needs to be repaired (assuming that there could
have been compiler dope pointing to a DLL that was unloaded).
This repair takes place regardless of the setting of
objectstore::enable_damaged_dope_repair_enabled() . The repair
procedure is the same as described previously.

objectstore::enable DLL schema()

Component Schema

static void enable_DLL_schema(os_boolean);
Enables or disables the component schema feature. The default is
true for Windows and Solaris platforms.

Use objectstore::iis_DLL_schema_enabled to query whether DLL
schema support is enabled.

objectstore::find_DLL_schemal()

Release 5.1

static os_schema_handle* find_DLL_schema(
const char* DLL_identifier,
0s_boolean load_if_not_loaded,
0s_boolean error_if _not_found

);
Returns a pointer to the DLL schema handle for the DLL
identified by the first argument in the following cases:

19

objectstore

= The DLL schema is loaded and not queued for unload.
e The DLL schema is already queued for loading.

Otherwise, if load_if not_loaded is true, calls objectstore::load_
DLL() with the first and third arguments. If objectstore::load_DLL()
returns a value other than os_null_DLL_handle , thisfunction looks
for the DLL schema again.

Note that objectstore::load_DLL throws the exception err_DLL_
not_loaded if the DLL cannot be found or loaded or the DLL_
identifier cannot be understood and error_if not_found is true.

If the DLL schema is still not found, and if error_if_not_found is
true, this function throws an err_schema_not_found exception,
otherwise returns a null pointer. Note that if load_if_not_loaded
and error_if_not_found are both true, the exception thrown is err_
DLL not_loaded.

objectstore::get_address_space_generation_number()

os_unsigned_int32 get_address_space_generation_number()

Returns an unsigned integer that is incremented by the client
whenever it releases any address space. Its primary purpose is to
support pointer caching, such as that used by ObjectStore
collections in several circumstances.

A transient cache of persistent pointers should be considered
invalid whenever the value of objectstore::get_address_space_
generation_number() increases. The objectstore::get_address_
space_generation_number() function simply returns the value
read from a variable, and so is fast enough to be called whenever
a pointer cache is examined.

objectstore::get_all_servers()

20

static void get_all_servers(
0s_int32 max_servers,
0S_server_p *servers,
0s_int32& n_servers

);

Provides access to instances of os_server that represent all the
ObjectStore Servers known to the current process. The os_server_
p* is an array of pointers to os_server objects. This array must be
allocated by the user. The function objectstore::get_n_servers()

ObjectStore C++ API Reference

Chapter 2: Class Library

can be used to determine how large an array to allocate. max_
servers is specified by the user, and is the maximum number of
elements the array is to have. n_servers refers to the actual
number of elements in the array.

objectstore::get_application_schema_pathname()

static const char *get_application_schema_pathname();

Returns the pathname of the application schema database.

objectstore::get_as_intervals()

static void get_as_intervals(
0s_as_interval_p *persist,
0s_int32& n_persist_intervals,
0s_as_interval_p *other,
0s_int32& n_other_intervals

);

This function tells the caller all the ranges of virtual address space
that ObjectStore is using, other than ordinary code, text, and heap
space. Itis primarily intended for users who are trying to integrate
ObjectStore and other complex subsystems into the same
application.

The class os_as_interval has the following public data members:

char *start;

0s_unsigned_int32 size;

The ranges are returned in two sets. The first set of ranges are
those used for mapping in persistent objects; the second set is any
other ranges of address space that ObjectStore uses.

objectstore::get_auto_open_mode()

Release 5.1

static void get_auto_open_mode(

auto_open_mode_enum &mode,

os_fetch_policy &fp,

0s_int32 &bytes);
Returns the value of the current settings for process-specific
values for os_auto_open_mode and os_fetch_policy , and the
number of bytes used by the fetch policy.

See also objectstore::set_auto_open_mode() on page 33 and os_
database::set_fetch_policy() on page 95.

21

objectstore

objectstore::get_autoload_DLLs_function()

static os_autoload_DLLs_function get_autoload_DLLs_function();
Component Schema Gets the hook function that is called when a database is put in use
and its required DLL set is not empty.

objectstore::get_cache_file()

static char *get_cache_file();

ObjectStore/Single Returns the name of a cache file previously set with
objectstore::set_cache_file() ;returns 0 if no cache file was
specified. This API is only meaningful for ObjectStore/ Single
applications.

It is the caller’s responsibility to deallocate the returned string
when it is no longer needed.

objectstore::get_cache_size()

static os_unsigned_int32 get_cache_size();

Returns the current size in bytes of the client cache.

objectstore::get_check_illegal_pointers()

static os_boolean get_check_illegal_pointers();

Returns nonzero (that is, true) if the current process enables
default_check_illegal_pointers mode for newly created databases;
returns 0 (that is, false) otherwise. See objectstore::set_check_
illegal_pointers() on page 35.

objectstore::get_incremental_schema_installation()

static os_boolean get_incremental_schema_installation();

Returns nonzero (that is, true) if incremental schema installation
is currently enabled; returns 0 (that is, false) if batch schema
installation is enabled. See objectstore::set_incremental_schema_
installation() on page 37.

objectstore::get_locator file()

static char* get_locator_file() const;

Returns a string representing the locator file. If the first character
of the string is a white-space character or #, the string is the
contents of the file rather than a file name.

22 ObjectStore C++ API Reference

Chapter 2: Class Library

The caller should delete the returned value.
objectstore::get_lock_status()

static os_int32 get_lock_status(void *address);

Returns one of the following enumerators: os_read_lock , os_
write_lock , os_no_lock , indicating the current lock status of the
data at the specified address.

objectstore::get_log_file()

static char *get_log_file();

ObjectStore/Single Returns the name of the Server log file, if set; returns 0 otherwise.
This function is only meaningful for ObjectStore/ Single
applications.

It is the caller’s responsibility to deallocate the returned string
when it is no longer needed.

objectstore::get_n_servers()

static os_int32 get_n_servers();

Returns the number of ObjectStore Servers to which the current
process is connected.

objectstore::get_null_illegal_pointers()

static os_boolean get_null_illegal_pointers();

Returns nonzero (that is, true) if the current process enables
default_null_illegal_pointers mode for newly created databases;
returns 0 (that is, false) otherwise. See objectstore::set_null_
illegal_pointers() on page 38.

objectstore::get_object_range()

static void get_object_range(
void const *address,
void *&base_address,
0s_unsigned_int32 &size

)i

Tells you where a persistent object starts and how large it is.
address should be a pointer to a persistent object, or into the
middle of a persistent object. base_address is set to the address of
the beginning of the object, and size is set to the size of the object
in bytes. Arrays are considered to be one object; if address is the

Release 5.1 23

objectstore

address of one of the array elements, base_address is set to the
address of the beginning of the array. If address does not point to
a persistent object, base_address and size are both set to 0.

objectstore::get_opt_cache_lock_mode()

static os_boolean get_opt_cache_lock_mode();

Returns nonzero if opt_cache_lock_mode is on for the current
process; returns 0 otherwise. See objectstore::set_opt_cache_lock_
mode() on page 39.

objectstore::get_page_size()

static os_unsigned_int32 get_page_size();

Returns the page size for the architecture on which ObjectStore is
running.

objectstore::get_pointer_numbers()

static void get_pointer_numbers(

const void *address,

0s_unsigned_int32 &number_1,

0s_unsigned_int32 &number_2,

0s_unsigned_int32 &number_3
);
Provides a way for an application to generate a hash code based
on object identity. Applications should not generate hash codes by
casting a pointer to the object into a number, since the address of
an object can change from transaction to transaction. Based on the
address supplied by the caller, the function returns number_1,
number_2 , and number_3 .

Use number_1 and number_3 only; ignore number_2 .

These values will always be the same for a given object, no matter
what address it happens to be mapped to at a particular time.
Moreover, no two objects will have the same values.

objectstore::get_readlock_timeout()

static os_int32 get_readlock_timeout();

Returns the time in milliseconds for which the current process will
wait to acquire a read lock. A value of -1 indicates that the process
will wait forever if necessary.

24 ObjectStore C++ API Reference

Chapter 2: Class Library

objectstore:.get_retain_persistent_addresses()

static os_boolean get_retain_persistent_addresses();

Returns nonzero (that is, true) if the current process is in retain_
persistent_addresses mode; returns 0 otherwise. See
objectstore::retain_persistent_addresses() on page 31.

objectstore::get_simple_auth_ui()

static void get_simple_auth_ui(

void(*&handler)

(os_void_p, os_char const_p, os_char_p, os_int32,
0s_char_p, os_int32),

void *&data
)
Retrieves the authentication handler information stored by
objectstore::set_simple_auth_ui() . handler is the function that will
be called to determine the user and password information needed
for authentication. data is the user-supplied value that will be
passed to the handler function.

objectstore::get_thread_locking()

static os_boolean get_thread_locking();

If nonzero is returned, ObjectStore thread locking is enabled; if 0
is returned, ObjectStore thread locking is disabled. See
objectstore::set_thread_locking() on page 40.

objectstore::get_transient_delete_function()

static void (*)(void*) get_transient_delete_function();

Returns a pointer to the transient delete function last specified by
the current process. Returns 0 if there is no current transient delete
function. See objectstore::set_transient_delete_function() on

page 41.

objectstore::get_writelock_timeout()

static os_int32 get_writelock_timeout();

Returns the time in milliseconds for which the current process will
wait to acquire a write lock. A value of —1 indicates that the
process will wait forever if necessary.

Release 5.1 25

objectstore

objectstore::hidden_write()

static void hidden_write(

char *src_address,

char *dst_address,

0s_unsigned_int32 len
)i
src_address points to a transient address, and dst_address points
to a persistent address. This function writes len bytes pointed to
by src_address into the dst_address , without write-locking the
object atdst_address and without marking the object as modified.
This function should only be used from within an access hook (see
os_database::set_access_hooks() on page 91), and it should only
write to locations inside the object for which this access hook is
invoked. Typically, the access hook should only use this function
to write to locations in the range of addresses that are being made
accessible or inaccessible. The persistent value of any location that
is used as the target of an objectstore::hidden_write() should never
be examined by any program.

objectstore::ignore_locator_file()

static void ignore_locator_file(os_boolean);

Passing a nonzero value ensures that no locator file is associated
with the application, regardless of the setting of OS_LOCATOR_
FILE or calls to set_locator_file() . This function is, however,
subordinate to the client environment variable OS_IGNORE_
LOCATOR_FILE. Passing 0 undoes the effect of the previous call to
this function.

objectstore::initialize()

26

static void initialize();

Must be executed in a process before any use of ObjectStore
functionality is made, with the following exceptions:

= objectstore::propagate_log() (ObjectStore/Single only)

« objectstore::set_application_schema_pathname()

= objectstore::set_cache _file() (ObjectStore/ Single only)

= objectstore::set_cache_size()

« objectstore::set_client_name()

These functions must be called before objectstore::initialize()

ObjectStore C++ API Reference

Chapter 2: Class Library

A process can execute initialize() more than once; after the first
execution, calling this function has no effect.

static void initialize(os_boolean force_full_initialization);

Can be used instead of the no-argument overloading of initialize() .
If force_full_initialize is nonzero, all ObjectStore initialization
procedures are performed immediately. If force_full_initialize is 0,
this function defers some initialization until needed (for example,
until a database is first opened). If force_full_initialize is 0, this
function behaves just like the no-argument overloading of
initialize() . Applications that integrate with third-party software
might need to force full initialization.

objectstore::is_damaged_dope_repair_enabled()

static os_boolean is_damaged_dope_repair_enabled();

Returns a boolean value indicating whether dope damage repair
during DLL schema loading is enabled. The initial state is false.
See objectstore::enable_damaged_dope_repair() 18 for details.

objectstore::is_DLL_schema_enabled()

0s_boolean is_DLL_schema_enabled();

Returns whether the DLL schema feature is enabled. The initial
state is true on most platforms including Windows and Solaris.

objectstore::is_lock_contention()

Release 5.1

static os_boolean is_lock_contention();

Returns nonzero if a server involved in the current transaction has
experienced contention for some persistent memory that the
calling application is using. Returns 0 otherwise.

This function can be used in conjunction with MVVCC to help
determine whether to start a new transaction in order to make
available more up-to-date data. If your application has a database
open for MVCC, and during the current transaction another
application has write-locked a page read by your application, is_
lock_contention() returns nonzero.

If this function is not called from within a transaction, err_trans is
signaled.

27

objectstore

Note that this function is advisory — it does not have to be called
and its return value can be ignored without jeopardizing in any
way the correctness of ObjectStore's behavior.

objectstore::is_persistent()

static os_boolean is_persistent(void const *address);

Returns nonzero (true) if the specified address points to persistent
memory, and returns 0 (false) otherwise. A pointer to any part of
apersistently allocated object (including, for example, a pointer to
a data member of such an object) is considered to point to
persistent memory. Similarly, a pointer to any part of a transiently
allocated object is considered to point to transient memory.

objectstore::load_DLL()

Component Schema

28

static os_DLL_handle load_DLL(
const char* DLL_identifier,
0s_boolean error_if _not_found = true
);
Loads the DLL identified by the DLL_identifier and returns an os_
DLL_handle to it after running its initialization function.

If the DLL cannot be found or the DLL_identifier cannot be
understood, and error_if_not_found is false, this function returns
os_null_DLL_handle .

If the DLL cannot be found or the DLL _identifier cannot be
understood and error_if_not_found is true, this function throws
the exception err_DLL_not_loaded.

If currently in a transaction, aborting the transaction does not roll
back load_DLL() . The effects of trying to load a DLL that is already
loaded has platform-dependent effects.

A DLL can have multiple identifiers, each of which works only on
a subset of platforms. The automatic DLL loading mechanism
always sets error_if_not_found to false and tries all the identifiers.

An error while trying to load the DLL, other then failure to find
the DLL, will throw an exception regardless of the setting of error_
if_not_found . This could occur if an error occurs while executing
the DLL’s initialization code, for example.

ObjectStore C++ API Reference

Unix platform note

Chapter 2: Class Library

There is a bug in most versions of Unix that will cause some such
errors to look like “DLL not found,” and thus be subject to error_
if_not_found .

objectstore::lock_as_used

This enumerator is a possible argument to os_segment::set_lock_
whole_segment() . It specifies the default behavior, which is
initially to lock just the page faulted on when pages are cached.
See os_segment::set_lock_whole_segment() on page 303.

objectstore::lock_segment_read

This enumerator serves as a possible argument to os_
segment::set_lock_whole_segment() . A value of lock_segment_
read causes pages in the segment to be read-locked when cached
in response to attempted access by the client. Subsequently,
upgrading to read/write locks occurs on a page-by-page basis, as
needed.

objectstore::lock_segment_write

This enumerator serves as a possible argument to os_
segment::set_lock_whole_segment() . A value of lock_segment_
write causes pages to be write-locked when cached in response to
attempted read or write access by the client. In this case, the Server
assumes from the start that write access to the entire segment is
desired.

objectstore::lookup_DLL_symbol()

static void* objectstore::lookup_DLL_symbol(
os_DLL_handle h,
const char* symbol

);

Looks up the symbolically named entry point in the DLL
identified by the handle and returns its address. If the DLL does
not export a symbol equal to the argument, an err_DLL_symbol_
not_found exception is thrown.

objectstore::network_servers_available()

Release 5.1

static os_boolean network_servers_available();

29

objectstore

ObjectStore/Single

For use with ObjectStore / Single applications, returns nonzero if
the conventional, networked version of ObjectStore’s libos is
available in the application; returns 0 otherwise.

Functions that report on embedded Servers and on network
Servers are mutually exclusive. That is, objectstore::network_
servers_available and objectstore::embedded_server_available
cannot both return true in the same application.

objectstore::propagate_log()

ObjectStore/Single

static void propagate_log(const char *log_path);

For use with ObjectStore 7 Single applications. Causes all
committed data in the specified Server log to be propagated to the
affected databases. Unless errors occur, the log is removed during
execution of this call.

An exception is raised (err_not_supported) if this entry point is
called from within a full ObjectStore (networked) application.

When used, objectstore::propagate_log must be called before
objectstore::initialize . Most ObjectStore/ Single applications will
not need to use this entry point since propagation of the
application’s own log file, that is, the one specified by
objectstore::set_log_file , happens automatically at initialization.

objectstore::release_maintenance()

static os_unsigned_int32 release_maintenance();

Returns the number following the second dot (.) in the number of
the release of ObjectStore in use by the current application. For
example, for Release 5.0.1, this function would return 1.

objectstore::release_major()

static os_unsigned_int32 release_major();

Returns the number preceding the first dot (.) in the number of the
release of ObjectStore in use by the current application. For
example, for Release 5.0, this function would return 5.

objectstore::release_minor()

30

static os_unsigned_int32 release_minor();

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns the number following the first dot (.) in the number of the
release of ObjectStore in use by the current application. For
example, for Release 5.0.1, this function would return 0.

objectstore::release_name()

static const char *release_name();

Returns a string naming the release of ObjectStore in use, for
example, "ObjectStore 5.0 ".

objectstore::release_persistent_addresses()

static void release_persistent_addresses();

Globally disables retaining the validity of persistent addresses
across transaction boundaries. Used in conjunction with
objectstore::retain_persistent_addresses()

This function is callable within top-level transactions as well as
outside of a transaction.

objectstore::retain_persistent_addresses()

static void retain_persistent_addresses();

Globally enables retaining the validity of persistent addresses
across transaction boundaries. Must be called outside any
transaction. Once executed within a given process, pointers to
persistent memory remain valid even after the transaction in
which they were retrieved from the database. This is true until the
end of the process, or until objectstore::release_persistent_
addresses() is called.

objectstore::return_all_pages()

static os_unsigned_int32 return_all_pages();

Clears the client cache.
objectstore::return_memory()

static os_unsigned_int32 return_memory(
void *address,
0s_unsigned_int32 length,
0s_boolean evict_now

);
Gives the programmer control over cache replacement. The first
two arguments designate a region of persistent memory; address

Release 5.1 31

objectstore

is the beginning of the range and length is the length of the range
in bytes. The function tells ObjectStore that this region of
persistent memory is unlikely to be used again in the near future.
If evict_now isnonzero (true), the pages are evicted from the cache
immediately. If evict_now is 0 (false), the pages are not
immediately evicted, but they are given highest priority for
eviction (that is, they are treated as if they are the least recently
used cache pages).

objectstore::set_always_ignore_illegal_pointers()

static void set_always_ignore_illegal_pointers(os_boolean);

By default, ObjectStore signals an exception when it detects an
illegal pointer (a pointer from persistent memory to transient
memory or a cross-database pointer from a segment that is not in
allow_external_pointers mode). Supplying a nonzero value
specifies that illegal pointers should always be ignored by
ObjectStore during the current process, provided the process is
not in always_null_illegal_pointers mode. This includes illegal
pointers detected during database reads as well as database
writes.

objectstore::set_always_null_illegal_pointers()

static void set_always_null_illegal_pointers(os_boolean);

Supplying a nonzero value specifies that illegal pointers should
always be set to 0 when detected by ObjectStore during the
current process. This includes illegal pointers detected during
database reads as well as database writes.

objectstore::set_application_schema_pathname()

static void set_application_schema_pathname(const char *path);

Specifies the location of the application schema database. This
function must be called before objectstore::initialize()

objectstore::set_autoload_DLLs function()

Component Schema

32

static os_autoload_DLLs_function set_autoload_DLLs_function(
os_autoload DLLs_function fcn

)

Controls whether DLLs are loaded automatically by setting a

hook function that is called when a database is put in use and its

ObjectStore C++ API Reference

Chapter 2: Class Library

required DLL set is not empty. Calling this function returns the
previously set hook function.

You can set the hook function to a function that does nothing if
you need to disable automatic loading of DLLs.

The default initial value of the hook function works as follows:

1 Call os_database:get_required_DLL_identifiers

2 Foreach DLL_identifier , call objectstore::find_DLL_schema with
arguments of the DLL identifier, true, and false, and ignore the
result.

There is caching to avoid calling the hook function when a
database is being put in use for the second or later time in a
process, the database’s required DLL set has not grown, and the
process has not unloaded any DLLs.

objectstore::set_auto_open_mode()

Release 5.1

enum auto_open_mode_enum
{auto_open_read_only, auto_open_mvcc, auto_open_update,
auto_open_disable};

static void set_auto_open_mode(
auto_open_mode_enum mode = auto_open_update,
os_fetch_policy fp = os_fetch_page,
0s_int32 bytes = 0);
Enables auto-open mode. This mode automatically opens any
databases that need to be opened due to traversal of a reference or
a cross-database-pointer. Specify the mode in which to open the
database with one of the following enum values:

auto_open_read_only Opens the database as read-only.

auto_open_mvcc Opens the database for multi-
version concurrency control. See
os_database::open_mvcc() on

page 89
auto_open_update Opens the database for updates.
auto_open_disable Disables auto-open mode.

If a database is already open, a nested open is not done on that
database. If auto-open mode is disabled, the error err_database
not_open is signaled upon an attempt to do an auto open.

33

objectstore

Warning

The fetch policy for auto-opened databases can also be set using
this interface. See os_database::set_fetch_policy() for a discussion
of the use of fetch policies.

Exercise extra caution if you have several databases open for
MVCC at once. In particular, be aware that the databases will not
necessarily be consistent with each other. Unless you are very
careful, this could lead to unexpected results.

objectstore::set_cache file()

ObjectStore/Single

34

static void set_cache_file(
const char *cache_path,
0s_boolean pre_allocate = 1

);

Names a file to be used as the ObjectStore/ Single cache. This
entry point has no effect if called in a full ObjectStore (networked)
application.

If the pre_allocate argument is nonzero (the default), the cache file
is explicitly filled with zeros when it is opened. (See
objectstore::set_cache_size()). Preallocation slows down start-up,
but protects against obscure failures of mmap atcritical times if the
file system runs out of space.

If the pre_allocate argument is 0 (not the default) and an out-of-
disk-space condition occurs when ObjectStore is trying to use a
page in the cache file, the reported error is obscure (likely to be
err_internal), and the diagnostic message does not say anything
about disk space. The error message is most likely to complain
about problems with mmap, page protections, or possibly page
locks.

The call must precede objectstore::initialize . It takes precedence
over the environment variable OS_CACHE_FILE. Be aware that if
the file already exists, it is overwritten.

The cache file is not removed when the application ends.
Normally, users should do so in the interest of conserving disk
space.

Note that cache files can be reused but cannot be shared. An
attempt to start an ObjectStore/ Single application with a cache
file that is already being used by another ObjectStore/ Single
application results in an error.

ObjectStore C++ API Reference

Chapter 2: Class Library

objectstore::set_cache_size()

static void set_cache_size(os_unsigned_int32 new_cache_size);

Sets the size of the client cache in bytes. The actual size is rounded
down to the nearest whole number of pages. objectstore::set_
cache_size must be called before objectstore::initialize() . Affects
performance only.

objectstore::set_check illegal_pointers()

static void set_check_illegal_pointers(os_boolean);

If the argument is 1, this directs ObjectStore to create new
databases in default_check illegal_pointers mode. It also enables
check_illegal_pointers mode for each database currently retrieved
by the current process. See os_segment::set_check_illegal_
pointers() on page 301 and os_database::set_default_check_
illegal_pointers() on page 94.

objectstore::set_client_name()

static void set_client_name(char *new_name);

Sets the name of the program that is running. Calling
objectstore::set_client_name("program_name") during program
initialization makes some of the output of the ObjectStore
administrative/debugging commands (such as the -d option to
the Server and the ossvrstat command) easier to understand.
Must be called before objectstore::initialize()

objectstore::set_commseg_size()

Release 5.1

static void set_commseg_size(os_unsigned_int32 bytes);

Sets the size of the commseg in bytes. The actual size is rounded to
the nearest whole number of pages. The commseg is a
preallocated region on each ObjectStore client. It holds data used
internally by ObjectStore, including cache indexing information
and data that describes databases and segments used by the client.

The space requirements for the commseg are roughly as follows:

= 2000 bytes constant overhead
= 84 bytes for each page in the client cache
= 840 bytes for each segment created or used

35

objectstore

< A small number of bytes for each Server and each database
used

So, for example, with 15,000 segments and an 8M cache (which is
2048 4K pages), roughly 12774032 (12.7 MB) of commseg is
required.

objectstore::set_current_schema_key()

static void set_current_schema_key(

0s_unsigned_int32 key_low,

os_unsigned_int32 key_high
)i
Sets or unsets the schema key of the current application. Call this
function only after calling objectstore::initialize() . Otherwise, err_
schema_key is signaled and ObjectStore issues an error message
like the following:

<err-0025-0153> The schema key may not be set until after
objectstore::initialize has been called.

key_low specifies the first component of the schema key, and key
high specifies the second component. If both these arguments are
0, calling this function causes the application’s schema key to be

determined as for an application that has not called this function.

If an application has not called this function, its key is determined
by the values of the environment variables OS_SCHEMA_KEY_
HIGH and OS_SCHEMA_KEY_LOW. If both the variables are not
set, the application has no current schema key.

See Chapter 7, Database Access Control, in ObjectStore C++ API
User Guide.

objectstore::set_eviction_batch_size()

36

static void set_eviction_batch_size(os_unsigned_int32);

Sets the minimum number of bytes, rounded up to the nearest
whole number of pages, evicted when ObjectStore needs to make
room in the client cache, assuming there are enough candidates in
the eviction pool. If you specify 0, a batch size of one page is used.
If you specify a batch size greater than the size of the client cache,
the number of pages in the client cache is used. If this function is
not called, the batch size is one percent of the cache size, rounded
up to the nearest whole number of pages.

ObjectStore C++ API Reference

Chapter 2: Class Library

objectstore::set_eviction_pool_size()

static void set_eviction_pool_size(os_unsigned_int32);

Sets the number of bytes, rounded up to the nearest whole
number of pages, in the pool out of which an eviction batch is
taken. If this function is not called, the batch size is 2% of the cache
size rounded up to the nearest whole number of pages or 10
pages, whichever is larger.

objectstore::set_handle_transient_faults()

UNIX

static void set_handle_transient_faults(os_boolean);

(Calls to this function are ignored under Windows.) Determines
whether dereferencing an illegal pointer (for example, a null
pointer) in the current process causes an operating system signal
or an ObjectStore exception. If a nonzero value is supplied as
argument, an ObjectStore exception results; if 0 is supplied, or if
the function has not been invoked, an operating system signal
results.

objectstore::set_incremental_schema_installation()

static void set_incremental_schema_installation(os_boolean);

If a nonzero value (true) is supplied as argument, the current
application run will perform incremental schema installation on
each database it accesses, regardless of the database’s mode. In
addition, databases subsequently created by the current execution
of the application will be in incremental mode, and the schema of
the creating application will be installed incrementally. With
incremental schema installation, a class is added to a database’s
schema only when an instance of that class is first allocated in the
database. If 0 (false) is supplied as argument, databases
subsequently created by the current execution of the application
will be in batch mode (the default). With batch mode, whenever
an application creates or opens the database, every class in the
application’s schema is added to the database’s schema (if not
already present in the database schema).

objectstore::set_locator_file()

Release 5.1

static void set_locator_file(const char *file_name);

The argument file_name points to the name of the locator file to be
used the next time a database is opened. If 0 is supplied, the client

37

objectstore

environment variable OS_LOCATOR_FILE is used to determine
the locator file to use. A honzero argument overrides any setting
of OS_LOCATOR_FILE. If the specified file does not exist err_
locator_misc is signaled. If the first character of the string pointed
to by file_name is a white-space character or #, the string is
assumed to be the contents of a file rather than a file name.

objectstore::set_log_file()

ObijectStore/Single

static void set_log_file(const char *log_path);

Names a file that will be used for the ObjectStore/ Single Server
log. This entry point has no effect if called in a full ObjectStore
(networked) application. It takes precedence over the
environment variable OS_LOG_FILE. Note the discussion of
considerations about this environment variable in ObjectStore
Management.

If the file already exists, it must be a valid Server log created by an
earlier execution of an ObjectStore / Single application. In that
case, all committed data in that log is propagated during
ObjectStore initialization.

The log file is normally removed at program termination or when
objectstore::shutdown s called. If errors occur, the log might not
be removed. In that event the user should consider the log to
contain unpropagated data.

objectstore::set_mapped_communications()

static void set_mapped_communications(os_boolean);

Passing 1 enables mapped communications between client and
Server. Passing 0 disables it. It is enabled by default. This function
overrides the environment variable OS_NO_MAPPED. See
ObjectStore Management.

objectstore::set_null_illegal_pointers()

38

static void set_null_illegal_pointers(os_boolean);

If the argument is 1, this directs ObjectStore to create new
databases in default_null_illegal_pointers mode. It also enables
null_illegal_pointers mode for each database currently retrieved
by the current process. See os_segment::set_null_illegal_pointers()

ObjectStore C++ API Reference

Chapter 2: Class Library

on page 304 and os_database::set_default_null_illegal_pointers()
on page 9%4.

objectstore::set_opt_cache_lock_mode()

static void set_opt_cache_lock_mode(os_boolean);

A nonzero argument turns on opt_cache_lock_mode for the
current process; a 0 argument turns the mode off.

Turning on this mode will improve performance for applications
that perform database writes and expect little or no contention
from other processes for access to persistent memory. When this
mode is on, the amount of client/server communication required
to upgrade locks is reduced. Once a page is cached on the client,
the client can subsequently upgrade the page’s lock from read to
read/write when needed without communicating with the
Server. However, the amount of client/server communication
required for concurrent processes to obtain locks might increase.

opt_cache_lock_mode is ignored during read-only transactions.

Note that this function sets the mode for the current process only,
and does not affect the mode for other processes.

objectstore::set_readlock _timeout()

static void set_readlock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a read lock. The time is rounded up to the nearest
whole number of seconds. A value of -1 indicates that the process
should wait forever if necessary. After an attempt to acquire a
read lock, if the specified time elapses without the lock’s
becoming available, an os_lock_timeout exception is signaled. If the
attempt causes a deadlock, the transaction is aborted regardless of
the value of the specified timeout.

objectstore::set_reserve_as_mode()

static void set_reserve_as_mode(os_boolean new_mode);

See the documentation for the environment variable OS_
RESERVE_AS in ObjectStore Management.

objectstore::set_simple_auth_ui()

static void set_simple_auth_ui(

Release 5.1 39

objectstore

void(*)(os_void_p, os_char_const_p, os_char_p,
0s_int32, os_char_p, 0s_int32),
void*

);
Registers an authentication handler function.

The first argument is a handler function that will be called by
ObjectStore when the application first attempts to access a Server
that requires Name Password authentication (see ObjectStore
Management). The function is responsible for providing user name
and password information.

The second argument is a data value that will be passed to the
handler function when it is called.

The handler function has the following arguments: the first
argument is the void* argument that was passed to
objectstore::set_simple_auth_ui() . The second argument is the
name of the Server host. The third and fourth arguments are a
pointer to and length of a range of memory into which your
function should put the user name. The fifth and sixth arguments
are the same, for the password.

If no handler function is registered, the application issues a
message to stdout requesting a user name and password, when
first accessing a Server requiring Name Password authentication.
By registering a handler function, you can, for example, use a
dialog box instead of standard input and output to obtain
authentication information from an end user.

objectstore::set_thread_locking()

40

static void set_thread_locking(os_boolean);

To enable ObjectStore thread locking explicitly, pass a nonzero
value. To disable ObjectStore thread locking, pass 0 to this
function. If you disable ObjectStore thread locking while
collections thread locking is enabled, collections thread locking
remains enabled. You should disable collections thread locking as
well.

If your application does not use multiple threads, disable thread
locking with this function and os_collection::set_thread_locking()

If your application uses multiple threads, and the synchronization
coded in your application allows two threads to be within the

ObjectStore C++ API Reference

Chapter 2: Class Library

ObjectStore run time at the same time, you need ObjectStore
thread locking enabled. See also os_collection::set_thread_
locking() in the ObjectStore Collections C++ AP Reference and os_
transaction::begin() on page 332.

objectstore::set_transaction_priority()

static void set_transaction_priority(os_unsigned_int16 priority);

Every client has a transaction priority. The value is an unsigned
number that can range from 0 to 0xffff. The default value is 0x8000
(which is right in the middle). Note that the value 0 is special, as
described below.

When two clients deadlock, the transaction priority is used as part
of the decision as to which client should be the victim, that is,
which one should be forced to abort, and possibly restart, its
transaction.

When it makes this decision, the first thing the Server does is to
compare the transaction priorities of all the participants. If they do
not all have equal priority, the ones with the higher priority are
not considered as deadlock victims. That is, it looks at the lowest
priority number of all the participants, and any participant with a
higher priority number is no longer considered as a possible
victim.

If there is only one participant left, it is the victim. Otherwise, if
there are several participants that all share the same lowest
priority number, it chooses a victim in accordance with the Server
parameter Deadlock Victim . See ObjectStore Management.

There is one important special case. If all the participants have
priority zero, the Server will victimize all the participants! This is
not a useful mode of operation for actually running a program,
but it can be useful for debugging: you can run several clients
under debuggers, have them all set their priorities to zero, and
then when a deadlock happens, all of them abort, and you can see
what each one of them was doing. You should never use a priority
of zero unless you want this special debugging behavior.

objectstore::set_transient_delete_function()
static void set_transient_delete_function(

void (*)(os_void_p)
)i

Release 5.1 41

objectstore

Since ObjectStore redefines the global operator delete() so that it
can take control of deletion of persistent objects, applications
cannot provide their own overloaded global operator delete() .
However, instead of overloading ::operator delete() to arrange for
application-specific transient deallocation processing,
applications can register a transient delete function by passing a
pointer to the function to objectstore::set_transient_delete_
function() . The specified function is user defined, and should do
what the application’s operator delete would have done.
ObjectStore continues to provide the definition of ::operator
delete() . When ObjectStore’s ::operator delete() is given a transient
pointer, and set_transient_delete_function() has been called, it
calls the specified transient delete function on the transient
pointer.

The initial value of the delete function is 0, meaning that
ObjectStore’s ::operator delete() should ignore zero pointers and
call free() (the architecture’s native storage-freeing function) on
the pointer. You can set the value back to 0 if you want to.

objectstore::set_writelock_timeout()

static void set_writelock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a write lock. The time is rounded up to the nearest
whole number of seconds. A value of -1, the default, indicates that
the process should wait forever if necessary. After an attempt to
acquire a write lock, if the specified time elapses without the
lock’s becoming available, an os_lock_timeout_exception exception
is signaled. If the attempt causes a deadlock, the transaction is
aborted regardless of the value of the specified timeout.

objectstore::shutdown()

42

static void shutdown();

Conducts an orderly shutdown of ObjectStore. In particular, all
open databases are closed to facilitate propagation of committed
data from the Server log to the databases.

For ObjectStore/ Single, this call attempts to propagate all
committed data in the log and then to remove the log. However,
if errors occur, the log might not be removed. In that event the
user should consider the log to contain unpropagated data.

ObjectStore C++ API Reference

Chapter 2: Class Library

There should not be a transaction in progress when this entry
point is called.

As currently implemented, ObjectStore cannot be restarted after
this entry point is called. Object Design recommends that you use
objectstore::shutdown for both full ObjectStore and

ObjectStore/ Single applications.

objectstore::unload_DLL()

static void unload_DLL(os_DLL_handle h);
If h designates aloaded DLL, unload it. Ifhisos_null_DLL_handle ,
do nothing. Otherwise the results are platform dependent.

If an operating system error occurs while the DLL is being
unloaded, an err_DLL_not_unloaded exception can be thrown.

objectstore::which_product()

Release 5.1

static os_product_type which_product();

Always returns objectstore .

43

0s_access_modifier

0S_access_modifier

class os_access_maodifier : public os_member

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents the access modification performed by a class on an
inherited member. os_access_modifier is derived from os_
member .

os_access_modifier::create()

static os_access_modifier& create(os_member*);

Creates an os_access_modifier that modifies access to the
specified member.

0s_access_modifier::get_base_member()

const os_member &get_base_member() const;

Returns a reference to the const member whose access was
modified.

os_member &get_base_member();

Returns a reference to the non-const member whose access was
modified.

os_access_modifier::set_base_member()

44

void set_base_member(os_member&);

Updates the member whose access is to be modified.

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_address _space_marker

Release 5.1

To the address space marker feature, create an os_address_space_
marker at some convenient point where address space
consumption that is to be undone is about to begin (like the
beginning of a query). Later, when os_address_space_
marker::release() is called, all address space reservations added
since that marker was created will be released (subject to the same
restrictions mentioned for objectstore::release_persistent_
addresses — some address space cannot be released during a
transaction).

The API allows markers to be nested; that is, several markers can
be in effect at the same time. Calling os_address_space_
marker::release() on an outer marker releases any markers nested
within it.

The os_address_space_marker::retain() function allows selective
release of address space, similar to creating os_retain_address
objects, but without the requirement for stack allocation (which
binds the usage to a lexical scope). Call os_address_space_
marker::retain() on any pointers that should remain valid across
the release boundary, prior to calling release . os_address_space_
marker::retain() can also be passed a marker — in this case, the
address space required by the pointer is not released until that
marker is released. It is not possible to use the retain function on
an address to make it be released sooner, by a more nested marker
— attempts to do so are ignored.

The os_address_space_marker::release() function releases
address space added since the creation of the mark, minus any
address space retained by calls to the os_address_space_
marker::retain() function (and any retained by os_retain_address
objects and os_pvars). release() can be called on a marker
repeatedly, each time releasing the address space accumulated
since the previous release (or since the marker was created).

If a marker is deleted and no call to os_address_space_
marker::release() is made, the marker is removed and the address
spaced that it controlled is now controlled by its previous marker.
If there is no previous marker, the address space is not governed
by any marker and is no longer incrementally releasable.

45

0s_address_space_marker

After the outermost marker is created, no more than 2322 minus 1

additional markers can be created before the outermost one is
deleted. This is true even if some or all of the inner markers are
deleted.

Like objectstore::release_persistent_addresses() , markers cannot
be released within nested transactions.

The implementation of os_address_space_marker::release()
besides possibly not freeing as much address space as
objectstore::release_persistent_addresses() , also does not cool the
client cache as much. os_address_space_marker::release() must
relocate out all pages that were relocated in or modified after the
marker was constructed

0s_address_space_marker::get_current()

static os_address_space_marker *get_current();

Returns the current address space marker. The current marker is
defined as the most recently constructed marker that has not yet
been deleted. This function can be used with nested markers.

os_address_space_marker::get_level()

0s_unsigned_int32 get_level() const;

The level of a marker is 1 if there was no current marker when it
was created. Otherwise, the level is 1 greater than the level of the
previously created marker. Use get_level() to quickly compare
address space markers. Markers with lower levels come before
those with higher levels. This function can be used with nested
markers.

0os_address_space_marker::get_next()

os_address_space_marker *get_next() const;

Returns the next address space marker (or NULL if this marker is
the last). The next address space marker is the first one that was
created after this address space marker.

This function can be used with nested markers.

os_address_space_marker::get_previous()

46

0s_address_space_marker *get_previous() const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns the previous address space marker (or NULL if this
marker is the first). The previous address space marker is the last
one that was created before this address space marker. This
function can be used with nested markers.

os_address_space_marker::of()

static os_address_space_marker *of(void *p);

Returns the address space marker (or NULL) with the highest
level that, when released, will release the address space needed
for pointer p.

os_address_space_marker::os_address_space_marker()

os_address_space_marker();

Creates an os_address_space_marker .

os_address_space_marker::release()

void release();

Releases the address space that was added to the PSR since the
address space marker was created, or since the last time os_
address_space_marker::release was called.

Deleting a marker does not does not release the address space it
has marked. Conversely, releasing a marker does not deactivate,
or delete, it. This means you can call the release function again on
the same marker after more address space has been accumulated.
os_address_space_marker::release does not affect the value of os_
address_space_marker::get_current() . This function can be used
with nested markers.

os_address_space_marker::retain()

Release 5.1

static void retain(

void *p,

0s_address_space_marker *marker = NULL
)i
Returns the address space marker (or NULL) with the highest
level that, when released, releases the address space needed for
pointer p. Retains space needed by pointer p back to some marker,
or (if the marker is null) back past all markers.

47

0s_address_space_marker

os_address_space_marker::~0s_address_space_marker()

~0s_address_space_marker();

Destructor function.

48 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_anonymous_indirect_type

class os_anonymous_indirect_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a const or volatile type. This class is derived from os_

type.

0s_anonymous_indirect_type::create()

static os_anonymous_indirect_type &create(
0s_type *target_type,
);

Creates an anonymous indirect type with the specified target_type
and name.

0os_anonymous_indirect_type::get_target_type()

const os_type &get_target_type() const;

Returns the type to which the const or volatile specifier applies.
For example, the type constint is represented as an instance of os_
anonymous_indirect_type whose target type is an instance of os_
integral_type .

0s_anonymous_indirect_type::is_const()

0s_boolean is_const() const;

Sets the name of an os_anonymous_indirect_type of type const.

0os_anonymous_indirect_type::is_volatile()

0s_boolean is_volatile() const;

Sets the name of an os_anonymous_indirect_type of type volatile .

0os_anonymous_indirect_type::set_is_const()

void set_is_const(os_boolean);

Sets the name of an os_anonymous_indirect_type of type const .

0os_anonymous_indirect_type::set_is_volatile()

Release 5.1

void set_is_volatile(os_boolean);

Sets the name of an os_anonymous_indirect_type of type volatile .

49

0s_app_schema

0s_app_schema

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents an application schema, stored in an application schema
database, or acomponent schema, stored in a component schema
database. os_app_schema is derived from os_schema .

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0s_app_schema::get()

50

static const os_app_schema &get();

Returns the schema of the application making the call. Signals err_
no_schema if the schema could not be found.

static const os_app_schema &get(const os_databaseg&);

Returns the schema of the specified database. Signals err_no_
schema if the specified database is not an application or
component schema database.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_application_schema_info

Include files

Release 5.1

You must include the header file <ostore/nreloc/schftyps.hh>

Provides Information in an application about its application
schema, including the pathname of the schema database, rep
descriptors, pointers to vtables, etc.

51

os_array_type

os_array_type

class os_array_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ array type. This class is derived from os_type .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

os_array_type:.create()

static os_array_type &create(
0s_unsigned_int32 number_of_elements,
0s_type *element_type

);
Creates an array type with the specified number of elements and
the specified element type.

os_array_type::get_element_type()

const os_type &get_element_type() const;

Returns the type of element contained in instances of the specified
array type.

0s_type &get_element_type();

Returns the type of element contained in instances of the specified
array type.

os_array_type::get_number_of elements()

0s_unsigned_int32 get_number_of_elements() const;

Returns the number of elements associated with the specified
array type. If the number is not known, 0 is returned.

os_array_type:set_element_type()

void set_element_type(os_type &);

52 ObjectStore C++ API Reference

Chapter 2: Class Library

Specifies the type of element contained in instances of the
specified array type.

os_array_type::set number_of elements()

void set_number_of_elements(os_unsigned_int32);

Specifies the number of elements associated with the specified
array type.

