
C++ INTERFACE
RELEASE NOTES

RELEASE 5.1
FOR ALL PLATFORMS

March 1998

ObjectStore C++ Interface Release Notes

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-RNO-510

Contents

Preface . vii

Chapter 1 New in Release 5.1 . 1

About This Release . 2

Product Modules . 2

Platforms and Compilers. 2

ANSI C++ Exceptions . 3

Upcoming Changes. 4

New Features . 5

Component Server Framework . 5

Dump/Load . 5

Component Schema for DLL Use . 5

X/Open’s XA Transaction Processing Standard Is Supported . . 5

Address Space Reset . 5

Reduced Address Space Consumption in Queries. 6

Dynamic Extents . 6

String Conversion for Asian Language String Encodings 6

Bit Vector-Assisted Relocation . 6

osgc Utility Capabilities . 6

Documentation Enhancements. 8

Clarification of Functionality . 8

Installing the On-Line Documentation . 8

Viewing the On-Line Documentation . 9
Release 5.1 iii

Contents
Changes and Additions to the C++ Interface. 10

Changes to the API. 10

Additions to the API . 10

Controlling Address Space Usage During a Transaction . . 11

Restrictions . 11

Changes to the API. 11

Additions to the API . 12

objectstore::get_address_space_generation_number() 13

os_retain_address Class . 13

objectstore::set_retain_address() and
objectstore::get_retain_counter() . 13

Incremental Release of Address Space:
os_address_space_marker Class . 14

Interactions Between Different Address-Space Mechanisms . 15

Related Functions . 15

Address Space Usage with Queries . 16

Customizing Address Space Usage in Collections 16

os_reference_cursor Class . 16

os_cursor_holder Class . 17

Using Component Schemas . 18

Support for the XA Standard for Transaction Processing . . 19

os_dynamic_extent Class. 20

Conversion Between Asian Language String Encodings . . 21

Chapter 2 Changes and Additions to Existing Features 23

Compilation Compatibility . 24

Link Compatibility . 24

Drop-In Compatibility . 24

Behavior Compatibility . 25

Database Compatibility . 26

Utility Compatibility: ossg . 27

Changes to ossg Default . 27

-weak_symbols Option . 27

ossg Limitations . 27
iv ObjectStore C++ Interface Release Notes

Contents
Changes from the Previous Release . 29

Deprecated Features and Interfaces . 29

IP Addresses in UNC Pathnames . 29

New Documentation for -O option to osrestore 30

Incompatible Changes to os_CString . 30

Documentation Enhancements. 31

Use of Change-Record Files with osbackup 31

Correction to Some Examples in the ObjectStore C++ API User
Guide . 31

Chapter 3 Platform-Specific Considerations. 35

Windows . 36

Installing DEBUG.ZIP or DDEBUG.ZIP . 36

Solaris 2. 37

HP. 38

16K Page Size and Heterogeneous Database Access 39

New Option to osverfiydb . 39

New Argument to osdbutil::osverifydb() 40

Chapter 4 Sources of Technical Information 41

Local Distributor or VAR . 41

Object Design Training and Education. 41

Object Design Consulting. 42

Object Design Technical Support . 42

Index . 45
Release 5.1 v

Contents
vi ObjectStore C++ Interface Release Notes

Preface

Purpose The ObjectStore C++ Interface Release Notes describe the features
and functions included in ObjectStore Release 5.1 that are new or
have changed since the previous release.

Audience This book is for administrators or developers responsible for the
installation and maintenance of ObjectStore. It is assumed that
you are familiar with the ObjectStore host platform and
comfortable using the operating system.

Scope In conjunction with ObjectStore Installation and License for Solaris,
this document provides information for installing and running
the ObjectStore Release 5.1 software.

How This Book Is Organized

The first chapter summarizes the platforms and compilers
supported by ObjectStore Release 5.1. Chapter 1, New in Release
5.1, on page 1, briefly describes new features and provides cross-
references to the ObjectStore documentation containing detailed
information about each new feature or interface. Chapter 2,
Changes and Additions to Existing Features, on page 23,
highlights general release considerations that affect all platforms.
Chapter 3, Platform-Specific Considerations, on page 35,
describes platform-related considerations you should anticipate
when using ObjectStore Release 5.1. Chapter 5, Compiler-Specific
Considerations, on page 65, describes considerations peculiar to
specific supported compilers.
Release 5.1 vii

Preface
Notation Conventions

This document uses the following conventions:

ObjectStore Documentation

ObjectStore documentation is chiefly distributed on-line in web-
browsable format. If you want to order printed books, contact
your Object Design sales representative.

Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain information such as FAQs (answers to frequently
asked questions) from Object Design’s Internet gateway machine
as well as from the web. This machine is called

Convention Meaning

Bold Bold typeface indicates user input or code.
Sans serif Sans serif typeface indicates system

output.
Italic sans serif Italic sans serif typeface indicates a

variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.
{ a | b | c } Braces enclose two or more items. You can

specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.
viii ObjectStore C++ Interface Release Notes

Preface
ftp.objectdesign.com and its Internet address is 198.3.16.26. You
can use ftp to retrieve the FAQs from there. Use the login name
odiftp and the password obtained from patch-info . This password
also changes monthly, but you can automatically receive the
updated password by subscribing to patch-info . See the README
file for guidelines for using this connection. The FAQs are in the
subdirectory ./FAQ. This directory contains a group of
subdirectories organized by topic. The file ./FAQ/FAQ.tar.Z is a
compressed tar version of this hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info <your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time. You can reach the Education Hotline at
781.674.5047.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
Release 5.1 ix

Preface
x ObjectStore C++ Interface Release Notes

Chapter 1
New in Release 5.1

The information in this and succeeding chapters is intended for
use by sites upgrading from ObjectStore Release 5.x to Release 5.1.
If you are upgrading from an earlier release than ObjectStore
Release 5, read the ObjectStore C++ Interface Release Notes
supporting that upgrade for pertinent information.

The new features included in ObjectStore Release 5.1 expand
product capabilities in several important directions. This chapter
summarizes the new features in the following order:

About This Release 2

ANSI C++ Exceptions 3

Upcoming Changes 4

About This Release 2

Documentation Enhancements 8

Changes and Additions to the C++ Interface 10

Controlling Address Space Usage During a Transaction 11

Address Space Usage with Queries 16

Using Component Schemas 18

Support for the XA Standard for Transaction Processing 19

os_dynamic_extent Class 20

Conversion Between Asian Language String Encodings 21
Release 5.1 1

About This Release
About This Release

ObjectStore is an object-oriented database management system suited
for rapid application development and deployment in multitiered
environments. It combines the data query and management
capabilities of a traditional database with the flexibility and power
of C++ and Java interfaces on all platforms. Additionally,
ObjectStore for Windows offers support for the ActiveX interface.

This chapter provides general information about the release.
Specific distributions of ObjectStore Release 5.1 for various
platforms can be found in the README.txt file in the ObjectStore
root directory. Solaris SPARC and Windows are supported for the
release of ObjectStore Release 5.1.

Be sure to read all of the ObjectStore C++ Interface Release Notes
before beginning the installation.

Product Modules

ObjectStore Release 5.1 comprises the C++ and Java interfaces,
plus ActiveX support on Windows platforms.

Platforms and Compilers

The README file for this release itemizes the platforms on which
the C++ interface to ObjectStore Release 5.1 is currently available,
or where its availability is planned. You can also contact Object
Design Technical Support for current information.
2 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
ANSI C++ Exceptions

The ObjectStore Release 5.1 C++ interface will support the use of
ANSI C++ exceptions on the following platforms:

• Digital UNIX

• HP

• OS/2

• Windows

• and possibly SGI and AIX

It is Object Design's intention to support ANSI exceptions on all
supported platforms in a future major release of ObjectStore.
After support for ANSI exceptions is universal, the TIX exception
mechanism will be obsolete and ultimately will not be supported.
Release 5.1 3

Upcoming Changes
Upcoming Changes

os_database::open
and close

Previously and in the ObjectStore Release 5.1 the functions for
creating, opening, and closing databases can be called either
inside or outside a transaction. For example, you can do an open
update followed by an open read-only . This behavior will not be
supported in the next major release. In the future, consecutive
open s or close s must be of the same type. For example, a close
read-only can only be followed by another close if it is also a close
read-only .

os_database::close or
destroy

Also in the next major release, the function for destroying or
closing databases must be called outside a transaction.

access hooks The next major release of ObjectStore will introduce an upward
incompatible change to the access hooks feature of ObjectStore
C++. This change will make it necessary to modify the source and
potentially the logic of ObjectStore Release 5.1 applications that
use the access hook facility. The affected API is os_database::set_
access_hook .

union discriminant
functions

Union variants will be supported in a different manner in the next
major release.
4 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
New Features

Component Server Framework

This new capability addresses a basic need to provide
documentation, code examples, and general classes that enable
application writers to develop a class of applications called
application servers. An application server is basically the
processing engine for thin client front-end applications. See the
ObjectStore Component Server Framework User Guide for detailed
information about this new feature.

Dump/Load

This new subsystem provides a facility to enable ObjectStore users
to dump and load databases into and from a nondatabase format.
For specific details see The Dump/Load Subsystem, in Chapter 1,
Overview of Managing ObjectStore; Chapter 4, Utilities, in
ObjectStore Management; and Chapter 8, Dump/Load Facility, in
the ObjectStore Advanced C++ API User Guide.

Component Schema for DLL Use

This feature allows for incremental loading and unloading of
schema at run time. This functionality enables building
applications that consist of component DLLs and their associated
schemas. Component schema functionality is described in the
ObjectStore Advanced C++ API User Guide and ObjectStore C++ API
Reference.

X/Open’s XA Transaction Processing Standard Is Supported

In Release 5.1, ObjectStore clients and Servers can support
X/Open’s transaction processing standard (known as XA). The
implementation of this interface is layered on top of the existing
ObjectStore client library. An ObjectStore client can now act as a
Resource Manager (RM). For more information, see Support for
the XA Standard for Transaction Processing on page 19.