Release 5.1 53

0s_base_class

0s_base_ class

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of os_base_
class represents a class from which another class is derived,
together with the nature of the derivation (that is, virtual or
nonvirtual, and private, public, or protected).

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hn> (if used), followed by
<ostore/mop.hh> .

os_base_class:.create()

static os_base_class &create(
0s_unsigned_int32 access,
0s_boolean is_virtual,
0s_class_type *associated_class

);
Creates an os_base_class . The arguments specify the initial
values for the attributes access, is_virtual , and associated_class .

os_base_class::get_access()

int get_access() const;

Returns an enumerator describing the access to the base class
members, os_base_class::Public , os_base_class::Private , or os_
base_class::Protected .

os_base_class::get_class()

const os_class_type &get_class() const;

Returns a reference to a const os_class_type , the class serving as
base class in the derivation represented by the specified os_base
class object.

os_class_type &get_class();

Returns a reference to anon-constos_class_type ,the classserving
as base class in the derivation represented by the specified os_
base_class object.

54 ObjectStore C++ API Reference

os_base class:

os_base class:

os_base class:

os_base class::

os_base_class::

os_base class::

os_base class::

os_base_class:

Release 5.1

Chapter 2: Class Library

:get_offset()

os_unsigned_int32 get_offset() const;

Returns the offset in bytes to the base class from the immediately
enclosing class. For virtual bases, this offset is only meaningful if
the base class was obtained by a call to os_class_type::get_
allocated_virtual_base_classes()

0s_unsigned_int32 get_offset(const os_class_type&) const;

Returns the offset in bytes to the base class from the specified most
derived class. this must be a virtual base class.

‘get_size()

0s_unsigned_int32 get_size() const;

Returns the size in bytes of the base class.

‘get_virtual_base_class_pointer_offset()

0s_unsigned_int32 get_virtual_base_class_pointer_offset() const;

Returns the offset of the virtual base class pointer.
is_virtual()

os_boolean is_virtual() const;

Returns 1 if and only if the specified base class is virtual.
Private

This enumerator is a possible return value from os_base_
class::get_access() , indicating private access.

Protected

This enumerator is a possible return value from os_base_
class::get_access() , indicating protected access.

Public

This enumerator is a possible return value from os_base_
class::get_access() , indicating public access.

:set_access()

void set_access(os_unsigned_int32);

55

0s_base_class

Specifies an enumerator describing the access to the base class
members, os_base_class::Public , os_base_class::Private , Or os_
base_class::Protected .

os_base_class::set_class()

void set_class(os_class_type &);

Specifies the class serving as base class in the derivation
represented by the specified os_base_class object.

os_base_class::set_offset()

void set_offset(os_unsigned_int32);

Sets the offset in bytes of the base class from the immediately
enclosing class.

0s_base_class::set_virtual_base_class_no_pointer()

void set_virtual_base_class_no_pointer();

Specifies that the base class has no virtual base class pointer.

os_base_class::set_virtual_base_class_pointer_offset()

void set_virtual_base_class_pointer_offset(os_unsigned_int32);

Sets the offset of the virtual base class pointer.

os_base_class::set_virtuals_redefined()

void set_virtuals_redefined(os_boolean);

Specifies whether the base class redefines any virtual functions.

os_base_class::virtual_base_class_has_pointer()

os_boolean virtual_base_class_has_pointer() const;

Returns nonzero if the base class has a virtual base class pointer.

os_base class::virtuals_redefined()

0s_boolean virtuals_redefined() const;

Returns nonzero if the base class redefines any virtual functions.

56 ObjectStore C++ API Reference

0s_class_type

Chapter 2: Class Library

class os_class_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of os_class_
type represents a C++ class. os_class_type is derived from os_
type.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0s_class_type::Anonymous_union

os_class_type::Class

This enumerator is a possible return value from os_class_
type::kind() . It indicates an anonymous union type.

This enumerator is a possible return value from os_class_
type::kind() . It indicates a class declared with the class-key class .

o0s_class_type::.create()

Release 5.1

static os_class_type &create(const char *name);

Creates a new class with the specified name (which is copied by
ObjectStore). It initializes the other attributes of os_class_type as
follows:

Attribute Value

base_classes empty os_List<os_base_
class*>

members empty os_List<os_member*>

defines_virtual_functions 0

class_kind os_class_type::Class

defines_get_os_typespec_function 0
is_template_class
is_persistent

57

0s_class_type

Attribute Value

is_forward_definition 1

static os_class_type &create(

const char *name,

0s_List<os_base_class*> &base_classes,

0s_List<os_member*> &members,

0s_boolean defines_virtual_functions
);
Creates a new class. The arguments specify the initial values for
the attributes name, base_classes , members , and defines_virtual_
functions . The initial values for the remaining attributes are as
follows:

Attribute Value

class_kind os_class_type::Class
defines_get_os_typespec_function 0

is_template_class

is_persistent

is_forward_definition 0

If you create a class with the metaobject protocol, there is no direct
way to make it compiler heterogeneous.

os_class_type::declares_get_os_typespec_function()

os_boolean declares_get_os_typespec_function() const;

Returns nonzero if and only if the specified class declares a get_
os_typespec() member function.

os_class_type::defines_virtual_functions()

os_boolean defines_virtual_functions() const;

Returns nonzero if and only if the specified class defines any
virtual functions.

os_class_type::find_base_class()

58

const os_base_class *find_base_class(const char *classname)
const;

Returns a pointer to the const os_base_class whose class has the
given name and is a base class of this . Either the inheritance is
direct or the base class is a virtual base class. If there is no such

ObjectStore C++ API Reference

Chapter 2: Class Library

class, 0 is returned. err_mop_forward_definition is signaled if the
specified class is known only through a forward definition.

os_base_class *find_base_class(const char *classname);

Returns a pointer to the non-const os_base_class whose class has
the given name and is a base class of this . Either the inheritance is
direct or the base class is a virtual base class. If there is no such
class, 0 is returned. err_mop_forward_definition is signaled if the
specified class is known only through a forward definition.

os_class_type::find_member_variable()

const os_member_variable *find_member_variable(

const char *name
) const;
Returns a pointer to a const os_member_variable representing the
data member of this with the given name. The member must be
defined by this, not inherited by it. If there is no such data
member, 0 is returned. err_mop_forward_definition is signaled if the
specified class is known only through a forward definition.

0s_member_variable *find_member_variable(const char *name);

Returns a pointer to a non-const os_member_variable

representing the data member of this with the given name. The
member must be defined by this, not inherited by it. If there is no
such data member, 0 is returned. err_mop_forward_definition is
signaled if the specified class is known only through a forward
definition.

0s_class_type::get_access_of get os_typespec_function()

0S_member::0s_member_access get_access_of_get_os_
typespec_function() const;

Returns os_member::Private , os_member::Protected , Or os_
member::Public .

os_class_type::get_allocated_virtual_base_classes()

Release 5.1

os_list get_allocated_virtual_base_classes() const;

Returns a list of pointers to const os_base_class objects. Each os_
base_class object represents a virtual base class from which the

specified class inherits (that is, whose storage is allocated as part
of the specified class). The order of list elements is not significant.

59

0s_class_type

err_mop_forward_definition is signaled if the specified class is known
only through a forward definition.

os_list get_allocated_virtual_base_classes();

Returns a list of pointers to non-const os_base_class objects. Each
os_base_class object represents a virtual base class from which
the specified class inherits (that is, whose storage is allocated as
part of the specified class). The order of list elements is not
significant. err_mop_forward_definition is signaled if the specified
class is known only through a forward definition.

0s_class_type::get base classes()

os_list get_base_classes() const;

Returns a list, in declaration order, of pointers to const os_base_
class objects. Each os_base_class object represents a class from
which the given class is derived, together with the nature of the
derivation (virtual or nonvirtual, and public, private, or
protected). err_mop_forward_definition is signaled if the specified
class is known only through a forward definition.

os_list get_base_classes();

Returns a list, in declaration order, of pointers to non-const os_
base_class objects. Each os_base_class object represents a class
from which the given class is derived, together with the nature of
the derivation (virtual or nonvirtual, and public, private, or
protected). err_mop_forward_definition is signaled if the specified
class is known only through a forward definition.

os_class_type::get_class_kind()

os_unsigned_int32 get_class_kind() const;

Returns an enumerator indicating the kind of class represented by
the specified instance of os_class_type . os_class_type::Struct
indicates a struct; os_class_type::Union indicates a named union
type; os_class_type::Anonymous_union indicates an anonymous
union type; and os_class_type::Class indicates a class declared
with the class-key class .

os_class_type::get_dispatch_table_pointer_offset()

os_int32 get_dispatch_table_pointer_offset() const;

60 ObjectStore C++ API Reference

Chapter 2: Class Library

Returns the offset at which the pointer to the dispatch table is
stored. Signals err_mop if there is no dispatch table.

o0s_class_type::get _indirect _virtual base classes()

os_list get_indirect_virtual_base_classes() const;

Returns a list of pointers to const os_base_class o0bjects. Each os_
base_class object represents a virtual base class from which the
specified class inherits virtually and indirectly. The order of list
elements is not significant. err_mop_forward_definition is signaled if
the specified class is known only through a forward definition.

os_list get_indirect_virtual_base_classes();

Returns a list of pointers to non-const os_base_class objects. Each
os_base_class object represents a virtual base class from which
the specified class inherits virtually and indirectly. The order of
list elements is not significant. err_mop_forward_definition is
signaled if the specified class is known only through a forward
definition.

os_class_type::get_ members()

os_list get_members() const;

Returnsa list, in declaration order, of pointers to const os_member
objects. Each os_member object represents a member defined by
the specified class. Note that currently only discriminant member
functions are stored in the schema. err_mop_forward_definition is
signaled if the specified class is known only through a forward
definition.

os_list get_members();

Returns a list, in declaration order, of pointers to non-const os_
member objects. Each os_member object represents a member
defined by the specified class. Note that currently only
discriminant member functions are stored in the schema. err_mop_
forward_definition is signaled if the specified class is known only
through a forward definition.

os_class_type::get_most_derived_class()

static const os_class_type &get_most_derived_class(
const void *object,
const void* &most_derived_object

) const;

Release 5.1 61

0s_class_type

62

If object points to the value of a data member for some other
object, o, this function returns a reference to the most derived class
of which o is an instance. A class, c1, is more derived than another
class, c2, if cl is derived from c2, or derived from a class derived
from c2, and so on. most_derived_object is set to the beginning of
the instance of the most derived class. There is one exception to
this behavior, described below.

If object points to an instance of a class, o, but not to one of its data
members (for example, because the memory occupied by the
instance begins with a virtual table pointer rather than a data
member value), the function returns a reference to the most
derived class of which o is an instance. most_derived_object is set
to the beginning of the instance of the most derived class. There is
one exception to this behavior, described below.

If object does not point to the memory occupied by an instance of
a class, most_derived_object is setto 0, and err_mop is signaled.
ObjectStore issues an error message like the following:

<err-0008-0010>Unable to get the most derived class in os_class_
type::get_most_derived_class() containing the address 0x%lx.

Here is an example:

class B {
public:
intib;
IS

class D : public B {
public:

intid;

1

class C{

public:

intic;

Dcm;

i

void baz () {

C* pC = new (db) C;

D *pD = &C->cm ;

int *pic = &pC->ic, *pid = &pC->cm.id, *pib = &pC->cm.ib ;

}

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

Invoking get_most_derived_class() on the pointers pic, pid, and
pib has the results shown in the following table:

object most_derived_object os_class_type
pic pC C
pid pD D
pib pD D

The exception to the behavior described above can occur when a
class-valued data member is collocated with a base class of the
class that defines the data member. If a pointer to such a data
member (which is also a pointer to such a base class) is passed to
get_most_derived_class() , a reference to the value type of the data
member is returned, and most_derived_object is set to the same
value as object .

Consider, for example, the following class hierarchy:

class CO {
public:

int io;

I3

class BO {
public:
void fO();
I3

class B1 : public BO {
public:

virtual void f1();

CO0 c0;

h

class C1 : public B1 {

public:

static os_typespec* get_os_typespec();

intil;

b

Some compilers will optimize BO so that it has zero size in B1 (and
C1). This means the class-valued data member c0 is collocated
with a base class, B0, of the class, C1, that defines the data
member.

Given

Clcl;

63

0s_class_type

Cl*pcl=~&cl,
BO * pb0 = (BO *)pcl;
CO * pc0 = & pcl->c0;

the pointers pb0 and pc0O will have the same value, because of this
optimization.

In this case get_most_derived_class() called on the pb0 or pco will
return a reference to the os_class_type for CO (the value type of
the data member c0) and most_derived_object is set to the same
value as object .

If B1 is instead defined as

class B1 : public BO {
public:

virtual void f1();

inti;

CO0 c0;
2
and

int * pi = & pcl->i;
pb0 and pi have the same value because of the optimization, but
the base class, B0, is collocated with an int-valued data member
rather than aclass-valued data member. get_most_derived_class()
called on pb0 or pi returns a pointer to the os_class_type for the
class C1 and sets most_derived_object to the same value as pcl.

0s_class_type::get name()

const char *get_name() const;

Returns the name of the specified class.
0s_class_type::get_pragmas()

os_List<os_pragma*> get_pragmas() const;

Returns the pragmas associated with the specified class.
0s_class_type::.get size_as base()

0s_unsigned_int32 get_size_as_base() const;

Returns the size of the specified class when serving as a base class.
0s_class_type::get_source_position()

void get_source_position(

64 ObjectStore C++ API Reference

os_class_type::

os_class_type::

0s_class_type::

0s_class_type::

0s_class_type::

0s_class_type::

os_class_type::

Release 5.1

Chapter 2: Class Library

const char* &file,
0s_unsigned_int32 &line
) const;

Returns the source position associated with the specified class.
has_constructor()

0s_boolean has_constructor() const;

Returns nonzero if the class defines a constructor.
has_destructor()

0s_boolean has_destructor() const;

Returns nonzero if the class defines a destructor.
has_dispatch_table()

0s_boolean has_dispatch_table() const;

Returns nonzero if the class has a dispatch table.
introduces_virtual_functions()

os_boolean introduces_virtual_functions() const;

Returns nonzero if and only if the class defines, rather than merely
inherits, a virtual function.

You can set this attribute with set_introduces_virtual_functions()

is_abstract()

0s_boolean is_abstract() const;

Returns nonzero if and only if the specified class is abstract.
is_forward_definition()

0s_boolean is_forward_definition() const;

Returns 1 if and only if the specified class is known only through
a forward definition.

is_persistent()

0s_boolean is_persistent() const;

Returns nonzero if and only if the specified class is marked as
persistent.

65

0s_class_type

os_class_type::is_template_class()

os_boolean is_template_class() const;

Returns 1 if and only if the specified class is a template class.

0s_class_type:.operator os_instantiated_class_type&()

operator const 0s_instantiated_class_type&() const;

Provides for safe casts from os_class_type to const os_
instantiated_class type. If the cast is not permissible, err_mop_
illegal_cast is signaled.

operator os_instantiated_class_type&();

Provides for non-const casts from os_class_type to os_
instantiated_class type. If the cast is not permissible, err_mop_
illegal_cast is signaled.

0s_class_type::set_access_of get os typespec_function()

void set_access_of_get_os_typespec_function(
0Ss_member::0s_member_access

);

Pass os_member::Private , os_member::Protected , Or os_
member::Public to specify the type of access allowed to the class’s
get_os_typespec() function.

os_class_type::set_base_classes()

void set_base_classes(os_List<os_base_class*>&);

Sets the list, in declaration order, of os_base_class es of the
specified class. Each os_base_class object represents a class from
which the given class is derived, together with the nature of the
derivation (virtual or nonvirtual, and public, private, or
protected).

os_class_type::set_class_kind()

66

void set_class_kind(os_unsigned_int32);

Sets the class kind of the specified class. The argument should be
an enumerator indicating the kind of class represented by the
specified instance of os_class_type . os_class_type::Struct
indicates a struct; os_class_type::Union indicates a named union
type; os_class_type::Anonymous_union indicates an anonymous

ObjectStore C++ API Reference

Chapter 2: Class Library

union type; and os_class_type::Class indicates a class declared
with the class-key class .

0s_class_type::set_declares_get_os_typespec_function()

void set_declares_get_os_typespec_function(os_boolean);

Specifies whether this declares a get_os_typespec() member
function.

os_class_type::set_defines_virtual_functions()

void set_defines_virtual_functions(os_boolean);

Specifies whether the specified class defines any virtual functions.

o0s_class_type::set_dispatch_table pointer_offset()

void set_dispatch_table_pointer_offset(os_int32);

Sets the offset at which the pointer to the dispatch table is stored.

os_class_type::set_has_constructor()

void set_has_constructor(os_boolean);

Specifies whether the class defines a constructor.

0s_class_type::set_has_destructor()

void set_has_destructor(os_boolean);

Specifies whether the class defines a destructor.

os_class_type::set_indirect_virtual_base_classes()

void set_indirect_virtual_base_classes(os_List<os_base_class*>);

Sets the indirect virtual base classes of the specified class.

os_class_type::set_introduces_virtual _functions()

void set_introduces_virtual_functions(os_boolean);

Passing a nonzero value specifies that the class defines, rather
than merely inherits, a virtual function.

0s_class_type::set_is_abstract()
void set_is_abstract(os_boolean);

Specifies whether the specified class is abstract.

Release 5.1 67

0s_class_type

os_class_type::set_is_forward_definition()
void set_is_forward_definition(os_boolean);

Specifies whether the specified class is known only through a
forward definition.

0s_class_type::set_is_persistent()

void set_is_persistent(os_boolean);

Specifies whether the specified class is marked as persistent. In
order to be installed into a database schema, a class must either be
marked as persistent or be reachable from a persistent class.
Making a class persistent with set_is_persistent() is similar to
marking it with OS_MARK_SCHEMA_TYPE().

0s_class_type::set_ members()

void set_members(os_List<os_member*>&);

Sets the members, in declaration order, of the specified class.
os_class_type::set_ name()

void set_name(const char *);

Sets the name of the specified class. ObjectStore copies the
character array pointed to by the argument.

os_class_type::set_pragmas()
void set_pragmas(os_List<os_pragma*>);
Sets the pragmas associated with the specified class.
0s_class_type::set_source_position()
void set_source_position(
const char* file,

0s_unsigned_int32 line

);
Sets the source position associated with the specified class.

0s_class_type::Struct

This enumerator is a possible return value from os_class_
type::kind() . It indicates a struct.

68 ObjectStore C++ API Reference

Chapter 2: Class Library

0s_class_type::Union

This enumerator is a possible return value from os_class_
type::kind() . It indicates a named union type.

Release 5.1 69

0s_comp_schema

0S_comp_schema

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a compilation schema, stored in a compilation schema
database. os_comp_schema is derived from os_schema .

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

os_comp_schema::get()

static const os_comp_schema &get(const os_database&);

Returns the schema of the specified database.

70 ObjectStore C++ API Reference

0os_database

Release 5.1

Chapter 2: Class Library

Instances of the class os_database represent ObjectStore
databases. Pointers to such instances can be used as arguments to
persistent new.

Persistent data can be accessed only if the database in which it
resides is open. Databases are created, destroyed, opened, and
closed with database member functions. The functions for
creating, opening, and closing databases can be called either
inside or outside a transaction. The function for destroying
databases should be called outside a transaction.

Each database retrieved by a given process has an associated open
count for that process. The member function os_database::open()
increments the open count by 1, and the member function os_
database::close() decrements the open count by 1. When the open
count for a process increases from 0 to 1, the database becomes
open for that process. A database becomes closed for a process
when its open count becomes 0.

When a process terminates, any databases left open are
automatically closed.

Instances of the class os_database are sometimes used to hold
process local or per-process state, representing a property of the
database for the current process. For example, the function os_
database::is_writable() returns a value indicating whether the
specified database is writable for the current process. This is per-
process information since the database might be unwritable by
one process (because it opened the database for read only — see
os_database::open() on page 88) while it is writable by another
process. As a consequence, it is sometimes preferable to think of
an instance of this class as representing an association between a
database and a process (the process that retrieves the pointer to it).
In fact, instances of os_database are actually transient objects.

Invoking ::operator delete() on an os_database is illegal.

Some functions that perform administrative operations on
databases (for example functions for changing database
ownership or protection modes) are members of the class os_
dbutil — see a description on page 106.

71

0s_database

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type. The
type os_unixtime_t is defined as unsigned long .

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_database::allow_external_pointers()

72

void allow_external_pointers(os_boolean set_default_only = 0);

Must be called from within a transaction. Once invoked, cross-
database pointers are allowed from all current and future
segments of the specified database, unless set_default_only is
specified as a nonzero value (true), in which case cross-database
pointers will be allowed only from subsequently created
segments.

A pointer from one database, dbl, to another, db2, points to, at
any given time, whichever database has a certain pathname —
namely, db2’s pathname at the time the pointer was stored. If
db2’s pathname changes (for example, as a result of performing
osmv on db2), the pointer will no longer refer to data in db2. If
some other database, db3, is given db2’s original pathname (for
example, as a result of performing osmv on db3), the pointer will
refer to data in db3.

The pathname is not stored as part of the cross-database pointer
(which takes the form of a regular virtual memory address), but
rather as part of an os_database_reference stored in a table
associated with the pointer.

Itisillegal to rename a database so that a pointer that used to refer
to another database now refers to the database in which the
pointer itself resides.

References normally store a relative pathname; that is, if the
source and destination databases have a common ancestor
directory, the common directory is not stored as part of the
pathname — only the part of the target database’s pathname that
is not shared with the source database’s pathname is stored. On
UNIX systems, for example, the common part of the pathname is
preceded by the appropriate number of *“../”’s to traverse the
hierarchy up from the source directory to the common ancestor

ObjectStore C++ API Reference

Chapter 2: Class Library

directory. For example, if the source and target databases are
named "/sys/appl/mydb " and "/sys/lib/libl " respectively, the
reference stores the relative pathname, "../lib/lib1 ".

You can override use of relative pathnames with the functions os_
database::set_relative_directory() and os_database::get_relative
directory() — see the entries for these functions below.

Dereferencing a cross-database pointer causes the destination
database, if not already open, to be opened for read/write. Thus,
dereferencing such a pointer can result in err_database_not_found.

os_database::change_database_reference()

void change_database_reference(
os_database_reference *old_ref,
os_database_reference *new_ref

);

Substitutes new_ref for old_ref in all tables that resolve pointers
out of the specified database. Can be used to change the type of a
cross-database pointer’s associated os_database_reference . Does
not affect pointers already resolved. This function signals err_trans
if it is called within a transaction.

os_database::.change_database reference starts its own
transaction (outside any user transaction), and iterates over every
segment in the database to find and change the reference. Be
aware that there is a small risk of an address space problem if
there are pvars that trigger data page use during the internal
transaction that os_database::.change_database_reference uses.

See also the functions os_database::allow_external_pointers() on
page 72 and os_database::get_database_references() on page 81,
and the class os_database_reference on page 101.

os_database::change_schema_key()

void change_schema_key(
0s_unsigned_int32 old_key_low,
0s_unsigned_int32 old_key_high,
0s_unsigned_int32 new_key low,
0s_unsigned_int32 new_key high
)i
Sets the schema key of the specified database. Call this function
from within an update transaction. The specified database must

Release 5.1 73

0s_database

os_database::close()

be opened for update, otherwise ObjectStore signals err_opened_
read_only, and issues an error message like the following:

<err-0025-0155> Attempt to change the schema key of database db1, but
it is opened for read only.

If the database has had its key frozen, err_schema_key is signaled,
and ObjectStore issues an error message like the following:

err_schema_key

<err-0025-0152> The schema key of database db1l is frozen and may not
be changed.

If the database already has a schema key at the time of the call,
old_key low must match the first component of the key and old_
key_high must match the second component, or err_schema_key is
signaled, and ObjectStore issues an error message like the
following:

Error using schema keys

<err-0025-0158>Unable to change schema key of database db1.

The schema is already protected and the key provided did not match the
old key in the schema. (err_schema_key)

If the database has no schema key, old_key low and old_key high
are ignored.

new_key low specifies the first component of the database’s new
schema key, and new_key_high specifies the second component. If
both these arguments are 0, calling this function causes the
database to have no schema key.

void close();

If the open count of the database for which the function is called
is greater than 0, decrements the open count by 1. If the function
is called from within a transaction, the open count is not
decremented until the end of the current outermost transaction. If
the open count becomes 0, the database is closed. If the new open
count, c, remains greater than 0, the database is given the access
type (opened for read or opened for read/write) it had as of the
last time the open count was c.

os_database::.create()

74

static os_database *create(

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

const char *pathname,

0s_int32 mode = 0664,

0s_boolean if_exists_overwrite = 0,
os_database *schema_database = 0

);

Returns a pointer to a newly created database, an instance of the
class os_database , with the specified pathname and mode (the
values of mode are as described in ObjectStore Management,
oschmod: Changing Database Permissions). The new database is
also opened for read/write, and its open count is incremented.

If a database with the specified pathname already exists, an err_
database_exists exception is signaled, unless if_exists_overwrite is
nonzero (true). If if_exists_overwrite iS nonzero, any existing
database with the same pathname is deleted, a new database is
created with the specified mode, and the new database is opened
for read/write.

If schema_database is 0, schema information is stored in the new
database. The effect is the same as the result of calling create()
without the schema_database argument:

os_database::create(pathname, mode, if_exists_overwrite);

If schema_database is nonzero, the database it specifies is used as
the schema database for the newly created database. This means
that ObjectStore installs in the schema database all schema
information for the data stored in the new database; the new
database itself will have no schema information in it.

The specified schema database must be open at the time of the call
to create(); if it is not, err_schema_database is signaled. If the
schema database was opened for read only, ObjectStore attempts
to reopen it for read/write. If this fails because of protections on
the database, it remains open for read only. This prevents any
update to the new database that requires schema installation.

Note that the new database’s schema database can also contain
regular user data (that is, data other than schema information).
The schema database must store its own schema locally. If the
schema for the user data in schema_database is stored remotely,
err_schema_database is signaled.

For file databases, pathname is an operating system pathname.
ObjectStore takes into account local NFS mount points when

75

0s_database

interpreting the pathname, so pathnames can refer to databases
on foreign hosts. To refer to a database on a foreign host for which
there is no local mount point, use a Server host prefix, the name of
the foreign host followed by a colon (), as in oak:/foo/bar .

For databases in ObjectStore directories, pathname consists of a
rooted pathname preceded by a rawfs host prefix of the form host-
name:: (for example oak::/foo/bar). The rawfs host prefix can be
followed by a Server host prefix of the form host-name: (asin
oak::beech:/foo/bar).

The Server host name specifies the file system on which you want
the new database stored. If no Server host name is supplied, the
value of the ObjectStore environment variable OS_SERVER_HOST
is used.

os_database::create_root()

os_database_root *create_root(char *name);

Creates a root in the specified database to associate a copy of the
specified name with an as-yet-unspecified entry-point object.
(Since the name is copied to persistent memory by this function,
the supplied char* can point to transient memory.) If the specified
name is already associated with an entry-point object in the same
database, an err_root_exists exception is signaled. If the specified
database is the transient database, an err_database not _open
exception is signaled.

os_database::.create_segment()

0s_segment *create_segment();

Creates a segment in the specified database, and returns a pointer
to an instance of the class os_segment . Call this function from
within a transaction. The return value points to a transient object
representing the new segment. Note that, since it points to
transient memory, the return value of this function cannot be
stored persistently. Performing this function on the transient
database returns a pointer to the transient segment.

os_database::decache()

void decache();

76 ObjectStore C++ API Reference

Chapter 2: Class Library

This function deletes all internal storage associated with the given
database. Its purpose is to allow applications to open large
numbers of databases without continuing to use more virtual
memory and commseg space for each database opened.

Calling decache() on an os_database makes the os_database
object, and any os_segment objects for that database, unusable.
You should not refer to the os_database or os_segment objects
again; doing so could lead to unpredictable results. If you want to
open or look up the database again, use os_database::lookup() or
the overloading of os_database::open() that takes a pathname
argument.

There are some restrictions on when this function can be used. The
call to os_database::decache() must be made outside a
transaction. The application cannot be in retain_persistent_
addresses mode. The database being decached cannot be the
transient database, be currently opened by the application, or
have open the database that it wants to decache. ObjectStore will
raise an err_misc exception if any of these restrictions is violated.

Calling decache() on an os_database invalidates any os_
reference_transient objects that refer to objects within the
database. Attempting to resolve these invalidated references will
have unpredictable results.

Applications should only call this routine if they probably will not
refer to the database soon. There is some overhead associated with
using a database for the first time that will be incurred again if the
database is opened after it is decached.

os_database::destroy()

Release 5.1

void destroy();

Deletes the database for which the function is called. To make
your program portable, only call this function from outside any
transaction. If the database is open at the time of the call, destroy()
closes the database before deleting it.

When a process destroys a database, this can affect other
processes that have the database opened. Such a process might
subsequently be unable to access some of the database’s data —
even if earlier in the same transaction it successfully accessed the
database.

77

0s_database

Data already cached in the process’s client cache will continue to
be accessible, but attempts to access other data will cause
ObjectStore to signal err_database_not_found. Attempts to open the
database will also provoke err_database_not_found. Note that
performing os_database::lookup() on the destroyed database’s
pathname might succeed, since the instance of os_database
representing the destroyed database might be in the process’s
client cache.

If you call this function from within a transaction, beware of the
following:

= The effects of calling this function cannot be undone by
aborting the transaction.

= On some but not all platforms, calling destroy() from within a
transaction causes ObjectStore to signal the exception err_
database_lock_conflict if another process is accessing the
database.

= If you attempt to access data in a destroyed database in the
same transaction in which it was destroyed, err_database_not_
found is signaled.

= In most cases the database is actually removed from the Server
at the end of the transaction, but in some cases it is removed
earlier. For example, suppose that, before the transaction ends,
you create a new database with the same pathname as the
database on which you called destroy() . In this case, the old
database is removed before the new database is created.

If you attempt to operate on a destroyed instance of os_database ,
err_database_is_deleted is signaled.

os_database::find_root()

os_database_root *find_root(char *name);

Returns a pointer to the root in the specified database with the
specified name. Returns 0 if not found.

os_database::freeze_schema_key()

78

void freeze_schema_key(
0s_unsigned_int32 key_low,
os_unsigned_int32 key_high
);

ObjectStore C++ API Reference

Chapter 2: Class Library

Freezes the specified database’s schema key, preventing any
change to the key, even by applications with a matching key.

Call this function from within an update transaction. The
specified database must be opened for update, otherwise
ObjectStore signals err_opened_read_only, and issues an error
message like the following:

<err-0025-0156> Attempt to freeze the schema key of database db1, but
it is opened for read only.

If the database is schema protected and has not been accessed
since the last time its open count was incremented from 0 to 1, the
application’s schema key must match the database’s schema key.
Ifitdoes not, err_schema_key is signaled, and ObjectStore issues an
error message like the following:

<err-0025-0151>The schema is protected and the key, if provided, did not
match the one in the schema of database dba.

key low and key_high must match the database’s schema key, or
else err_schema_key is signaled, and ObjectStore issues an error
message like the following:

<err-0025-0159>Unable to freeze the schema key of database db1l. The
schema is protected and the key provided did not match the key in the
schema.

If the database’s schema key is already frozen, and you specify the
correct key, the call has no effect.

os_database::get_all_databases()

Release 5.1

static void get_all_databases(
0s_int32 max_to_return,
os_database_p *dbs,
0S_int32& n_ret

);

Provides access to all the databases retrieved by the current
process. The os_database_p*dbs is an array of pointers to
databases. This array must be allocated by the user. The function
os_database::get_n_databases() can be used to determine how
large an array to allocate. max_to_return is specified by the user,
and is the maximum number of elements the array is to have.
n_ret refers to the actual number of elements in the array.

79

0s_database

os_database::get_all_roots()

void get_all_roots(
0s_int32 max_to_return,
os_database_root_p *roots,
0s_int32& n_ret

)i

Provides access to all the roots in the specified database (see os_
database_root on page 103). The os_database_root_p* is an array
of pointers to roots. This array must be allocated by the user. The
function os_database::get_n_roots() can be used to determine
how large an array to allocate. max_to_return is specified by the
user, and is the maximum number of elements the array is to have.
n_ret refers to the actual number of elements in the array.

os_database::get_all_segments()

void get_all_segments(

0s_int32 max_to_return,

0S_segment_p *segs,

0s_int32& n_ret
);
iProvides access to all the segments in the specified database. The
os_segment_p* is an array of pointers to segments. This array
must be allocated by the user. The function os_database::get_n_
segments() can be used to determine how large an array to
allocate. max_to_return is specified by the user, and is the
maximum number of elements the array is to have. n_ret refers to
the actual number of segment pointers returned.

os_database::get_all_segments_and_permissions()

80

This member of os_database is declared as follows:

void get_all_segments_and_permissions(
0s_int32 max_to_return,
0S_segment_p* segs,
0S_segment_access_p* controls,
0s_int32 &n_returned

);

Provides access to all the segments in the specified database,
together with each segment’s associated os_segment_access . The
nt™ element of controls points to the os_segment_access
associated with the segment pointed to by the n" element of segs.

ObjectStore C++ API Reference

Chapter 2: Class Library

The arrays controls and segs must be allocated by the user. max_
to_return is specified by the user.

os_database::get_application_info()

void *get_application_info() const;

Returns a pointer to the object pointed to by the pointer last
passed, during the current process, to os_database::set_
application_info() for the specified database. If set_application_
info() has not been called for the specified database during the
current process, 0 is returned.

os_database::get_check illegal_pointers()

0s_boolean get_check_illegal_pointers() const;

Returns nonzero if the database is in check_illegal_pointers mode;
returns 0 otherwise.

os_database::get_database_references()

void get_database_references(
0s_int32 &n_refs,
os_database_reference_p *&array
) const;

Allocates an array of database references on the heap, one for each
database referenced by the specified database. When the function
returns, n_refs refers to the number of elements in the array. Note
that it is the user’s responsibility to deallocate the array when it is
no longer needed.

os_database::get_default_check_illegal_pointers()

0s_boolean get_default_check_illegal_pointers() const;

Returns nonzero if the specified database is in default_check_
illegal_pointers mode; returns 0 otherwise. See os_database::set_
default_check_illegal_pointers() on page 94.

os_database::get_default lock whole_segment()

Release 5.1

objectstore_lock_option get_default_lock_whole_segment() const;

Indicates the locking behavior for segments newly created in the
specified database. objectstore_lock_option is an enumeration
type whose enumerators are objectstore::lock_as_used
objectstore::lock_segment_read , and objectstore::lock_segment_

81

0s_database

write . See os_database::set_default_lock_whole_segment() on
page 94.

os_database::get_default_null_illegal_pointers()

0s_boolean get_default_null_illegal_pointers() const;

Returns nonzero if the specified database is in default_null_illegal_
pointers mode; returns 0 otherwise. See os_database::set_default_
null_illegal_pointers() on page 94.

os_database::get_default_segment()

0s_segment *get_default_segment() const;

Returns a pointer to the default segment of the specified database.
The default segment is the segment in which persistent memory is
allocated by default, when the function new is called with only an
os_database* argument. Initially the default segment is the initial
segment, the one segment (besides the schema segment) with
which the database was created. A process can change this at any
time (see os_database::set_default_segment() on page 94), but the
change remains in effect only for the duration of the process, and
is invisible to other processes. Simple ObjectStore applications
need not create any segments; all the database’s persistent data
can be stored in the initial segment, if desired. But if more
sophisticated clustering is required, the application can create
new segments in the database, and it might be convenient to make
one of these the default.

os_database::get_default_segment_size()

0s_int32 get_default_segment_size() const;

The initial size in bytes of segments in the specified database. See
os_database::set_default_segment_size() on page 95.

os_database::get_dirman_host_name()

82

char *get_dirman_host_name() const;

If the specified database is a rawfs database, the function allocates
on the heap and returns the name of the host machine for the
rawfs. If the database is a file database or the transient database, 0
is returned. Note that it is the user’s responsibility to deallocate
the character array when it is no longer needed.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_database::get_fetch_policy()

void get_fetch_policy(os_fetch_policy &policy, os_int32 &bytes);

Sets policy and bytes to references to an os_fetch_policy and
integer that indicate the database’s current fetch policy. See os_
database::set_fetch_policy() on page 95.

os_database::get_file_host_ name()

char *get_file_host_name() const;

If the specified database is a file database, the function allocates on
the heap and returns the name of the host machine for the
database. If the database is a rawfs database or the transient
database, 0 is returned. Note that it is the user’s responsibility to
deallocate the character array when it is no longer needed.

os_database::get_host_name()

char *get_host_name() const;
Returns the name of the host machine on which the specified
database resides. The returned char* points to an array allocated
on the heap by this function. Note that it is the user’s
responsibility to deallocate the character array when it is no
longer needed.

os_database::get_id()
os_database_id *get_id() const;

Returns the os_database_id of the specified database.

os_database::get_incremental_schema_installation()

0s_boolean get_incremental_schema_installation();

Returns nonzero (true) if the schema installation mode of the
specified database is set to incremental mode. Returns 0 (false) if
the mode is set to batch mode (the default). See os_database::set_
incremental_schema_installation() on page 96.

os_database::get_lock whole_segment()

objectstore_lock_option get_lock_whole_segment() const;

Indicates the locking behavior currently in effect for the specified
database. objectstore_lock_option is an enumeration type whose

Release 5.1 83

0s_database

os_database

os_database

os_database

os_database

os_database

84

enumerators are objectstore::lock_as_used , objectstore::lock_
segment_read , and objectstore::lock_segment_write . See os_
segment::set_lock_whole_segment() on page 303.

::get_n_databases()

static os_int32 get_n_databases();

Returns the number of databases retrieved by the current process.
::get_n_roots()

0s_int32 get_n_roots() const;

Returns the number of roots in the specified database (see os_
database_root on page 103).

:get_n_segments()

0s_int32 get_n_segments() const;

Returns the number of segments in the specified database,
including the schema segment.

::get_opt_cache_lock_mode()

os_boolean get_opt_cache_lock_mode() const;

Returns nonzero if opt_cache_lock_mode is on for the current
process and the specified database; returns 0 otherwise. See os_
database::set_opt_cache_lock_mode() on page 98.

::get_pathname()

char *get_pathname() const;

Returns the pathname of the specified database. For databases in
ObjectStore directories, the pathname consists of a rawfs host
prefix ("rawfs-host-name:: ") followed by a rooted pathname (for
example, "oak::/parts/dbl "). For file databases, the pathname is
identical to the one passed to os_database::open() , os_
database::create() , or os_database::lookup() when this was first
retrieved by the current process. The returned char* points to an
array allocated on the heap by this function. Note that it is the
user’s responsibility to deallocate the array when it is no longer
needed.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_database::get_prms_are_in_standard_format()

os_boolean get_prms_are_in_standard_format() const;

os_database::get_readlock_timeout()

0s_int32 get_readlock_timeout() const;

Returns the time in milliseconds for which the current process will
wait to acquire a read lock on pages in the specified database. A
value of -1, the default, indicates that the process will wait forever
if necessary.

os_database::get_relative_directory()

char *get_relative_directory() const;

Returns a string indicating the current method used for storing
database references. If 0 (null) is returned, the default method is
used. If an empty string is returned, rooted pathnames are used.
Otherwise, the string returned indicates the name of a directory to
be treated as a common ancestor to the source and destination
databases. On UNIX systems, for example, the common part of
the pathnames is preceded by the appropriate number of “../”’s to
traverse the hierarchy up from the source directory to this
common ancestor directory. If the indicated directory is not
actually a common ancestor, a rooted pathname is used. The
returned char* points to an array allocated on the heap by this
function. Note that it is the user’s responsibility to deallocate the
array when it is no longer needed. See os_database::allow_
external_pointers() on page 72 and os_database::set_relative_
directory() on page 98.

os_database::get_required_DLL_identifiers()

Component Schema

Release 5.1

const char* const* get_required_DLL _identifiers(
0s_unsigned_int32& count
);

Returns an array of pointers to DLL identifiers and the number of
elements in the array. The order of elements in the array is not
significant. The array and the elements must not be modified or
deallocated.

This function can only be called within a transaction with the
database open. The returned array and strings might reside in the
database so they are only valid for one transaction.

85

0s_database

os_database::get_schema_database()

os_database *get_schema_database() const;

Returns a pointer to the schema database for this . If this is not a
database whose schema is stored remotely, 0 is returned. This
function must be invoked within a transaction.

os_database::get_sector_size()

0s_unsigned_int32 get_sector_size();

Returns the size of a sector, in bytes.

os_database::get_segment()

0S_segment *get_segment(os_unsigned_int32 segment_number);

Returns a pointer to the segment in the specified database with the
specified segment number. See os_segment::get_number() on
page 299.

os_database::get_transient_database()

static os_database *const get_transient_database();

Returns a pointer to the transient database, which can be used to
request transient memory allocation, for example as an argument
to new().

os_database::get_writelock_timeout()

0s_int32 get_writelock_timeout() const;

Returns the time in milliseconds for which the current process will
wait to acquire a write lock on pages in the specified database. A
value of -1, the default, indicates that the process will wait forever
if necessary.

os_database::insert_required_DLL_identifier()

Component schema

86

void insert_required_DLL_identifier(

const char* DLL_identifier
);
Copiesthe DLL_identifier string and adds it to the database’s set of
required DLLs. If the DLL_identifier is already in the database’s
set of required DLLs, this function does nothing. Call this
function only in an update transaction with the database open for
write.

ObjectStore C++ API Reference

os_database::

os_database::

os_database::

os_database::

os_database::

Release 5.1

Chapter 2: Class Library

See also os_database::insert_required_DLL_identifiers()
insert_required_DLL_identifiers()

void insert_required_DLL_identifiers
(const char* const* DLL_identifiers,
0s_unsigned_int32 count

);

Copies DLL_identifiers to a database’s set of required DLLs.

For each identifier, checks that the identifier is not already in the
set. If already present, the identifier is not copied. If the identifier
isn’t present in the set of required DLLs, it is copied and added to

the set. This function can only be called in an update transaction
with the database open for write.

os_database::insert_required_DLL_identifiers is equivalent to
repeated calls to os_database::insert_required_DLL_identifier ~ but
is more efficient.
is_open()
0s_boolean is_open() const;
Returns a nonzero os_boolean (true) if the database for which the
function is called is open, and 0 (false) otherwise.
is_open_mvcc()
0s_boolean is_open_mvcc() const;
Returns nonzero if this is opened for MVCC, and 0 otherwise. See
os_database::open_mvcc() on page 89.
is_open_read_only()
os_boolean is_open_read_only() const;
Returns a nonzero os_boolean (true) if the database for which the
function is called is open for read only, and 0 (false) otherwise.

is_writable()

0s_boolean is_writable() const;

Returns a nonzero os_boolean (true) if the database for which the
function is called is writable by the current process. The function
returns 0 (false) if the database is not writable, for example

because the current process opened it read_only , or because, due

87

0s_database

to access control, the process does not have write permission. The
return value is not affected by whether the current transaction, if
any, is aread_only transaction. If performed on a database that is
not open, a run-time error is signaled.

os_database::lookup()

os_database::of()

os_database::open()

88

static os_database *lookup(
const char *pathname
0s_int32 create_mode =0

);

Returns a pointer to the database with the specified pathname (but
does not open it). If not found, an err_database_not_found
exception is signaled. create_mode is a boolean; if its value is
nonzero and no database named pathname exists, it creates the
database.

For information on database pathnames, see os_database::create()
on page 74.

static os_database *of(void *location);

Returns a pointer to the database in which the specified object
resides. If the object is transiently allocated, a pointer to the
transient database is returned. In almost all cases you should use
os_segment::of() instead of os_database::of() . In particular, you
should never use the result of os_database::of() to allocate a new
persistent object. Doing so will defeat segment clustering. When
in doubt, use os_segment::of() .

void open(os_boolean read_only = 0);

Increases the open count of the specified database by 1, and
establishes the access type specified by read_only — nonzero
(true) for read only and 0 for read/write.

static os_database *open(
const char *pathname,
0s_boolean read_only = 0,
0s_int32 create_mode =0

);
Increments the open count of the database with the specified
pathname , establishes the access type specified by read_only —

ObjectStore C++ API Reference

Chapter 2: Class Library

nonzero (true) for read only and 0 (false) for read/write — and
returns a pointer to that database. If not found, an err_database_
not_found exception is signaled, unless create_mode is nonzero.

If create_mode is nonzero and no database named pathname
exists, the effect is the same as calling os_database::create() with
the same pathname , create_mode , and schema_database
arguments. The values of create_mode — which must be octal
numbers, beginning with 0 — are described in ObjectStore
Management.

For information on database pathnames, see os_database::create()
on page 74.

static os_database *open(
const char *pathname,
0s_boolean read_only,
0s_int32 create_mode,
os_database *schema_database

);

The first three arguments are as described for the previous
overloading of open() . If no database named pathname is found,
and schema_database is nonzero, schema_database is used as the
schema database for the newly created database. This means that
ObjectStore installs in the schema database all schema
information for the data stored in the new database; the new
database itself will have no schema information in it.

The specified schema database must be open at the time of the call
to open(); ifitis not, err_schema_database is signaled. If the schema
database was opened read only, ObjectStore attempts to reopen it
for read/write. If this fails because of protections on the database,
it remains open for read only. This prevents any update to the new
database that requires schema installation.

Note that the new database’s schema database can also contain
regular user data (that is, data other than schema information).
The schema database must store its own schema locally. If the
schema for the user data in schema_database is stored remotely,
err_schema_database is signaled.

os_database::open_mvcc()

void open_mvcce();

Release 5.1 89

0s_database

90

Opens a database for multiversion concurrency control (MVCC).
Once you open a database for MVCC, multiversion concurrency
control is used for access to it until you close it. If the database is
already opened, but not for MVCC, err_mvcc_nested is signaled. If
you try to perform write access on a database opened for MVCC,
err_opened_read_only is signaled.

If an application has a database opened for MVCC, it never has to
wait for locks to be released in order to read the database. Reading
a database opened for MVCC also never causes other applications
to have to wait to update the database. In addition, an application
never causes a deadlock by accessing a database it has opened for
MVCC.

In each transaction in which an application accesses a database
opened for MVCC, the application sees what it would see if
viewing a snapshot of the database taken sometime during the
transaction. This snapshot has the following characteristics:

= lItis internally consistent.

< |t might not contain changes committed during the transaction
by other processes.

< |t does contain all changes committed before the transaction
started.

Because of the second characteristic, the snapshot might not be
consistent with other databases accessed in the same transaction
(although it will always be internally consistent). Even two
databases both of which are opened for MVCC might not be
consistent with each other, because updates might be performed
on one of the databases between the times of their snapshots.

Even though the snapshot might be out of date by the time some
of the access is performed, multiversion concurrency control
retains serializability, if each transaction that accesses an MVCC
database accesses only that one database. Such a transaction sees
a database state that would have resulted from some serial
execution of all transactions, and all the transactions produce the
same effects as would have been produced by the serial execution.

static os_database *open_mvcc(const char *pathname);

ObjectStore C++ API Reference

Chapter 2: Class Library

Opens the database with the specified pathname for multiversion
concurrency control. See the first overloading of open_mvcce() ,
above.

os_database::remove_required_DLL_identifier()

Component schema

void remove_required_DLL_identifier(
const char* DLL_identifier

);

Removes the DLL_identifier from the database’s set of required
DLLs. If DLL_identifier is notin the set, this function does nothing.
This function can only be called in an update transaction with the
database open for write.

os_database::set_access_hooks()

Release 5.1

typedef void (*os_access_hook) (
void *object,
enum 0S_access_reason reason,
void *user_data,
void *start_range,
void *end_range

)

void set_access_hooks
os_char_p class_name,
os_access_hook inbound_hook,
os_access_hook outbound_hook,
0s_void_p user_data,
os_access_hook *old_inbound_hook = 0,
os_access_hook *old_outbound_hook = 0,
os_void_p *old_user_data =0

);

Registers an inbound and outbound hook function for the

specified database and class.

The class_name argument is the name of the class with which
these hook functions should be associated.

inbound_hook is the user-supplied hook function that is called
each time an instance of the specified class in the specified
database becomes accessible (that is, the first time in each
transaction the object is accessed, as well as each time the object is
transferred into the client cache).

outbound_hook is the user-supplied hook function that is called
each time an instance of the specified class in the specified

91

0s_database

92

database undergoes outbound relocation. This typically occurs
each time the transaction ends and the object is in the client cache,
and each time the object is transferred out of the client cache.

In some cases, however, an object might be transferred out of the
client cache without undergoing outbound relocation (see for
example OS_EVICT_IN_ABORT in ObjectStore Management), and so
the outbound_hook is not called. This means that there is not
necessarily a call to the outbound_hook for each call to the
inbound_hook . So you must structure your application to allow
for consecutive calls to the inbound hook without intervening
calls to the outbound hook.

The inbound_hook and outbound_hook arguments can be null
pointers in order to specify that there should be no hook. To
disable both hooks, pass a null pointer for both these arguments.

user_data is a pointer to user data to be passed to the hook
functions.

The previous value for the inbound_hook is returned in the
location pointed to by old_inbound_hook , if old_inbound_hook isa
nonnull pointer. The previous value will be 0 if no inbound_hook
was enabled. Similarly, the previous values of outbound_hook
and user_data are returned in the locations pointed to by old_
outbound_hook and old_user_data if these are nonnull pointers.

The hook functions are called with the following arguments:

object points to the beginning of the object for which the access
hook is registered.

For an inbound hook, reason is always set to os_reason_accessed .
For an outbound hook, reason is os_reason_committed if the
object is on a page that is being relocated out at the end of a
transaction, os_reason_aborted if the page is being relocated out
during a transaction abort, and os_reason_returned if the page is
being relocated out at some other time, presumably to make space
in the cache for other data.

user_data is set to the value of user_data that was passed to os_
database::set_access_hooks()

start_range is the first address that is being made accessible
during an inbound hook, or made inaccessible during an

ObjectStore C++ API Reference

Chapter 2: Class Library

outbound hook. end_range is the first address beyond the range
being made accessible or inaccessible. That is, all addresses
greater than or equal to start_range and less than end_range are
being made accessible or inaccessible.

Only a portion of the object might lie within start_range and end_
range . The hook should only write within this address range. You
should make all modifications by calling objectstore::hidden_
write() . Note that the active region of the object might be writable
in the context of the hook, but under no circumstances should the
application modify any persistent addresses from within the hook
by any other means other than by using the objectstore::hidden_
write() function.

Read access is allowed to any part of the object, not just the part
within the address range. You cannot safely dereference pointers
outside the object, but you can pass them to objectstore::get_
pointer_numbers() .

Classes within unions will not have access hooks called.

os_database::set_application_info()
void set_application_info(void *info);

Associates the specified object with the specified database for the
current process. The argument info must point to a transient
object. See os_database::get_application_info() on page 81.

os_database::set_check_illegal_pointers()

void set_check_illegal_pointers(os_boolean);

Provides a convenient way to set check_illegal_pointers mode for
every segment in the specified database. If the argument is 1 (that
is, true), it loops over every segment, including internal segments,
enabling check_illegal_pointers . It also enables default_check_
illegal_pointers mode for the specified database. If the argument is
0 (that is, false), it disables check_illegal_pointers mode for every
segment, and disables default_check_illegal_pointers mode for the
specified database. See os_segment::set_check_illegal_pointers()

on page 301 and os_database::set_default_check_illegal_

pointers() on page 94.

Release 5.1 93

0s_database

os_database::set_default_check illegal_pointers()

void set_default_check_illegal_pointers(os_boolean);

If the argument is 1 (that is, true), this enables default_check_
illegal_pointers mode for the specified database. In this mode, new
segments are created in check_illegal_pointers mode. If the
argument is 0 (that is, false), this disables default_check_illegal
pointers mode, and new segments are created with check_illegal
pointers disabled. By default, default_check_illegal_pointers mode
is disabled. See also objectstore::set_check_illegal_pointers() on
page 35.

os_database::set_default_lock whole_segment()

void set_default_lock_whole_segment(objectstore_lock_option);

Specifies the locking behavior for segments newly created in the
specified database. See os_segment::set_lock_whole_segment() on
page 303.

os_database::set_default_null_illegal_pointers()

void set_default_null_illegal_pointers(os_boolean);

If the argument is 1 (that is, true), this enables default_null_illegal_
pointers mode for the specified database. In this mode, new
segments are created in null_illegal_pointers mode. If the
argument is 0 (that is, false), this disables default_null_illegal_
pointers mode, and new segments are created with null_illegal_
pointers disabled. By default, default_null_illegal_pointers mode is
disabled. See also objectstore::set_null_illegal_pointers() on

page 38.

os_database::set_default_segment()

void set_default_segment(os_segment*);

Sets the default segment for the specified database. The default
segment is the segment in which persistent memory is allocated
by default, when the function new is called with only an os_
database* argument. Initially the default segment is the initial
segment, the one segment (besides the schema segment) with
which the database was created. Changing the default segment
remains in effect only for the duration of the process, and is
invisible to other processes. Simple ObjectStore applications need
not create any segments; all the database’s persistent data can be

94 ObjectStore C++ API Reference

Chapter 2: Class Library

stored in the initial segment, if desired. But if more sophisticated
clustering is required, the application can create new segments in
the database, and it might be convenient to make one of these the
default.

os_database::set_default_segment_size()

void set_default_segment_size(os_int32);

The specified os_int32 is used to determine the initial size of
segments in the specified database. This size is either the specified
value (in bytes) or an implementation-dependent minimum size,
whichever is larger.

os_database::set_fetch_policy()

Release 5.1

enum os_fetch_policy { os_fetch_segment, os_fetch_page, os_
fetch_stream };

void set_fetch_policy(os_fetch_policy policy, os_int32 bytes);

Specifies the fetch policy for all the segments in the specified
database. The policy argument should be one of the following
enumerators: os_fetch_segment , os_fetch_page , or os_fetch_
stream .

The default fetch policy is os_fetch_page .

If an operation manipulates a substantial portion of a small
segment, use the os_fetch_segment policy when performing the
operation on the segment. Under this policy, ObjectStore attempts
to fetch the entire segment containing the desired page in a single
client/server interaction, if the segment will fit in the client cache
without evicting any other data. If there is not enough space in the
cache to hold the entire segment, the behavior is the same as for
os_fetch_page with a fetch quantum specified by bytes.

If an operation uses a segment larger than the client cache, or does
not refer to a significant portion of the segment, use the os_fetch_
page policy when performing the operation on the segment. This
policy causes ObjectStore to fetch a specified number of bytes at a
time, rounded up to the nearest positive number of pages,
beginning with the page required to resolve a given object
reference. bytes specifies the fetch quantum. (Note that if you
specify 0 bytes, this will be rounded up, and the unit of transfer
will be a single page.)

95

0s_database

The default value for the fetch quantum is 4096 bytes (1 page).
Appropriate values might range from 4 kilobytes to 256 kilobytes
or higher, depending on the size and locality of the application
data structures.

For special operations that scan sequentially through very large
data structures, os_fetch_stream might considerably improve
performance. As with os_fetch_page , this fetch policy lets you
specify the amount of data to fetch in each client/server
interaction for a particular segment. But, in addition, it specifies
that a double buffering policy should be used to stream data from
the segment.

This means that after the first two transfers from the segment,
each transfer from the segment replaces the data cached by the
second-to-last transfer from that segment. This way, the last two
chunks of data retrieved from the segment will generally be in the
client cache at the same time. And, after the first two transfers,
transfers from the segment generally will not result in eviction of
data from other segments. This policy also greatly reduces the
internal overhead of finding pages to evict.

When you perform allocation that extends a segment whose fetch
policy is os_fetch_stream , the double buffering described above
begins when allocation reaches an offset in the segment that is
aligned with the fetch quantum (that is, when the offset mod the
fetch quantum is 0).

For all policies, if the fetch quantum exceeds the amount of
available cache space (cache size minus wired pages), transfers are
performed a page at a time. In general, the fetch quantum should
be less than half the size of the client cache.

Note that a fetch policy established with set_fetch_policy() (for
either asegment or a database) remains in effect only until the end
of the process making the function call. Moreover, set_fetch
policy() only affects transfers made by this process. Other
concurrent processes can use a different fetch policy for the same
segment or database.

os_database::set_incremental_schema_installation()

void set_incremental_schema_installation(os_boolean);

96 ObjectStore C++ API Reference

Chapter 2: Class Library

If a nonzero os_boolean (true) is supplied as argument, the
schema installation mode of the specified database is set to
incremental mode. With incremental schema installation, a class is
added to a database’s schema only when an instance of that class
is first allocated in the database. If 0 (false) is supplied as
argument, the mode is set to batch mode (the default). With batch
mode, whenever an application creates or opens the database,
every class in the application’s schema is added to the database’s
schema (if not already present in the database schema).

os_database::set_lock_whole_segment()

void set_lock_whole_segment(objectstore_lock_option);

Provides a convenient way to set lock_whole_segment mode for
every segment in the specified database. It loops over every
segment, including internal segments, setting lock_whole_
segment , and setting default_lock_whole_segment inthe database.
See os_segment::set_lock_whole_segment() on page 303 and os_
database::set_default_lock_whole_segment() on page 94.

os_database::set_ new _id()

0s_int32 set_new_id();

Changes the ID of the specified database to be a new unique ID.

os_database::set_null_illegal_pointers()

Release 5.1

void set_null_illegal_pointers(os_boolean);

Provides a convenient way to set null_illegal_pointers mode for
every segment in the specified database.

If the argument is 1 (that is, true), it loops over every segment,
including internal segments, enabling null_illegal_pointers . It also
enables default_null_illegal_pointers mode for the specified
database.

If the argument is 0 (that is, false), it disables null_illegal_pointers
mode for every segment, and disables default_null_illegal_pointers
mode for the specified database.

See os_segment::set_null_illegal_pointers() on page 304 and os_
database::set_default_null_illegal_pointers() on page 94.

97

0s_database

os_database::set_opt_cache_lock_mode()

void set_opt_cache_lock_mode(os_boolean);

A nonzero argument turns on opt_cache_lock_mode for the
current process and the specified database; a 0 argument turns the
mode off.

Turning on this mode will improve performance for applications
that perform writes to the specified database and expect little or
no contention from other processes for access to the database.
When this mode is on, the amount of client/server
communication required to upgrade locks is reduced. Once a
page from the database is cached on the client, the client can
subsequently upgrade the page’s lock from read to read/write
when needed without communicating with the Server. However,
the amount of client/server communication required for
concurrent processes to obtain locks on pages in the database
might increase.

Note that this function sets the mode for the current process only,
and does not affect the mode for other processes.

os_database::set_readlock _timeout()

void set_readlock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a read lock on pages in the specified database. A
value of -1, the default, indicates that the process should wait
forever if necessary. After an attempt to acquire a read lock, if the
specified time elapses without the lock’s becoming available, an
os_lock_timeout_exception exception is signaled. If the attempt
causes a deadlock, the transaction is aborted regardless of the
value of the specified timeout.

os_database::set_relative_directory()

98

void set_relative_directory(char *dir_name);

Sets the method to be used for storing database references.
Remains in effect only for the duration of the current process. If 0
(null) is supplied, the default method is used. If an empty string is
supplied, rooted pathnames are used. Otherwise, the string
supplied indicates the name of a directory to be treated as a
common ancestor to the source and destination databases. The

ObjectStore C++ API Reference

Chapter 2: Class Library

common part of the pathnames is preceded by the appropriate
number of “../’s to traverse the hierarchy up from the source
directory to this common ancestor directory. If the indicated
directory is not actually a common ancestor, a rooted pathname is
used. The contents of the specified character array are copied by
this function. After this function returns, the array’s contents have
no bearing on the relative directory. See os_database::allow_
external_pointers() on page 72 and os_database::get_relative_
directory() on page 85.

os_database::set_schema_database()

void set_schema_database(os_database& schema_database);

If you move a schema database, you must use os_database::set_
schema_database() or the ObjectStore utility ossetrsp to inform
ObjectStore of the schema database’s new pathname. Calling this
function establishes schema_database as the schema database for
this . You must invoke this function outside any transaction.

If you copy the schema database with an operating system
command or an ObjectStore utility, you can also use os_
database::set_schema_database() to establish the copy as the
schema database for this . If schema_database is not the result of
copying or moving a database that has served as schema database
for this, err_schema_database is signaled.

os_database::set_writelock_timeout()

os_database::size()

Release 5.1

void set_writelock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a write lock on pages in the specified database. A
value of -1, the default, indicates that the process should wait
forever if necessary. After an attempt to acquire a write lock, if the
specified time elapses without the lock’s becoming available, an
os_lock_timeout_exception exception is signaled. If the attempt
causes a deadlock, the transaction is aborted regardless of the
value of the specified timeout.

0s_unsigned_int32 size() const;

Returns the size in bytes of the specified database. If this number
cannot be represented in 32 bits, err_misc is signaled.

99

0s_database

os_database::size_in_sectors()

os_unsigned_int32 size_in_sectors() const;

Returns the size in sectors of the specified database. If this number
cannot be represented in 32 bits, err_misc is signaled.

os_database::time_created()

0S_unixtime_t time_created() const;

Returns the time at which the database was created.

100 ObjectStore C++ API Reference

Chapter 2: Class Library

os_database_reference

Instances of this type are stored in tables associated with cross-
database pointers. Such pointers are resolved by database
pathname.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_database_reference::os_database reference()

os_database_reference(char *name);

Constructs a reference that stores the specified pathname. The
name argument should be the pathname of the referent database
as printed by the ObjectStore utility ossize , including the Server
host prefix.

os_database_reference::~0os_database_reference()

~0s_database_reference();

Frees the memory associated with the specified os_database_
reference ’s name.

os_database_reference::.delete_array()

static void delete_array(os_int32 n,
os_database_referencep*array

);
Deletes an array returned by os_database::get_database_
references() .

os_database_reference::get_name()

char *get_name();

Returns the pathname associated with the specified os_database_
reference .

os_database_reference::operator ==()

Release 5.1

0s_boolean operator ==(os_database_reference const &dbref);

101

0s_database_reference

Returns nonzero if and only if the specified os_database_
reference s refer to the same database.

102 ObjectStore C++ API Reference

Chapter 2: Class Library

os_database_root

An object can be used as a database entry point if you associate a
string with it by using a root, an instance of the system-supplied
class os_database_root . Each root’s sole purpose is to associate an
object with a name. Once the association is made, you can retrieve
a pointer to the object by performing a lookup on the name using
a member function of the class os_database .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_database_root::~0s_database_root()

~0s_database_root();

Called when an instance of os_database_root is deleted. Deletes
the associated name (persistent char*) as well.

os_database_root::find()

static os_database_root *find(char *name, os_database *db);

Returns a pointer to the root in the specified database with the
specified name. Returns 0 if not found.

os_database _root::get_ name()

char *get_name();

Returns the name associated with the os_database_root for which
the function is called.

os_database_root::get_typespec()

0s_typespec *get_typespec();

Returns a pointer to the typespec associated with the os_
database_root for which the function is called (the typespec last
passed to set_value() for the root).

os_database_root::get value()

Release 5.1

void *get_value(os_typespec* = 0);

103

0s_database_root

Returns a pointer to the entry-point object associated with the os_
database_root for which the function is called. Note that the return
value is typed as void* , so a cast might be necessary when using it.
If the specified os_typespec does not match the os_typespec
specified when the value was set (see os_database_root::set_
value() on page 104), err_pvar_type_mismatch is signaled. Note that
this exception is signaled if and only if the specified typespec does
not match the stored one; the actual type of the entry-point object
is not checked.

os_database_root::set_value()

104

void set_value(void *new_value, os_typespec* = 0);

Establishes the object pointed to by new_value as the entry-point
object associated with the os_database_root for which the
function is called. If new_value points to transient memory or
memory in a database other than the one containing the specified
os_database_root , err_invalid_root_value is signaled. The specified
os_typespec should designate the type of object pointed to by
new_value . The typespec is stored for later use by os_database_
root::get_value() (see above).

ObjectStore C++ API Reference

Chapter 2: Class Library

0os_database schema

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a database schema. os_database_schema is derived
from os_schema .

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

os_database_schema::get()

static const os_database_schema &get(const os_database&);
Returns the schema of the specified database. Signals err_no_
schema if the specified database has no schema installed.

os_database_schema::get _for_update()

static os_database_schema &get_for_update(const os_database&);

Returns the schema of the specified database. Signals err_no_
schema if the specified database has no schema installed. This
differs from get() in that the return value is a reference to a non-
const os_database_schema rather than a const os_database_
schema.

os_database_schema::install()

void install(os_schema &new_schema);

Installs the classes in new_schema into the database schema
specified by this .

Release 5.1 105

os_dbutil

os_dbutil

os_dbutil::chgrp()

os_dbutil::chmod()

os_dbutil::chown()

106

The database utility API provides C++ functions corresponding to
the utilities documented in ObjectStore Management. You can use
them as a basis for your own database utilities and tools.

All the functions in this facility are members of the class os_dbutil .
Call the following function before using any other members of os_
dbutil :

static void os_dbutil::initialize();

You only need to call this function once in each application.

static void chgrp(
const char *pathname,
const char *gname

);

Changes the primary group of the rawfs directory or database
whose name is pathname . gname is the name of the new
group.This function does not check for transaction consistency.

See oschgrp in ObjectStore Management

static void chmod(
const char *pathname,
const 0s_unsigned_int32 mode

);

Changes the protections on the rawfs database or directory whose
name is pathname . mode specifies the new protections. This
function does not check for transaction consistency

See oschmod in ObjectStore Management.

static void chown(
const char *pathname,
const char *uname

);

ObjectStore C++ API Reference

Chapter 2: Class Library

Changes the owner of the rawfs directory or database whose
name is pathname . uname is the user name of the new owner. This
function does not check for transaction consistency

See oschown in ObjectStore Management.

See Chapter 10, Database Utility API, in ObjectStore Advanced C++
AP User Guide.

os_dbutil::close_all_server_connections()

static void close_all_server_connections();

Closes all connections the application has to ObjectStore Servers.

os_dbutil::close_server_connection()

static void close_server_connection(const char *hostname);

Closes the connection the application has to the ObjectStore
Server running on the machine named hostname .

os_dbutil::cmgr_remove_file()

static char *cmgr_remove_file(
const char *hostname,
0s_int32 cm_version_number

);

Makes the Cache Manager on the machine with the specified
hostname delete all the cache and commeseg files that are notin use
by any client. The argument cm_version_number must match the
Cache Manager’s version number. Returns a pointer to the result
message string.

See oscmrf in ObjectStore Management.

os_dbutil::cmgr_shutdown()

Release 5.1

static char *cmgr_shutdown(
const char *hostname,
0s_int32 cm_version_number

);

Shuts down the Cache Manager running on the machine with the
specified hostname . The argument cm_version_number must
match the Cache Manager’s version number. Returns a pointer to
the result message string.

See oscmshtd in ObjectStore Management.

107

os_dbutil

os_dbutil::cmgr_stat()

static void cmgr_stat(

const char *hostname,

0s_int32 cm_version_number,

0s_cmgr_stat *cmstat_data
)i
Gets information for the Cache Manager on the machine with the
specified hostname . The argument cm_version_number must
match the Cache Manager’s version number.

0s_cmgr_stat public cmstat_data points to an instance of os_cmgr_stat allocated by the
data members caller, using the no-argument constructor. os_cmgr_stat has the
following public data members:

0s_unsigned_int32 struct_version;
0S_unsigned_int32 major_version;
0s_unsigned_int32 minor_version;
0s_unsigned_int32 pid;

char *executable_name;
char *host_name;
0S_unixtime_t start_time;

0S_int32 soft_limit;

0s_int32 hard_limit;

0S_int32 free_allocated;
0s_int32 used_allocated;
0s_int32 n_clients;
0s_cmgr_stat_client *per_client; /* array */
os_int32 n_servers;
0s_cmgr_stat_svr *per_server; [* array */
0S_int32 n_cache_file_usage;
os_cmgr_stat_file_ *cache_file_usage; /* array */
usage

0s_int32 n_comseg_file_usage;
0os_cmgr_stat_file_ *comseg_file_usage; /* array */
usage

char *cback_queue;

char *extra;

The constructor sets struct_version to the value of os_free_blocks_
version in the dbutil.hh file included by your application. If this

108 ObjectStore C++ API Reference

0s_cmgr_stat_client
public data members

0s_cmgr_stat_svr
public data members

0s_cmgr_stat file_
usage public data
members

Release 5.1

Chapter 2: Class Library

version is different from that used by the library, err_misc is
signaled. The constructor initializes all other members to 0.

Within the results returned by os_dbutil::cmgr_stat , the
information about each client is provided in an object of class os_
cmgr_stat_client . A data member has been added to class os_
cmgr_stat_client , named notification , whose type is os_cmgr_stat_

notification* .

The value of this pointer is zero if the version of the Cache
Manager does not support notifications (for example, precedes
ObjectStore Release 4.0.2), or if this client is not using notifications
because, for example, the client has not yet called os_

notification::subscribe

or os_notification::_get_fd

Otherwise, the value is a pointer to an object of the class os_cmgr_

stat_notification

0s_cmgr_stat_client

0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_int32
0s_unsigned_int32
char*

0s_int32

0s_int32

0s_int32

has the following public data members:

struct_version;
queue_size;
n_queued;
n_received;
queue_overflows;
thread_state;
pid;
euid;
name;
major_version;
minor_version;
commseg;

os_cmgr_stat_svr has the following public data members:

0s_unsigned_int32
char

0s_int32

char

struct_version;

*host_name;
client_pid;
*status_str;

os_cmgr_stat_file_usage has the following public data members:

0s_unsigned_int32

struct_version;

109

os_dbutil

char *file_name;
0s_unsigned_int32 file_length;
0s_boolean is_free;

See oscmstat in ObjectStore Management for additional
information.

os_dbutil::compare_schemas()

static os_boolean compare_schemas(

const os_database* db1,

const os_database* db2,

os_boolean verbose = 1
);
Compares the schemas of db1 and db2. Returns nonzero if the
schemas are incompatible, 0 otherwise. Each database can contain
an application schema, a compilation schema, or a database
schema. If the database contains a database schema, it can be local
or remote.

If verbose is nonzero, the function issues a message to the default
output describing any incompatibility.

See osscheq in ObjectStore Management.

os_dbutil::copy_database()

os_dbuitil::disk_free()

110

static os_boolean copy_database(

const char *src_database_name,

const char *dest_database name
);
Copies the database named src_database_name and names the
copy dest_database_name . No transaction can be in progress. The
source database cannot be in use. If there is already a database
named dest_database_name , it is silently overwritten. Returns 0
for success, 1 if per-segment access control information has been
changed during copy (which can happen when copying a rawfs
database to a file database, since file databases do not have
separate segment-level protections).

See oscp in ObjectStore Management.

static void disk_free(
const char *hostname,

ObjectStore C++ API Reference

os_free_blocks public
data members

Chapter 2: Class Library

os_free_blocks *blocks
)i
Gets disk space usage in the rawfs managed by the Server on the
machine named hostname . blocks points to an instance of os_free_
blocks allocated by the caller, using the zero-argument
constructor.

The class os_free_blocks has the following public data members:

0s_unsigned_int32 struct_version;
0s_unsigned_int32 free_blocks;
0s_unsigned_int32 file_system_size;
0s_unsigned_int32 used_blocks;

disk_free() sets the values of these data members for the instance
of os_free_blocks pointed to by the argument blocks .

The os_free_blocks constructor sets struct_version to the value of
os_free_blocks_version in the dbutil.hh file included by your
application. If this version is different from that used by the
library, err_misc is signaled.

See osdf in ObjectStore Management.

os_dbuitil::expand_global()

static os_char_p *expand_global(
char const *glob_path,
0s_unsigned_int32 &n_entries

);

Returns an array of pointers to rawfs pathnames matching glob_
path by expanding glob_path ’s wildcards (*, ?, {}, and []). n_entries
is set to refer to the number of pathnames returned. It is the
caller’s responsibility to delete the array and pathnames when
they are no longer needed.

See osglob in ObjectStore Management.

os_dbuitil::get_client_name()

Release 5.1

static char const* get_client_name();

Returns the pointer last passed to set_client_name() . If there was
no prior call to set_client_name() , 0 is returned. This function does
not allocate any memory.

111

os_dbutil

os_dbuitil::get_sector_size()

os_dbutil::initialize()

static os_unsigned_int32 get_sector_size();

Returns 512, the size of a sector in bytes. Certain ObjectStore
utilities report some of their results in numbers of sectors, and
some Server parameters are specified in sectors. See ObjectStore
Management.

static void initialize();

Call this before using any other members of os_dbutil .

os_dbutil::list_directory()

static os_rawfs_entry_p *list_directory(

const char *path,

0s_unsigned_int32 &n_entries
);
Lists the contents of the rawfs directory named path. Returns an
array of pointers to os_rawfs_entry_p objects. n_entries is setto the
number of elements in the returned array. If path does not specify
the location of a directory, err_not_a_directory is signaled. It is the
caller’s responsibility to delete the array and os_rawfs_entry p
objects when they are no longer needed.

See osls in ObjectStore Management.

os_dbutil::make_link()

112

static void make_link(

const char *target_name,

const char *link_name
);
Makes a rawfs soft link. target_name is the path pointed to by the
link. link_name is the pathname of the link. Signals err_database_
exists or err_directory_exists if link_name already points to an
existing database or directory.

A rawfs can have symbolic links pointing within itself or to
another Server’s rawfs. The Server follows symbolic links within
its rawfs for all os_dbutil members that pass pathname
arguments, unless specified otherwise by a function’s description;
only os_dbutil::stat() can override this behavior. All members
passing pathname arguments also follow cross-server links on the

ObjectStore C++ API Reference

os_dbutil::mkdir()

os_dbuitil::ossize()

0S_size options
public data members

Release 5.1

Chapter 2: Class Library

application side, unless specified otherwise by a function’s
description.

A rawfs symbolic link always has the ownership and the
permissions of the parent directory.

See osIn, rehost_link , and rehost_all_links in ObjectStore
Management.

static void mkdir(

const char *path,

const os_unsigned_int32 mode,

0s_boolean create_missing_dirs = 0
);
Makes a rawfs directory whose pathname is path. The new
directory’s protection is specified by mode . If create_missing_dirs
is nonzero, creates the missing intermediate directories. Signals
err_directory_not_found if create_missing_dirs is 0 and there are
missing intermediate directories. Signals err_directory_exists if
there is already a directory with the specified path. Signals err_
database_exists if there is already a database with the specified
path.

See osmkdir in ObjectStore Management.

static os_int32 ossize(

const char *pathname,

const 0s_size_options *options
);
Prints to standard output the size of the database whose name is
pathname . options points to an instance of os_size_options
allocated by the caller using the zero-argument constructor.

os_size_options has the following public data members:

0s_unsigned_int32 struct_version;

0s_boolean flag_all; /*-a*/

0s_bhoolean flag_segments; /* -c */
0s_boolean flag_total_database; /*-C */
0s_bhoolean flag_free_block_map; /* -f*/

0S_unsigned_int32 one_segment_number; /*-n*/

113

os_dbutil

0s_boolean flag_every_object; /* -0 */
char flag_summary_order;
[*-s ‘s’=space ‘n’=number ‘t'’=typename */

0s_bhoolean flag_upgrade_rw; /* -u */
0s_boolean flag_internal_segments; /* -0 */
0s_boolean flag_access_control; /* -A */

Each member corresponds to an option for the utility ossize . See
ossize in ObjectStore Management.

The constructor sets struct_version to the value of os_size
options_version in the dbutil.hh file included by your application.
If this version is different from that used by the library, err_misc is
signaled. The constructor initializes all other members to 0.

Returns 0 for success, —1 for failure.

If OS__DBUTIL_NO_MVCC is set, this function opens the database
for read only, rather than for MVCC (the default).

os_dbutil::osverifydb()

os_verify_db_options
public data members

static os_unsigned_int32 osverifydb(

const char *dbname,

os_verifydb_options* opt= 0
)i
Prints to standard output all pointers and references in the
database named dbname . opt points to an instance of os_verify_
db_options allocated by the caller using the zero-argument
constructor. You must have called os_collection::initialize() and
os_mop::initialize() prior to calling this function.

If OS__DBUTIL_NO_MVCC is set, this function opens the database
for read only, rather than MVCC (the default).

os_verify_db_options has the following public data members:

o0s_boolean verify_segment_zero; /* verify the schema segment */

0s_bhoolean verify_collections; /* check all top-level collections */
0s_boolean verify_pointer_ [* print pointers as they are verified */
verbose;

os_boolean verify_object_ [* print objects as they are verified */
verbose;

114

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_boolean verify_references; /* check all OS references */

0s_int32 segment_error_limit; /* maximum errors per segment */

0s_boolean print_tag_on_errors; /* print out the tag value on error */

const void* track_object_ptr; /* Track object identified by pointer */
const char* track_object_ref _ /* Track the object identified by the
string; reference string. */

enum {

default_action,

ask_action,

null_action,

}illegal_pointer_action;

Upgrading databases
created on 16K page
size platforms

Release 5.1

Returns 0 for success, 1 for failure.

In releases prior to ObjectStore 5.1, there is a bug in our support of
heterogeneous access to databases created on machines with a
16K page size: databases created on 16K page big-endian
platforms cannot be accessed from small-endian platforms. Older
databases might need to be upgraded. You can use the upgrade
tool by means of the os_verifydb_options argument to the APl os_
dbutil::osverifydb() with os_verifydb_options::info_sector_tag_
verify_opt set to the desired value:

class os_verifydb_options

{ public:
enum info_sector_tag_verify_opt_enum {
verify_skip = 0, /* do not verify info sector tag */
verify_report_only =1, /* report only */
verify_upgrade = 2, I* upgrade info sector tag */

verify_skip_others =4 /* skip other verifications */
} info_sector_tag_verify_opt ;
}
Valid os_verifydb_options::info_sector_tag_verify opt values are:
verify_skip
verify_report_only
verify_upgrade

verify_report_only | verify_skip_others
verify_upgrade | verify_skip_others

See also, osverifydb in ObjectStore Management.

115

os_dbutil

os_dbuitil::osverifydb_one_segment()

static os_unsigned_int32 osverifydb_one_segment(

const char *dbname,

0s_unsigned_int32 segment_number,

0s_unsigned_int32 starting_offset = 0,

os_unsigned_int32 ending_offset = 0,

os_verifydb_options *opt =0
);
Prints to standard output all pointers and references in segment
segment_number in the database named dbname . The offset items
specify the starting and ending offsets (in bytes) within the
segment where verification is done. If starting_offset is not
specified, it defaults to 0. This means verification starts at the
beginning of the segment. Similarly, If ending_offset is not
specified, it defaults to 0. This means verify to the end of the
segment. opt points to an instance of os_verify_db_options
allocated by the caller using the zero-argument constructor.

os_verify_db_options os_verify_db_options has the following public data members:
public data members

0s_boolean verify_segment_zero; /* verify the schema segment */
0s_boolean verify_collections; /* check all top-level collections */
o0s_boolean verify_pointer_verbose /* print pointers as they are verified */
0s_boolean verify_object_verbose /* print objects as they are verified */

os_boolean verify_references; /* check all OS references */
0s_int32 segment_error_limit /* maximum errors per segment */
0s_boolean print_tag_on_errors /* print out the tag value on error */
const void* track_object_ptr [* Track object identified by pointer */

const char* track_object_ref_string /* Track the object identified by the
reference string. */

enum {
default_action,
ask_action,
null_action,

}

illegal_pointer_action;

Returns 0 for success, 1 for failure. You must have called os_
collection::initialize() and os_mop::initialize() prior to calling this

116 ObjectStore C++ API Reference

os_dbutil::osprmgc()

Discriminant union
considerations

Chapter 2: Class Library

function. If OS__DBUTIL_NO_MVCC is set, this function opens the
database for read only, rather than MVCC (the default).

See osverifydb in ObjectStore Management.

struct os_prmgc_options {
os_boolean flag_quiet; // -q, default is false
0s_boolean flag_read_only; // -r, default is false
0s_boolean flag_one_segment; // -n, default is false
0s_unsigned_int32 one_segment_number; // the Nin -n N
0S_prmgc_type prmgc_type; /-t default is remove_whole_ranges

2
This is particularly useful for databases with discriminant unions.

If you have a database with discriminant unions, you must
perform PRM garbage collection using os_dbutil::osprmgc , and
link in the necessary discriminant functions.

Both the command-line and embedded versions of the utility use
a streaming fetch policy. The embedded version ensures that the
policy is restored to its original state (if different) to minimize
impact on the application. See osprmgc: Trimming Persistent
Relocation Maps in ObjectStore Management for further detail.

os_dbutil::rehost_all_links()

static void rehost_all_links(
const char *server_host,
const char *old_host,
const char *new_host

);

Changes the hosts of specified rawfs links. server_host specifies
the host containing the links to be changed. All links pointing to
old_host are changed to point to new_host . On some operating
systems, you must have special privileges to use this function.

See oschhost in ObjectStore Management.

os_dbutil::rehost_link()

Release 5.1

static void rehost_link(
const char *pathname,
const char *new_host

):

117

os_dbutil

os_dbutil::remove()

os_dbutil::rename()

os_dbutil::rmdir()

118

Changes the host to which a rawfs link points. pathname must
specify a symbolic link, otherwise err_not_a_link is signaled. new_
host specifies the new Server host.

See oschhost in ObjectStore Management.

static void remove(char const *path);

Removes the database or rawfs link with the specified name. If
path names a link, the link is removed but the target of the link is
not. If path names a directory, it is not removed. Signals err_not_a_
database if path exists in a rawfs but is not a database. Signals err_
file_error when a problem is reported by the Server host’s file
system. Signals err_file_not_local if the file is not local to this Server.

See osrm in ObjectStore Management.

static void rename(
const char *source,
const char *target

);

Renames the rawfs database or directory. source is the old name
and target is the new name. Signals err_cross_server_rename if
source and target are on different Servers. Signals err_invalid_
rename if the operation makes a directory its own descendent.
Signals err_database_exists if a database named target already
exists. Signals err_directory_exists if a directory named target
already exists.

See osmv in ObjectStore Management.

static void rmdir(const char *path);

Removes the rawfs directory with the specified pathname. Signals
err_directory_not_empty if the directory still contains databases.
Signals err_not_a_directory if the argument does not specify a
directory path.

See osrmdir in ObjectStore Management.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_dbuitil::set_application_schema_path()

static char *set_application_schema_path(
const char *executable_pathname,
const char *database_pathname

);

Finds or sets an executable’s application schema database.
executable_pathname specifies the executable. database
pathname is either the new schema’s pathname or 0. If database_
pathname is 0, the function returns new storage containing the
current pathname. If database_pathname is nonzero, the function
returns 0.

See ossetasp in ObjectStore Management.

os_dbutil::set_client_name()

os_dbutil::stat()

static void set_client_name(const char *name);

Sets the client name string for message printing.

static os_rawfs_entry *stat(

const char *path,

const os_boolean b_chase_links =1
);
Gets information about a rawfs pathname. If b_chase_links isfalse
and the path is a link, the Server does not follow it. The Server still
follows intrarawfs links for the intermediate parts of the path.

Returns a pointer to an os_rawfs_entry to be destroyed by the
caller, or 0 on error.

See ostest and osls in ObjectStore Management.

os_dbutil::svr_checkpoint()

Release 5.1

static os_boolean svr_checkpoint(
const char *hostname

);
Makes the specified Server take a checkpoint asynchronously.
Returns nonzero when successful, 0 or an exception on failure.

See ossvrchkpt in ObjectStore Management.

119

os_dbutil

os_dbutil::svr_client_kill()

os_dbutil::svr_ping()

Failover servers

120

static os_boolean svr_client_Kkill(
const char *server_host,
os_int32 client_pid,
const char *client_name,
const char *client_hostname,
os_boolean all,
0s_int32 &status

);
Kills one or all clients of the specified Server. hostname is the
name of the machine running the Server.

client_pid is the process ID of the client to kill. client_name is the
name of the client to kill. client_hostname is the hame of the
machine running the client to kill.

If all is 1, the other arguments except server_host are ignored, and
all clients on the specified Server are killed.

status is set to -2 if a client was Killed, 0 if no clients matched the
specifications, 2 if multiple clients matched the specification. Any
other value means that access was denied.

Returns 0 for failure and nonzero for success.

See ossvrcintkill in ObjectStore Management.

static char *svr_ping(
const char *server_host,
0S_SVr_ping_state &state

)i

Determines whether an ObjectStore Server is running on the
machine named server_host . The referent of state is set to one of
the following global enumerators:

e 0s_svr_ping_is_alive

e 0S_Svr_ping_not_reachable

e 0S_svr_ping_no_such_host

Returns a pointer to the status message string.
os_dbutil::svr_ping() returns the enumerator os_svr_ping_is_

alive_as_failover_backup if it is possible that the Server is running
in backup failover mode. The heuristic for determining if it

ObjectStore C++ API Reference

Chapter 2: Class Library

possibly is running in backup mode is if the exception err_broken_
connection is raised while pinging a Server and the current locator
file indicates that the Server is a member of a failover pair.

See ossvrping in ObjectStore Management.

os_dbutil::svr_shutdown()

os_dbutil::svr_stat()

Release 5.1

static os_boolean svr_shutdown(
const char *server_host

);

Shuts down the Server on the machine named server_host .
Returns nonzero for success, 0 otherwise. On some operating
systems, you must have special privileges to use this function.

See ossvrshtd in ObjectStore Management.

static void svr_stat(
const char *server_host,
0s_unsigned_int32 request_bits,
os_svr_stat *svrstat_data

);

Gets statistics for a Server’s clients on server_host .

request_bits specifies what information is desired. Supply this
argument by forming the bit-wise disjunction of zero or more of
the following enumerators:

e 0S_svr_stat::get _svr_usage

e 0S_svr_stat::get_svr_meter_samples

e 0S_svr_stat::get_svr_parameters

e 0S_svr_stat::get_svr_parameters

e 0s_svr_stat::get_client_info_others

For each enumerator that is specified, the corresponding
information is retrieved.

For each of the classes described below, the constructor sets
struct_version to the value of os_free_blocks_version in the
dbutil.hh file included by your application. If this version is
different from that used by the library, err_misc is signaled. The
constructor initializes all other members to 0.

os_dbutil::svr_stat(db->get_host_name(),

121

os_dbutil

svrstat_data public
data members

0S_svr_stat_svr_
header public data
members

0S_svr_stat _svr_
parameters public
data members

122

0s_svr_stat::get_svr_meter_samples,&svrstat)
n_sent = svrstat.svr_meter_samples->n_notifies_sent;
n_received = svrstat.svr_meter_samples->n_notifies_ received;

svrstat_data points to an instance of os_svr_stat allocated by the
caller, using the zero-argument constructor. This structure has the
following public data members:

0s_unsigned_int32

0s_svr_stat_svr_header
0S_svr_stat_svr_parameters*
0s_svr_stat_svr_rusage*

0S_svr_stat_svr_meters*

0s_unsigned_int32

0s_svr_stat_client_info*

0s_svr_stat_client_info*

0s_unsigned_int32

struct_version;
header;
Svr_parameters;
SVr_rusage;
svr_meter_samples;
n_meter_samples;
client_info_self;
client_info_others;

n_clients;

Set the pointer-valued members to point to classes you allocate
using zero-argument constructors.

0s_svr_stat_svr_header

0s_unsigned_int32

char*

0s_unsigned_int32
0s_unsigned_int32

char*

has the following public data members:

struct_version;
os_release_name;

server_major_version;

server_minor_version;

compilation;

os_svr_stat_svr_parameters has the following public data

members:

0s_unsigned_int32
char*

0s_boolean
0s_int32*
0s_unsigned_int32
0s_int32

0s_int32
0s_unsigned_int32
char*
0s_unsigned_int32

struct_version;
parameter_file;
allow_shared_mem_usage;
authentication_list;

n_authentications;
RAWFS_db_expiration_time;
deadlock_strategy;

direct_to_segment_threshold,;
log_path;

current_log_size_sectors;

ObjectStore C++ API Reference

0S_svr_stat_svr_

rusage public data

members

Release 5.1

0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_boolean
0s_boolean
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_boolean
0s_int32
0s_unsigned_int32

Chapter 2: Class Library

initial_log_data_sectors;
growth_log_data_sectors;
log_buffer_sectors;
initial_log_record_sectors;
growth_log_record_sectors;
max_data_propagation_threshold;
max_propagation_sectors;
max_msg_buffer_sectors;
max_msg_buffers;
sleep_time_between_2p_outcomes;
sleep_time_between_propagates;
write_buffer_sectors;
tcp_recv_buffer_size;
tcp_send_buffer_size;
allow_nfs_locks;
allow_remote_database_access;
max_two_phase_delay;
max_aio_threads;
cache_mgr_ping_time;
max_memory_usage;
max_connect_memory_usage;
remote_db_grow_reserve
allow_estale_to corruptDBs
restricted_file_db_access_only
failover_heartbeat_time

os_svr_stat_svr_rusage has the following public data members:

0s_unsigned_int32

0s_timesecs ru_utime;

0s_timesecs ru_stime;

0s_int32 ru_maxrss;
0s_int32 ru_ixrss;
0s_int32 ru_idrss;
0s_int32 ru_isrss;
0s_int32 ru_minflt;
0s_int32 ru_majflt;

struct_version;

[* user time used */

[* system time used */
I* maximum resident set size */
/* integral shared memory size */
[* integral unshared data size */
/* integral unshared stack size */
[* page reclaims */
[* page faults */

123

os_dbutil

0S_svr_stat_svr_
meters public data
members

124

0s_int32 ru_nswap;
0s_int32 ru_inblock;
0s_int32 ru_oublock;
0s_int32 ru_msgsnd,;
0s_int32 ru_msgrev;
0s_int32

0s_int32 ru_nvecsw;
0s_int32 ru_nivcsw;

[* swaps */

/* block input operations */
/* block output operations */
/* messages sent */

/* messages received */

ru_nsignals; /* signals received */

[* voluntary context switches */

[* involuntary context switches */

Theclassesos_svr_stat_svr_meters andos_svr_stat_client_meters
each have data members named n_notifies_sent and n_notifies_
received . All four are of type os_unsigned_int32 . They give the
total number of notifications that have been received by the
Server, and the number that have been sent by the Server, giving
the total for the Server as a whole, and the total for each client.

0Ss_svr_stat_svr_meters

0s_unsigned_int32
0s_boolean

0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32

0s_unsigned_int32

has the following public data members:

struct_version;

valid;

n_minutes;

n_receive_msgs;
n_callback_msgs;
n_callback_sectors_requested;
n_callback_sectors_succeeded;
n_sectors_read;
n_sectors_written;

n_commit;

n_phase_2_commit;
n_readonly_commit;

n_abort;

n_phase_2_abort;
n_deadlocks;
n_msg_buffer_waits;
n_log_records;
n_log_seg_switches;
n_flush_log_data_writes;

n_flush_log_record_writes;

ObjectStore C++ API Reference

0s_svr_stat_client_
info public data
members

0s_svr_stat_client_
process public data
members

0s_svr_stat_client_
state public data
members

Release 5.1

0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32

0s_svr_stat_client_info

0s_unsigned_int32

Chapter 2: Class Library

n_log_data_writes;
n_log_record_writes;
n_sectors_propagated;
n_sectors_direct;
n_do_some_propagation;
n_notifies_sent
n_notifies_received
n_lock waits
total_lock_wait_times

has the following public data members:

struct_version;

0s_svr_stat_client_process* process;
0s_svr_stat_client_state* state;
0s_svr_stat_client_meters* meters;

Set the pointer-valued members to point to classes you allocate
using zero-argument constructors.

os_svr_stat_client_process has the following public data

members:

0s_unsigned_int32
char*
0s_unsigned_int32
char*

0s_unsigned_int32
0s_svr_stat client_state

0s_unsigned_int32
os_client_state_type
char*

0s_bhoolean
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
os_client_lock_type
0s_unsigned_int32
char*

struct_version;
host_name;

process_id;
client_name;

client_id;

has the following public data members:

struct_version;
client_state;
message_name;
txn_in_progress;
txn_priority;
txn_duration;
txn_work;
lock_state;
db_id;
db_pathname;

os_dbutil

0s_unsigned_int32 locked_seg_id;
0s_unsigned_int32 locking_start_sector;
0s_unsigned_int32 locking_for_n_sectors;
0s_unsigned_int32 n_conflicts;

0s_svr_stat_client_
process*

lock_conflicts;

enum os_client_lock_type {
OSSVRSTAT_CLIENT_LOCK_TO_MAX_BLOCKS,
OSSVRSTAT_CLIENT_LOCK_TO_NBLOCKS,

h

enum os_client_state_type {
OSSVRSTAT_CLIENT_WAITING_MESSAGE,
OSSVRSTAT_CLIENT_EXECUTING_MESSAGE,
OSSVRSTAT_CLIENT_WAITING_RANGE_READ_LOCK,
OSSVRSTAT_CLIENT WAITING_RANGE_WRITE_LOCK,
OSSVRSTAT_CLIENT_WAITING_SEGMENT_WRITE_LOCK,
OSSVRSTAT_CLIENT_DEAD,
OSSVRSTAT_CLIENT_WAITING_SEGMENT_READ_LOCK,
OSSVRSTAT_CLIENT_WAITING_DB_READ_LOCK,
OSSVRSTAT_CLIENT_WAITING_DB_WRITE_LOCK,

h

Data in locking_start_sector and locking_for_n_sectors is valid

only when lock_state is OSSVRSTAT_CLIENT_STATE_WAITING_

RANGE_READ_LOCK or OSSVRSTAT_CLIENT_STATE_WAITING_
RANGE_WRITE_LOCK.

0s_svr_stat_client_
meters public data

os_svr_stat_client_meters has the following public data members:

0s_unsigned_int32 struct_version;

members) i]
0s_unsigned_int32 n_receive_msgs;
0s_unsigned_int32 n_callback_msgs;
0s_unsigned_int32 n_callback_sectors_requested;
0s_unsigned_int32 n_callback_sectors_succeeded,;
0s_unsigned_int32 n_sectors_read,;
0s_unsigned_int32 n_sectors_written;
0s_unsigned_int32 n_deadlocks;
0s_unsigned_int32 n_lock_timeouts;
126 ObjectStore C++ API Reference

Release 5.1

0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32
0s_unsigned_int32

n_commit;
n_phase_2_commit;
n_readonly_commit;
n_abort;
n_phase_2_abort;
n_notifies_sent
n_notifies_received

Chapter 2: Class Library

See ossvrstat and ossvrmtr in ObjectStore Management.

127

os_DLL_finder

os_DLL finder

Required header files

class os_DLL_finder {

public:

Functions in this class are used to create a DLL identifier prefix.
Create a subclass of this class to implement a new kind of DLL
identifier. A prefix before a colon in a DLL identifier string maps
to a DLL finder subclass.

<ostore/client/dll_fndr.hh>

os_DLL finder::register ()

void register_(const char* prefix);

Register this as the finder for DLL identifiers with the given prefix .

os_DLL finder::unregister()

os_DLL finder::get()

void unregister(const char* prefix);

Unregisters a DLL finder sto that it is no longer the finder for DLL
identifiers with the given prefix .

static os_DLL_finder* get(const char* DLL_identifier);

Gets the finder for the specified DLL_identifier ’s prefix or returns
null if none is registered.

os_DLL finder::equal_DLL_identifiers()

static os_boolean equal_DLL_identifiers(
const char* id1, const char* id2

);
Compares two DLL identifier strings and returns true if the
identifier strings are eqivalent.

os_DLL finder::load_DLL

128

virtual os_DLL_handle load_DLL(
const char* DLL_identifier,
os_boolean error_if_not_found) = 0;

Each subclass of os_DLL_finder must provide an implementation
of load_DLL() that interprets the suffix part of the DLL identifier

ObjectStore C++ API Reference

Chapter 2: Class Library

and calls the appropriate operating system API (or calls another
os_DLL_finder) to load the DLL.

os_DLL finder::load_DLL

virtual os_boolean equal_DLL _identifiers_same_prefix(

const char* id1,

const char* id2) = 0;
Each subclass of os_DLL_finder must provide an implementation
of equal_DLL _identifiers_same_prefix that compares two DLL
identifiers that are both implemented by this finder and returns
true if they are equal.

Release 5.1 129

0s _DLL_schema_info

os_DLL schema info

Required header files

This class provides access to information in a DLL about its DLL
schema, including the pathname of the schema database, DLL
identifiers, rep descriptors, pointers to vtbls, and so on. Its base
class is os_schema_info.

#include <ostore/nreloc/schftyps.hh>

os_DLL schema_info::add_DLL_identifier()

void add_DLL _identifier(const char* id);

Adds the specified DLL identifier to the set of DLL identifiers of
the os_DLL_schema_info . This function can be called before os_
DLL_schema_info::DLL_loaded() if the DLL identifier is
determined independently of the schema.

This can be used, for example, in a case where one developer
hands off the schema database, schema file, and other object files
to another developer who incorporates these into a DLL that he
builds. The schema starts with a dummy DLL identifier to make it
a DLL schema, and has the real identifiers added by the second
developer.

The add_DLL _identifier() function allocates a small amount of
memory that is never freed. The amount of memory is
proportional to the total number of DLL identifiersin the os_DLL_
schema_info . It also retains a pointer to the id argument
indefinitely.

os_DLL schema_info::DLL_loaded()

130

os_schema_handle& DLL_loaded();

Notifies ObjectStore that a DLL has been loaded and that the
DLL’s schema must be loaded and merged into the process’s
complete program schema. The this argument identifies the
schema to be loaded. Typically the this argument is an os_DLL_
schema_info structure generated by ossg inthe DLL thatis calling
DLL_loaded() . Typically the call is in the DLL’s initialization
function.

Upon notification, one of the following then occurs:

ObjectStore C++ API Reference

Debugging

os_DLL _schema_info:

Release 5.1

Chapter 2: Class Library

< |f ObjectStore is not yet initialized or there is no current
transaction, this function saves the arguments for later
processing when the first database is jput in use by the next
transaction. The arguments are saved in the form of an os_
schema_handle object that is not fully initialized.

< If the DLL schema is already loaded, this function returns its
os_schema_handle .

= For all other cases, os_DLL_schema_info::DLL_loaded() finds
the schema and rep descriptors and loads them.

Aborting a transaction does not roll back os_DLL_schema_
info::DLL_loaded() .

The returned os_schema_handle represents the DLL schema that
was or will be loaded.

Delayed loading of DLL schema after calling os_DLL_schema_
info::DLL_loaded() can raise exceptions. It can be difficult to debug
these, because they occur later than the program action that
loaded the DLL, but the error message should always include a
DLL identifier of the DLL.

One way to debug such a program is to start a transaction and put
a database in use to force deferred loading to happen.

os_schema_handle& DLL_loaded(
const char* explicit_schema_database_path
);

The explicit_schema_database_path argument allows the file
pathname of the DLL schema database to be passed in, overriding
the pathname in the os_DLL_schema_info . This calls os_DLL_
schema_info::set_schema_database_pathname and then calls the
no-arguments overloading of DLL_loaded described previously.

:DLL_unloaded()

void DLL_unloaded();

Uses the os_DLL_schema_info to locate a loaded os_schema_
handle and calls os_schema_handle::DLL_unloaded()

An exception is thrown if no corresponding os_schema_handle
currently exists.

131

os_dynamic_extent

os_dynamic_extent

Derived from os_Collection , an instance of this class can be used
to create an extended collection of all objects of a particular type,
regardless of which segments the objects reside in. All objects are
retrieved in an arbitrary order that is stable across traversals of the
segments, as long as no objects are created or deleted from the
segment, and no reorganization is performed (using schema
evolution or compaction).

os_dynamic_extent is useful for joining together multiple
collections of the same object type into a new collection. The new
collection is created dynamically, which results in no additional
storage consumption.

By default, os_dynamic_extent does not search subclasses when
the requested object type is a class type. To enable this behavior,
set the argument include_subclasses to true. When this behavior
is enabled, os_dynamic_extent searches all classes that the
requested class type is derived from.

You iterate over the os_dynamic_extent collection by creating an
associated instance of os_cursor . Only the os_cursor::more , os_
cursor:first , and os_cursor::next functions are supported by os_
dynamic_extent . You can create an index for the os_dynamic_
extent collection by calling add_index ; however, creating an index
requires additional storage.

os_dynamic_extent::0s_dynamic_extent()

132

os_dynamic_extent(

os_database * db,

0s_typespec * typespec,
0s_boolean include_subclasses=0
)i
Constructs an os_dynamic_extent that associates all objects of os_
typespec that exist in the specified os_database . This constructor
should be used only for transient instances of os_dynamic_extent .

By default, os_dynamic_extent does not search subclasses when
the requested object type is a class type. Set the argumentinclude_
subclasses to true to enable os_dynamic_extent to search all
classes that the requested class type is derived from.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_dynamic_extent(
0s_typespec * typespec,
0s_boolean options = os_dynamic_extent::all_segments
0s_boolean include_subclasses=0

);

Constructs an os_dynamic_extent that associates all objects of os_
typespec . This constructor assumes that the os_dynamic_extent is
persistent and searches the database where the os_dynamic_
extent resides. If the option is os_dynamic_extent::all_segments
all segments are searched. The alternative option is os_dynamic_
extent::of_segment, which searches only the segment in which the
os_dynamic_extent is allocated.

By default, os_dynamic_extent does not search subclasses when
the requested object type is a class type. Set the argumentinclude_
subclasses to true to enable os_dynamic_extent to search all
classes that the requested class type is derived from.

os_dynamic_extent(

os_database * db,

os_typespec* typespec,

0S_segment* seg

0s_boolean include_subclasses=0
)i
Constructs an os_dynamic_extent that associates only those
objects of os_typespec that exist in the specified os_database and
os_segment . This constructor should be used only for transient
instances of os_dynamic_extent.

By default, os_dynamic_extent does not search subclasses when
the requested object type is a class type. Set the argumentinclude_
subclasses to true to enable os_dynamic_extent to search all
classes that the requested class type is derived from.

os_dynamic_extent::insert()

void insert(const void*);

Adds the specified void* to the index for the current os_dynamic_
extent collection. You must first create an index by calling os_
dynamic_extent::add_index() . See os_collection::add_index()

os_dynamic_extent::remove()

0s_int32 remove(const void*);

Release 5.1 133

os_dynamic_extent

Removes the specified void* from the os_dynamic_extent
collection index.

If the index is ordered, the first occurrence of the specified void* is

removed. Returns a nonzero os_int32 if an element was removed;

0 is returned otherwise.
os_dynamic_extent::~os_dynamic_extent()

~0s_dynamic_extent();

Performs internal maintenance associated with os_dynamic_
extent deallocation.

134 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_enum_type

class os_enum_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ enumeration type. This class is derived from os_

type.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0s_enum_type::.create()

static os_enum_type &create(
const char *name,
os_List<os_enumerator_literal*>&

);

Creates an instance of os_enum_type named name. The specified

list contains the enumerators of the created enumeration type.
0s_enum_type::.get_name()

const char *get_name() const;

Returns the name of the specified enumeration. A zero-length

string is returned for an anonymous enumeration.

0s_enum_type::.get_enumerator()

const os_enumerator_literal *get_enumerator(os_int32) const;

Returns the enumerator that names the specified integer. Returns
0 if there is no enumerator with the specified value. If there is
more than one enumerator with the specified value, the first one
is returned.

0s_enum_type::get_enumerators()

0s_List<const os_enumerator_literal*> get_enumerators() const;

Returns a list, in declaration order, of the enumerator literals
defined by the enumeration.

Release 5.1 135

0s_enum_type

0s_enum_type:.get_pragmas()
os_List<os_pragma*> get_pragmas() const;

Returns the pragmas associated with the specified enumeration.
0s_enum_type::get_source_position()

void get_source_position (
const char* &file,
0s_unsigned_int32 &line
) const;

Returns the source position associated with the specified
enumeration.

0s_enum_type::set_enumerators()

void set_enumerators(os_List<os_enumerator_literal*>&);
Specifies, in declaration order, the enumerator literals defined by
the specified enumeration.
0s_enum_type::set_name()
void set_name(const char *);

Sets the name of the specified enumeration.
0s_enum_type::set_pragmas()

void set_pragmas(os_List<os_pragma*>);

Sets the pragmas associated with the specified enumeration.
0s_enum_type::set_source_position()

void set_source_position(
const char* file,
0s_unsigned_int32 line

);
Sets the source position associated with the specified
enumeration.

136 ObjectStore C++ API Reference

Chapter 2: Class Library

0s_enumerator _literal

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ enumerator.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_enumerator_literal::create()

static os_enumerator_literal& create(const char*, os_int32);

Creates an os_enumerator_literal of the specified hame and value.

os_enumerator_literal::set name()

void set_name(const char*);

Sets the name of the specified enumerator.

os_enumerator_literal::set_value()

void set_value(os_int32);

Sets the integer value of the specified enumerator.

os_enumerator_literal::get_ name()

const char *get_name() const;

Returns the name of the specified enumerator.

os_enumerator_literal::get_value()

0s_int32 get_value() const;

Returns the integer value of the specified enumerator.

Release 5.1 137

0s_evolve_subtype_fun_binding

0s_evolve subtype fun_binding

Instances of this class represent an association between a class and
a reclassifier function. Instances of os_evolve_subtype_fun_
binding are used as arguments to os_schema_evolution::augment_
subtype_selectors() . Instances should be allocated in transient
memory only.

Programs using this class must include <ostore/ostore.hh>,
followed by <ostore/coll.hh> (if used), followed by
<ostore/schmevol.hh> .

os_evolve_subtype_ fun_binding::os_evolve_subtype_fun_binding()

os_evolve_subtype_fun_binding(
char *class_name,
char* (*f)(const os_typed_pointer_void&)

Associates the class named class_name with the function f.

138 ObjectStore C++ API Reference

Chapter 2: Class Library

os_failover server

class os_failover_server : public os_server

This class is derived from os_server .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hh> (if collections are used).

See ObjectStore Management for more information on failover.

os_failover_server::get_logical_server_hostname()

char* get_logical_server_hostname() const;

Returns the logical name of a failover server. A failover server
should always be referred to by its logical server name.

The caller should delete the returned value.

os_failover_server::get_online_server_hostname()

char* get_online_server_hostname() const;

Returns the name of the Server that the client is currently
connected to, either the logical server, alternative server, or the
empty string if there is no connection.

The caller should delete the returned value.

os_failover_server::.get_reconnect_retry_interval()

0s_unsigned_int32 get_reconnect_retry_interval() const;

Returns the reconnect retry interval, which determines how often
to ping the Servers of a failover Server pair while attempting to
reconnect to them.

os_failover_server::get _reconnect_timeout()

0s_unsigned_int32 get_reconnect_timeout() const;

Returns the maximum amount of time that a client application
attempts to reconnect to a broken failover Server connection.

Release 5.1 139

os_failover_server

When the timeout is reached, the following exception is raised:
err_broken_failover_server_connection

os_failover_server::set_reconnect_timeout_and_interval()

140

os_boolean set_reconnect_timeout_and_interval(
0s_unsigned_int32 total_timeout_secs,
0s_unsigned_int32 interval_secs);

Sets the total amount of time to try to reconnect a broken
connection to a failover Server. The interval_secs argument is
used to control how frequently the Servers of a failover Server
pair are pinged to see if they are available.

Returns true if the function has reset these parameters with the
given argument values.

If the parameters are invalid, the function returns false and does
not change the reconnect timeout or reconnect retry interval.

Invalid parameters are those for which

= interval_secs is greater than total_timeout_secs .

= interval_secs is set to 0 when total_timeout_secs is nonzero.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_field_member_variable

class os_field_member_variable : public os_member_variable

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a bit-field member. This class is derived from os_
member_variable .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int8 is defined as an unsigned 8-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

os_field_member_variable::.create()

static os_field_member_variable& create(
const char* name, os_type* type,
0s_unsigned_int8 size_in_bits
);
Creates an os_field_member_variable of the specified name, type,
and size_in_bits .
os_field_member_variable::get_offset()

void get_offset(
0s_unsigned_int32 &bytes, os_unsigned_int8 &bits
) const;

Returns the offset in bytes and bits to the specified bit field.

os_field_member_variable::get_size()
0s_unsigned_int8 get_size() const;

Returns the size in bits of the specified bit field.

os_field_member_variable::set_size()
void set_size(os_unsigned_int8 size_in_bits);

Sets the size in bits of the specified bit field.

Release 5.1 141

os_function_type

os_function_type

class os_function_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ function type. This class is derived from os_type .

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hn> (if used), followed by
<ostore/mop.hh> .

os_function_type::create()

static os_function_type &create(

os_arg_list_kind arg_list_kind,

os_List<os_type*> &args,

0s_type *return_type
);
Creates an os_function_type . The type of the new function’s nt"
argumentis the nt" element of args. The return type is return_type .
The possible values of arg_list_kind are os_function_
type::Unknown , os_function_type::Variable , and os_function_
type::Known . See os_function_type::get_arg_list_kind() on
page 143.

os_function_type::equal_signhature()

os_boolean equal_signature(
const os_function_type &other_func,
os_boolean check_return_type =0

) const;

Returns nonzero if the specified function types are equivalent. If
check_return_type is 0, returns nonzero if the arguments are the
same.

os_function_type::get_arg_list()

142

os_list get_arg_list() const;

Returns a list of os_type* s, pointers to the argument types of the
specified function type. See also the member get_arg_list_kind()
below.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_function_type::get_arg_list_kind()

enum os_arg_list_kind { Unknown, Known, Variable } ;
os_arg_list_kind get_arg_list_kind() const;

Returns an enumerator indicating the type of argument list
associated with the specified function. os_function_

type::Unknown indicates that the argument profile is unknown; a
call to os_function_type::get_arg_list() will return an empty list.
os_function_type::Variable indicates that the function accepts a
variable number of arguments; a call to os_function_type::get_
arg_list() will return the list of known leading arguments. os_
function_type::Known indicates that the function takes a known
fixed number of arguments; a call to os_function_type::get_arg_
list() will return the complete argument list.

os_function_type::get_return_type()

0s_type &get_return_type() const;

Returns the return type associated with the specified function.

os_function_type::set_arg_list()

void set_arg_list(os_List<os_type*>);

Returns a list of os_type* s, pointers to the argument types of the
specified function type. See also the member get_arg_list_kind() ,
above.

os_function_type::set_arg_list_kind()

void set_arg_list_kind(os_int32);

Specifies an enumerator indicating the type of argument list
associated with the specified function. os_function_
type::Unknown indicates that the argument profile is unknown.
os_function_type::Variable indicates that the function accepts a
variable number of arguments. os_function_type::Known
indicates that the function takes a known fixed number of
arguments.

os_function_type::set _return_type()

Release 5.1

void set_return_type(os_type &);

Sets the return type associated with the specified function.

143

os_indirect_type

os_indirect_type

class os_indirect_type : public os_type

This class is part of the ObjectStore metaobject protocol, which

provides access to ObjectStore schemas. An instance of this class

is either an os_named_indirect_type (typedef) or os_anonymous_

indirect_type (atype with const or volatile specifiers). This class is

derived from os_class_type .
os_indirect_type::.get_target_type()

const os_type &get_target_type() const;

Returns the type for which this is a typedef or which this qualifies
with a const or volatile specifier.

0s_type &get_target_type();

Returns the type for which this is a typedef or which this qualifies
with a const or volatile specifier.

os_indirect_type::set_target_type()

void set_target_type(os_type &);

Sets the type for which this is a typedef or which this qualifies
with a const or volatile specifier.

144 ObjectStore C++ API Reference

Chapter 2: Class Library

os_instantiated _class_type

class os_instantiated_class_type : public os_class_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents an instantiation of a template class. This class is
derived from os_class_type .

os_instantiated_class_type::create()

static os_instantiated_class_type& create(const char* name);

Creates an os_instantiated_class_type with the specified name.

static os_instantiated_class_type& create(

const char* name,

0s_List<os_base_class*>&,

0s_List<os_member*>&,

0s_template_instantiation*,

0s_boolean defines_virtual_functions
);
Creates an os_instantiated_class_type from the specified template
instantiation and with the specified name, base classes, and
members.

os_instantiated_class_type::get_instantiation()

const os_template_instantiation &get_instantiation() const;

Returns a reference to a const os_template_instantiation that
represents the template instantiation resulting in this class.

os_template_instantiation &get_instantiation();

Returns a reference to a non-const os_template_instantiation that
represents the template instantiation resulting in this class.

os_instantiated_class_type::set_instantiation()

Release 5.1

void set_instantiation(os_template_instantiation&);

Sets the os_template_instantiation for the specified os_
instantiated_class_type

145

os_integral_type

os_integral_type

os_integral_type::

os_integral_type::

os_integral_type::

os_integral_type::

os_integral_type::

146

class os_integral_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ integer type. This class is derived from os_type .
Performing os_type::kind() on an os_integral_type returns one of
the following enumerators: os_type::Signed_char , os_
type::Unsigned_char , os_type::Signed_short , os_type::Unsigned_
short , os_type::Integer , os_type::Unsigned_integer , 0s_
type::Signed_long , or os_type::Unsigned_long

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

create()

static os_integral_type &create(const char*);

Creates an os_integral_type representing the type with the
specified name.

create_defaulted_char()

static os_integral_type &create_defaulted_char(os_boolean
signed);

Creates an os_integral_type representing the type char.
create_int()

static os_integral_type &create_int(os_boolean signed);

Creates an os_integral_type representing the type int or unsigned
int.

create_long()

static os_integral_type &create_long(os_boolean signed);

Creates an os_integral_type representing the type long or
unsigned long .

create_short()

static os_integral_type &create_short(os_boolean signed);

ObjectStore C++ API Reference

Chapter 2: Class Library

Creates an os_integral_type representing the type short or
unsigned short .

os_integral_type::create_signed_char()

static os_integral_type &create_signed_char();

Creates an os_integral_type representing the type signed char .
os_integral_type:.create_unsigned_char()

static os_integral_type &create_unsigned_char();

Creates an os_integral_type representing the type unsigned char .
os_integral_type::is_signed()

0s_boolean is_signed() const;

Returns 1 if and only if the specified object represents a signed
type.

Release 5.1 147

os_literal

os_literal

class os_literal

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent literals that designate values. They can be used as actual
parameters of class templates.

os_literal::create_char()

static os_literal& create_char(char);

Creates a literal representing the specified char.

os_literal::create_enum_literal()

static os_literal& create_enum_literal(os_enumerator_literal&);

Creates a literal representing the specified enumerator.

os_literal::create_pointer_literal()

static os_literal& create_pointer_literal(os_pointer_literal&);

Creates a literal representing the specified pointer.

os_literal::create_signed_char()

static os_literal& create_signed_char(signed char);

Creates a literal representing the specified signed char .
os_literal::create_signed_int()

static os_literal& create_signed_int(signed int);

Creates a literal representing the specified signed int .

os_literal::create_signed_long()

static os_literal& create_signed_long(signed long);

Creates a literal representing the specified signed long .

os_literal::create_signed_short()

static os_literal& create_signed_short(signed short);

Creates a literal representing the specified signed short .

148 ObjectStore C++ API Reference

os_literal::
os_literal::
os_literal::
os_literal::
os_literal::
os_literal:
os_literal:
os_literal:

Release 5.1

Chapter 2: Class Library

create_unsigned_char()

static os_literal& create_unsigned_char(unsigned char);

Creates a literal representing the specified unsigned char .

create_unsigned_int()

static os_literal& create_unsigned_int(unsigned int);

Creates a literal representing the specified unsigned int .

create_unsigned_long()

static os_literal& create_unsigned_long(unsigned long);

Creates a literal representing the specified unsigned long .

create_unsigned_short()

static os_literal& create_unsigned_short(unsigned short);

Creates a literal representing the specified unsigned short .

create_wchar_t()

static os_literal& create_wchar_t(wchar_t);

Creates a literal representing the specified wchar_t .

get_char_value()

char get_char_value() const;

Returns the value designated by the specified literal.

:get_enum_literal()

const os_enumerator_literal& get_enum_literal() const;

Returns a reference to the const os_enumerator_literal ~ designated
by the specified literal.

0os_enumerator_literal& get_enum_literal();

Returns a reference to the os_enumerator_literal designated by the
specified literal.

:get_kind()

enum os_literal_kind {
Enumerator_literal,
Function_literal,

149

os_literal

Function_literal_template,
Unsigned_char_literal,
Signed_char_literal,
Unsigned_short_literal,
Signed_short_literal,
Integer_literal,
Unsigned_integer_literal,
Signed_long_literal,
Unsigned_long_literal,
Char_literal,
Pointer_literal,
Wochar_t_literal,

I3

os_literal_kind get_kind() const;

Returns an enumerator indicating the kind of the specified literal.
os_literal::get_pointer_literal()

const os_pointer_literal& get_pointer_literal() const;

Returns a reference to the const os_pointer_literal designated by
the specified literal.

os_pointer_literal& get_pointer_literal();

Returns a reference to the os_pointer_literal designated by the
specified literal.

os_literal::get_signed_integral_value()

long get_signed_integral_value() const;

Returns the value designated by the specified literal.
os_literal::get_type()

const os_type& get_type() const;
Returns the type of the value designated by the specified literal.

os_literal::get_unsigned_integral_value()

long get_unsigned_integral_value() const;

Returns the value designated by the specified literal.

os_literal::get_wchar_t_value()

wchar_t get_wchar_t_value() const;

Returns the value designated by the specified literal.

150 ObjectStore C++ API Reference

Chapter 2: Class Library

os_literal _template actual arg

class os_literal_template_actual_arg : public os_template_actual_
arg

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent values that are actual parameters of class templates.

os_literal_template_actual_arg::create()

static os_literal_template_actual_arg& create(os_literal*);

Creates an actual parameter consisting of the specified literal.

os_literal_template_actual_arg::get_literal()

const os_literal &get_type() const;

Returns areference to a const literal, the literal of which the actual
parameter consists.

os_literal &get_literal();

Returns a reference to a non-const literal, the literal of which the
actual parameter consists.

os_literal_template_actual_arg::set_literal()

Release 5.1

void set_literal(os_literal&);

Sets the literal of which the actual parameter consists.

151

os_lock_timeout_exception

0s_lock_timeout_exception

Instances of this class contain information on the circumstances
preventing acquisition of a lock within a specified timeout period.
An exception of this type can be signaled by processes that have
called the set_readlock_timeout() or set_writelock timeout()
member of os_segment , os_database , Or objectstore . A pointer to
an instance of this class can be returned by objectstore::acquire_
lock() .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_lock_timeout_exception::get_application_names()

os_char_p *get_application_names();

Returns an array of strings naming the applications preventing
lock acquisition. This array is parallel to the arrays returned by
get_hostnames() and get_pids() ; that is, the it element of get_
application_names() contains information about the same process
as the it elements of get_hostnames() and get_pids() . The member
function number_of blockers() returns the number of elements in
these arrays. Deleting the os_lock_timeout_exception deallocates
the arrays.

os_lock_timeout_exception::get_fault_addr()

void *get_fault_addr();

Returns the address on which ObjectStore faulted, causing the
database access leading to the attempted lock acquisition.

os_lock_timeout_exception::get_hostnames()

152

os_char_p *get_hostnames();

Returns an array of strings naming the host machines running the
applications preventing lock acquisition. This array is parallel to
the arrays returned by get_application_names() and get_pids() ;
that is, the it element of get_hostnames() contains information
about the same process as the it elements of get_application_
names() and get_pids() . The member function number_of

ObjectStore C++ API Reference

Chapter 2: Class Library

blockers() returns the number of elements in these arrays.
Deleting the os_lock_timeout_exception deallocates the arrays.

os_lock_timeout_exception::get_lock type()

0s_int32 get_lock_type();

Returns a value (os_read_lock or os_write_lock) indicating the
type of lock ObjectStore was requesting when the timeout
occurred.

os_lock_timeout_exception::get_pids()

os_unsigned_int32 *get_pids();

Returns an array of integers indicating the process IDs of the
processes preventing lock acquisition. This array is parallel to the
arrays returned by get_application_names() and get_hostnames() ;
that is, the it element of get_pids() contains information about the
same process as the it elements of get_application_names() and
get_hostnames() . The member function number_of blockers()
returns the number of elements in these arrays. Deleting the os_
lock_timeout_exception deallocates the arrays.

os_lock_timeout_exception::number_of _blockers()

Release 5.1

0s_int32 number_of_blockers();

Returns the number of processes preventing lock acquisition.

153

0s_member

0S_member

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a class member.

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0s_member::Access_modifier

This enumerator is a possible return value from os_
member::kind() , indicating an access modification to an inherited
member. See os_access_modifier on page 44.

os_member::defining_class()

const 0s_class_type &defining_class() const;

Returns areference to a const os_class_type , the class that defines
the specified member.

os_class_type &defining_class();

Returns a reference to a non-const os_class_type , the class that
defines the specified member.

os_member::Field_variable

0s_member::Function

This enumerator is a possible return value from os_
member::kind() , indicating a bit field. See os_instantiated_class_
type on page 145.

This enumerator is a possible return value from os_
member::kind() , indicating a member function. See os_member_

function on page 159.

0s_member::get_access()

154

int get_access() const;

Returns an enumerator describing the access to the specified
member, os_member::Private , os_member::Protected , Or os_
member::Public .

ObjectStore C++ API Reference

Chapter 2: Class Library

os_member::get_defining_class()

const 0s_class_type &defining_class() const;

Returns a reference to a const os_class_type , the type that defines
the specified member.

const os_class_type &defining_type() const;

Returns a reference to a non-const os_class_type , the type that
defines the specified member.

os_member::get_kind()

int get_kind() const;

Returns an enumerator indicating the subtype of os_member of
which the specified object is a direct instance. The possible return
values are os_member::Variable , os_member::Function , os_
member::Type , os_member::Access_modifier , os_member::Field_
variable , os_member::Namespace , or os_member::Relationship

os_member::is_unspecified()

os_boolean is_unspecified() const;

Returns nonzero (that is, true) if and only if the specified os_
member is the unspecified member. Some os_member -valued
attributes in the metaobject protocol are required to have values
in a consistent schema, but might lack values in the transient
schema, before schema installation or evolution is performed. The
get function for such an attribute returns a reference to an os_
member . The fact that a reference rather than pointer is returned
indicates that the value is required in a consistent schema. In the
transient schema, if such an attribute lacks a value (because you
have not yet specified it), the get function returns the unspecified
member. This is the only os_member for which is_unspecified()
returns nonzero.

os_member::Namespace

This enumerator is a possible return value from os_member::get_
kind() , indicating a member function. See os_member_namespace
on page 164.

0s_member::operator const os_access_modifier&()

Release 5.1

operator const os_access_maodifier&() const;

155

0s_member

0s_member:

0s_member:

0s_member:

0s_member:

0s_member:

0s_member:

156

Provides for safe casts from const os_member to constos_access_
modifier& . If the cast is not permissible, err_mop_illegal_cast is
signaled.

:operator const os_field_member_variable&()

operator const os_field_member_variable&() const;

Provides for safe casts from const os_member to const os_field_
member_variable& . If the cast is not permissible, err_mop_illegal_
cast is signaled.

:operator const os_member_function&()

operator const os_member_function&() const;

Provides for safe casts from const os_member to const os_
member_function& . If the cast is not permissible, err_mop_illegal_
cast is signaled.

:operator const os_member_type&()

operator const os_member_type&() const;

Provides for safe casts from const os_member to const os_
member_type& . If the cast is not permissible, err_mop_illegal_cast is
signaled.

‘operator const o0s_ member_variable&()

operator const os_member_variable&() const;

Provides for safe casts from const os_member to const os_
member_variable& . If the cast is not permissible, err_mop_illegal_
cast is signaled.

:operator const os_relationship_member_variable&()

operator const os_relationship_member_variable&() const;

Provides for safe casts from const os_member to const os_
relationship_member_variable& . If the cast is not permissible, err_
mop_illegal_cast is signaled.

:operator os_access_modifier&()

operator os_access_modifier&();

Provides for safe casts from os_member to os_access_modifier& . If
the cast is not permissible, err_mop_illegal_cast is signaled.

ObjectStore C++ API Reference

0s_member:

0s_member:

0s_member:

0s_member:

0s_member:

0s_member::

0s_member::

Release 5.1

Chapter 2: Class Library

:operator os_field_member_variable&()

operator os_field_member_variable&();

Provides for safe casts from os_member to os_field_member_
variable& . If the cast is not permissible, err_mop_illegal_cast is
signaled.

:operator os_member_function&()

operator os_member_function&();

Provides for safe casts from os_member to os_member_function&
If the cast is not permissible, err_mop _illegal_cast is signaled.

:operator os_member_type&()

operator os_member_type&();

Provides for safe casts from os_member to os_member_type& . If
the cast is not permissible, err_mop_illegal_cast is signaled.

:operator os_member_variable&()

operator os_member_variable&();

Provides for safe casts from os_member to os_member_variable& .
If the cast is not permissible, err_mop_illegal_cast is signaled.

:operator os_relationship_member_variable&()

operator os_relationship_member_variable&();

Provides for safe casts from os_member to os_relationship_
member_variable& . If the cast is not permissible, err_mop_illegal_
cast is signaled.

Private
This enumerator is a possible return value from os_member::get_
access() , indicating private access.

Protected

This enumerator is a possible return value from os_member::get_
access() , indicating protected access.

157

0s_member

0s_member

0os_member

0s_member

0s_member

0s_member

158

::Public

This enumerator is a possible return value from os_member::get_
access() , indicating public access.

::Relationship

This enumerator is a possible return value from os_
member::kind() , indicating a relationship (inverse) member. See
os_relationship_member_variable on page 267.

::set_access()

void set_access(int);

Specifies an enumerator describing the access to the specified
member, os_member::Private , os_member::Protected , Or os_
member::Public .

Type
This enumerator is a possible return value from os_
member::kind() , indicating that the specified member is a nested
type definition. See os_member_type on page 165.

:Variable

This enumerator is a possible return value from os_
member::kind() , indicating a data member. See os_member_
variable on page 166.

ObjectStore C++ API Reference

Chapter 2: Class Library

0os_member_function

class os_member_function : public os_member

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent member functions. os_member_function isderived from
0s_member .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

os_member_function::create()

static os_member_function& create(
const char* name,
os_function_type*
);
Creates a member function with the specified name and of the
specified type.

os_member_function::get_call_linkage()

os_call_linkage get_call_linkage() const;

Returns os_member_function::No_linkage , os_member_
function::C_linkage , os_member_function::C_plus_plus_linkage
or os_member_function::Fortran_linkage

os_member_function::get_function_kind()

enum os_function_kind {
Regular,
[* applicable only if it is a member function */
Constructor, Destructor,
Cast_op, /* the return type gives the cast type */
[* the operators that can be overloaded */
New_op, Delete_op,
Plus_op, Minus_op, Mul_op, Div_op, Mod_op,
Xor_op, And_op, Or_op, Comp_op,
Not_op, Assign_op, Lt_op, Gt_op,
Plus_assign_op, Minus_assign_op, Mul_assign_op,
Div_assign_op, Mod_assign_op,

Release 5.1 159

0s_member_function

0os_member_function:

0os_member_function:

0os_member_function:

0os_member_function::

os_member_function:

160

Xor_assign_op, And_assign_op, Or_assign_op,
Lsh_op, Rsh_op,
Lsh_assign_op, Rsh_assign_op,
Eqg_op, Neq_op, Le_op, Ge_op,
And_and_op, Or_or_op,
Inc_op, Dec_op, Comma_op,
Member_deref_op, Deref_op,
Paren_op, Subscript_op,
Vec_new_op, Vec_delete_op
I3

os_function_kind get_function_kind() const;

Returns an enumerator indicating what kind of function the
specified member function is.

:get_name()

const char *get_name() const;

Returns the name of the specified member.

‘get_source_position()

void get_source_position(
const char* &file,
0s_unsigned_int32 &line
) const;

Returns the source position associated with the specified function.

get_type()
const os_function_type &get_type() const;

Returns an os_function_type& , which contains information about
the function, including its return type and argument list.

is_const()

0s_boolean is_const() const;

Returns nonzero if and only if the specified member function is
const.

fis_inline()
0s_boolean is_inline() const;

Returns nonzero if and only if the specified member function is
inline.

ObjectStore C++ API Reference

0os_member_function:

0os_member_function:

os_member_function:

0os_member_function:

0os_member_function:

0os_member_function:

0os_member_function:

Release 5.1

Chapter 2: Class Library

iis_overloaded()

os_boolean is_overloaded() const;

Returns nonzero if and only if the specified member function is
overloaded.

[is_pure_virtual()

0s_boolean is_pure_virtual() const;

Returns nonzero if and only if the specified member function is
pure virtual.

fis_static()

0s_boolean is_static() const;

Returns nonzero if and only if the specified member function is
static.

[is_virtual()

0s_boolean is_virtual() const;

Returns nonzero if and only if the specified member function is
virtual.

iis_volatile()

0s_boolean is_volatile() const;

Returns nonzero if and only if the specified member function is
volatile.

:set_call_linkage()

void set_call_linkage(os_call_linkage);

Pass os_member_function::No_linkage , os_member_function::C_
linkage , os_member_function::C_plus_plus_linkage , or os_
member_function::Fortran_linkage

:set_is_const()

void set_is_const(os_boolean);

1 specifies that the member function is const ; 0 specifies that it is
non-const .

161

0s_member_function

0s_member_function

os_member_function:

os_member_function:

0os_member_function:

0os_member_function:

0os_member_function:

0os_member_function:

0os_member_function:

162

::set_is_inline()
void set_is_inline(os_boolean);

1 specifies that the member function is inline; 0 specifies that it is
not inline.

:set_is_overloaded()

void set_is_overloaded(os_boolean);

1 specifies that the member function is overloaded; 0 specifies that
itis not.

:set_is_pure_virtual()

void set_is_pure_virtual(os_boolean);

1 specifies that the member function is a pure virtual function; 0
specifies that it is not.

:set_is_static()

void set_is_static(os_boolean);

1 specifies that the member function is a static function; 0 specifies
that it is not.

:set_is_virtual()

void set_is_virtual(os_boolean);

1 specifies that the member function is a virtual function; 0
specifies that it is not.

:set_is_volatile()

void set_is_volatile(os_boolean);

1 specifies that the member function is volatile; 0 specifies that it
is not.

:set_name()

void set_name(const char* name);

Sets the name of the specified member.

:set_source_position()

void set_source_position(
const char* file,

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_unsigned_int32 line
);
Sets the source position associated with the specified function.
os_member_function::set_type()

void set_type(os_function_type&);

Sets the return type of the specified member function.

Release 5.1 163

0s_member_namespace

0S_member_namespace

class os_member_namespace : public os_member

This class is part of the ObjectStore metaobject protocol. Because
namespaces can be enclosed in namespaces they must occur as
members of namespaces. The class os_member_namespace is
used to represent namespaces as members.

0s_member_namespace::.create()

static os_member_namespace& create(os_namespace®) ;
0s_member_namespace:.get_namespace()

const 0s_namespace& get_namespace() const ;
0s_member_namespace::set hamespace

0s_namespace& get_namespace() ;

void set_namespace(os_namespaceg&);

164 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_member_type

class os_member_type : public os_member

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a member type definition, that is, a type definition that
is nested within a class. os_member_type is derived from os_
member .

0s_member_type::create()

static os_member_type& create(os_type?*);

Creates a member typedef for the specified os_type .
0os_member_type::get_type()

const os_type &get_type() const;
Returns the type defined by the specified member typedef.

0s_member_type::set_type()
void set_type(os_type&);
Sets the type defined by the specified member typedef.

Release 5.1 165

0s_member_variable

0S_member_variable

class os_member_variable : public os_member

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class

represent data members. os_member_variable is derived from os_
member .

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0os_member_variable::create()

static os_member_variable &create(

const char *name,

os_type *value_type
);
Creates an os_member_variable . The arguments specify the initial
values for the attributes name and value_type . The initial values
for the remaining attributes are as follows:

Attribute Value

storage_class 0s_member_variable::Regular
is_field 0

is_static 0

is_persistent 0

os_member_variable::get_name()

const char *get_name() const;

Returns the name of the specified member.

os_member_variable::get _type()

166

const os_type &get_type() const;

Returns a reference to a const os_type , the value type of the
specified member.

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_type &get_type();
Returns a reference to a non-const os_type , the value type of the
specified member.

0os_member_variable::get_size()

0s_unsigned_int32 get_size() const;

Returns the size in bytes occupied by the specified member.
Signals err_mop if the specified member is an os_field_member_
variable .

os_member_variable::get_offset()

0s_unsigned_int32 get_offset() const;

Returns the offset in bytes of the specified member within its
defining class. Signals err_mop if the specified member is an os_
field_member_variable , or is a static or persistent member.

0os_member_variable::get_source_position()

void get_source_position(
const char* &file,
0s_unsigned_int32 &line
) const;

Returns the source position associated with the specified member.

os_member_variable::get_storage_class()

enum os_storage_class { Regular, Persistent, Static } ;
os_storage_class get_storage_class() const;

Returns an enumerator indicating the storage class of the
specified member: os_member_variable::Regular , os_member_
variable::Persistent , or os_member_variable::Static

os_member_variable::is_field()

0s_boolean is_field() const;

Returns 1 if and only if the specified member is an os_field_
member_variable .

os_member_variable::is_static()

Release 5.1

0s_boolean is_static() const;

167

0s_member_variable

0os_member_variable:

0s_member_variable:

0os_member_variable:
variable&()

0os_member_variable:

0os_member_variable:

0s_member_variable:

168

Returns 1 if and only if the specified member is a static data
member.

lis_persistent()

0s_boolean is_persistent() const;
Returns 1 if and only if the specified member is a persistent data
member.

:operator const os_field_member_variable&()

operator const os_field_member_variable&() const;

Provides for safe casts from const os_member_variable to const
os_field_member_variable& . If the cast is not permissible, err_mop_
illegal_cast is signaled.

:operator const os_relationship_member_

operator const os_relationship_member_variable&() const;

Provides for safe casts from const os_member_variable to const
os_relationship_member_variable& . If the cast is not permissible,
err_mop_illegal_cast is signaled.

:operator os_field_member_variable&()

operator os_field_member_variable&();

Provides for safe casts from os_member_variable to os_field_
member_variable& . If the cast is not permissible, err_mop_illegal_
cast is signaled.

:operator os_relationship_member_variable&()

operator os_relationship_member_variable&();

Provides for safe casts from os_member_variable to os_
relationship_member_variable& . If the cast is not permissible, err_
mop_illegal_cast is signaled.

:set_name()

void set_name(const char *);

Specifies the name of the specified member. ObjectStore copies the
character array pointed to by the argument.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_member_variable::set_offset()

void set_offset(os_unsigned_int32);

Sets the offset in bytes of the specified member within its defining
class. Signals err_mop if the specified member is an os_field_
member_variable , or is a static or persistent member.

0s_member_variable::set_source_position()

void set_source_position(
const char* file,
0s_unsigned_int32 line

);
Sets the source position associated with the specified member.
0os_member_variable::set_storage_class()

void set_storage_class(os_unsigned_int32);

Specifies an enumerator indicating the storage class of the
specified member: os_member_variable::Regular , os_member_
variable::Persistent , Oor os_member_variable::Static

0os_member_variable::set_type()

set_type(os_type &);
Specifies the value type of the specified member.

Release 5.1 169

0s_mop

0S_mop

os_mop::bind()

170

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. The members provided
concern the transient schema.

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

void os_mop::bind (
const char* hetero_set,
0s_schema_options* schema_options,
0s_boolean make_neutral_changes,
os_boolean allow_schema_reorg,
const char** neutral_output

);

Causes all classes in the transient schema to be bound for the
current architecture. A default invocation of this binding function
occurs automatically when classes are installed into a database
schema. This interface allows the binding to occur independently,
and allows additional functionality beyond the default behavior
to be invoked.

It is important to consider the effects of heterogeneity on schema
neutralization. See ossg Neutralization Options in Chapter 5 of
ObjectStore Building C++ Interface Applications for detailed
information.

The hetero_set argument can specify any heterogeneity set
supported for the current platform, or can be set to null if no
heterogenity is requested.

The schema_options argument specifies the compiler options and
pragmas to be used on this and other platforms.

The make_neutral_changes argument controls whether os_mop
automatically modifies the schema to make it neutral. If make_
neutral_changes is set to false and the schema is not neutral, the
exception err_mop_not_neutral is signaled.

The allow_schema_reorg argument permits os_mop to make more
complex modifications in order to ensure schema neutralization.

ObjectStore C++ API Reference

Chapter 2: Class Library

The neutral_output argument allows the caller to receive a string
containing a description of the neutralization changes and/or
failures encountered. The caller must delete the returned string.

Neutralization failures If the schema is not neutral and cannot be made neutral for some
reason, the exception err_mop_cannot_neutralize is signaled. This
could occur if

= Aschema construct is used that is incompatible with a selected
heterogeneity set (such as using virtual base classes with the
setl heterogeneity set).

= You fail to specify allow_schema_reorg when necessary (virtual
base classes often require this).

= You fail to specify a schema_options argument with the
necessary options.

See ObjectStore Building C++ Interface Applications, Chapter 5,
Building Applications for Use on Multiple Platforms, for more
details on schema neutralization options and regulations.

0s_mop::copy_classes()

static void copy_classes (
const os_schema &schema,
0s_const_classes &classes

)i

Copies the specified classes into the transient schema. If any of the
given classes is not well formed or is not from the given schema,
or the given schema is the transient schema, an exception is raised.

0s_mop::current()

static os_schema ¤t ();

Returns the schema currently bound. The bound schema is the

schema in which dynamically created types are deposited. After

initialization of schema services, the current schema is bound to

the schema found in the transient database.
os_mop::find_namespace()

static os_namespace *find_namespace (const char* name);

Returns the os_namespace associated with the given name in the
os_schema denoted by os_mop::current() .

Release 5.1 171

0s_mop

os_mop::find_type()

static os_type *find_type(const char *name);

Returns a pointer to the type in the transient schema with the

specified name; returns 0 if there is no such type.

0s_mop::get_transient_schemay()

static os_schema &get_transient_schema();

Returns a reference to the transient schema.

0os_mop::get _failure_classes()

os_classes osmop::get_failure_classes ();

Following a call to bind() and before a call to os_mop::reset or os_
database_schema::install() , the function get_failure_classes()
returns the classes for which no valid neutralization was found.

This list should be empty except after a call to bind() that resultsin
err_mop_cannot_neutralize’s being signaled. Note that the
neutralization failure of a class can hide further neutralization
failures because no attempt is made to neutralize types derived
from or that embed failing classes.

0s_mop::get_neutralized_classes()

os_mop::initialize()

0s_classes osmop::get_neutralized_classes();

Following a call to bind() and before a call to os_mop::reset or os_
database_schema::install() , the function get_neutralized_classes()
returns the classes for which changes were required. If the
previous call to bind resulted in err_mop_cannot_neutralize’s being
signaled, this list is not necessarily complete.

static void initialize();

Must be called before you use the transient schema, that is, before
you create any schema objects and before you copy any classes
into the transient schema.

0os_mop::initialize_object_metadata()

172

static void os_mop::initialize_object_metadata(
void *object,
const char *type_name);

ObjectStore C++ API Reference

0os_mop::reset()

Release 5.1

Chapter 2: Class Library

This interface initializes the compiler metadata, if any, associated
with the object. The object instance can be transient or persistent;
however, the schema for its class must be present in the
application schema. If the object is transient, the type_name
argument must be nonnull, and indicates the name of the class of
the object.

If the object is persistent, the type_name can be null. If nonnull, it
must match exactly the real type of the object; otherwise an
exception is generated. For example, names returned by the os_
types or os_mop subsystem are safe to use, and will match
correctly. The best method is to pass a null type_name when the
instance is persistent.

This call must be made while inside a transaction. The object
pointer must be a pointer to a valid top-level object. Pointers to
embedded objects will generate an exception in the case of
persistent pointers where this case can be verified. In the case of
transient instances, no such checking is possible, and a bad
initialization could result.

Top-level arrays must be initialized one element at a time. The
object pointer must point beyond any vector headers in a top-level
array. Embedded arrays within objects are initialized correctly.
Also, any compiler metadata inside a union with discriminants
will not be initialized. It is very difficult to arrange to call union
discriminant functions during this initialization.

Virtual base class pointers, vector headers, and any other
compiler metadata are not affected by this interface. It also has no
effect on normal class data.

The equivalent C interface is found in Chapter 6, C Library
Interface, on page 393.

static void reset ();

Reset the portion of schema services responsible for the access and
construction of schema types through the MOP interface. After
this operation, the current schema is empty

173

0s_named._indirect_type

0os_named_indirect_type

class os_named_indirect_type : public os_anonymous_indirect_

type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ typedef. This class is derived from os_
anonymous_indirect_type . Performing os_anonymous_indirect_
type::get_target_type() on an os_named_indirect_type resultsin
the type named by the typedef.

os_named_indirect_type::.create()

static os_named_indirect_type& create(
0s_type* target,
const char*
)i
Creates an os_named_indirect_type
0s_named_indirect_type::get name()
const char *get_name() const;

Returns the name of the specified typedef.
os_named_indirect_type::get _source_position()

void get_source_position(
const char* &file,
0s_unsigned_int32 &line
) const;

Returns the source position associated with the specified typedef.
0os_named_indirect_type::set_ name()

const char *set_name() const;

Sets the name of the specified typedef.
0s_named_indirect_type::set_source_position()

void set_source_position(
const char* file,
0s_unsigned_int32 line

);
Sets the source position associated with the specified typedef.

174 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_hamespace

O0S_namespace:

O0S_namespace:

0S_namespace:

0Ss_namespace:

0Ss_namespace:

0S_namespace:

0S_namespace:

Release 5.1

This class is part of the ObjectStore metaobject protocol.

:create()

static os_namespaceé& create(const char* name);

Creates a namespace typedef for the specified name.

static os_namespaceé& create(const char* name, os_members&) ;

Creates a namespace typedef for the specified name and
members.

:get_enclosing_namespace()

const os_namespace* get_enclosing_namespace () const ;
0s_namespace* get_enclosing_namespace ();

Returns the enclosing namespace if one exists, otherwise returns
0.

:get_members()

0s_members get_members () ;

0s_const_members get_members () const ;

:get_name()

const char* get_name () const ;

:set_members()

void set_members(os_members&) ;

:set_name()

void set_name(const char*) ;

:set_enclosing_namespace()

const os_namespace* set_enclosing_namespace () const ;
0Ss_namespace* set_enclosing_namespace ();

Returns the enclosing namespace if one exists, otherwise returns
0.

175

os_notification

0s_ notification

Objects of class os_natification represent notifications for sending
and receiving. A notification object embodies a database location
(os_reference), a signed 32-bit integer kind , and a null-terminated
C string.

os_notification::os_notification()

os_notification(

const os_referenceé& ref,

0s_int32 kind=0,

const char *string=0
);
Notifications can be created using a constructor that specifies all
these elements. The os_notification object copies its string
argument when the object is created, and deletes the storage for
the string copy when it is deleted.

os_notification();

Notifications can also be allocated in arrays (see os_subscription
on page 318). The default constructor for os_notification produces
an uninitialized notification.

os_notification::assign()

void assign(
const os_referenceé& ref,
0s_int32 kind=0,
const char *string=0
)
Notifications can be reassigned using the assign member function.
This is most useful when allocating arrays of notifications:

When passing database locations to os_notification member
functions, you do not need to explicitly convert to os_reference .
You can pass pointers or os_Reference<X> . These are converted
by C++ automatically.

You can retrieve the components of a notification using the
following accessor functions.

os_notification::get_database()

176

os_database *get_database()const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Retrieves the database associated with the notification.

os_notification::get_reference()

os_reference get_reference()const;

Retrieves the reference associated with the notification.

os_notification::get_kind()

0s_int32 get_kind()const;
Retrieves the kind associated with the notification.

os_notification::get_string()

const char *get_string()const;
Retrieves the string associated with the notification.
notify_immediate and notify_on_commit member functions

provide shortcuts for the static member functions also defined on
this class:

void notify_immediate();
void notify_on_commit();

A public enumeration in class os_notification represents the
maximum string length usable in notifications.

enum {maximum_string_length = 16383},

A public enumeration in class os_notification represents the
maximum notification queue size.

enum {maximum_notification_queue_length = 512},

os_notification::_get _fd();

Release 5.1

Returns a file descriptor that can be used to detect whether any
notifications exist. The only legal operation on this file descriptor
is to call select() or poll(), to determine if any data has been
received. If data has been received, then a notification has been
gueued for this application. It can be retrieved using os_
notification::receive()

After retrieving a notification, you can test for further
notifications again using select() or poll(). (That is, os_
notification::receive() resets the notification_fd to the not ready state
unless there are further notifications pending.

177

os_notification

This function is not available on all platforms and configurations.
This is because file descriptors are not used portably on all
platforms. If notifications are not delivered using an fd
mechanism, this function returns -1.

Using this fd for any purpose other than poll() or select() could
cause unexpected application behavior. The Cache Manager
and/or Server could disconnect from the client.

os_notification::notify_immediate()

178

static void os_natification::notify_immediate(
const os_reference &ref,
0s_int32 kind = 0,
const char *string = 0,
0s_int32 *n_queued =0
);
static void os_notification::notify_immediate(
const os_notification *notifications,
0s_int32 n_notifications = 1,
0s_int32 *n_queued = 0
);
Posts a notification to the object specified by ref. The database
associated with ref must be open. The kind and string arguments
are arguments sent to the receiving process.

Note: The kind argument must be greater than or equal to zero.
Negative kinds are reserved for future use by ObjectStore.

If the string specified is null (0), it is received as an empty string

")

If supplied, the n_queued argument is a sighed 32-bit integer (or
array of n_notification integers). This integer is set to the number
of receiving processes to which notifications were queued. Note
that because notifications are asynchronous, no guarantees can be
made that the process will ever receive the notification. (The
receiving process might terminate before receiving the
notification, it might never check for notifications, the Server
might crash, the Cache Manager might crash, or the notification
gueue could overflow.)

In the second (array) form of notify_immediate , the n_queued
argument, if specified, is an os_int32 array at least n_notifications

ObjectStore C++ API Reference

Chapter 2: Class Library

long. The elements of the array are set to the number of receiving
processes for each notification specified.

Each call results in a single RPC call to each ObjectStore Server. It
is significantly more efficient to make one call with an array of
notifications than to make many calls with each notification.

If the caller does not require the n_queued information, it should
leave n_queued defaulted to 0. This could result in better
performance in future releases.

The notify_immediate operation is not atomic. Thatis, if an error is
signaled, the status of notifications is undefined. For example,
notifications might have been successfully delivered to one Server
before a second Server signals an error with respect to its
notifications.

os_notification::notify_on_commit()

Release 5.1

static void os_natification::notify_on_commit(

const os_notification *notifications,

0s_int32 n_notifications = 1);
Queues a commit-time notification to the object specified by ref.
The database associated with ref must be open, and there must be
a transaction in progress. The notification is delivered when, if,
and only if,

= No enclosing transaction aborts.

= The enclosing top-level transaction commits. The kind and
string arguments are sent to the receiving processes after the
commit completes.

If the string specified is null (0), it is received as an empty string

")

Notification delivery and commit are an atomic operation from
the perspective of the process sending the notification. That is, if
the commit succeeds, the notifications are guaranteed to be sent,
even if the sending application crashes. Note however that the
notifications themselves are transient, and might be lost if there is
a Server failure, Cache Manager failure, notification queue
overflow, or if a receiving process dies.

The notifications are matched with subscriptions immediately
after the commit succeeds. Because of this, there is no way to

179

os_notification

determine how many processes have been queued to receive
notifications.

If a deadlock occurs during a stack transaction, ObjectStore aborts
and automatically restarts the transaction. In this case, because the
transaction aborted, commit-time notifications are discarded, and
execution resumes at the beginning of the stack transaction.

os_natification::notify_on_commit does not immediately perform
an RPC call to the Server. If there are any calls to os_
notification::notify_on_commit during a top-level transaction, and
the transaction commits, there is one additional RPC call to each
Server at commit time.

In some read-only transactions, the ObjectStore client does not
normally have to communicate with Servers. If os_
notification::notify_on_commit is called during such a read-only
transaction, the Server must be contacted during the commit.

If a database is closed after a notify_on_commit but before
committing the transaction, the notification will still be delivered
on successful commit. The database must be open when notify_
on_commit is called.

os_notification::queue_status()

180

static void os_notification::queue_status(
0s_unsigned_int32 &queue_size,
0s_unsigned_int32 &count_pending_notifications,
0s_unsigned_int32 &count_queue_overflows

);

Returns information on the notification queue for the current
process. If count_pending_notifications is greater than zero,
notifications are pending. This function can be used as a polling
function to see if there are notifications without actually retrieving
them. It does not lock out other ObjectStore operations in other
threads.

Generally, applications should call this at least once after each
notification is retrieved, to ensure that there are no queue
overflows, and perform appropriate actions if they do occur.

Values returned are as follows:

ObjectStore C++ API Reference

Chapter 2: Class Library

gueue_size The size of the notification queue, as set

by os_natification::set_notification_queue_
size(), OS_NOTIFICATION_QUEUE_SIZE, or
defaulted.

count_pending_notifications The number of notifications currently in

the queue. That is, notifications that have
not yet been received by the process using
0s_notification::receive()

count_queue_overflows The number of notifications discarded

since the process started. A value of 0
indicates that no notifications have ever
been discarded since this process began.

os_notification::receive()

Release 5.1

static os_boolean os_noatification::receive(

os_ natification *¬ification,

0s_int32 timeout = -1
)i
Gets the next notification from the notification queue, if available.
If a notification is available, it returns true, and places the
notification in the first argument. Otherwise, it returns false, and
the first argument is unmodified.

If the notification queue is currently empty, the function waits as
specified by the timeout argument. A value of -1 indicates to wait
forever until a notification is received. A value of 0 indicates to
return false immediately. A positive integer indicates to wait the
specified number of milliseconds. On some platforms, this value
is rounded up to the next higher number of seconds.

The notification returned is allocated dynamically in transient
storage. When the application finishes using it, it can be deleted
using the C++ delete operator. (This causes the notification string
to be deleted as well.)

os_notification::receive() uses operating system primitives for
waiting; it does not spin, polling for notifications. Users normally
call this function in a separate thread that exists specifically to
receive notifications.

Only one thread can call os_notification::receive() at any one time.
It is an error to call it in multiple threads simultaneously.

181

os_notification

Only os_notification::receive() and os_notification::queue_status()
can be called asynchronously with other ObjectStore operations.
All other APIs, including the os_notification accessors, are subject
to normal thread-locking rules. This means that the retrieved
notifications cannot be accessed in concurrent threads without
locking out ObjectStore threads.

If os_notification::receive() is called before subscribing to
notifications, it returns false immediately, regardless of the
timeout argument. This is to avoid deadlocks in some situations
involving multiple threads. To avoid this, ensure that os_
notification::subscribe() or os_notification::_get_fd() is called
before calling os_notification::receive() , or before launching a
thread that calls os_notification::receive()

With long strings, os_notification::receive() might have to wait
slightly for the entire string, even if timeout==0 is specified.

os_notification::set_queue_size()

static void os_notification::set_queue_size(os_int32u queue_size);

Sets the size of the notification queue for a process. It must be
called prior to os_notification::subscribe() or os_notification::_get_
fd(). If this function is not called, the queue size is determined by
the value of the OS_NOTIFICATION_QUEUE_SIZE environment
variable. If the environment variable is not set, the queue size is
set to a default value, currently 50.

A public enumeration in class os_notification represents the
maximum notification queue size.

enum {maximum_notification_queue_length = 512};

Notification queues are part of the ObjectStore Cache Manager
process.

os_notification::subscribe()

static void os_natification::subscribe(const os_subscription *sub, os_int32 count = 1);
static void os_notification::subscribe(const os_database *db);

static void os_notification::subscribe(const os_segment *seq);

static void os_notification::subscribe(const os_object_cluster *clus);

static void os_natification::subscribe(const os_reference &ref, os_int32 n_bytes = 1);

182

These functions all subscribe to notifications. You can subscribe to
any notification in a database, segment, cluster, event range, or

ObjectStore C++ API Reference

Chapter 2: Class Library

reference. A subscription in a database, segment, or cluster
applies to all addresses in the database, segment, or cluster, even
addresses that have not yet been allocated.

The first function lets you subscribe to one os_subscription , or an
array of os_subscription . The count argument is the length of the
array.

The database must be open. Closing the database immediately
unsubscribes all locations associated with the database.

If a database location is subscribed more than once, the
notification system behaves as if there were only one subscription
on the location. That is, multiple subscriptions on a database
location are ignored.

Each call results in a single RPC call to each ObjectStore Server. It
is significantly more efficient to make one call with an array of
subscriptions than to make many calls with each subscription.

The subscription operation is not atomic. That is, if an error is
signaled, the status of subscriptions is undefined. For example,
subscriptions might have succeeded on one Server before a
second Server signals an error with respect to its subscriptions.

os_notification::unsubscribe()

static void (const 0s_subscription *sub, os_int32 count = 1);

static void os_noatification
static void os_natification
static void os_natification
static void os_natification

Release 5.1

::unsubscribe(const os_database *db);

::unsubscribe(const os_segment *segq);

::unsubscribe(const os_object_cluster *clus);
::unsubscribe(const os_reference &ref, os_int32 n_bytes = 1);

These functions all unsubscribe database locations for
notifications.

If a subscription was made on an entire database, the only way to
remove it is to unsubscribe the entire database; you cannot
selectively unsubscribe segments or database locations.

If a subscription was made on an entire segment, the only way to
remove it is to unsubscribe the entire database, or unsubscribe the
entire segment. You cannot selectively unsubscribe database
locations within the segment.

183

os_notification

Additional notes

Network service

184

If a subscription was made on a cluster or range, ranges can be
selectively unsubscribed within the original cluster or range.
Unsubscribing an unsubscribed database location has no effect.

Note that closing a database automatically unsubscribes all
notifications for the database. Because notifications are processed
asynchronously, an application might continue to receive
notifications after having unsubscribed.

Each call results in a single RPC call to each ObjectStore Server. It
is much more efficient to make one call with an array of
subscriptions than to make many calls with each subscription.

The unsubscription operation is not atomic. That is, if an error is
signaled, the status of unsubscriptions is undefined. For example,
unsubscriptions might have succeeded on one Server before a

second Server signals an error with respect to its unsubscription.

= |f os_notification::queue_status() is called before os_
notification::subscribe() ~ or os_notification::_get fd() , all values
returned are zero.

= n_queued can sometimes be larger than queue size.

< In general, queue_status() should be called in the same thread
as os_noatification::receive().

= |f queue_status() is called in another thread while os_
notification::receive() is in process,

- os_notification::receive() might or might not actually
retrieve a notification.

- n_queued might or might not actually reflect the receipt of
this notification.

< |If n_queued is nonzero, os_notification::receive() might still
sometimes return false, particularly if receive is called with a
zero timeout. This happens if the Cache Manager cannotempty
its queue as fast as the receiving process is calling os_
notification::receive()

When an ObjectStore application uses notifications, it
automatically establishes a second network connection to the
Cache Manager daemon on the local host. The application uses
this connection to receive (and acknowledge the receipt of)
incoming notifications from the Cache Manager. (Outgoing
notifications are sent to the Server, not the Cache Manager.) See

ObjectStore C++ API Reference

Notification errors

Utilities

Release 5.1

Chapter 2: Class Library

Modifying Network Port Settings of ObjectStore Management for
specific details.

The notification APIs do not do complete validation of the
arguments passed to them. Malformed arguments can therefore
cause segmentation violations or other undefined behavior. See
General ObjectStore Exceptions on page 571 for details.

ossvrstat currently prints statistics on the number of notifications
received and sent by the Server.

oscmstat prints information on notifications queued for clients.
This is useful in debugging applications that use notifications.

Detailed information on these user interfaces appears in
ObjectStore Management.

185

0s_object_cluster

0S_object_cluster

An object cluster is a portion of a segment (see the class os_
segment on page 295) into which related objects can be clustered
at allocation time. An object cluster can contain as little as a single
small object or as much as 64 Kbytes of memory.

You can improve application performance by clustering together
objects that are expected to be used together by applications. This
reduces the number of disk and network transfers the
applications will require. Moreover, allocating objects in different
clusters can increase concurrency, since one process’s lock on an
object in one cluster never blocks access by other processes to
objects in other clusters (assuming os_segment::lock_whole_
segment has value objectstore::lock_as _used — the default — for
the segments containing the clusters).

A cluster of a specified size is created with the create_object_
cluster() member of the class os_segment . A new object can be
allocated in a cluster using one of the special overloadings of
::operator new() (see the description of ::operator new() on
page 367), or, in some cases, a class-specific new or create()
operation tailored for object clustering.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore.hh> .

0s_object_cluster::destroy()

186

void destroy(

forced_destroy_enum option =

0s_object_cluster::destroy_if_empty

)
Destroys the specified os_object_cluster if either the cluster
contains no nondeleted objects or the os_int32 argument is the
enumerator os_object_cluster::destroy_always . If invoked on a
nonempty cluster with os_object_cluster::destroy_if empty as
argument, the exception err_destroy_cluster_not_empty is signaled.

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_object_cluster::destroy_always

Enumerator, used as an argument to os_object_cluster::destroy()
indicating that destruction of the cluster should proceed even if
the specified cluster contains nondeleted objects. Destroying a
cluster results in deletion of all the objects it contains, but does not
result in execution of the destructors for the deleted objects.

0s_object_cluster::destroy_if empty

Enumerator, used as an argument to os_object_cluster::destroy()
indicating that destruction of the cluster should proceed only if
the specified cluster contains no nondeleted objects. Destroying a
cluster results in deletion of all the objects it contains, but does not
result in execution of the destructors for the deleted objects.

0s_object_cluster::get_info()

void get_info(
0s_int32 &cluster_size,
0s_int32 &free,
0s_int32 &contig_free
) const;

Modifies cluster_size to refer to the size in bytes of the specified
os_object_cluster ; modifies free to refer to the number of
unallocated bytes in the cluster; modifies contig_free to refertothe
number of bytes in the largest contiguous portion of unallocated
memory in the cluster.
0s_object_cluster::is_empty()
0s_boolean is_empty() const;
Returns nonzero (true) if the specified os_object_cluster contains
no nondeleted objects; returns 0 (false) otherwise.
0s_object_cluster::of()

static os_object_cluster *of(const void *obj);

Returns a pointer to the os_object_cluster containing the object
pointed to by obj. If the object is not contained in a cluster, 0 is
returned.

0s_object_cluster::segment_of()

0s_segment *segment_of() const;

Release 5.1 187

0s_object_cluster

Returns a pointer to the segment containing the specified os_
object_cluster .

188 ObjectStore C++ API Reference

Chapter 2: Class Library

0Ss_object_cursor

An object cursor allows retrieval of the objects stored in a specified
segment, one object at a time, in an arbitrary order. This order is
stable across traversals of the segment, as long as no objects are
created or deleted from the segment, and no reorganization is
performed (using schema evolution or compaction). Operations
are provided for creating a cursor, advancing a cursor, and for
testing whether a cursor is currently positioned at an object (or has
run off the end of the segment). It is also possible to position a
cursor at a specified object in the segment.

In addition, an operation is provided for retrieving the object at
which a cursor is positioned, together with an os_type
representing the type of the object, and, for an object that is an
array, a number indicating how many elements it has.

0s_object_cursor::current()

0s_boolean current(
void* &pointer,
const os_type* &type,
0s_int32 &count

) const;

If the cursor is positioned at an object, returns nonzero (true), sets
pointer to refer to the address of the object, and sets type to refer to
an os_type representing the object’s type. If the object is an array,
count is set to refer to the number of elements it has; if the object
is not an array, count is set to 0. If the cursor is not positioned at
an object, 0 (false) is returned, and all three arguments are set to
refer to 0.

0s_object_cursor::first()

Release 5.1

void first();

Positions the cursor at the first object in the cursor’s associated
segment. The object is first in an arbitrary order that is stable
across traversals of the segment, as long as no objects are created
or deleted from the segment, and no reorganization is performed
(using schema evolution or compaction). If there are no objects in
the cursor’s associated segment, the cursor is positioned at no
object.

189

0s_object_cursor

0s_object_cursor::more()

os_boolean more() const;

Returns nonzero (true) if the cursor is positioned at an object.
Returns 0 (false) otherwise.

0s_object_cursor::next()

void next();

Positions the cursor at the next object in the cursor’s associated
segment. The object is next in an arbitrary order that is stable
across traversals of the segment, as long as no objects are created
or deleted from the segment, and no reorganization is performed
(using schema evolution or compaction). If the cursor is
positioned at no object, err_cursor_at_end is signaled. Otherwise, if
there is no next object, the cursor is positioned at no object.

0s_object_cursor::0s_object_cursor()

os_object_cursor(os_segment *seg);

Creates a new os_object_cursor associated with the specified
segment. If the segment is empty, the cursor is positioned at no
object; otherwise it is positioned at the first object in the cursor’s
associated segment. The object is first in an arbitrary order that is
stable across traversals of the segment, as long as no objects are
created or deleted from the segment, and no reorganization is
performed (using schema evolution or compaction).

0s_object_cursor::set()

void set(const void *ptr);

Positions the cursor at the object containing the address ptr. If ptr
is not an address in the specified cursor’s associated segment,
signals err_cursor_not_at_object. If ptr is in the cursor’s associated
segment but within unallocated space, the cursor is positioned at
no object or is arbitrarily positioned at an object in the segment.

0s_object_cursor::~os_object_cursor()

190

~0s_object_cursor();

Performs internal maintenance associated with os_object_cursor
deallocation.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_pathname_and_segment_number

This class is used by the compactor API to identify segments —
see objectstore::compact() on page 15. It has two public data
members and a constructor. Programs using this function must
include <ostore/compact.hh> .

os_pathname_and_segment_number::database_pathname

const char *database_pathname;

The value of this member is the pathname of the database
containing the segment identified by the specified os_pathname_
and_segment_number .

os_pathname_and_segment_number::segment_number

0s_unsigned_int32 segment_number;

The value of this member is the segment number of the segment
identified by the specified os_pathname_and_segment_number
The segment number of a specified segment can be obtained with
0s_segment::get_number()

os_pathname_and_segment_number::
os_pathname_and_segment_number()

os_pathname_and_segment_number(
const char *db,
0s_unsigned_int32 seg_number

);

The constructor takes two arguments: the db argument initializes
the member database_pathname , and the seg_number argument
initializes the member segment_number .

Release 5.1 191

os_pointer_literal

0s_pointer_literal

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ pointer literal.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

os_pointer_literal::create()

static os_pointer_literal& create(const char*, os_pointer_type*);

Creates an os_pointer_literal of the specified name and type.

os_pointer_literal::get_name()

const char *get_name() const;

Returns the name of the specified literal.
os_pointer_literal::get_type()

0s_pointer_type& get_type() const;
Returns the type of the specified pointer.

os_pointer_literal::set name()

void set_name(const char*);

Sets the name of the specified literal.
os_pointer_literal::set_type()

void set_type(os_pointer_type&);
Sets the type of the specified pointer.

192 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_pointer_to_member _type

class os_pointer_to_member_type : public os_pointer_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ pointer-to-member type. This class is derived
from os_pointer_type .

0s_pointer_to_member-type::create()

static os_pointer_to_member_type& create(os_type* target,
os_class_type*);

The argument is used to initialize target_class and target_type .
0s_pointer_to_member_type::.get_target_class()
const os_class_type &get_target_class() const;

Returns the class associated with the specified pointer-to-
member.

0s_pointer_to_member_type::set_target_class()

void set_target_class(os_class_type&);

Sets the class associated with the specified pointer-to-member.

Release 5.1 193

0s_pointer_type

0S_pointer_type

class os_pointer_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ pointer type. This class is derived from os_type .

0s_pointer_type::create()

static os_pointer_type& create(os_type* target);

The argument is used to initialize the attribute target_type .
0s_pointer_type::get_target_type()

const 0s_type &get_target_type() const;

Returns the type of object pointed to by instances of the specified
pointer type.

0s_pointer_type::set_target_type()

void set_target_type(os_type&);

Sets the type of object pointed to by instances of the specified
pointer type.

194 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_pragma

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ pragma.

0s_pragma:.create()

static os_pragmaé& create(const char*);

Creates a new pragma and associates the specified string with it.
os_pragma::get_string()

const char *get_string() const;

Returns the string associated with the specified pragma.
0os_pragma::is_recognized()

0s_boolean is_recognized() const;

Returns nonzero if the specified pragma is recognized.

Release 5.1 195

os_pvar

0s_pvar

196

When a pointer to persistent memory is assigned to a transiently
allocated variable, the value of the variable is valid only until the
end of the transaction in which the assignment was made. Using
database entry points typically involves looking up a root and
retrieving its value — a pointer to the entry point. Frequently this
pointer is assigned to a transiently allocated variable for future
use. But its use is limited, since it normally will not remain valid
in subsequent transactions.

One way to deal with this situation is to re-retrieve the pointer in
each subsequent transaction in which it is required. However, a
convenient alternative is provided by ObjectStore pvars. These
allow you to maintain, across transactions, a valid pointer to an
entry-point object.

To use pvars, you define the variable you want to hold the pointer
to the entry point. Then you pass the variable’s address to the
function os_pvar::os_pvar() , along with the name of the root that
points to the desired entry-point object, and a pointer to the
database containing the root.

This function is the constructor for the class os_pvar , but you
never have to explicitly use the instance of os_pvar that results.
Once you have called this function, ObjectStore automatically
maintains an association between the variable and the entry point.
At the beginning of each transaction in the current process, if the
database containing the specified root is open, ObjectStore
establishes a valid pointer to the entry-point object as the value of
the variable. It also sets the variable to point to the entry point
when the database becomes open during a transaction.

Instances of os_pvar must be allocated on the stack, not the heap,
so do not create os_pvar s with operator new() .

As with os_database_root::get_value() , you can also supply an
os_typespec* to os_pvar::os_pvar() , for additional type safety.
ObjectStore will check that the specified typespec matches the
typespec stored with the root. Note that it checks only that the
typespec supplied matches the stored typespec, and does not
check the type of the entry-point object itself.

ObjectStore C++ API Reference

os_pvar::os_pvar()

Release 5.1

Chapter 2: Class Library

Note that, even though you can use this variable from one
transaction to the next without re-retrieving its value, you cannot
use it between transactions. As always, you must be within a
transaction to access persistent data. Between transactions,
ObjectStore automatically sets the variable to 0. The variable is
also set to 0 during a transaction if the database containing its
associated root is closed.

Note also that you should not try to set the value of this variable,
since ObjectStore handles all assignments of values to it.

You can also create an entry point and root using os_pvar::os_
pvar() by supplying a pointer to an initialization function. The
function should allocate the entry-point object in a given database
and return a pointer to the new object.

This function will be executed upon the call to os_pvar() or at the
beginning of subsequent transactions, if the database to contain
the root is open and ObjectStore cannot find the specified root in
that database. It will also be called when this database becomes
open during a transaction and ObjectStore cannot find the root in
that database.

The predefined functions os_pvar::init_pointer() , os_pvar::init_
int(), and os_pvar::init_long() can be used as initialization
functions. They allocate pointers, ints, and long s, respectively, and
initialize them to 0.

os_pvar(

os_database_p db,

0s_void_p location,

0s_char_p root_name,

os_typespec *typespec = 0,

os_void_p(*init_fn)(os_database*) =0
)
Constructs an os_pvar . do points to the database containing the
pvar’s associated database root. location is the address of the
variable whose value is to be maintained across transactions.
root_name is the name of the associated root. typespec is the
typespec stored with the associated root. init_fn is a pointer to an
initialization function.

197

os_pvar

os_pvar::

os_pvar::

os_pvar::

os_pvar::

198

~0s_pvar()

init_pointer()

init_int()

init_long()

Instances of os_pvar must be allocated on the stack, not the heap,
so do not create os_pvar s with operator new() .

~o0s_pvar();

Breaks the association between a pvar’s location and database
root.

static void *init_pointer(os_database *db);

Allocates a pointer, initializes it to 0, and returns a pointer to the
allocated pointer.

static void *init_int(os_database *db);

Allocates an int, initializes it to 0, and returns a pointer to the
allocated int.

static void *init_long(os_database *db);

Allocates a long, initializes it to 0, and returns a pointer to the
allocated long .

ObjectStore C++ API Reference

Chapter 2: Class Library

os_rawfs_entry

The functions os_dbutil:stat() and os_dbutil::list_directory() return
pointers to instances of this class. Each os_rawfs_entry represents
a rawfs directory, database, or link.

os_rawfs_entry::get_abs_path()

const char *get_abs_path() const;

Returns the absolute pathname for the specified entry.
os_rawfs_entry::get_creation_time()

0S_unixtime_t get_creation_time() const;

Returns the creation time for the specified entry.
os_rawfs_entry::get_group_name()

const char *get_group_name() const;

Returns the name of the primary group for the specified entry.
os_rawfs_entry::get_link_host()

const char *get_link_host() const;

Returns the name of the host for the target of the link represented
by the specified entry. If the entry does not represent a link, 0 is
returned.

os_rawfs_entry::get_link_path()

const char *get_link_path() const;

Returns the pathname of the target of the link represented by the
specified entry. If the entry does not represent a link, 0 is returned.

os_rawfs_entry::get _n_sectors()

0s_unsigned_int32 get_n_sectors() const;

Returns the number of sectors in the specified entry.
os_rawfs_entry::get name()

const char *get_name() const;

Returns the terminal component of the pathname for the specified
entry.

Release 5.1 199

os_rawfs_entry

os_rawfs_entry::get_permission()
0s_unsigned_int32 get_permission() const;

Returns a bit-wise disjunction representing the permissions on the
specified entry.

os_rawfs_entry::get_server_host()

const char *get_server_host() const;

Returns the name of the host for the specified entry.
os_rawfs_entry::get_type()

os_int32 get_type() const;

Returns an enumerator indicating whether the specified entry
represents a directory, database, or link. One of the following
enumerators is returned:

= o0s_rawfs_entry::OSU_DIRECTORY

= o0s_rawfs_entry::OSU_DATABASE

= o0s_rawfs_entry::OSU_LINK
os_rawfs_entry::get_user_name()

const char *get_user_name() const;

Returns the name of the user for the specified entry.
os_rawfs_entry::is_db()

0s_boolean is_db() const;

Returns nonzero if the specified entry represents a database;
returns 0 otherwise.

os_rawfs_entry::is_dir()

0s_boolean is_dir() const;

Returns nonzero if the specified entry represents a directory;
returns 0 otherwise.

os_rawfs_entry::is_link()

0s_boolean is_link() const;

Returns nonzero if the specified entry represents a link; returns 0
otherwise.

200 ObjectStore C++ API Reference

os_rawfs_entry::

os_rawfs_entry::

os_rawfs_entry::

os_rawfs_entry::

os_rawfs_entry::

os_rawfs_entry::

Release 5.1

Chapter 2: Class Library

operator =()

os_rawfs_entry &operator =(const os_rawfs_entry&);

Modifies the left operand so that it is a copy of the right operand.
The copy behaves just like the original with respect to the member
functions of os_rawfs_entry .

OSU_DATABASE

Enumerator used as possible return value for os_rawfs_
entry::get_type() , indicating that the specified os_rawfs_entry
represents a database.

OSU_DIRECTORY

Enumerator used as possible return value for os_rawfs_
entry::get_type() , indicating that the specified os_rawfs_entry
represents a directory.

OSU_LINK

Enumerator used as possible return value for os_rawfs_
entry::get_type() , indicating that the specified os_rawfs_entry
represents a link.

os_rawfs_entry()

os_rawfs_entry(const os_rawfs_entry&);

Creates an os_rawfs_entry that is a copy of the specified os_rawfs_
entry . The copy behaves just like the original with respect to the
member functions of the class os_rawfs_entry .

~0s_rawfs_entry()

~o0s_rawfs_entry();

Frees storage associated with the specified os_rawfs_entry .

201

os_real_type

0os_real type

class os_real_type : public os_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ floating type. This class is derived from os_type .

Programs using this class must include <ostore/ostore.hh> |
followed by <ostore/coll.hn> (if used), followed by
<ostore/mop.hh> .

os_real_type::.create()

static os_real_type &create(const char*);

Creates an os_real_type representing the type with the specified
name.

os_real_type::create_float()

static os_real_type &create_float();

Creates an os_real_type representing the type float .

os_real_type::create_double()

static os_real_type &create_double();

Creates an os_real_type representing the type double .

os_real_type:.create_long_double()

static os_real_type &create_long_double();

Creates an os_real_type representing the type long double .

202 ObjectStore C++ API Reference

0s_Reference

Release 5.1

Chapter 2: Class Library

Instances of the class os_Reference can be used as substitutes for
cross-database and cross-transaction pointers. References are
valid under a wider array of circumstances than are pointers to
persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_Reference s, in contrast, are always valid across transaction
boundaries, as well as across databases.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation. But see os_Reference_protected o0n page 224.

The class os_Reference is parameterized, with a parameter for
indicating the type of the object referred to by a reference. This
means that when specifying os_Reference as a function’s formal
parameter, or as the type of a variable or data member, you must
specify the parameter — the reference’s referent type. You do this
by appending to os_Reference the name of the referent type
enclosed in angle brackets (< >):

os_Reference< referent-type-name >

The referent type must be a class. For references to built-in types
such as int and char see os_reference on page 209.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference<T> with a
T* or by assigning a T* to a variable of type os_Reference<T>
(implicitly invoking the conversion constructor os_
Reference::os_Reference(T*)).

203

0s_Reference

part *a_part; ...

0os_Reference<part> part_ref = a_part;
Usually, when an os_Reference<T*> is used where a T* is
expected, os_Reference::operator —>() 0r os_Reference::operator
T*() is implicitly invoked, returning a valid pointer to the object
referred to by the os_Reference .

printf("%d\n", part_ref->part_id);

Not all C++ operators have special reference class overloadings.
References do not behave like pointers in the context of [] and ++,
for example.

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1.

Each instance of this class stores a relative pathname to identify
the referent database. The pathname is relative to the lowest
common directory in the pathnames of the referent database and
the database containing the reference. For example, if a reference
stored in /A/B/C/dbl refers to data in /A/B/D/db2 , the lowest
common directory is A/B, so the relative pathname ../../D/db2 is
used.

This means that if you copy a database containing a reference, the
reference in the copy and the reference in the original might refer
to different databases. To change the database a reference refers
to, you can use the ObjectStore utility oschangedbref . See
ObjectStore Management.

Using memcpy() with You can use the C++ memcpy() function to copy a persistent os_
persistent os_ Reference only if the target object is in the same segment as the
References source object. This is because all persistent os_Reference s use os_

segment::of(this) for os_Reference resolution processing and the
resoultion will be incorrect if the os_Reference has been copied to
a different segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

204 ObjectStore C++ API Reference

Chapter 2: Class Library

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_Reference::dump()

char *dump(const char *db_str) const;

Returns a heap-allocated text string representing the specified
reference. However, unlike the string returned by the char * os_
Reference::dump(void) method, this string does not contain an
absolute database path. The returned string is intended to be used
as the dump_str parameter of an os_Reference load method of the
form load(const char* dump_str, os_database* db) . It is the
responsibility of the caller of load to ensure that the db parameter
passed to the load method is the same as the database of the
dumped reference. It is the user’s responsibility to delete the
returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_Reference::get_database()

os_database *get_database() const;
Returns a pointer to the database containing the object referred to
by the specified reference.

os_Reference::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_Reference::get open_database()

os_database *get_open_database() const;

Returns a pointer to the database containing the object referred to
by the specified os_Reference . Opens the database.

Release 5.1 205

0s_Reference

os_Reference::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_Reference .

os_Reference::hash()

os_unsigned_int32 hash() const;
Returns an integer suitable for use as a hash table key. The value
returned is always the same for a reference to a given referent.

os_Reference::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_Reference dump method. It is the responsibility of
the caller of load to ensure that the do parameter passed to the
load method is the same as the database of the originally dumped
reference.

The loaded reference refers to the same object as the os_Reference
used to dump the string as long as the db parameter is the same as
the database of the dumped reference.

The exception err_reference_syntax is raised if the dump_str is not
in the expected format or if the dump_str was dumped from a
protected reference.

0s_Reference::operator T*()

operator T*() const;

Returns the valid T* for which the specified reference is a
substitute.

os_Reference::operator —>()

T* operator —>() const;

Returns the valid T* for which the specified reference is a
substitute.

0os_Reference::operator =()

0os_Reference<T> &operator=(const os_Reference<T>&);

206 ObjectStore C++ API Reference

Chapter 2: Class Library

Establishes the referent of the right operand as the referent of the
left operand.

os_Reference<T> &operator=(const T*);
Establishes the object pointed to by the right operand as the
referent of the left operand.

os_Reference::operator ==()

0s_boolean operator ==(os_Reference const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Reference::operator ()

os_boolean operator !(os_Reference const&) const;

Returns 1 if the os_Reference argument is pointing to NULL;
returns 0 otherwise.

os_Reference::operator '=()

0s_boolean operator !=(os_Reference const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_Reference::operator <()

0s_boolean operator <(os_Reference const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference:operator >()

os_boolean operator >(os_Reference const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

Release 5.1 207

0s_Reference

os_Reference:operator >=()

os_boolean operator >=(0os_Reference const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

0s_Reference:operator <=()

0s_boolean operator <=(os_Reference const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference::os_Reference()

os_Reference(T*);

Constructs a reference to substitute for the specified T*.
os_Reference::resolve()

T *resolve() const;

Returns the valid T* for which the specified reference is a
substitute.

208 ObjectStore C++ API Reference

0s_reference

Release 5.1

Chapter 2: Class Library

Instances of the class os_reference can be used as substitutes for
cross-database and cross-transaction pointers. References are
valid under a wider array of circumstances than are pointers to
persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_reference s, in contrast, are always valid across transaction
boundaries, as well as across databases.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation. But see os_reference_protected on page 231.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference with the pointer, or by
assigning the pointer to a variable of type os_reference (implicitly
invoking the conversion constructor os_reference::os_
reference(void*)). In general, a pointer can be used anywhere an
os_reference is expected, and the conversion constructor will be
invoked.

part *a_part=...;

os_reference part_ref = a_part;
When an os_reference is cast to pointer-to-referent-type (that is,
pointer to the type of object referred to by the reference), os_
reference::operator void*() is implicitly invoked, returning a valid
pointer to the object referred to by the os_reference .

printf("%d\n", (part*)(part_ref)->part_id);

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the

209

os_reference

Using memcpy() with
persistent os_
references

os_reference::dump()

210

referent type of the other operand, the result is always 1. This is
because comparing references never results in the pointer
adjustment described in Section 10.3c of the C++ Annotated
Reference Manual.

Each instance of this class stores a relative pathname to identify
the referent database. The pathname is relative to the lowest
common directory in the pathnames of the referent database and
the database containing the reference. For example, if a reference
stored in /A/B/C/dbl refers to data in /A/B/D/db2 , the lowest
common directory is A/B, so the relative pathname ../../D/db2 is
used.

This means that if you copy a database containing a reference, the
reference in the copy and the reference in the original might refer
to different databases. To change the database a reference refers
to, you can use the ObjectStore utility oschangedbref . See
ObjectStore Management.

You can use the C++ memcpy() function to copy a persistent os_
reference only if the target object is in the same segment as the
source object. This is because all persistent os_reference s use os_
segment::of(this) for os_reference resolution processing and the
resolution will be incorrect if the os_reference has been copied to
a different segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

char* dump(const char* db_str) const;

Returns a heap-allocated text string representing the specified
reference. However, unlike the string returned by the char * os_
reference::dump(void) method, this string does not contain an
absolute database path. The returned string is intended to be used
as the dump_str parameter of an os_reference load method of the
form load(const char* dump_str, os_database* db) . It is the
responsibility of the caller of load to ensure that the db parameter
passed to the load method is the same as the database of the

ObjectStore C++ API Reference

Chapter 2: Class Library

dumped reference. It is the user’s responsibility to delete the
returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_reference::get_database()

os_database *get_database() const;

Returns a pointer to the database containing the object referred to
by the specified reference.

os_reference:.get_database key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_reference::get_open_database()

os_database *get_open_database() const;

Returns a pointer to the database containing the object referred to
by the specified os_reference . Opens the database.

os_reference::get_os_typespec()

os_reference::hash()

os_reference::load()

Release 5.1

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_reference .

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_reference to a given
referent.

void load(const char*);

211

os_reference

If the specified char* points to a string generated from a reference
with os_reference::dump() , calling this function makes the
specified reference refer to the same object referred to by the
reference used to generate the string.

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_Reference dump method. It is the responsibility of
the caller of load to ensure that the do parameter passed to the
load method is the same as the database of the originally dumped
reference.

The loaded reference refers to the same object as the os_Reference
used to dump the string as long as the db parameter is the same as
the database of the dumped reference.

The exception err_reference_syntax is raised if the dump_str is not
in the expected format or if the dump_str was dumped from a
protected reference.

os_reference::operator void*()

operator void*() const;

Returns the valid pointer for which the specified reference is a
substitute.

os_reference::operator =()

os_reference &operator=(const os_reference&);

Establishes the referent of the right operand as the referent of the
left operand.

os_reference &operator=(const void*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference::operator ==()

0s_boolean operator ==(os_reference const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference:.operator !=()

0s_boolean operator !=(os_reference const&) const;

212 ObjectStore C++ API Reference

Chapter 2: Class Library

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference::operator <()

0s_boolean operator <(os_reference const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference::operator >()

0s_boolean operator >(os_reference const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference::operator >=()

0s_boolean operator >=(os_reference const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference::operator <=()

0s_boolean operator <=(os_reference const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference:.os_reference()

os_reference(const void*);

Constructs a reference to substitute for the specified void*.

Release 5.1 213

os_reference

os_reference::resolve()

void* resolve() const;

Returns the valid void* for which the specified reference is a
substitute.

214 ObjectStore C++ API Reference

Chapter 2: Class Library

0os_Reference local

Release 5.1

Instances of the class os_Reference_local can be used as
substitutes for cross-database and cross-transaction pointers.
References are valid under a wider array of circumstances than
are pointers to persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_Reference_local s, in contrast, are always valid across
transaction boundaries, as well as across databases.

An os_Reference_local is smaller than an os_Reference , but
resolving it requires explicit specification of the referent database.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation. But see os_Reference_protected_local on page 237.

The class os_Reference_local is parameterized, with a parameter for
indicating the type of the object referred to by a reference. This
means that when specifying os_Reference_local as a function’s
formal parameter, or as the type of a variable or data member, you
must specify the parameter — the reference’s referent type. You do
this by appending to os_Reference_local the name of the referent
type enclosed in angle brackets (< >):

os_Reference_local< referent-type-name >
The referent type must be a class. For local references to built-in
types, such as int and char, see os_reference_local on page 220.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference_local<T>

215

os_Reference_local

with a T*, or by assigning a T* to a variable of type os_Reference_
local<T> (implicitly invoking the conversion constructor os_
Reference_local::0s_Reference_local(T*)).

part *a_part = ... ;

os_Reference_local<part> part_ref = a_part;
When the member function resolve() is applied to an os_
Reference_local , with a pointer to the referent database as
argument, a valid pointer to the referent object is returned.

printf("%d\n", part_ref.resolve(dbl)->part_id);

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_Reference_local::dump()

char *dump(const char *database_name) const;

Returns a heap-allocated text string representing the specified
reference. When this string is passed to os_Reference_
local::load() , the result is a reference to the same object referred to
by the dumped reference. It is the user’s responsibility to delete
the returned string.

os_Reference_local::get database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

216 ObjectStore C++ API Reference

os_Reference_local:

os_Reference_local:

os_Reference_local::

os_Reference_local:

os_Reference_local:

os_Reference_local:

Release 5.1

Chapter 2: Class Library

get_os_typespec()
static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_Reference_local .

hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_Reference_local to a given
referent.

load()

void load(const char*);

If the specified char* points to a string generated from a reference
with os_Reference_local::dump() , calling this function makes the
specified reference refer to the same object referred to by the
reference used to generate the string.

operator =()

os_Reference_local<T> &operator=(const os_Reference_local<T>&);

Establishes the referent of the right operand as the referent of the
left operand.

os_Reference_local<T> &operator=(const T*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

operator ==()

os_boolean operator ==(os_Reference_local const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

operator !=()

0s_boolean operator !=(os_Reference_local const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

217

os_Reference_local

os_Reference_local::operator <()

os_boolean operator <(os_Reference_local const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_local::operator >()

0s_boolean operator >(os_Reference_local const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_local::operator >=()

0s_boolean operator >=(os_Reference_local const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_local::operator <=()

0s_boolean operator <=(os_Reference_local const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_local::os_Reference_local()

os_Reference_local(T*);

Constructs a reference to substitute for the specified T*.

os_Reference_local::resolve()

218

T* resolve(const os_database*) const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns the valid T* for which the specified reference is a
substitute. The database containing the storage pointed to by the
T* must be specified.

Release 5.1 219

os_reference_local

os_reference_local

220

Instances of the class os_reference_local can be used as substitutes
for cross-database and cross-transaction pointers. References are
valid under a wider array of circumstances than are pointers to
persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_reference_local s, in contrast, are always valid across
transaction boundaries, as well as across databases.

An os_reference_local is smaller than an os_reference , but
resolving it requires explicit specification of the referent database.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation. But see os_reference_protected _local on page 242.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference_local with the pointer,
or by assigning the pointer to a variable of type os_reference_local
(implicitly invoking the conversion constructor os_reference_
local::os_reference_local(void*)). In general, a pointer can be used
anywhere an os_reference_local is expected, and the conversion
constructor will be invoked.

part *a_part = ... ;
os_reference_local part_ref = a_part;

When the member function resolve() is applied to an os_
reference_local , with a pointer to the referent database as
argument, a valid pointer to the referent object is returned.

printf("%d\n", part_ref.resolve(dbl)->part_id);

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

ObjectStore C++ API Reference

Chapter 2: Class Library

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_reference_local::dump()

char *dump(const char *database_name) const;

Returns a heap-allocated text string representing the specified
reference. When this string is passed to os_reference_local::load() ,
the result is a reference to the same object referred to by the
dumped reference. It is the user’s responsibility to delete the
returned string.

os_reference_local::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_reference_local::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_reference local .
os_reference_local::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_reference_local to a given
referent.

os_reference_local::load()

void load(const char®);

If the specified char* points to a string generated from a reference
with os_reference_local::dump() , calling this function makes the
specified reference refer to the same object referred to by the
reference used to generate the string.

os_reference_local::operator =()

os_reference_local &operator=(const os_reference_local&);

Release 5.1 221

os_reference_local

Establishes the referent of the right operand as the referent of the
left operand.
os_reference_local &operator=(const void*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference_local::operator ==()

os_boolean operator ==(os_reference_local const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference_local::operator |=()

os_boolean operator !=(os_reference_local const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference_local::operator <()

0s_boolean operator <(os_reference_local const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_local::operator >()

0s_boolean operator >(os_reference_local const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_local::operator >=()

222

0s_boolean operator >=(os_reference_local const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the

ObjectStore C++ API Reference

Chapter 2: Class Library

same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_local::operator <=()

0s_boolean operator <=(os_reference_local const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_local::os_reference_local()

os_reference_local(const void*);

Constructs a reference to substitute for the specified void* .

os_reference_local::resolve()

Release 5.1

void *resolve(const os_database*) const;

Returns the valid void* for which the specified reference is a
substitute. The database containing the storage pointed to by the
void* must be specified.

223

0s_Reference_protected

os_Reference protected

224

Instances of the class os_Reference_protected can be used as
substitutes for cross-database and cross-transaction pointers.
References are valid under a wider array of circumstances than
are pointers to persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_Reference_protected s, in contrast, are always valid across
transaction boundaries, as well as across databases.

Once the object referred to by an os_Reference_protected is
deleted, use of the os_Reference_protected causes an err_
reference_not_found exception to be signaled. If the referent
database has been deleted, err_database not_found is signaled.

The class os_Reference_protected is parameterized, with a
parameter for indicating the type of the object referred to by a
reference. This means that when specifying os_Reference_
protected as a function’s formal parameter, or as the type of a
variable or data member, you must specify the parameter — the
reference’s referent type. You do this by appending to os_
Reference_protected the name of the referent type enclosed in
angle brackets (< >):

os_Reference_protected< referent-type-name >

The referent type must be a class. For protected references to built-
in types, such as int and char, see os_reference_protected on
page 231.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference

ObjectStore C++ API Reference

Using memcpy() with
persistent os_
Reference _
protecteds

Release 5.1

Chapter 2: Class Library

protected<T> with a T*, or by assigning a T* to a variable of type
os_Reference_protected<T> (implicitly invoking the conversion
constructor os_Reference_protected::0os_Reference_

protected(T*)). This T* must not point to transient memory.

part *a_part = ... ;

os_Reference_protected<part> part_ref = a_part;
When an os_Reference_protected<T*> is used where a T* is
expected, os_Reference_protected::operator ->() or os_Reference_
protected::operator T*() is implicitly invoked, returning a valid
pointer to the object referred to by the os_Reference_protected .

printf("%d\n", part_ref->part_id);

Not all C++ operators have special reference class overloadings.
References do not behave like pointers in the context of [] and ++,
for example.

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1. This is
because comparing references never results in the pointer
adjustment described in Section 10.3c of the C++ Annotated
Reference Manual.

Each instance of this class stores a relative pathname to identify
the referent database. The pathname is relative to the lowest
common directory in the pathnames of the referent database and
the database containing the reference. For example, if a reference
stored in /A/B/C/db1l refers to data in /A/B/D/db2 , the lowest
common directory is A/B, so the relative pathname ../../Dfs/db2 is
used.

This means that if you copy a database containing a reference, the
reference in the copy and the reference in the original might refer
to different databases. To change the database a reference refers
to, you can use the ObjectStore utility oschangedbref . See
ObjectStore Management.

You can use the C++ memcpy() function to copy a persistent os_
Reference_protected only if the target object is in the same
segment as the source object. This is because all persistent objects
of the type os_Reference_protected use os_segment::of(this) for

225

0s_Reference_protected

reference resolution processing and the resolution will be
incorrect if the os_Reference_protected has been copied to a
different segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_Reference_protected::deleted()

os_boolean deleted() const;

Returns 1 (true) if the object to which the specified reference refers
has been deleted; returns 0 (false) otherwise.

os_Reference_protected::dump()

char* dump(const char* db_str) const;

Returns a heap-allocated string for the reference that the method
was called. However, unlike the string returned by the char* os_
Reference_protected::dump(void) method, the returned string
does not contain an absolute database pathname. The returned
string is intended to be used as the dump_str parameter of an os_
Reference_protected load method of the form load(const char*
dump_str, os_database* db). It is the responsibility of the caller of
load to ensure that the db parameter passed to the load method is
the same as the database of the dumped reference. It is the user’s
responsibility to delete the returned string when finished using
the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_Reference_protected::forget()

226

void forget();

Frees the memory in the underlying table used to associate the
specified os_Reference_protected with its referent. Subsequent
use of the os_Reference_protected will result in a run-time error.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_Reference_protected::get_database()

os_database *get_database() const;
Returns a pointer to the database containing the object referred to
by the specified reference.

os_Reference_protected::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

0s_Reference_protected:.get_open_database()

os_database *get_open_database() const;

Returns a pointer to the database containing the object referred to
by the specified os_Reference_protected . Opens the database.

os_Reference_protected::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_Reference_protected .

os_Reference_protected::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_Reference_protected to a
given referent.

os_Reference_protected::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_Reference dump method. It is the responsibility of
the caller of load to ensure that the do parameter passed to the
load method is the same as the database of the originally dumped
reference. The loaded reference refers to the same object as the os_
Reference used to dump the string as long as the db parameter is
the same as the database of the dumped reference. The exception

Release 5.1 227

0s_Reference_protected

err_reference_syntax is raised if the dump_str is not in the expected
format or if the dump_str was dumped from a nonprotected
reference.

os_Reference_protected::operator T*()

operator T*() const;

Returns the T* for which the specified os_Reference_protected isa
substitute. If the referent has been deleted, err_reference_not_found
is signaled. If the referent database has been deleted, err_database_
not_found is signaled.

os_Reference_protected::operator —>()

T* operator —>() const;

Returns the T* for which the specified os_Reference_protected isa
substitute. If the referent has been deleted, err_reference_not_found
is signaled. If the referent database has been deleted, err_database
not_found is signaled.

os_Reference_protected::operator =()

os_Reference_protected<T> &operator=(
const os_Reference_protected<T>&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_Reference_protected<T> &operator=(const T*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

0s_Reference_protected:.operator ==()

0s_boolean operator ==(os_Reference_protected const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Reference_protected:.operator !()

0s_boolean operator !() const;

Returns nonzero if the reference has no current referent.

228 ObjectStore C++ API Reference

Chapter 2: Class Library

os_Reference_protected::operator !=()

os_boolean operator !=(os_Reference_protected const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_Reference_protected::operator <()

0s_boolean operator <(os_Reference_protected const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_protected::operator >()

0s_boolean operator >(os_Reference_protected const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_protected::operator >=()

0s_boolean operator >=(0os_Reference_protected const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_protected::operator <=()

Release 5.1

os_bhoolean operator <=(os_Reference_protected const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

229

0s_Reference_protected

os_Reference_protected::0s_Reference_protected()

os_Reference_protected(T*);

Constructs an os_Reference_protected to substitute for the
specified T*. If the T* points to transient memory, err_reference_to_
transient is signaled. 0 is a legal argument.

os_Reference_protected::resolve()

T *resolve() const;

Returns the valid T* for which the specified reference is a
substitute. If the referent has been deleted, err_reference_not_found
is signaled. If the referent database has been deleted, err_database
not_found is signaled.

230 ObjectStore C++ API Reference

Chapter 2: Class Library

os_reference_protected

Release 5.1

Instances of the class os_reference_protected can be used as
substitutes for cross-database and cross-transaction pointers.
References are valid under a wider array of circumstances than
are pointers to persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_reference_protected s, in contrast, are always valid across
transaction boundaries, as well as across databases.

Once the object referred to by an os_reference_protected is
deleted, use of the os_reference_protected causes an err_reference_
not_found exception to be signaled. If the referent database has
been deleted, err_database not_found is signaled.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference_protected with the
pointer, or by assigning the pointer to a variable of type os_
reference_protected (implicitly invoking the conversion
constructor os_reference_protected::os_reference_

protected(void*)). This pointer must not point to transient
memory. In general, a pointer can be used anywhere an os_
reference_protected is expected, and the conversion constructor
will be invoked.

part *a_part = ... ;

os_reference_protected part_ref = a_part;
When an os_reference_protected is cast to pointer-to-referent-
type (that is, pointer to the type of object referred to by the
reference), os_reference_protected::operator void*() is implicitly
invoked, returning a valid pointer to the object referred to by the
os_reference_protected

printf("%d\n", (part*)(part_ref)->part_id);

231

os_reference_protected

Using memcpy() with
persistent
os_reference_
protecteds

Each instance of this class stores a relative pathname to identify
the referent database. The pathname is relative to the lowest
common directory in the pathnames of the referent database and
the database containing the reference. For example, if a reference
stored in /A/B/C/db1 refers to data in /A/B/D/db2 , the lowest
common directory is A/B, so the relative pathname ../../D/db2 is
used.

This means that if you copy a database containing a reference, the
reference in the copy and the reference in the original might refer
to different databases. To change the database a reference refers
to, you can use the ObjectStore utility oschangedbref . See
ObjectStore Management.

You can use the C++ memcpy() function to copy a persistent os_
reference_protected only if the target object is in the same segment
as the source object. This is because all persistent objects of the
type os_reference_protected use os_segment::of(this) for
reference resolution processing and the resoultion will be
incorrect if the os_reference has been copied to a different
segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_reference_protected::deleted()

os_boolean deleted() const;

Returns 1 (true) if the object to which the specified reference refers
has been deleted; returns 0 (false) otherwise.

os_reference_protected::dump()

232

char* dump(const char* db_str) const;

Returns a heap-allocated string for the reference that the method
was called. However, unlike the string returned by the char* os_
Reference_protected::dump(void) method, the returned string
does not contain an absolute database pathname. The returned
string is intended to be used as the dump_str parameter of an os_
Reference_protected load method of the form load(const char*

ObjectStore C++ API Reference

Chapter 2: Class Library

dump_str, os_database* db). It is the responsibility of the caller of
load to ensure that the db parameter passed to the load method is
the same as the database of the dumped reference. It is the user’s
responsibility to delete the returned string when finished using
the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_reference_protected::forget()

void forget();

Frees the memory in the underlying table used to associate the
specified reference with its referent. Subsequent use of the os_
reference_protected will result in a run-time error.

os_reference_protected::get_database()

os_database *get_database() const;

Returns a pointer to the database containing the object referred to
by the specified reference.

os_reference_protected::get_database key();

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_reference_protected::get_open_database()

os_database *get_open_database() const;

Returns a pointer to the database containing the object referred to
by the specified os_reference_protected . Opens the database.

os_reference_protected::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_reference_protected .

Release 5.1 233

os_reference_protected

os_reference_protected::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_reference_protected to a
given referent.

os_reference_protected::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_reference dump method. It is the responsibility of
the caller of load to ensure that the db parameter passed to the
load method is the same as the database of the originally dumped
reference. The loaded reference refers to the same object as the os_
reference used to dump the string as long as the db parameter is
the same as the database of the dumped reference. The exception
err_reference_syntax is raised if the dump_str is not in the expected
format or if the dump_str was dumped from a nonprotected
reference.

os_reference_protected::operator void*()

operator void*() const;

Returns the valid pointer for which the specified reference is a
substitute. If the referent has been deleted, err_reference_not_found
is signaled. If the referent database has been deleted, err_database_
not_found is signaled.

os_reference_protected::operator =()

os_reference_protected &operator=(const os_reference_protected&);

Establishes the referent of the right operand as the referent of the
left operand.

os_reference_protected &operator=(const void*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference_protected:.operator ==()

0s_boolean operator ==(os_reference_protected const&) const;

234 ObjectStore C++ API Reference

Chapter 2: Class Library

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference_protected::operator !()

0s_boolean operator !() const;

Returns nonzero if the reference has no current referent.

os_reference_protected:.operator !=()

0s_boolean operator !=(os_reference_protected const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference_protected::operator <()

0s_boolean operator <(os_reference_protected const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_protected::operator >()

0s_boolean operator >(os_reference_protected const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_protected::operator >=()

os_boolean operator >=(os_reference_protected const&) const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_protected::operator <=()

0s_boolean operator <=(os_reference_protected const&) const;

Release 5.1 235

os_reference_protected

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_protected::os_reference_protected()

os_reference_protected(const void*);

Constructs an os_reference_protected to substitute for the
specified void* . If the void* points to transient memory, err_
reference_to_transient is signaled. 0 is a legal argument.

os_reference_protected::resolve()

void* resolve();

Returns the void* for which the specified os_reference_protected
is a substitute. If the referent has been deleted, err_reference_not_
found is signaled. If the referent database has been deleted, err_
database_not_found is signaled.

236 ObjectStore C++ API Reference

Chapter 2: Class Library

os_Reference protected local

Instances of the class os_Reference_protected_local can be used as
substitutes for cross-database and cross-transaction pointers.
References are valid under a wider array of circumstances than
are pointers to persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_Reference_protected_local s, in contrast, are always valid
across transaction boundaries, as well as across databases.

Once the object referred to by an os_Reference_protected_local is
deleted, use of the os_Reference_protected_local will cause err_
reference_not_found to be signaled. If the referent database has
been deleted, err_database not_found is signaled.

The class os_Reference_protected_local is parameterized, with a
parameter for indicating the type of the object referred to by a
reference. This means that when specifying os_Reference_
protected_local as a function’s formal parameter, or as the type of
a variable or data member, you must specify the parameter — the
reference’s referent type. You do this by appending to os_
Reference_protected_local the name of the referent type enclosed
in angle brackets (< >):

os_Reference_protected_local< referent-type-name >

The referent type must be a class. For protected local references to
built-in types, such as int and char, see os_reference_protected_
local on page 242.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference_protected

Release 5.1 237

os_Reference_protected_local

local<T> with a T*, or by assigning a T* to a variable of type os_
Reference_protected_local<T> (implicitly invoking the conversion
constructor os_Reference_protected_local::0s_Reference_
protected_local(T*)). This pointer must not point to transient
memory.

part *a_part=...;

os_Reference_protected_local<part> part_ref = a_part;
When the member function resolve() is applied to an os_
Reference_protected_local , with a pointer to the referent database
as argument, a valid pointer to the referent object is returned.

printf("%d\n", part_ref.resolve(dbl)->part_id);

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1. This is
because comparing references never results in the pointer
adjustment described in Section 10.3c of the C++ Annotated
Reference Manual.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_Reference_protected_local::deleted()

os_boolean deleted(os_database *db) const;

Returns 1 (true) if the object to which the specified reference refers
has been deleted from the specified database; 0 (false) otherwise.

os_Reference_protected_local::dump()

238

char *dump(const char *database_name) const;

Returns a heap-allocated text string representing the specified
reference. When this string is passed to os_Reference_protected_
local::load() , the result is a reference to the same object referred to
by the dumped reference. It is the user’s responsibility to delete
the returned string.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_Reference_protected_local::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_Reference_protected_local::forget()

void forget(os_database *db);

Frees the memory in the underlying table used to associate the
specified os_Reference_protected_local ~with its referent in the
specified database. Subsequent use of the os_Reference_
protected_local will result in a run-time error.

os_Reference_protected_local::get_os_typespec()

static os_typespec *get_os_typespec();
Returns an os_typespec* for the class os_Reference protected
local .

os_Reference_protected_local::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_Reference_protected_local
to a given referent.

os_Reference_protected_local::load()

void load(const char*);

If the specified char* points to a string generated from a reference
with os_Reference_protected_local::dump() , calling this function
makes the specified reference refer to the same object referred to
by the reference used to generate the string.

os_Reference_protected_local::operator =()

os_Reference_protected_local<T> &operator=(
const os_Reference_protected_local<T>&

);

Release 5.1 239

os_Reference_protected_local

Establishes the referent of the right operand as the referent of the
left operand.
os_Reference_protected_local<T> &operator=(const T*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_Reference_protected_local::operator ==()

os_boolean operator ==(os_Reference_protected_local const&)
const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Reference_protected_local::operator ()

0s_boolean operator !() const;

Returns nonzero if the reference has no current referent.

os_Reference_protected_local::operator !=()

0s_boolean operator !=(os_Reference_protected_local const&)
const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

0s_Reference_protected_local::operator <()

0s_boolean operator <(os_Reference_protected_local const&)

const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_protected_local::operator >()

0s_bhoolean operator >(os_Reference_protected_local const&)
const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the

240 ObjectStore C++ API Reference

Chapter 2: Class Library

referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_protected_local::operator >=()

0s_boolean operator >=(os_Reference_protected_local const&)

const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_protected_local::operator <=()

os_boolean operator <=(0s_Reference_protected_local const&)

const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_protected_local::0s_Reference_protected_local()

os_Reference_protected_local(T*);

Constructs a reference to substitute for the specified T*. If the T*
points to transient memory, err_reference_to_transient is signaled. 0
is a legal argument.

os_Reference_protected_local::resolve()

T* resolve(const os_database*) const;

Returns the T* for which the specified os_Reference_protected_
local is a substitute. The database containing the storage pointed
to by the T* must be specified. If the referent has been deleted, err_
reference_not_found is signaled. If the referent database has been
deleted, err_database_not_found is signaled.

Release 5.1 241

os_reference_protected_local

os_reference_protected local

Instances of the class os_reference_protected_local can be used as
substitutes for cross-database and cross-transaction pointers.
References are valid under a wider array of circumstances than
are pointers to persistent storage.

A pointer to persistent storage assigned to transient memory is
valid only until the end of the outermost transaction in which the
assignment occurred, unless objectstore::retain_persistent_
addresses() is used. In addition, a pointer to storage in one
database assigned to storage in another database is valid only
until the end of the outermost transaction in which the assignment
occurred, unless os_database::allow_external_pointers() Or os_
segment::allow_external_pointers() is used.

os_reference_protected_local s, in contrast, are always valid across
transaction boundaries, as well as across databases.

Once the object referred to by an os_reference_protected_local is
deleted, use of the os_reference_protected_local will cause an err_
reference_not_found exception to be signaled. If the referent
database has been deleted, err_database not_found is signaled.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference_protected_local with
the pointer, or by assigning the pointer to a variable of type os_
reference_protected_local (implicitly invoking the conversion
constructor os_reference_protected_local::os_reference_
protected_local(void*)). This pointer must not point to transient
memory. In general, a pointer can be used anywhere an os_
reference_protected_local is expected, and the conversion
constructor will be invoked.

part *a_part = ... ;
os_reference_protected_local part_ref = a_part;

When the member function resolve() is applied to an os_
reference_protected_local , with a pointer to the referent database
as argument, a valid pointer to the referent object is returned.

printf("%d\n", part_ref.resolve(dbl)->part_id);

242 ObjectStore C++ API Reference

Chapter 2: Class Library

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_reference_protected_local::deleted()

0s_boolean deleted(os_database *db) const;

Returns 1 (true) if the object to which the specified reference refers
has been deleted from the specified database; 0 (false) otherwise.

os_reference_protected_local::dump()

char *dump(const char *database_name) const;

Returns a heap-allocated text string representing the specified
reference. When this string is passed to os_reference_protected
local::load() , the result is a reference to the same object referred to
by the dumped reference. It is the user’s responsibility to delete
the returned string.

os_reference_protected_local::forget()

void forget(os_database *db);

Frees the memory in the underlying table used to associate the
specified os_reference_protected_local ~ with its referent in the
specified database. Subsequent use of the os_reference_
protected_local will result in a run-time error.

os_reference_protected_local::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_reference_protected_local::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_reference_protected_
local .

Release 5.1 243

os_reference_protected_local

os_reference_protected_local::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for an os_reference_protected_local
to a given referent.

os_reference_protected_local::load()

void load(const char*);

If the specified char* points to a string generated from a reference
with os_reference_protected_local::dump() , calling this function
makes the specified reference refer to the same object referred to
by the reference used to generate the string.

os_reference_protected_local::operator =()

os_reference_protected_local &operator=(
const os_reference_protected_local&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_reference_protected_local &operator=(const void*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference_protected_local::operator ==()

0s_boolean operator ==(os_reference_protected_local const&)
const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference_protected_local::operator !()

0s_boolean operator !() const;

Returns nonzero if the reference has no current referent.

os_reference_protected_local::operator !'=()

244

0s_boolean operator !=(
os_reference_protected_local const&
) const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference_protected_local::operator <()

0s_boolean operator <(os_reference_protected_local const&)

const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_protected_local::operator >()

os_boolean operator >(0s_reference_protected_local const&)

const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_protected_local::operator >=()

0s_boolean operator >=(os_reference_protected_local const&)
const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_protected_local::operator <=()

Release 5.1

0s_boolean operator <=(os_reference_protected_local const&)

const;

If the first and second arguments refer to elements of the same
array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

245

os_reference_protected_local

os_reference_protected_local::os_reference_protected_local()

os_reference_protected_local(const void *);

Constructs a reference to substitute for the specified void* . If the
void* points to transient memory, err_reference_to_transient is
signaled. 0 is a legal argument.

os_reference_protected_local::resolve()

void* resolve(const os_database*);

Returns the void* for which the specified os_reference_protected_

local is a substitute. The database containing the storage pointed
to by the void* must be specified. If the referent has been deleted,
err_reference_not_found is signaled.

246 ObjectStore C++ API Reference

Chapter 2: Class Library

os_Reference this DB

Release 5.1

Instances of the class os_Reference_this_ DB can be used as
substitutes for intradatabase and cross-transaction pointers. The
reference and the referent must be in the same database.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation.

The class os_Reference_this_ DB is parameterized, with a parameter
for indicating the type of the object referred to by a reference. This
means that when specifying os_Reference_this_DB as a function’s
formal parameter, or as the type of a variable or data member, you
must specify the parameter — the reference’s referent type. You do
this by appending to os_Reference_this DB the name of the
referent type enclosed in angle brackets (< >):

os_Reference_this_DB< referent-type-name >

The referent type must be a class. For references to built-in types,
such as int and char, see os_reference_this_ DB on page 252.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference_this_DB<T>
with a T*, or by assigning a T* to a variable of type os_Reference_
this_DB<T> (implicitly invoking the conversion constructor os_
Reference_this_DB::0s_Reference_this_DB(T*)).

part *a_part = ...;

os_Reference_this_DB<part> part_ref = a_part;
When an os_Reference_this_ DB<T*> is used where a T* is
expected, os_Reference_this_DB::operator ->() or os_Reference_
this_DB::operator T*() is implicitly invoked, returning a valid
pointer to the object referred to by the os_Reference_this_DB .

printf("%d\n", part_ref->part_id);

Not all C++ operators have special reference class overloadings.
References do not behave like pointers in the context of [] and ++,
for example.

247

0s_Reference_this_DB

Using memcpy() with
persistent os_
Reference_this_DBs

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1. This is
because comparing references never results in the pointer
adjustment described in Section 10.3c of the C++ Annotated
Reference Manual.

You can use the C++ memcpy() function to copy a persistent os_
Reference_this_DB only if the target object is in the same segment
as the source object. This is because all persistent objects of this
type use os_segment::of(this) for reference resolution processing
and the resolution will be incorrect if the os_Reference_this_DB
has been copied to a different segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

0s_Reference_this_DB::dump()

char* dump(const char* db_str) const;

Returns a heap-allocated string for the reference that the method
was called. However, unlike the string returned by the char* os_
Reference_this_DB::dump(void) method, the returned string does
not contain an absolute database pathname. The returned string is
intended for use as the dump_str parameter of an os_Reference_
this_DB load method of the form load(const char* dump_str, os_
database* db) . It is the responsibility of the caller of load to ensure
that the db parameter passed to the load method is the same as the
database of the dumped reference. It is the user’s responsibility to
delete the returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_Reference_this_DB::get_database()

248

os_database *get_database() const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns a pointer to the database containing the object referred to
by the specified reference.

os_Reference_this_DB:get_database key();

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_Reference_this_DB::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_Reference_this_DB .

os_Reference_this_DB::hash()

os_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for a reference to a given referent.

os_Reference_this_DB::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_Reference dump method. It is the responsibility of
the caller of load to ensure that the db parameter passed to the
load method is the same as the database of the originally dumped
reference. The loaded reference refers to the same object as the os_
Reference used to dump the string as long as the db parameter is
the same as the database of the dumped reference. The exception
err_reference_syntax is raised if the dump_str is not in the expected
format.

os_Reference_this_DB::operator T*()

operator T*() const;

Returns the valid T* for which the specified reference is a
substitute.

Release 5.1 249

0s_Reference_this_DB

os_Reference_this_DB::operator —>()

T* operator —>() const;
Returns the valid T* for which the specified reference is a
substitute.

os_Reference_this_DB::operator =()

os_Reference_this_ DB<T> &operator=(
const os_Reference_this_ DB<T>&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_Reference_this_DB<T> &operator=(const T*);

Establishes the object pointed to by the right operand as the

referent of the left operand.
os_Reference_this_DB::operator ==()

os_boolean operator ==(os_Reference_this_DB const&) const;
Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Reference_this_DB::operator !'=()

os_boolean operator !=(os_Reference_this_DB const&) const;
Returns 1 if the arguments have different referents; returns 0
otherwise.

os_Reference_this_DB::operator <()

0s_boolean operator <(os_Reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_this_DB:operator >()

0s_boolean operator >(0os_Reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1

250 ObjectStore C++ API Reference

Chapter 2: Class Library

indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Reference_this_DB:operator >=()
0s_boolean operator >=(os_Reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_this_DB:operator <=()
0s_boolean operator <=(os_Reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_this_DB::os_Reference_this_DB()

os_Reference_this_DB(T*);
Constructs a reference to substitute for the specified T*.

os_Reference_this_DB::resolve()

T *resolve() const;

Returns the valid T* for which the specified reference is a
substitute.

Release 5.1 251

os_reference_this_DB

os_reference_this DB

Using memcpy() with
persistent
os_reference_this_DBs

252

Instances of the class os_reference_this_DB can be used as
substitutes for intradatabase and cross-transaction pointers. The
reference and the referent must be in the same database.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference_this_ DB with the
pointer, or by assigning the pointer to a variable of type os_
reference_this_DB (implicitly invoking the conversion constructor
os_reference_this_DB::0s_reference_this_DB(void*)). In general, a
pointer can be used anywhere an os_reference_this_ DB is
expected, and the conversion constructor will be invoked.

part *a_part = ... ;

os_reference_this_DB part_ref = a_part;
When an os_reference_this_DB is cast to pointer-to-referent-type
(that is, pointer to the type of object referred to by the reference),
os_reference_this_DB::operator void*() is implicitly invoked,
returning a valid pointer to the object referred to by the os_
reference_this_DB .

printf("%d\n", (part*)(part_ref)->part_id);

Performing the member function resolve() on an os_reference_
this_DB returns a valid pointer to the object referred to by the os_
reference_this_DB .

printf("%d\n", part_ref.>resolve()->part_id);

You can use the C++ memcpy() function to copy a persistent os_
reference_this_DB only if the target object is in the same segment
as the source object. This is because persistent objects of the type
os_reference_this_DB use os_segment::of(this) for reference
resolution processing and the resolution will be incorrect if the
os_reference_this_DB has been copied to a different segment.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

ObjectStore C++ API Reference

Chapter 2: Class Library

All ObjectStore programs must include the header file
<ostore\ostore.hh> .

os_reference_this_DB::dump()

char* dump(const char* db_str) const;

Returns a heap-allocated string for the reference that the method
was called. However, unlike the string returned by the char* os_
reference_this_DB::dump(void) method, the returned string does
not contain an absolute database pathname. The returned string is
intended for use as the dump_str parameter of an os_reference_
this_ DB load method of the form load(const char* dump_str, os_
database* db) . It is the responsibility of the caller of load to ensure
that the db parameter passed to the load method is the same as the
database of the dumped reference. It is the user’s responsibility to
delete the returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_reference_this_DB::get_database()

os_database *get_database() const;

Returns a pointer to the database containing the object referred to
by the specified reference.

os_reference_this_DB::get_database_key()

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string when finished using the string.

os_reference_this_DB::get_os_typespec()

static os_typespec *get_os_typespec();

Returns an os_typespec* for the class os_reference_this DB .

os_reference_this_DB::hash()

os_unsigned_int32 hash() const;

Release 5.1 253

os_reference_this_DB

Returns an integer suitable for use as a hash table key. The value
returned is always the same for a reference to a given referent.

os_reference_this_DB::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_reference dump method. It is the responsibility of
the caller of load to ensure that the db parameter passed to the
load method is the same as the database of the originally dumped
reference. The loaded reference refers to the same object as the os_
reference used to dump the string as long as the db parameter is
the same as the database of the dumped reference. The exception
err_reference_syntax is raised if the dump_str is not in the expected
format.

os_reference_this_DB::operator void*()

operator void*() const;
Returns the valid pointer for which the specified reference is a
substitute.

os_reference_this_DB::operator =()

os_reference_this_DB &operator=(
const os_reference_this_DB&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_reference_this_DB &operator=(const void*);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference_this_DB::operator ==()

os_boolean operator ==(os_reference_this_DB const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference_this_DB::operator !=()

os_boolean operator !'=(os_reference_this_DB const&) const;

254 ObjectStore C++ API Reference

Chapter 2: Class Library

Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference_this_DB::operator <()

0s_boolean operator <(os_reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_this_DB::operator >()

0s_boolean operator >(os_reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_this_DB::operator >=()

os_boolean operator >=(os_reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_this_DB::operator <=()

0s_boolean operator <=(os_reference_this_DB const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_this_DB::0s_reference_this_DB()

os_reference_this_DB(const void*);

Constructs a reference to substitute for the specified void*.

Release 5.1 255

os_reference_this_DB

os_reference_this_DB::resolve()

void* resolve() const;

Returns the valid void* for which the specified reference is a
substitute.

256 ObjectStore C++ API Reference

Chapter 2: Class Library

0os_Reference_transient

Release 5.1

Instances of the class os_Reference_transient can be used as
substitutes for cross-transaction pointers. The reference must be
allocated transiently.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation.

The class os_Reference_transient is parameterized, with a
parameter for indicating the type of the object referred to by a
reference. This means that when specifying os_Reference_
transient as a function’s formal parameter, or as the type of a
variable or data member, you must specify the parameter — the
reference’s referent type. You do this by appending to os_
Reference_transient the name of the referent type enclosed in
angle brackets (< >):

os_Reference_transient< referent-type-name >

The referent type must be a class. For transient references to built-
in types, such as int and char, see os_reference_transient on
page 262.

The referent type parameter, T, occurs in the signatures of some of
the functions described below. The parameter is used by the
compiler to detect type errors.

You can create a reference to serve as substitute for a pointer of
type T* by initializing a variable of type os_Reference_
transient<T> with a T*, or by assigning a T* to a variable of type os_
Reference_transient<T> (implicitly invoking the conversion
constructor os_Reference_transient::0os_Reference_transient(T*)).

part *a_part= ... ;
os_Reference_transient<part> part_ref = a_part;

When an os_Reference_transient<T*> is used where a T* is
expected, os_Reference_transient::operator ->() or os_Reference_
transient::operator T*() is implicitly invoked, returning a valid
pointer to the object referred to by the os_Reference_transient .

printf("%d\n", part_ref->part_id);

257

0s_Reference_transient

Not all C++ operators have special reference class overloadings.
References do not behave like pointers in the context of [] and ++,
for example.

In some cases involving multiple inheritance, comparing two
references has a different result from comparing the
corresponding pointers. For example, for == comparisons, if the
referent type of one operand is a nonleftmost base class of the
referent type of the other operand, the result is always 1. This is
because comparing references never results in the pointer
adjustment described in Section 10.3c of the C++ Annotated
Reference Manual.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_Reference_transient::dump()

char* dump(const char* db_str) const;

Returns a heap-allocated string representing the specified
reference. However, unlike the string returned by char* os_
Reference_transient::dump(void) method, the returned string does
not contain an absolute database pathname. The returned string is
intended to be used as the dump_str parameter of an os_Reference
load method of the form load(const char* dump_str, os_database*
db). It is the responsibility of the caller of load to ensure that the db
parameter passed to the load method is the same as the database
of the dumped reference. It is the user’s responsibility to delete the
returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

0s_Reference_transient::get_database key();

char* get_database_key(const char* dump_str);

Returns a heap-allocated string containing the database_key
component of the string dump_str . dump_str must have been
generated using the dump operation. Otherwise, the exception

258 ObjectStore C++ API Reference

Chapter 2: Class Library

err_reference_syntax is raised. It is the user’s responsibility to
delete the returned string.

os_Reference_transient::hash()

0s_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for a reference to a given referent.

os_Reference_transient::load()

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_Reference_transient dump method. It is the
responsibility of the caller of load to ensure that the db parameter
to the load method is the same as the database of the originally
dumped reference. The loaded reference will refer to the same
object as the os_Reference used to dump the string as long as the
db parameter is the same as the database of the dumped reference.
The exception err_reference_syntax is raised if the dump_str is not
in the expected format.

0s_Reference_transient::operator T*()

operator T*() const;
Returns the valid T* for which the specified reference is a
substitute.

0s_Reference_transient::operator —>()

T* operator —>() const;
Returns the valid T* for which the specified reference is a
substitute.

0s_Reference_transient::operator =()

0s_Reference_transient<T> &operator=(
const os_Reference_transient<T>&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_Reference_transient<T> &operator=(const T*);

Release 5.1 259

0s_Reference_transient

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_Reference_transient::operator ==()

0s_boolean operator ==(os_Reference_transient const&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Reference_transient::operator !=()

os_boolean operator !'=(0os_Reference_transient const&) const;

Returns 1 if the arguments have different referents; returns 0
otherwise.

0s_Reference_transient::operator <()

os_boolean operator <(os_Reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

0s_Reference_transient:operator >()

0s_boolean operator >(os_Reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

0s_Reference_transient:operator >=()

os_boolean operator >=(0s_Reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

260 ObjectStore C++ API Reference

Chapter 2: Class Library

0s_Reference_transient:operator <=()

os_boolean operator <=(0s_Reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Reference_transient::0s_Reference_transient()

os_Reference_transient(T*);

Constructs a reference to substitute for the specified T*.
os_Reference_transient::resolve()

T *resolve() const;

Returns the valid T* for which the specified reference is a
substitute.

Release 5.1 261

os_reference_transient

0s_reference_transient

Instances of the class os_reference_transient can be used as
substitutes for cross-transaction pointers. The reference must be
allocated transiently.

Once the object referred to by a reference is deleted, use of the
reference accesses arbitrary data and might cause a segmentation
violation.

You can create a reference to serve as substitute for a pointer by
initializing a variable of type os_reference_transient with the
pointer, or by assigning the pointer to a variable of type os_
reference_transient (implicitly invoking the conversion
constructor os_reference_transient::0s_reference_

transient(void*)). In general, a pointer can be used anywhere an
os_reference_transient is expected, and the conversion
constructor will be invoked.

part *a_part = ... ;

os_reference_transient part_ref = a_part;
When an os_reference_transient is cast to pointer-to-referent-type
(that is, pointer to the type of object referred to by the reference),
os_reference_transient::operator void*() is implicitly invoked,
returning a valid pointer to the object referred to by the os_
reference_transient .

printf("%d\n", (part*)(part_ref)->part_id);

Performing the member function resolve() on an os_reference_
transient returns a valid pointer to the object referred to by the os_
reference_transient .

printf("%d\n", part_ref.>resolve()->part_id);

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_reference_transient::dump()

262

char *dump(const char *db_str) const;

ObjectStore C++ API Reference

Chapter 2: Class Library

Returns a heap-allocated string representing the specified
reference. However, unlike the string returned by char* os_
reference_transient::dump(void) method, the returned string does
not contain an absolute database pathname. The returned string is
intended to be used as the dump_str parameter of os_reference
load method of the form load(const char* dump_str, os_database*
db). Itis the responsibility of the caller of load to ensure that the db
parameter passed to the load method is the same as the database
of the dumped reference. It is the user’s responsibility to delete the
returned string when finished using the string.

This operation is useful in those applications in which you do not
want the overhead of storing the absolute database path in the
dumped strings.

os_reference_transient::get_database_key()

char* get_database_key(const char* dump_str);

Returns the substring of dump_str that was the database key
component of the dump string. dump_str must have been
generated using the dump operation. Otherwise, the exception
err_reference_syntax is raised. Note that this operation can be used
with dump strings that contain the absolute pathname of the
database.

os_reference_transient::hash()

0s_unsigned_int32 hash() const;

Returns an integer suitable for use as a hash table key. The value
returned is always the same for a reference to a given referent.

os_reference_transient::load()

Release 5.1

void load(const char* dump_str, const os_database* db);

The dump_str parameter is assumed to be the result of a call to a
compatible os_reference_transient dump method. It is the
responsibility of the caller of load to ensure that the db parameter
passed to the load method is the same as the database of the
originally dumped reference. The loaded reference will refer to
the same object as the os_reference used to dump the string as
long as the db parameter is the same as the database of the
dumped reference. The exception err_reference_syntax is raised if
the dump_str is not in the expected format.

263

os_reference_transient

os_reference_transient::operator void*()

operator void*() const;
Returns the valid pointer for which the specified reference is a
substitute.

os_reference_transient::operator =()

os_reference_transient &operator=(
const os_reference_transient&

);
Establishes the referent of the right operand as the referent of the
left operand.

os_reference_transient &operator=(const void*);
Establishes the object pointed to by the right operand as the
referent of the left operand.

os_reference_transient::operator ==()

0s_bhoolean operator ==(os_reference_transient const&) const;
Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_reference_transient::operator !=()

os_boolean operator !=(os_reference_transient const&) const;
Returns 1 if the arguments have different referents; returns 0
otherwise.

os_reference_transient::operator <()

0s_boolean operator <(os_reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_transient::operator >()

0s_boolean operator >(0s_reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1

264 ObjectStore C++ API Reference

Chapter 2: Class Library

indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_reference_transient::operator >=()
os_bhoolean operator >=(os_reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_transient::operator <=()
0s_boolean operator <=(os_reference_transient const&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_reference_transient::os_reference_transient()

os_reference_transient(const void*);

Constructs a reference to substitute for the specified void*.

os_reference_transient::resolve()

void* resolve() const;
Returns the valid void* for which the specified reference is a
substitute.

Release 5.1 265

os_reference_type

os_reference_type

class os_reference_type : public os_pointer_type

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a C++ reference type. This class is derived from os_
pointer_type . Performing os_pointer_type::get_target_type() onan
os_reference_type results in the reference type’s target type.

os_reference_type::.create()

static os_reference_type &create(os_type* target);

The argument initializes the attribute target .

266 ObjectStore C++ API Reference

Chapter 2: Class Library

os_relationship_member_variable

class os_relationship_member_variable : public os_member_
variable

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this class
represents a relationship (inverse) member. This class is derived
from os_member_variable .
os_relationship_member_variable::get_related_class()

const os_class_type &get_related_class() const;

Returns the class at the target end of the relationship.

os_relationship_member_variable::get_related_member()

const os_relationship_member_variable &get_related_member()
const;

Returns the inverse of the specified relationship member.

Release 5.1 267

0s_retain_address

0S_retain_address

Use of Pvars

268

The class os_retain_address allows an application to specify that
certain address ranges be kept assigned across calls to
objectstore::release_persistent_addresses() and top-level
transactions. The interface to os_retain_address is similar to the
interface to os_pvar . The os_retain_address constructor takes a
pointer to a transient pointer that the application wants to remain
assigned.

Assingle os_retain_address instance can track modifications made
to a pointer. When the client releases address space, it iterates
through all os_retain_address instances and dereferences their
ptr_to_ptr to determine which address ranges should be retained.
There are no error states: if ptr_to_ptr is NULL, or if it points to a
pointer that does not point into persistent space, no error is
signaled, and no address range is retained by the os_retain_
address instance. Since address space is reserved in 64 KB units,
the amount of address space reserved by a single os_retain_
address is some multiple of 64 KB— usually, for objects 64 KB or
smaller, it is just 64 KB.

Like os_pvars , os_retain_address inherits from basic_undo , and
so all instances must be on the stack (correspond to automatic C++
variables). When an instance of os_retain_address is deleted, it is
removed from consideration by the client.

More than one instance of os_retain_address can refer to the same
persistent address. As long as at least one instance of os_retain_
address refers to a persistent address when the client releases
addresses, that persistent address is retained.

The retaining function member returns the persistent address
pointed to by the ptr_to_ptr data member, or NULL if the ptr_to_
ptr is NULL. Calling the release function member is equivalent to
calling set_retain(NULL).

Instances of os_pvar are treated specially by the address release
operation when called within a transaction. Any such os_pvars
that are “active” when address space is released act like instances
of os_retain_address — the persistent address that they refer to

ObjectStore C++ API Reference

Chapter 2: Class Library

continues to be assigned. However, unlike os_retain_address ,
active os_pvars do not hold address space across transaction
boundaries when objectstore::retain_persistent_addresses() is not
operating

os_retain_address::0s_retain_address()

os_retain_address::os_retain_address(void **ptr_to_ptr);
os_retain_address::retaining()

void *os_retain_address::retaining() const;
0os_retain_address::release()

void os_retain_address::release();
os_retain_address::set_retain()

void os_retain_address::set_retain(void **ptr_to_ptr);

The os_retain_address::set_retain() function member can be used
to change the pointer to a transient pointer.

Release 5.1 269

0s_schema

0S_schema

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. An instance of this
abstract base class represents a schema. The classes os_comp_
schema, os_app_schema , and os_database_schema are derived
from os_schema .

Programs using this class must include <ostore/ostore.hh> ,
followed by <ostore/coll.hh> (if used), followed by
<ostore/mop.hh> .

0s_schema::get_classes()

os_collection get_classes() const;

Returns a collection of the classes in the schema. Each element of
the returned collection points to a const os_class_type .

os_schema::get_kind()

enum o0s_schema_kind {
Compilation_schema,
Application_schema,
Database_schema

b

os_schema_kind get_kind () const;

Returns an enumerator indicating the kind of the specified
schema.

os_schema::find_type()

const os_type *find_type(const char *typename) const;

Returns a pointer to the type with the specified name in the
specified schema. The name can designate a class or any C++
fundamental type. All pointer types are treated identically, and
result in the type for void* ’s being returned. If there is no type with
the specified name, 0 is returned. For nested classes, the name
must be a fully qualified name that describes the path to the
nested class, for example, outer::inner .

0s_schema::operator const os_app_schema&()

270

operator const os_app_schema&() const;

ObjectStore C++ API Reference

0os_schema:

0s_schema:

0os_schema:

0s_schema:

0s_schema:

Release 5.1

Chapter 2: Class Library

Provides safe conversion to const os_app_schema& . If the
conversion is not permissible, err_mop_illegal_cast is signaled.

:operator const os_comp_schema&()

operator const os_comp_schemaé&() const;

Provides safe conversion to const os_comp_schema& . If the
conversion is not permissible, err_mop_illegal_cast is signaled.

:operator const os_database_schemaé&()

operator const os_database_schema&() const;

Provides safe conversion to const os_database _schema& . If the
conversion is not permissible, err_mop_illegal_cast is signaled.

‘operator os_app_schemaé&()

operator os_app_schema&();

Provides safe conversion to os_app_schema& . If the conversion is
not permissible, err_mop_illegal_cast is sighaled.

:operator os_comp_schema&()

operator os_comp_schemaé&();

Provides safe conversion to os_comp_schema& . If the conversion
is not permissible, err_mop_illegal_cast is signaled.

:operator os_database_schemaé&()

operator os_database_schema&();

Provides safe conversion to os_database_schema& . If the
conversion is not permissible, err_mop_illegal_cast is signaled.

271

0s_schema_evolution

0S_schema_evolution

272

This class provides the user interface to the ObjectStore schema
evolution facility. The term schema evolution refers to the changes
undergone by a database’s schema during the course of the
database’s existence. It refers especially to schema changes that
potentially require changing the representation of objects already
stored in the database.

The schema evolution process has two phases:

= Schema modification: modification of the schema information
associated with the database(s) being evolved

= |nstance migration: modification of any existing instances of the
modified classes

Instance migration itself has two phases:

< Instance initialization
= [Instance transformation

Instance initialization modifies existing instances of modified
classes so that their representations conform to the new class
definitions. This might involve adding or deleting fields or
subobjects, changing the type of a field, or deleting entire objects.
This phase of migration also initializes any storage components
that have been added or that have changed type.

In most cases, new fields are initialized with zeros. There is one
useful exception to this, however. In the case where a field has
changed type, and the old and new types are assignment
compatible, the new field is initialized by assignment from the old
field value. See os_schema_evolution::evolve() on page 278 for the
initialization rules.

During the initialization phase, the address of an instance being
migrated generally changes. The reason for this is that migration
actually consists of making a copy of the old, unmigrated
instance, and then modifying this copy. The copy and the old
instance will be in the same segment, but their offsets within the
segment will be different.

Because of this, the schema evolution facility automatically
modifies all pointers to the instance so that they point to the new,

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

modified instance. This is done for all pointers in the databases
being evolved, including pointers contained in instances of
unmodified classes, cross-database pointers, and pointers to
subobjects of migrated instances.

During this process of adjusting pointers to modified instances,
ObjectStore might detect various kinds of illegal pointers (see os_
schema_evolution::evolve() on page 278). For example, it might
detect a pointer to the value of a data member that has been
removed in the new schema. Since the data member has been
removed, the subobject serving as value of that data member is
deleted as part of instance initialization. Any pointer to such a
deleted subobiject is illegal and is detected by ObjectStore.

In such a case, you can provide a special handler function (see os_
schema_evolution::set_illegal_pointer_handler() on page 284) to
process the illegal pointer (for example, by changing it to null or
simply reporting its presence). Each time an illegal pointer is
detected, the handler function is executed on the pointer, and then
schema evolution is resumed. If you do not provide a handler
function, an exception is signaled when an illegal pointer is
encountered.

C++ references are treated as a kind of pointer. References to
migrated instances are adjusted just as described above. And
illegal references are detected and can be handled as described.

In addition, as with pointers, ObjectStore references to migrated
instances are adjusted to refer to the new instance rather than the
old. You are given an option concerning local references. Recall
that to resolve a local reference you must specify the database
containing the referent. If you want, you can direct ObjectStore to
resolve each local reference using the database in which the
reference itself resides. If you do not use this option, local
references will not be adjusted during instance initialization (but
you can provide a transformer function so that they are adjusted
during the instance transformation phase — see below).

As with pointers, you can supply handler functions for illegal
references. If you do not supply an illegal reference handler,
evolution continues uninterrupted when an illegal reference is
encountered. The reference is left unmodified and no exception is
signaled.

273

0s_schema_evolution

274

Just as some pointers and references become obsolete after
schema evolution, so do some indexes and persistently stored
queries. For example, the selection criterion of a query or the path
of an index might make reference to a removed data member.
ObjectStore detects all such queries and indexes. In the case of an
obsolete query, ObjectStore internally marks the query so that
subsequent attempts to use it cause a run-time error.

As with illegal pointers, you can handle obsolete queries or
dropped indexes by providing a special handler function for each
purpose (see os_schema_evolution::set_obsolete_query_handler()

on page 286 and os_schema_evolution::set_obsolete_index_
handler() on page 286). An obsolete index handler, for example,
might create a new index using a path that is legal under the new
schema. If you do not supply handlers, ObjectStore signals an
exception when an obsolete query or index is encountered.

For some schema changes, the instance initialization phase is all
that is needed. But in other cases, further modification of class
instances or associated data structures is required to complete the
schema evolution. This further modification is generally
application dependent, so ObjectStore allows you to define your
own functions, transformer functions, to perform the task (see os_
schema_evolution::augment_post_evol_transformers() on

page 277).

You associate exactly one transformer with each class whose
instances you want to be transformed. During the transformation
phase of instance migration, the schema evolution facility invokes
each transformer function on each instance of the function’s
associated class, including instances that are subobjects of other
objects.

Transformer functions are particularly useful when you want to
set the value of some field of a migrated instance based on the
values of some field or fields of the corresponding old instance.
For this purpose, the evolution facility provides functions that
allow you to access the old instance corresponding to a given new
instance (see os_schema_evolution::get_unevolved_object() on
page 284, os_typed_pointer_void::get_type() on page 357, os_
class_type::find_member_variable() onpage 59, and ::os_fetch() on
page 370).

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

You can also use a transformer function to adjust local references.
A transformer, associated with the class os_reference_local or os_
reference_protected_local , could perform the adjustment by
retrieving the new version of each local reference’s referent (see
os_schema_evolution::get_evolved_object() on page 283), and
assigning it to the reference.

In addition, transformers are useful for updating data structures
that depend on the addresses of migrated instances. A hash table,
for example, that hashes on addresses should be rebuilt using a
transformer. Note that you do not need to rebuild a data structure
if the position of an entry in the structure does not depend on the
address of an object pointed to by the entry, but depends instead,
for example, on the value of some field of the object pointed to.
Such data structures will still be correct after the instance
initialization phase.

Once the transformation phase is complete, all the old,
unmigrated instances are deleted. (If the old instances of a given
class are not needed for the transformation phase, you can direct
ObjectStore to delete them during the initialization phase — see
0s_schema_evolution::augment_classes_to_be_recycled() on
page 276.)

The schema evolution facility allows for one special form of
instance migration, which allows you to reclassify instances of a
given class as instances of a class derived from the given class.
This form of migration is special because it is not, strictly
speaking, a case of modifying instances to conform to a new class
definition — you could even reclassify instances without
changing the schema at all. However, instance reclassification is
typically desirable when new subclasses are added to a schema.
Instances of the base class can be given a more specialized
representation by being classified as instances of one of the
derived classes.

Reclassification occurs during the initialization phase. You
specify how instances of a given base class are to be reclassified by
associating a reclassification function with the base class (see os_
schema_evolution::augment_subtype_selectors()). This function
takes an instance of the base class as argument, and returns the
name of the instance’s new class, if it is to be reclassified.

275

0s_schema_evolution

Reclassified instances can then be transformed during the
transformation phase, as with any migrated instances. A
reclassified instance will be transformed by the transformer
function associated with its new class, a class derived from its
original class.

To help you get an overall picture of the operations involved in
instance initialization for a particular evolution, the schema
evolution facility allows you to obtain a task list describing the
process. The task list consists of function definitions indicating
how the instances of each class will be initialized. You can
generate this list without actually invoking evolution, so you can
verify your expectations concerning a particular schema change
before migrating the data (see os_schema_evolution::task_list() on
page 287).

To perform schema evolution, you make and execute an
application that invokes the static member function os_schema_
evolution::evolve() . The function must be called outside the
dynamic scope of a transaction.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

Programs using this class must include <ostore/ostore.hh>,
followed by <ostore/coll.hh> (if used), followed by
<ostore/schmevol.hh> .

0s_schema_evolution::augment_classes_to_be recycled()

276

static void augment_classes_to_be_recycled(
const char *class_name

);

Adds the class with the specified name to the set of classes whose
old, unevolved instances are to be deleted during the instance
initialization phase of schema evolution. Applies to evolutions
initiated in the current process after the call to this function. The
old, unevolved instances of a recycled class will not be accessible
during the instance transformation phase.

static void augment_classes_to_be_recycled(
const os_Collection<const char*> &class_names

ObjectStore C++ API Reference

Chapter 2: Class Library

Adds the classes named by the elements of the specified collection
to the set of classes whose old, unevolved instances are to be
deleted during the instance initialization phase of schema
evolution. Applies to evolutions initiated in the current process
after the call to this function. The old, unevolved instances of
recycled classes will not be accessible during the instance
transformation phase.

0os_schema_evolution::augment_classes_to_be_removed()

static void augment_classes_to_be_removed(
const char *class_name
)

Adds the class with the specified name to the set of classes to be
removed from the schema during subsequent evolutions. This
applies to evolutions initiated in the current process. If the
indicated class is actually part of the new schema, err_se_cannot_
delete_class is signaled. Note that when you remove a class, C, you
must also remove or modify any class that mentions C in its
definition. Otherwise err_se_cannot_delete_class is signaled.

static void augment_classes_to_be_removed(
const os_collection &class_names

);

Adds the classes named by the elements of the specified collection
to the set of classes to be removed from the schema during schema
evolution. This applies to evolutions initiated during the current
process after the call to this function. If the indicated class is
actually part of the new schema, err_se_cannot_delete_class is
signaled. Note that when you remove a class, C, you must also
remove or modify any class that mentions C in its definition.
Otherwise err_se_cannot_delete_class is signaled.

0s_schema_evolution::augment_post_evol_transformers()

Release 5.1

static void augment_post_evol_transformers(
const os_transformer_binding&

);

Adds the specified transformer binding to the set of transformer
bindings to be used during subsequent evolutions. This applies to
evolutions initiated in the current process. A transformer binding
associates a class with a function so that the function is executed

277

0s_schema_evolution

on each instance of the class during the instance transformation
phase of evolution — see os_transformer_binding on page 341.

static void augment_post_evol_transformers(
const os_Collection<os_transformer_binding*>&

);

Adds the elements of the specified collection to the set of
transformer bindings to be used during subsequent evolutions.
This applies to evolutions initiated in the current process. A
transformer binding associates a class with a function so that the
function is executed on each instance of the class during the
instance transformation phase of evolution — see os_transformer_
binding on page 341.

0s_schema_evolution::augment_subtype_selectors()

static void augment_subtype_selectors(
const os_evolve_subtype_fun_binding&
);

Adds the specified subtype function binding to the set of subtype
function bindings to be used during subsequent evolutions. This
applies to evolutions initiated in the current process. A subtype
function binding associates a class with a function. The function is
used to reclassify instances of the class as instances of a subclass
of the class. The string returned by the function for a given
instance indicates the instance’s new class — see os_evolve
subtype_fun_binding on page 138.

static void augment_subtype_selectors(
const os_Collection<os_evolve_subtype_fun_binding*>&

);

Adds the elements of the specified collection to the set of subtype
function bindings to be used during subsequent evolutions. This
applies to evolutions initiated in the current process. A subtype
function binding associates a class with a function. The function is
used to reclassify instances of the class as instances of a subclass
of the class. The string returned by the function for a given
instance indicates the instance’s new class — see os_evolve
subtype_fun_binding on page 138.

0os_schema_evolution::evolve()

278

static void evolve (
const char *work_db_name,

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

const char *db_to_evolve
)i
Invokes schema evolution on the database named by db_to_
evolve . The function must be called outside the dynamic scope of
atransaction. If there is no database named by work_db_name , one
with that name is created and used as the work database. If there
is a database named by work_db_name , it must be a work database
from a prior interrupted evolution performed on the database
named by db_to_evolve . In this case, evolution resumes from the
latest consistent state prior to the last interruption.

The new schema is determined by the schema of the database
being evolved together with the modification schema.

The modification schema is the schema for the compilation or
application schema database specified in the most recent call in
the current process to os_schema_evolution::set_evolved
schema_db_name() — see below. If there is no prior call to set_
evolved_schema_db_name() , the modification schema is the
schema for the application calling evolve() .

The new schema is the result of merging the schema of the
database(s) being evolved with the modification schema; that is,
the new schema is the union of the old schema and the
modification schema minus the definitions in the old schema of
classes that are also defined in the modification schema.

If there are any classes present in the old schema but not in the
new schema, they must be specified prior to the call to evolve()
using os_schema_evolution::augment_classes_to_be_removed()

During the instance initialization phase, the instances of modified
classes are modified to conform to the layouts imposed by the new
classes.

Data members whose value type has changed are initialized by
assignment with the old data member value, if old and new value
types are assignment compatible. That is, ObjectStore assigns the
value of the old data member to the storage associated with the
new member, applying only standard conversions defined by the
C++ language.

In some cases schema evolution considers types assignment
compatible when C++ would not. For example, if D is derived

279

0s_schema_evolution

280

from B, schema evolution will assign a B* to a D* if it knows that
the B is also an instance of D.

If the new and old value types are not assignment compatible,
then, where the new value type is a class, the new members are
initialized as if by a constructor that sets each field to the
appropriate representation of 0, and where the new value type is
not a class, they are initialized with the appropriate
representation of 0.

Data members added to the schema whose value type is a class are
initialized as if by a constructor that sets each field to 0. Other new
data members are initialized with 0.

Array-valued members are initialized, using the above rules, as if
the i array element were a separate data member corresponding
to the i element of the old data member value. If there is no it
element of the old data member value (either because the old
value is not an array, or because the old value is an array but does
not have an it element), the new element is initialized as if by a

constructor that sets each field to 0, or with 0.

Bit fields are evolved according to the default signed or unsigned
rules of the implementation that built the evolution application.
This can lead to unexpected results when an evolution application
built with one default rule evolves a database originally
populated by an application built by an implementation whose
default rule differs. The unexpected results occur when the
evolution application attempts to increase the width of a bit field.

Schema evolution cannot evolve a pointer-to-member that points
to a member in a virtual base class.

When a class is modified to inherit from a base class, subobjects
corresponding to the base class are initialized as if by a
constructor that sets each field to 0.

Subobjects corresponding to removed data members or base
classes are deleted, as are instances of classes removed from the
schema.

Changing inheritance from virtual to nonvirtual is treated as

removal of the virtual base class and addition of nonvirtual base
classes. Changing inheritance from nonvirtual to virtual is treated
as removal of the nonvirtual base classes and addition of a virtual

ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

base class. In each case, subobjects corresponding to the added
classes are initialized as if by a constructor that sets each field to 0.

All pointers and C++ references to instances that require
modification, including cross-database pointers, are adjusted to
point to the new, evolved instances. All nonlocal ObjectStore
references are similarly adjusted. Local references are also
similarly adjusted, provided a nonzero os_boolean (true) is
supplied as argument in the last call to set_local_references_are_
db_relative() prior to the call to evolve() . Otherwise, local
references are left unchanged.

Pointers, C++ references, and nonlocal ObjectStore references to
deleted subobjects are detected as illegal, as are pointers and
references to transient or freed memory, as well as type-
mismatched pointers and references. Local ObjectStore references
are also detected as illegal under the same circumstances,
provided a nonzero os_boolean (true) is supplied as argumentin
the last call to set_local_references_are_db_relative() prior to the
call to evolve() . Pointers of type void* are detected as illegal if the
set of preevolution objects whose memory begins at the indicated
location is changed after evolution.

Illegal pointers and references can be processed by illegal-pointer
handlers supplied by the user (see os_schema_evolution::set_
illegal_pointer_handler() on page 284).

Illegal pointers and C++ references for which there is no handler
provoke the exception err_illegal_pointer or one of its child
exceptions, unless ignore_illegal_pointers mode is on (see os_
schema_evolution::set_ignore_illegal_pointers() on page 284).

When the selection criterion of a query or the path of an index
makes reference to a removed class or data member, or makes
incorrect type assumptions in light of a schema change, the query
or index becomes obsolete. ObjectStore detects all obsolete queries
and indexes. In the case of an obsolete query, ObjectStore
internally marks the query so that subsequent attempts to use it
result in the exception err_os_query_evaluation_error.

As with illegal pointers, you can handle obsolete queries and

indexes by providing a special handler function for each purpose.
Each obsolete index handled by such a function is automatically
dropped after the function returns. If you do not supply handlers,

281

0s_schema_evolution

282

ObjectStore signals err_schema_evolution when an obsolete query
or index is detected. See os_schema_evolution::set_obsolete_
index_handler() on page 286 and os_schema_evolution::set_
obsolete_query_handler() on page 286.

Each instance of a class with an associated subtyping function is
reclassified according to the class name returned by the function
for the instance (see os_schema_evolution::augment_subtype_
selectors() on page 278).

During the instance initialization phase, unevolved instances of
classes to be recycled (see os_schema_evolution::augment_
classes_to_be_recycled() on page 276) are deleted.

Subsequent to instance initialization, each transformer function
(see os_schema_evolution::augment_post_evol_transformers() on
page 277) is executed on each instance of its associated class. The
order of execution of transformers on embedded objects follows
the same pattern as constructors. When the transformer for a
given class is invoked, the transformers for base classes of the
given class are executed first (in declaration order), followed by
the transformers for class-valued members of the given class (in
declaration order), after which the transformer for the given class
itself is executed.

Unevolved instances of each modified class are deleted following
completion of the transformation phase.

static void evolve(
const char *work_db_name,
const os_Collection<const char*> &dbs_to_evolve

);

Invokes schema evolution on the databases named by the
elements of dbs_to_evolve . The rest of the behavior for this
function is as described for the previous overloading of evolve() ,
above.

static void evolve(
const char *work_db_name,
const os_Collection<const char*> &dbs_to_evolve,
0s_schema &new_schema
);
Invokes schema evolution on the databases named by the
elements of dbs_to_evolve . The rest of the behavior for this

ObjectStore C++ API Reference

Chapter 2: Class Library

function is as described for the first overloading of evolve() , above,
except that the modification schema is specified by new_schema .

static void evolve(

const char *work_db_name,

const char *db_to_evolve,

0s_schema &new_schema
);
Invokes schema evolution on the database specified by db_to_
evolve . The rest of the behavior for this function is as described for
the first overloading of evolve() , above, except that the
modification schema is specified by new_schema .

0os_schema_evolution::get_evolved_address()

static os_typed_pointer_void get_evolved_address(void*);

Returns an os_typed_pointer_void to the evolved object
corresponding to the unevolved object pointed to by the specified
void* . The os_typed_pointer_void encapsulates a void* pointer to
the evolved object. The pointer is null if the object was not
evolved. Assumes that only the address of the evolved object is
desired, not the object itself, and consequently does not check the
validity of the object.

0s_schema_evolution::get_evolved_object()

static os_typed_pointer_void get_evolved_object(void*);

Returns an os_typed_pointer_void to the evolved object
corresponding to the unevolved object pointed to by the specified
void* . The os_typed_pointer_void encapsulates a void* pointer to
the evolved object. The pointer is null if the object was not
evolved. An exception is raised if this pointer is illegal (see os_
schema_evolution::evolve() on page 278).

0s_schema_evolution::get_ignore_illegal_pointers()

static os_boolean get_ignore_illegal_pointers();

Returns nonzero if ignore_illegal_pointers mode is on. Returns 0
otherwise. See also os_schema_evolution::set_ignore_illegal_
pointers() on page 284.

0os_schema_evolution::get_unevolved_address()

static os_typed_pointer_void get_unevolved_address(void*);

Release 5.1 283

0s_schema_evolution

Returns an os_typed_pointer_void to the unevolved object
corresponding to the evolved object pointed to by the specified
void* . Assumes that only the address of this object is desired, not
the object itself, and consequently does not check the validity of
the object.

0s_schema_evolution::get_unevolved_object()

static os_typed_pointer_void get_unevolved_object(void*);

Returns an os_typed_pointer_void to the unevolved object
corresponding to the evolved object pointed to by the specified
void* . An exception is raised if the unevolved object was deleted
during instance initialization (see os_schema_
evolution::augment_classes_to_be_recycled() ~ on page 276).

0os_schema_evolution::get work_database()

static os_database *get_work_database();

This function returns a pointer to the work database for the
current evolution.

0os_schema_evolution::set_evolved_schema_db_name()

static void set_evolved_schema_db_name(const char*);

Specifies the name of an application schema database used to
determine the new schema in subsequent evolutions during the
current process.

0os_schema_evolution::set_ignore_illegal_pointers()

static void set_ignore_illegal_pointers(
0s_bhoolean)

);

If the argument is nonzero, turns on ignore_illegal_pointers maode,
causing ObjectStore to ignore illegal pointers and references
encountered during evolution. If the argument is 0, turns off
ignore_illegal_pointers mode. See also os_schema_evolution::get_
ignore_illegal_pointers() on page 283.

0os_schema_evolution::set_illegal_pointer_handler()

static void set_illegal_pointer_handler(
void (*f)(objectstore_exception_r,
0s_char_p msg, os_void_pr illegalp)

284 ObjectStore C++ API Reference

Release 5.1

Chapter 2: Class Library

Specifies f as the handler function for illegal pointers. Applies to
evolutions initiated in the current process after the call to this
function. The function f must be defined by the user. The
objectstore_exception is the exception that would have been
signaled had a handler not been supplied, the char* points to the
error message that would have been generated, and illegalp is a
reference to the illegal pointer.

static void set_illegal_pointer_handler(

void (*f)(objectstore_exception_r,

0s_char_p msg, os_canonical_ptom_r)

);
Specifies f as the handler function for illegal pointers to members.
Applies to evolutions initiated in the current process after the call
to this function. The function f must be defined by the user. The
objectstore_exception_r s the exception that would have been
signaled had a handler not been supplied, the os_char_p pointsto
the error message that would have been generated, and the os_
canonical_ptom_r is a reference to the illegal pointer-to-member.

static void set_illegal_pointer_handler(

void (*f)(objectstore_exception_r, 0os_char_p*msg,

os_reference_local_r)

);
Specifies f as the handler function for illegal ObjectStore local
references. Applies to evolutions initiated in the current process
after the call to this function. The function f must be defined by the
user. The objectstore_exception_r is the exception that would
have been signaled had a handler not been supplied, the os_char_
p* points to the error message that would have been generated,
and the os_reference_local_r is a C++ reference to the illegal
ObijectStore reference.

static void set_illegal_pointer_handler(
void (*f)(objectstore_exception_r,
os_char_p msg, os_reference_r)
);

Specifies f as the handler function for illegal ObjectStore nonlocal
references. Applies to evolutions initiated in the current process
after the call to this function. The function f must be defined by the
user. The objectstore_exception_r is the exception that would
have been signaled had a handler not been supplied, the os_char_
p points to the error message that would have been generated, and

285

0s_schema_evolution

the os_reference_r is a C++ reference to the illegal ObjectStore
reference.

static void set_illegal_pointer_handler(

void (*f)(objectstore_exception_r, os_char_p msg,

os_database_root_r)

)i
Specifies f as the handler function for illegal database root values.
Applies to evolutions initiated in the current process after the call
to this function. The function f must be defined by the user. The
objectstore_exception_r s the exception that would have been
signaled had a handler not been supplied, the os_char_p* points
to the error message that would have been generated, and the os_
database_root_r is a C++ reference to the illegal database root.

0os_schema_evolution::set_local _references_are_db_relative()

static void set_local_references_are_db_relative(os_boolean);

If a nonzero os_boolean (true) is supplied as argument, local
references will be resolved using the database in which the
reference itself resides. Otherwise local references will not be
adjusted during the instance initialization phase. Applies to
evolutions initiated in the current process after the call to this
function.

0s_schema_evolution::set_obsolete_index_handler()

static void set_obsolete_index_handler(
void (*f)(const os_collection&, const char *path_string)

Specifies f as the handler function for obsolete indexes. Applies to
evolutions initiated in the current process after the call to this
function. The function f must be defined by the user. The os_
collection& is a reference to the collection whose index is obsolete,
and the char* points to a string expressing the index’s path (key).

os_schema_evolution::set_obsolete_query_handler()

286

static void set_obsolete_query_handler_handler(
void (*f)(os_coll_query_r, os_char_const_p query_string)

Specifies f as the handler function for obsolete queries. Applies to
evolutions initiated in the current process after the call to this
function. The function f must be defined by the user. The os_coll_

ObjectStore C++ API Reference

Chapter 2: Class Library

query_r is a reference to the obsolete query, and the os_char_
const_p points to a string expressing the query’s selection
criterion.

0s_schema_evolution::set_task_list_file_name()

static void set_task_list_file_name(const char *file_name);

Specifies the file named file_name as the file to which a task list
should be sent. Applies to task lists generated in the current
process after the call to this function.

0os_schema_evolution::task_list()

Release 5.1

static void task_list(
const char *work_db_name,
const char *db_to_evolve

);

Generates a task list for the evolution that would have taken place
had evolve() been called with the same arguments. The task list is
sent to the file specified by the most recent call to os_schema_
evolution::set_task_list_file_name() , or if there is no such call, to
standard output. Once the task list is generated, this function
exits, terminating the current process.

The task list contains a function definition for each class whose
instances will be migrated. Each function has a name of the form

class-name@I1]::initializer()

where class-name names the function’s associated class. Each
class-name@][1]::initializer() function definition contains a
statement or comment for each data member of its associated
class. For a member with value type T, this statement or comment
is either

= Assignment statement
Call toT@[1]::copy_initializer()

Call toT@[2]::construct_initializer()
Call to T@[1]::_initializer()
< Comment indicating that the field will be 0-initialized

An assignment statement is used when the old and new value
types of the member are assignment compatible. T@[1]::copy_
initializer() is used when the member has not been modified by the

287

0s_schema_evolution

288

schema change, and the new value can be copied bit by bit from
the old value. T@[2]::construct_initializer() is used when the value
type has been modified and the new value type is a class.
T@[1]::initializer() is used when the member has not been
modified by the schema change, but instances of the value type of
the member will be migrated. Definitions for all these functions
appear in the task list.

static void task_list (
const char *work_db_name,
const os_Collection<const char*> &dbs_to_evolve

);

Generates a task list for the evolution that would have taken place
had evolve() been called with the same arguments. The task list is
sent to the file specified by the most recent call to os_schema_
evolution::set_task_list_file_name() . The contents of the task list
are as described for the previous overloading of task_list() , above.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_schema_handle

Include files

This transient class represents a reference or handle to a DLL
(component) schema or an application schema. A schema handle
is different from a schema in that the handle can exist before the
schema has been loaded from its schema database. Also the
handle remains valid across transactions, while a pointer to the
schema is only valid for one transaction.

You must include the header file <ostore/nreloc/schftyps.hh>

os_schema_handle::DLL_unloaded()

void DLL_unloaded();

If the DLL schema is loaded, marks it for unloading, otherwise
does nothing and signals no error. The actual unloading,
reconstruction of process type tables, and deletion of the os_
schema_handle occurs later (at the end of the transaction).

Unloading a DLL calls DLL_unloaded() from the DLL’s
termination function and then unloads the DLL. If the rest of the
transaction tries to do anything that requires the DLL, or if the
transaction is aborted and retried and the retry does not load the
DLL, there is likely to be a fatal error.

Itis an error to call this function with the os_schema_handle for
an application schema. This throws the exception err_invalid_for_
application_schema.

os_schema_handle::get()

const os_app_schemaé& get() const;

Gets a C++ reference to an application or DLL program schema
when given its os_schema_handle. The schema must be loaded.

If the schema is not loaded or has been unloaded, an err_schema_
not_loaded exception is thrown. This function can be called only
while a transaction is in progress and the result is valid only for
the duration of that transaction.

os_schema_handle::get_all()

Release 5.1

static os_schema_handle** get_all(
osbool to_load = false

);

289

0s_schema_handle

With an argument of false, the default, this function returns a null-
terminated array of pointers to os_schema_handle instances that
are loaded and not queued to unload. This set corresponds to the
current complete program schema.

With a true argument, this function returns a null-terminated
array of pointers to the os_schema_handle instances that are
gueued to load.

The caller must deallocate the array.

os_schema_handle::get_application_schema_handle()

static os_schema_handle* get_application_schema_handle();

Returns a pointer to the os_schema_handle for the application
schema. If the process has no application schema, this returns a
pointer to a handle for a dummy schema that contains only
ObjectStore’s built-in types (essentially the boot schema). This
function should be called only after ObjectStore has been
initialized.

os_schema_handle::get_DLL_identifiers()

const char* const* get_DLL_identifiers(
0s_unsigned_int32& count
) const;

Returns an array of pointers to DLL identifiers and the number of
elements in the array, given an os_schema_handle . The caller
must not modify or deallocate the strings or the array. If the this
argument designates an application schema, the result is null and
count is set to zero.

os_schema_handle::get_schema_database()

os_database& get_schema_database() const;

Gets the os_database for the application or DLL schema database.

os_schema_handle::get_schema_database_pathname()

const char* get_schema_database_pathname() const;

Gets the application or DLL schema database pathname.

See also objectstore::get_application_schema_pathname()

290 ObjectStore C++ API Reference

Chapter 2: Class Library

os_schema_handle::get_schema_info()

os_schema_info& get_schema_info() const;

Returns the os_schema_info that contains the DLL identifiers and
schema pathname for the schema for which this is the handle.

os_schema_handle::get_status()

os_schema_handle_status get_status() const;

Returns the loaded/unloaded status of an os_schema_handle.
The status is one of the following four symbolic constants:

« 0s_schema_handle_unloaded

* 0s_schema_handle_loaded

= 0s_schema_handle_queued_to_load

= 0s_schema_handle_queued_to_unload

The unloaded status exists only for an os_schema_handle that has
never been loaded. Once an os_schema_handle leaves the os_

schema_handle_queued to_unload statusand becomes unloaded,
it is deleted.

os_schema_handle::insert_required_DLL_identifiers()

void insert_required_DLL_identifiers(

os_database& db
);
Records all the DLL identifiers that belong to this os_schema_
handle into the database’s required DLL set. This function can be
called only in an update transaction with the database open for
write.

os_schema_handle::set_schema_database_pathname()

Release 5.1

void set_schema_database_pathname (const char* path);

Sets the application or DLL schema database pathname. Must be
called before the schema is loaded to be effective.

Like objectstore::set_application_schema_pathname , this has a
255-character limit and copies over the existing pathname.

291

0s_schema_handle

os_schema_handle_status

This enum type is the type of the status of an os_schema_handle .
The status can be one of loaded , unloaded , queued_to_load , or
queued_to_unload .

292 ObjectStore C++ API Reference

Chapter 2: Class Library

os_schema_info

Include files

This is the common base class for os_application_schema_info and
os_DLL_schema_info . It is designed for use with component
schema and application schema.

You must include the header file <ostore/nreloc/schftyps.hh>

os_schema_info::get()

os_schema_handle& get();

Given an os_schema_info, this function finds the corresponding
os_schema_handle . Throws an err_misc exception if this is an os_
DLL_schema_info and os_DLL_schema_info::DLL_loaded() has
not been called, or this is an os_application_schema_info and the
initialization that loads the application schema has not yet run.

0os_schema_info::get DLL_identifiers()

const char* const* get_DLL_identifiers(

0s_unsigned_int32& count
) const;
Returns an array of pointers to DLL identifiers and the number of
elements in the array, given an os_schema_info . The caller must
not modify or deallocate the strings or the array. If the this
argument designates an application schema, the result is null and
count is set to zero.

os_schema_info::get_ schema_database_pathname()

const char* get_schema_database_pathname() const;

Returns the schema database pathname.

0os_schema_info::set_ schema_database_pathname()

Release 5.1

void set_schema_database_pathname(const char* new_pathname);

Sets the schema database pathname. This has no useful effect if the
schema has already been loaded.

Like objectstore::set_application_schema_pathname() , this has a
255-character limit and copies over the existing pathname.

293

0s_schema_install_options

os_schema_install _options

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

0os_schema_install_options::os_schema_install_options()

os_schema_install_options();

This function is the constructor for this class. The default behavior
given to the class is not to copy the member function into the
schema.

0os_schema_install_options::set_copy_member_functions ()

void set_copy_member_functions (os_boolean_copy);

This member function is used to specify whether or not the
member function information (if present) should be copied and
installed into the schema during installation.

os_schema_install_options::get_copy_member_functions ()

0s_boolean get_copy_member_functions ()const;

This member function returns a boolean that indicates whether
the member function information (if present) is to be copied and
installed into the schema during schema installation.

294 ObjectStore C++ API Reference

0S_segment

Chapter 2: Class Library

ObjectStore databases are divided into segments. Each segment
can be used as an atomic unit of transfer to and from persistent
storage. Every database is created with an initial ssgment, the
default segment (in which new objects are allocated by default).
Databases whose schema is not stored remotely have an
additional initial segment, the schema segment (which contains
schema information used internally by ObjectStore, as well as all
the database’s roots). More segments can be added by the user at
any time.

The types os_int32 and os_boolean , used throughout this manual,
are each defined as a signed 32-bit integer type. The type os_
unsigned_int32 is defined as an unsigned 32-bit integer type.

All ObjectStore programs must include the header file
<ostore/ostore.hh> .

os_segment::allow_external_pointers()

Release 5.1

void allow_external_pointers();

Once invoked, cross-database pointers are allowed from the
specified segment.

At any given time, a pointer from one database, dbl, to another,
db2, points to whichever database has a certain pathname —
namely, db2’s pathname at the time the pointer was stored. If
db2’s pathname changes (for example, as a result of performing
osmv on db2), the pointer will no longer refer to data in db2. If
some other database, db3, is given db2’s original pathname (for
example, as a result of performing osmv on db3), the pointer will
refer to data in db3.

The pathname is not stored as part of the cross-database pointer
(which takes the form of a regular virtual memory address), but
rather as part of an os_database_reference stored in a table
associated with the pointer.

Itisillegal to rename a database so that a pointer that used to refer
to another database now refers to the database in which the
pointer itself resides.

295

os_segment

os_database_reference s normally store a relative pathname. That
is, if the source and destination databases have a common
ancestor directory, the common directory is not stored as part of
the pathname — only the part of the target database’s pathname
that is not shared with the source database’s pathname is stored.
The common part of the pathname is preceded by the appropriate
number of ../s to traverse the hierarchy up from the source
directory to the common ancestor directory. For example, if the
source and target databases are named /sys/appl/mydb and
Isys/lib/libl , respectively, the reference will store the relative
pathname, ../lib/libl .

You can override use of relative pathnames with the functions os_
database::set_relative_directory() on page 98 and os_
database::get_relative_directory() on page 85 — see the entries for
these functions.

Dereferencing a cross-database pointer causes the destination
database, if not already open, to be opened for read/write. Thus,
dereferencing such a pointer can result in error messages such as
database not found.

0s_segment::create_object_cluster()

os_object_cluster *create_object_cluster(os_unsigned_int32 size);

Creates an object cluster in the specified segment. The size of the
new cluster in bytes is round_up(size, page_size) — 4 . size must be
no greater than 65536, or else err_cluster_too_big is signaled. The
function returns a pointer to an instance of the class os_object_
cluster . This instance is a transient object representing the new
cluster. Note that, since it is transient, pointers to it cannot be
stored in persistent memory. In particular, the return value of this
function cannot be stored persistently.

os_segment::database_of()

os_database *database_of();

Returns a pointer to the database in which the specified segment
resides. The transient database is returned if the transient segment
is specified.

0s_segment::destroy()

296

void destroy();

ObjectStore C++ API Reference

Chapter 2: Class Library

Deletes the segment for which the function is called. When a
segment is destroyed, all data it contains is permanently
destroyed, and pointers into the segment become invalid. Any
subsequent use of the destroyed segment (such as an attempt to
allocate memory within it) is an error.

0s_segment::external_pointer_status()

void external_pointer_status(os_int32 *allowed, os_int32 *exist);

Sets the argument to reflect the specified segment’s state with
respect to cross-database pointers. allowed is 1 (true) if cross-
database pointers are allowed in the segment, and exist is setto 1
(true) if the segment contains any cross-database pointers.

0s_segment::.get_access_control()

0S_segment_access *get_access_control() const;

Returns a pointer to the segment’s associated os_segment_access ,
which indicates the segment’s primary group and permissions.

os_segment::get_all_object_clusters()

void get_all_object_clusters(
0s_int32 max_to_return,
0s_object_cluster_p *cluster_array,
0s_int32 &n_returned)

) const;

Provides access to all the object clusters in the specified segment.
The os_object_cluster_p* is an array of pointers to object clusters.
This array must be allocated by the user. The function os_
segment::get_n_object_clusters() can be used to determine how
large an array to allocate. max_to_return is specified by the user,
and is the maximum number of elements the array is to have. n_
returned refers to the actual number of segment pointers returned.

0s_segment::get_application_info()

Release 5.1

void *get_application_info() const;

Returns a pointer to the object pointed to by the pointer last
passed, during the current process, to os_segment::set_
application_info() for the specified segment. If set_application_
info() has not been called for the specified segment during the
current process, 0 is returned.

297

os_segment

os_segment::get_check illegal_pointers()
os_boolean get_check_illegal_pointers() const;

If the segment is in check_illegal_pointers mode, the function
returns 1; otherwise, it returns 0.

0s_segment::.get_comment()

char *get_comment() const;

Returns a transient copy of the string associated by means of os_
segment::set_comment() with the specified segment. If set_
comment() has not been called for the specified segment, a zero-
length string is returned. The user is responsible for deleting the
returned string.

0s_segment:.get _database_references()

void get_database_references(

0s_int32 &n_refs,

os_database_reference_p *&array
) const;
Allocates an array of database references, one for each database
referenced by the specified segment. When the function returns,
n_refs refers to the number of elements in the array. Note that it is
the user’s responsibility to deallocate the array when it is no
longer needed.

0s_segment::get_fetch_policy()

void get_fetch_policy(os_fetch_policy &policy, os_int32 &bytes);

Sets policy and bytes to references to an os_fetch_policy and
integer that indicate the segment’s current fetch policy. See os_
segment::set_fetch_policy() on page 302.

os_segment::get_lock whole_segment()

objectstore_lock_option get_lock_whole_segment();

Indicates the current locking behavior for the specified segment.
objectstore_lock_option is an enumeration type whose
enumerators are objectstore::lock_as_used , objectstore::lock_
segment_read , and objectstore::lock_segment_write . See os_
segment::set_lock_whole_segment() on page 303.

298 ObjectStore C++ API Reference

Chapter 2: Class Library

0s_segment::get_n_object_clusters()
0s_int32 get_n_object_clusters();

Returns the number of object clusters in the specified segment.
os_segment::get_null_illegal_pointers()

os_boolean get_null_illegal_pointers();

If the specified segment is in null_illegal_pointers mode, the
function returns nonzero (that is, true); otherwise, it returns 0
(that is, false). See os_segment::set_null_illegal_pointers() on
page 304.

0s_segment::get_number()

0s_unsigned_int32 get_number() const;

Returns the segment number of the specified segment. This
number is suitable for passing to the os_pathname_and_segment_
number constructor.

0os_segment::get _readlock_timeout()

0s_int32 get_readlock_timeout() const;

Returns the time in milliseconds for which the current process will
wait to acquire a read lock on pages in the specified segment. The
actual timeout is rounded up to the nearest greater number of
seconds. A value of -1 indicates that the process will wait forever
if necessary.

0s_segment::get_writelock_timeout()

0s_int32 get_writelock_timeout() const;

Returns the time in milliseconds for which the current process will
wait to acquire a write lock on pages in the specified segment. The
actual timeout is rounded up to the nearest greater number of
seconds. A value of -1 indicates that the process will wait forever
if necessary.

0s_segment::get_transient_segment()

static os_segment *const get_transient_segment();

Release 5.1 299

os_segment

Returns a pointer to the transient segment. The transient segment
can be used as argument to new(), to cause allocation of transient
memory.

os_segment::is_deleted()

os_boolean is_deleted();

Returns a nonzero os_boolean (true) if the specified os_segment
has been deleted; returns 0 (false) otherwise.

0s_segment::is_empty()
os_boolean is_empty() const;
Returns a nonzero os_boolean (true) if the specified os_segment

contains no nondeleted objects; returns 0 (false) otherwise.

os_segment::lock_into_cache()

void lock_into_cache();

Reduces the likelihood that the pages of a specified segment will
be removed from the cache (by cache replacement). The function
os_segment::unlock_from_cache() allows cache replacementto be
performed on the segment’s pages again. Note that a page’s being
locked or wired into the cache is independent of its locking state,
in the sense of locking relevant to concurrency control; a page can
be locked in the cache without being read- or write-locked.

0s_segment::of()

static os_segment *of(void *location);

Returns a pointer to the segment in which the specified object
resides. If the specified void* is 0 or points to transient memory, a
pointer to the transient segment is returned (see os_segment::get_
transient_segment() on page 299).

0s_segment::return_memory()

0s_unsigned_int32 return_memory(os_boolean evict_nowy);

Just like objectstore::return_memory() , except that it acts on a
specified segment rather than a specified range of addresses.

0s_segment::set_access_control()

void set_access_control(const os_segment_access *new_access);

300 ObjectStore C++ API Reference

Chapter 2: Class Library

Associates the specified os_segment_access with the specified
segment. The os_segment_access determines the primary group
and permissions for the os_segment . The caller must be the owner
of the database containing the specified segment.

0s_segment::set_application_info()

void set_application_info(void *info);

Associates the specified object with the specified segment for the
current process. The argument info must point to a transient
object. See os_segment::get_application_info() on page 297.

0s_segment::set_check_illegal_pointers()

void set_check_illegal_pointers(os_boolean);

At the end of each transaction, all persistently allocated data is
written to database memory. Pointers written to the database that
point to transient memory are illegal pointers. In addition, cross-
database pointers from a segment that is not in allow_external_
pointers mode are also illegal. If you subsequently retrieve and
dereference an illegal pointer, you might access arbitrary
memory.

By default, ObjectStore sometimes checks for illegal pointers, but
other times the checking is optimized out. However, you can
instruct ObjectStore always to check for illegal pointers in a given
segment or database on transaction commit.

If you pass 1 (true) to set_check illegal_pointers() , check_illegal
pointers mode is enabled for the specified segment. Upon commit
of each transaction, for each segment in check_illegal_pointers
mode, ObjectStore always checks each page used in the
transaction. You can specify the default behavior by passing 0
(false).

The results of using this function do not remain in effect after the
current process ends, and are invisible to other processes.

0s_segment::set_comment()

void set_comment(char *info);

Associates a persistent copy of the specified string with the
specified segment. The string must be 31 characters or fewer. The
utility ossize prints the comment, if set, when displaying

Release 5.1 301

os_segment

information about the segment. See ObjectStore Management. See
also os_segment::get_comment() on page 298.

0s_segment::set_fetch_policy()

enum os_fetch_policy { os_fetch_segment, os_fetch_page, os_
fetch_stream } ;

void set_fetch_policy(os_fetch_policy policy, os_int32 bytes);

Specifies the fetch policy for the specified segment. The policy
argument should be one of the following enumerators: os_fetch_
segment , os_fetch_page , os_fetch_stream .

The default fetch policy is os_fetch_page , with a fetch quantum of
1 page (see below).

If an operation manipulates a substantial portion of a small
segment, use the os_fetch_segment policy when performing the
operation on the segment. Under this policy, ObjectStore attempts
to fetch the entire segment containing the desired page in a single
client/server interaction, if the segment will fit in the client cache
without evicting any other data. If there is not enough space in the
cache to hold the entire segment, the behavior is the same as for
os_fetch_page with a fetch quantum specified by bytes.

If an operation uses a segment larger than the client cache, or does
not refer to a significant portion of the segment, use the os_fetch_
page policy when performing the operation on the segment. This
policy causes ObjectStore to fetch a specified number of bytes at a
time, rounded up to the nearest positive number of pages,
beginning with the page required to resolve a given object
reference. bytes specifies the fetch quantum. (Note that if you
specify zero bytes, this will be rounded up, and the unit of transfer
will be a single page.)

The default value for the fetch quantum depends on the default
page size of the machine. Appropriate values might range from 4
kilobytes to 256 kilobytes or higher, depending on the size and
locality of the application data structures.

For special operations that scan sequentially through very large
data structures, os_fetch_stream might considerably improve
performance. As with os_fetch_page , this fetch policy lets you
specify the amount of data to fetch in each client/server
interaction for a particular segment. But, in addition, it specifies

302 ObjectStore C++ API Reference

Chapter 2: Class Library

that a double buffering policy should be used to stream data from
the segment.

This means that after the first two transfers from the segment,
each transfer from the segment replaces the data cached by the
second-to-last transfer from that segment. This way, the last two
chunks of data retrieved from the segment will generally be in the
client cache at the same time. And, after the first two transfers,
transfers from the segment generally will not result in eviction of
data from other segments. This policy also greatly reduces the
internal overhead of finding pages to evict.

When you perform allocation that extends a segment whose fetch
policy is os_fetch_stream , the double buffering described above
begins when allocation reaches an offset in the segment that is
aligned with the fetch quantum (that is, when the offset mod the
fetch quantum is 0).

For all policies, if the fetch quantum exceeds the amount of
available cache space (cache size minus wired pages), transfers are
performed a page at a time. In general, the fetch quantum should
be less than half the size of the client cache.

Note that a fetch policy established with set_fetch_policy() (for
either a segment or a database) remains in effect only until the end
of the process making the function call. Moreover, set_fetch_
policy() only affects transfers made by this process. Other
concurrent processes can use a different fetch policy for the same
segment or database.

os_segment::set_lock_whole_segment()

Release 5.1

void set_lock_whole_segment(objectstore_lock_option);

Determines locking behavior for the specified segment.
objectstore_lock_option is an enumeration type whose
enumerators are objectstore::lock_as_used , objectstore::lock_
segment_read , and objectstore::lock_segment_write

The member function os_segment::set_fetch_policy() controls
whether or not a given segment is transferred to the client cache
all at once. By default, even when a segment’s pages are
transferred all at once, only the page containing the referenced
data is locked. You can override this default for a given segment,

303

os_segment

however, by passing objectstore::lock_segment_read or
objectstore::lock_segment_write to set_lock_whole_segment()

A value of lock_segment_read causes pages in the segment to be
read-locked when cached in response to attempted access by the
client. Subsequently, upgrading to read/write locks occurs on a
page-by-page basis, as needed.

A value of lock_segment_write causes the segment’s pages to be
write-locked when cached in response to attempted read or write
access by the client. In this case, the Server assumes from the start
that write access to the entire segment is desired.

Note also that this function pertains only to the current process.
The initial value of this data member for existing segments is lock_
as_used . The initial value for segments created by the current
process is the value of os_database::set_default_lock_whole_
segment() for the database in which the segment resides.

os_segment::set_null_illegal_pointers()

void set_null_illegal_pointers(os_boolean);

By default, ObjectStore signals a run-time error when it detects an
illegal pointer. If you pass 1 (true) to this function, then, for
segments in check_illegal_pointers mode, ObjectStore changes the
illegal pointer to 0 (null). You can specify the default behavior by
passing 0 (false) to this function. The results of using this function
do not remain in effect after the current process ends, and they are
invisible to other processes. See also os_database::set_default_
null_illegal_pointers() on page 94.

0s_segment::set_readlock_timeout()

304

void set_readlock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a read lock on pages in the specified segment. The
actual timeout is rounded up to the nearest greater number of
seconds. A value of -1 indicates that the process should wait
forever if necessary. After an attempt to acquire a read lock, if the
specified time elapses without the lock’s becoming available, an
os_lock_timeout exception is signaled. If the attempt causes a
deadlock, the transaction is aborted regardless of the value of the
specified timeout.

ObjectStore C++ API Reference

Chapter 2: Class Library

0s_segment::set_size()

0s_unsigned_int32 set_size(os_unsigned_int32);

Increases the size of the specified segment to the specified number
of bytes. If a size that is not larger than the current segment size is
specified, the function has no effect.

0s_segment::set_writelock_timeout()

0s_segment::size()

void set_writelock_timeout(os_int32);

Sets the time in milliseconds for which the current process will
wait to acquire a write lock on pages in the specified segment. The
actual timeout is rounded up to the nearest greater number of
seconds. A value of -1 indicates that the process should wait
forever if necessary. After an attempt to acquire a read lock, if the
specified time elapses without the lock’s becoming available, an
os_lock_timeout exception is signaled. If the attempt causes a
deadlock, the transaction is aborted regardless of the value of the
specified timeout.

0s_unsigned_int32 size();

Returns the size in bytes of the specified segment.

os_segment::unlock _from_cache()

void unlock_from_cache();

Allows cache replacement to be performed on a segment’s pages
after replacement has been disabled by the function os_
segment::lock_into_cache() . Note that a page’s being locked or
wired into the cache is independent of its locking state, in the
sense of locking relevant to concurrency control; a page can be
locked in the cache without being read- or write-locked.

0os_segment::unused_space()

Release 5.1

0s_unsigned_int32 unused_space() const;

Returns the amount of space (in bytes) in the segment not
currently occupied by any object. It accounts for space resulting
from objects that have been deleted as well as space that cannot be
used as a result of internal ObjectStore alignment considerations.

305

os_segment

You can use it as a rough guide to determine whether a segment
needs to be compacted.

306 ObjectStore C++ API Reference

Chapter 2: Class Library

0S_segment_access

Instances of the class os_segment_access serve to associate zero
or more access types with a group of a specified name, as well as
with the default group.

By associating an os_segment_access Wwith a segment (using os_
segment::set_access_control()), you specify the segment’s
associated primary group and the segment’s permissions.

The owner of a segment always has both read and write access to
it.

The possible combinations of access types are represented by the
following enumerators:

« 0S_Segment_access::N0_access
« 0s_segment_access:read_access
* 0s_segment_access::read_write_access

Note that write access without read access cannot be specified.

These enumerators are used as arguments to some of the members
of os_segment_access .

You must be the owner of a database to set the permissions on its
segments. If you are not the owner of a database but nevertheless
have write access to it, you have the ability to create a segment in
the database but not to modify its permissions. Since newly
created segments allow all types of access to all categories of
users, segments created by nonowners necessarily have a period
of vulnerability, between creation time and the time at which the
owner restricts access with os_segment::set_access_control()

See Chapter 7, Database Access Control, in ObjectStore C++ API
User Guide.

0s_segment_access::get_default()

Release 5.1

0s_int32 get_default() const;

Returns the types of access associated with the default group for
the os_segment_access .

307

0s_segment_access

0s_segment_access::get_primary_group()

os_int32 get_primary_group(

os_char_const_p* group_name =0
) const;
Returns the types of access associated with the primary group of
the os_segment_access . The function sets group_name , if
supplied, to point to the name of that group.

0s_segment_access::n0_access

This is one of three enumerators used to specify combinations of
access types. They are used as arguments to some of the members
of os_segment_access .

0s_segment_access::operator =()

0S_segment_access& operator =(
const 0s_segment_access& source
);

Modifies the os_segment_access pointed to by this so thatitis a
copy of source , that is, so that it stores the same group name as
source , and associates the same combinations of access types with
the same groups. It returns a reference to the modified os_
segment_access .

0s_segment_access::0s_segment_access()

0s_segment_access();

Creates an os_segment_access that associates no_access with
both the default group and the group named group_name .

os_segment_access(

const char* primary_group,

0s_int32 primary_group_access_type,

os_int32 default_access_type
);
Creates an instance of os_segment_access that associates
primary_group_access_type with the group named primary_
group , and associates default_access_type with the default group.
primary_group_access_type and default_access_type are each os_
segment_access::no_access , 0S_segment_access::read_access
or os_segment_access::read_write_access

os_segment_access(

308 ObjectStore C++ API Reference

Chapter 2: Class Library

const 0s_segment_access& source
)i
Creates a copy of source , that is, it creates an os_segment_access
that stores the same group name, and associates the same
combinations of access types with the same groups.

os_segment_access::read_access

This is one of three enumerators used to specify combinations of
access types. They are used as arguments to some of the members
of os_segment_access .

0s_segment_access::read_write_access

This is one of three enumerators used to specify combinations of
access types. They are used as arguments to some of the members
of os_segment_access .

0s_segment_access::set_default()

void set_default(
0s_int32 access_type
);

Associates a specified combination of access types with the
default group. access_type is os_segment_access::no_access
os_segment_access::read_access , Or os_segment_access::read_
write_access .

0s_segment_access::set_primary_group()

Release 5.1

void set_primary_group(

const char* group_name,

0s_int32 access_type
);
Associates a specified combination of access types with agroup of
a specified name. group_name is the name of the group. access_
type iS 0s_segment_access::no_access , 0S_segment_
access:read_access , Or 0s_segment_access::read_write_access

void set_primary_group(
0s_int32 access_type
);

Associates a specified combination of access types with a group of
an unspecified name. access_type iS 0os_segment_access::no_

309

0s_segment_access

access, 0s_segment_access::read_access , Or os_segment_
access::read_write_access

0s_segment_access::~0s_segment_access()

The destructor frees memory associated with the deleted instance
of os_segment_access .

310 ObjectStore C++ API Reference

0S_server

Release 5.1

Chapter 2: Class Library

Instances of the class os_server represent ObjectStore Servers.
This class is useful for handling err_broken_server_connection.

You get pointers to all the Servers currently known to the client by
calling objectstore::get_all_servers() . Here is an example of a
handler for err_broken_server_connection:

TIX_HANDLE (err_broken_server_connection) {
/* code that could encounter broken connection */
}
TIX_EXCEPTION {
tix_exception *cur = tix_handler::get_exception();

/* It might be necessary to abort a transaction in
progress. This is a tricky situation since
under some circumstances it is not needed, and
in others itis. */
if (objectstore::abort_in_progress())
0s_transaction::abort_top_level();

/* here is how the application can find the lost servers. */
0s_int32 nservers = objectstore::get_n_servers();
0s_server **svrlist = new 0s_server * [nservers];

char *svr_name = NULL;

0s_int32 ignore;

objectstore::get_all_servers(nservers, svrlist, ignore);

for (0s_int32 i = 0; i < nservers; ++i) {
if (svrlist[i]->connection_is_broken()) {
svr_name = svrlist[i]->get_host_name();
printf("lost server %s\n", svr_name);
delete [] svr_name;

}

}

delete [] svrlist;
} TIX_END_HANDLE;
When handling err_broken_server_connection, call os_
transaction::abort_top_level() if objectstore::abort_in_progress()
returns nonzero. If you do not abort the transaction, attempts to
proceed might cause err_broken_server_connection to be reraised.

When ObjectStore raises err_broken_server_connection, it
immediately aborts all transactions. Any databases currently
open on the lost Server are considered by ObjectStore to remain
open. Subsequent uses of these databases (or others managed by

311

0s_server

that Server) will cause ObjectStore to attempt to reconnect with
the Server.

0s_server::connection_is_broken()

os_boolean connection_is_broken();

Returns nonzero if the connection with the specified Server is
currently lost; otherwise returns 0.

os_server::disconnect()

void disconnect();

Disconnects the specified Server. Call this function outside any
transaction; otherwise err_trans is signaled. It is harmless to call
this member if the connection has already been lost for any reason.
The result of this call is very much like the result of
unintentionally losing a connection. The client retains all its
information about the Server and its databases, but marks them as
having lost the connection. An attempt to access a database on the
Server will cause ObjectStore to attempt to reconnect to the Server.
You can also call os_server::reconnect() on the Server.

os_server::.get_databases()

void get_databases(
0s_int32 max_to_return,
os_database_p * dbs,
0s_int32& n_ret

)i

Provides access to all the databases associated with the specified
Server, whether open or closed. The os_database_p* is an array of
pointers to os_database objects. This array must be allocated by
the user. The function os_server::get_n_databases() can be used to
determine how large an array to allocate. max_to_return is
specified by the user, and is the maximum number of elements the
array is to have. n_ret refers to the actual number of elements in
the array.

os_server::get_host_name()

312

char *get_host_name() const;

Returns the name of the host of the specified Server. It is the
caller’s responsibility to deallocate the string when it is no longer
needed.

ObjectStore C++ API Reference

Chapter 2: Class Library

char* get_host_name();

For failover Servers, this function returns the logical failover
Server host name. Note that the logical Server name is not always
identical to the Server name for the machine providing access to
the database. The caller should delete the returned value. See os_
failover_server::get_online_server()

os_server::get_n_databases()

0s_int32 get_n_databases();

Returns the number of databases associated with the specified
Server, whether open or closed.

os_server::is_failover()

os_boolean is_failover() const;
Returns true if and only if the os_server* is an os_failover_server
also.

This method is used to identify the os_failover_server in the list of
Servers returned by objectstore::get_all_servers()

0s_server::reconnect()

Release 5.1

void reconnect();

Causes ObjectStore to immediately attempt to reconnect to the
specified Server. Note that exceptions, such as err_server_refused_
connection, might result. Calling this function has no effect if the
connection is not currently broken.

313

0s_str_conv

0s_str_conv

This class provides conversion facilities for various Japanese text
encoding methods: EUC, JIS, SIS, Unicode, and UTFS8.

It provides a facility, called autodetect, to detect the encoding of a
given string. This is useful for applications in which a client might
send strings in an unknown format, a common issue for Internet
applications.

os_str_conv::.change_mapping()

314

int change_mapping(mapping table[],size_t table_sz);

You can modify the mapping behavior of an existing instance of
os_str_conv (whether heap- or stack-allocated) by calling os_str_
conv::change_mapping() . Override information is stored for
future conversion services associated with that instance.

The override mapping information applies to whatever explicit
mapping has been established for the given os_str_conv instance.
Mappings of os_str_conv instances cannot be overridden by
instances using autodetect. Attempts to do so will return -1 from
change_mapping() to indicate this error condition.

The change_mapping() method takes the following two
parameters:

mapping_table[]
An array of mapping code pairs that can be allocated locally,

globally, or on the heap. If the array is heap-allocated, the user
must delete it after calling change_mapping() .

Internally, change_mapping() makes a sorted copy of mapping_
table[] . The sorting provides quick lookup at run time. The
internal copy is freed when the os_str_conv destructor is
eventually called.

Note that the mapping pairs are unsigned 32-bit quantities. The
LSB (least significant bit) is on the right, so, for example, the
single-byte character 0x5C is represented as 0x0000005C, and the
two-byte code 0x81,0x54 is 0x0000815F.

size_ttable_sz
The number of elements in the mapping_table . Be sure that this is

not the number of bytes in the array.

ObjectStore C++ API Reference

Chapter 2: Class Library

os_str_conv::convert()

Since Unicode is a 16-bit quantity, byte order depends on platform
architecture. (Other encodings are byte streams and therefore do
not depend on processor architecture.) On little-endian systems,
such as Intel, the low-order byte comes first. On big-endian
systems (Sparc, HP, and Mips, for example) the high-order byte is
first.

There are three overloadings to the os_str_conv::convert() method
to provide flexibility for dealing with Unicode strings with
different byte-ordering schemes. If a parameter is of char* type, all
16-bit quantities are considered big-endian, regardless of
platform. However, if the type is os_unsigned_int16*, the values
assigned or read are handled according to the platform
architecture.

encode_type convert(char* dest, const char* src);

If either dest or src is a buffer containing Unicode characters, these
16-bit characters are considered big-endian, regardless of
platform architecture.

encode_type convert(os_unsigned_int16* dest, const char* src);

This overloading interprets 16-bit Unicode buffer dest according
to the byte order of the processor used.

encode_type convert(char* dest, const os_unsigned_int16* src);

This overloading interprets 16-bit Unicode buffer src according to
the byte order of the processor used.

0s_str_conv::get_converted_size()

virtual size_t get_converted_size(const char* src) const;

Returns the size of the buffer, in units of bytes, required to contain
the converted result of the given src string. If src is a Unicode
string, its 16-bit characters are considered big-endian, regardless
of platform architecture.

Because the entire source string must be examined, the time it
takes for this function to complete is proportional to the length of
the source string.

If the autodetect mode is used and autodetect fails to determine
the encoding of src, get_converted_size() returns 0.

Release 5.1 315

0s_str_conv

virtual size_t get_converted_size(

const os_unsigned_int16* src
) const;
Returns the size of the buffer, in units of bytes, required to contain
the converted result of the given src string. If src is a Unicode
string, its 16-bit characters are interpreted according to the byte
order of the processor used.

Because the entire source string must be examined, the time it
takes for this function to complete is proportional to the length of
the source string.

If the autodetect mode is used and autodetect fails to determine
the encoding of src, get_converted_size() returns 0.

0s_str_conv::0s_string_conv()

316

0s_str_conv(
encode_type_enum dest,
encode_type_enum src=AUTOMATIC

);
Instantiates a conversion path.

encode_type_enum can be one of

AUTOMATIC Determine the encoding of the
source string automatically. This
automatic detection distinguishes
EUC and SJIS only. It might not
correctly detect SJIS if the string
contains half-width kana.

AUTOMATIC_ALLOW_KANA Determine the encoding of the
source string automatically. This
automatic detection distinguishes
EUC and SJIS only. This correctly
interprets SJIS strings that contain
half-width kana, but it might
incorrectly interpret certain EUC
strings as SJIS strings.

ASCII Strings are interpreted as single-
byte ASCII characters.

SJIS Strings are interpreted as
multibyte Japanese strings of SJIS
encoding.

ObjectStore C++ API Reference

Release 5.1

EUC

UNICODE

JIS

UTF8

Chapter 2: Class Library

Strings are interpreted as
multibyte Japanese strings of EUC
encoding.

Strings are interpreted as Japanese
strings of Unicode encoding.

Strings are interpreted as
multibyte Japanese strings of JIS
encoding.

Strings are interpreted as
multibyte Japanese strings of
UTF-8 encoding.

317

0s_subscription

0S_subscription

Objects of class os_subscription are created by users in order to
perform subscription and unsubscription operations. Note that
you do not always have to create os_subscription objects in order
to subscribe or unsubscribe. You can accomplish a single
subscription or unsubscription by passing an os_database , os_
segment , os_object_cluster, or address range directly to os_
notification::subscribe() or os_notification::unsubscribe()

The main reason to manipulate os_subscription objects directly is
to pass an array of them to os_natification::subscribe . There are
overloadings of os_notification::subscribe that take the same sets
of arguments as os_subscription constructors. Use these if you
want to subscribe only to a single notification address. You can
call these directly and completely bypass the use of os_
subscription S.

The reason you might want to pass an array of os_subscription to
os_notification::subscribe is that it is much more efficient to call
os_notification::subscribe once with an array than to call it
separately for each subscription when there are multiple
subscriptions to register.

Each os_subscription object represents an address range in an
ObjectStore database. There are four constructors that allow
creation of subscriptions covering an entire database, an entire
segment, an entire object cluster, or a specific location range:

0s_subscription::os_subscription()

318

There is a default constructor, os_subscription(); , that creates an
uninitialized subscription.

0s_subscription(const os_database *);

This constructor is used to create a subscription to an entire
database.

0s_subscription(const os_segment *);

This constructor is used to create a subscription to a segment.

0s_subscription(const os_object_cluster *);

ObjectStore C++ API Reference

Chapter 2: Class Library

This constructor is used to create a subscription to an object
cluster.

0s_subscription(
const os_reference &,
0s_int32 n_bytes =1
);

0s_subscription::assign()

The default constructor is most useful when you are allocating an
array of subscriptions. Each os_subscription in the array will
initially be uninitialized. Each array element can then be
initialized using the assign or operator=member functions:

void assign(const os_database *);

void assign(const 0s_segment *);

void assign(const os_object_cluster *);

void assign(const os_reference &, 0s_int32 n_bytes = 1);

0s_subscription &operator=(const os_database *db);
0s_subscription &operator=(const 0s_segment *seg);
0s_subscription &operator=(const 0s_object_cluster *clus);
0s_subscription &operator=(const os_reference &ref);

Obijects of type os_subscription can be reassigned in this fashion
as many times as desired. Note that because operator= only allows

a single argument, you must use the final form of assign if you
want to specify n_bytes > 1 .

When passing database locations to os_subscription member
functions, you do not need to explicitly convert to os_reference .
You can pass pointers or os_Reference<X> ; these are converted by
C++ automatically.

0s_subscription::get_database()

Release 5.1

os_database *get_database();

The only accessor for os_subscription returns the database
associated with the subscription. An uninitialized os_subscription
has a null (0) database.

Subscribe and unsubscribe nonstatic member functions are
provided as shortcuts for calling os_notification::subscribe() and
os_notification::unsubscribe() . They are

 void subscribe();

¢ void unsubscribe();

319

0s_subscription

Further discussion See os_namespace on page 175 for further discussion about
notification.

320 ObjectStore C++ API Reference

0os_template

Chapter 2: Class Library

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent (type or function) templates. os_type template and os_
function_template are derived from os_template .

0os_template::Function

This enumerator is a possible return value from os_template::get_
kind() , indicating a function template.

os_template::get_args()

os_List<const os_template_formal_arg*> get_args() const;

Returns alist (in declaration order) of the formal arguments of the
specified template. Each element of the list is a pointer to a const
os_template_formal_arg .

os_template::get_kind()

enum os_template_kind { Type, Function } ;
os_template_kind get_kind() const;

Returns an enumerator indicating whether the specified template
is a type template or a function template. The possible return
values are os_template::Type and os_template::Function

os_template::is_unspecified()

Release 5.1

0s_boolean is_unspecified() const;

Returns nonzero (that is, true) if and only if the specified os_
template is the unspecified template. Some os_template -valued
attributes in the metaobject protocol are required to have values
in a consistent schema, but might lack values in the transient
schema, before schema installation or evolution is performed. The
get function for such an attribute returns a reference to an os_
template . The fact that a reference rather than pointer is returned
indicates that the value is required in a consistent schema. In the
transient schema, if such an attribute lacks a value (because you
have not yet specified it), the get function returns the unspecified
template. This is the only os_template for which is_unspecified()
returns nonzero.

321

os_template

os_template::operator const os_type_template&()

operator const 0s_type_template&() const;

Provides for safe conversion to const os_type_template . If the
specified os_template is not an os_type_template , err_mop_illegal_
cast is signaled.

0os_template::operator os_type_template&()

operator os_type_template&();
Provides for safe conversion to os_type_template . If the specified
os_template is not an os_type_template , err_mop_illegal_cast is
signaled.

os_template::set_args()
void set_args(os_List<os_template_formal_arg*>&);

Specifies the list (in declaration order) of the formal arguments of
the specified template. Each element of the list is a pointer to an
os_template_formal_arg .

os_template:: Type

This enumerator is a possible return value from os_template::get_
kind() , indicating a type template.

322 ObjectStore C++ API Reference

Chapter 2: Class Library

os_template_actual arg

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent actual arguments used to instantiate (type or function)
templates. The types os_type_template_actual_arg and os_literal_
template_actual_arg are derived from os_template_actual_arg .

os_template_actual_arg::get_kind()
enum os_template_actual_arg_kind { type_actual, literal_actual } ;
os_template_actual_arg_kind get_kind() const;
Returns an enumerator indicating whether the specified actual is

a type or value (that is, literal).

0os_template_actual_arg::operator const os_literal_template_actual_
arg&()
operator const os_literal_template_actual_arg&() const;

Provides for safe conversion to const os_literal_template_actual
arg& . If the specified os_template_actual_arg is not an os_literal_
template_actual_arg , err_mop_illegal_cast is signaled.

0s_template_actual_arg::operator const os_type _template_actual
arg&()
operator const os_type_template_actual_arg&() const;

Provides for safe conversion to const os_type_template_actual_
arg& . If the specified os_template_actual_arg is not an os_type_
template_actual_arg , err_mop_illegal_cast is signaled.

os_template_actual_arg::operator os_literal_template_actual_arg&()

operator os_literal_template_actual_arg&();

Provides for safe conversion to os_literal_template_actual_arg& . If
the specified os_template_actual_arg is notan os_literal_template_
actual_arg , err_mop_illegal_cast is signaled.

os_template_actual_arg::operator os_type_template_actual_arg&()

operator os_type_template_actual_arg&();

Release 5.1 323

os_template_actual _arg

Provides for safe conversion to const os_type _template_actual_
arg& . If the specified os_template_actual_arg is not an os_type_
template_actual_arg , err_mop_illegal_cast is signaled.

324 ObjectStore C++ API Reference

Chapter 2: Class Library

os_template formal _arg

This class is part of the ObjectStore metaobject protocol, which

provides access to ObjectStore schemas. Instances of this class

represent formal arguments for (type or function) templates. This

class has no public members.
os_template_formal_arg::get_kind()

enum os_template_formal_arg_kind { Type, Value };

os_template_formal_arg_kind get_kind() const;

Returns an enumerator indicating whether the specified formal is

a type parameter or value parameter (that is, whether its actuals

are types or values).
os_template_formal_arg::get_name()

const char* get_name() const;

Returns the name of the specified formal parameter.

os_template_formal_arg::operator const os_template_type formal&()

operator const os_template_type_formal&() const;

Provides for safe conversion to const os_template_type_formal& . If
the specified os_template_formal_arg is not an os_template_type_
formal , err_mop_illegal_cast is signaled.

os_template_formal_arg::operator const os_template_value_formal&()

operator const os_template_value_formal&()const;

Provides for safe conversion to const os_template_value_formal&
If the specified os_template_formal_arg is not an os_template_
value_formal , err_mop_illegal_cast is signaled.

os_template_formal_arg::operator os_template_type_formal&()

operator os_template_type_formal&();

Provides for safe conversion to os_template_type_formal& . If the
specified os_template_formal_arg is not an os_template_type_
formal , err_mop_illegal_cast is signaled.

Release 5.1 325

os_template_formal_arg

os_template_formal_arg::operator os_template_value_formal&()

operator os_template_value_formal&();

Provides for safe conversion to os_template_value_formal& . If the
specified os_template_formal_arg is not an os_template_value_
formal , err_mop_illegal_cast is signaled.

os_template_formal_arg::set_ name()

void set_name (const char *name);

Sets the name of the specified formal parameter.

326 ObjectStore C++ API Reference

Chapter 2: Class Library

0s_template_instantiation

This class is part of the ObjectStore metaobject protocol, which
provides access to ObjectStore schemas. Instances of this class
represent instantiations of a (type or function) template. The class
os_type template is derived from os_template_instantiation

0s_template_instantiation::create()

static os_template_instantiation& create(
0s_template*,
os_List<os_template_actual_arg*>*
);
Creates an os_template_instantiation from the specified template
and actual parameters.
os_template_instantiation::get_args()

os_List<const os_template_actual_arg*> get_args() const;

Returns a list (in declaration order) of the actual arguments used
to instantiate the associated template. Each element of the list is a
pointer to a const os_template_actual_arg

os_List<os_template_actual_arg*> get_args();

Returns a list (in declaration order) of the actual arguments used
to instantiate the associ