Address Space Reset

This feature allows applications to release address space that was
assigned during the execution of a transaction. The existing
ObjectStore entry point objectstore::release_address_space() is
Release 5.1 5

New Features
extended so that it can now work within a transaction. There is
also a mechanism for keeping certain address space assigned. This
mechanism is built using pvars and a new facility implemented
with the os_retain_address class.

For further discussion, see Controlling Address Space Usage
During a Transaction on page 11.

Reduced Address Space Consumption in Queries

In earlier releases of ObjectStore, queries on very large collections
could terminate because address space ran out. In this release, the
ObjectStore query facility includes two new memory modes that
automatically release address space and allow you to create
queries that will never run out of address space.

For further discussion, see Address Space Usage with Queries on
page 16.

Dynamic Extents

Dynamic extents are a mechanism for treating all objects of a
particular type in a segment or database as a collection. The new
class os_dynamic_extent is used for this.

For more information, see os_dynamic_extent Class on page 20.

String Conversion for Asian Language String Encodings

A new facility for converting Asian language string encodings is
available in this release. See os_str_conv for details. See also
Conversion Between Asian Language String Encodings on
page 21.

Bit Vector-Assisted Relocation

An optimization to relocation in ObjectStore Release 5.1 is the use
of a bit vector to assist in the relocation of pages (in or out) that
have already been relocated in once, and are still in the cache.

osgc Utility Capabilities

The ObjectStore garbage collection utility, implemented to
support the Java interface to ObjectStore, can now be used with
ObjectStore C++ with some restrictions. The ObjectStore
persistent garbage collector (GC) collects unreferenced objects
6 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
and ObjectStore collections in an ObjectStore database and frees
space associated with these objects.

The osgc utility removes all data from the database that cannot be
navigated to from a root or a protected reference. If your database
is pointed to by cross-database pointers, cross-database
references, or dumped or transient references, you cannot safely
run osgc on it unless you ensure that each object referred to by
any of the above is also the target of a root or protected reference
in the database on which you intend to use the osgc utility.

osgc Release 4
databases

osgc is supported only on databases initiated in Release 5 or later.
Databases upgraded from previous releases are not supported,
and using osgc on them can corrupt them.

You can successfully use the osgc utility on databases from
previous releases that have been dumped and reloaded to a
Release 5 or later database using osdump and osload . See osdump:
Dumping Databases and osload: Loading Databases in Chapter 4
of ObjectStore Management. See also Chapter 8, Dump/Load
Facility, in the ObjectStore Advanced C++ API User Guide.

Databases containing schema information about template
instantiations (including information about ObjectStore
templated collection types) inadvertently contain unreferenced
objects that osgc will remove. This is safe and will not affect
correct operation.

It is safe to use osgc concurrently with other applications that
modify the database. It is not safe to run more than one osgc on a
database at the same time. See osgc: Garbage Collection Utility in
ObjectStore Management for further information.
Release 5.1 7

Documentation Enhancements
Documentation Enhancements

The ObjectStore Release 5.1 documentation is enhanced in content
and form. The improvements are listed in the paragraphs that
follow.

Clarification of Functionality

There is new documentation for previously existing ObjectStore
features. The following paragraphs provide cross-references to
the new information in other books in the ObjectStore Release 5.1
documentation set.

Collections
documentation
Improvements

Significant updates and clarification of the collections discussions
in ObjectStore Collections C++ API Reference appear in the
ObjectStore Release 5.1 documentation.

os_rDictionary Added information about os_rDictionary is available in the
ObjectStore Collections C++ API Reference. See os_rDictionary for
details.

Checkpoint/refresh There is new information about how transactions work with
checkpoint/refresh in the ObjectStore Advanced C++ API User
Guide. See Checkpoint: Committing and Continuing a Transaction
for details.

Additions to the
os_mop class

os_mop::current , os_mop::find_name , and os_mop::reset
Previously undocumented, these are now included in the
ObjectStore C++ API Reference.

Installing the On-Line Documentation

To install the ObjectStore full-text-searchable documentation,
unpack the documentation distribution by doing one of the
following:

For root installation If ObjectStore has been installed as root, $OS_ROOTDIR is write
protected. Therefore, you must complete the following steps.

chmod +w $OS_ROOTDIR
cd $OS_ROOTDIR
uncompress -c /cdrom/packages/ostore/doc_sol2.tar.Z | tar xvf -
chmod -w $OS_ROOTDIR

For non-root
installation

If ObjectStore has been installed using the non-root option, the
owner/installer has write permission in $OS_ROOTDIR (and all
8 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
subdirectories) so the chmod command is unnecessary. In this
case, do the following steps.

cd $OS_ROOTDIR
uncompress < /cdrom/packages/ostore/doc_sol2.tar.Z | tar xf -

When you run the ossearch command the first time, you will be
asked whether to install it. After it installs, and on future
invocations of ossearch , it will launch the configured browser on
the root of the documentation tree.

Browser warnings When you invoke the search application, you might see a stream
of warnings before the browser actually appears. These
complaints are associated with the release of X11 the application
expects. If you are running X11 R6, no such warnings appear.

Viewing the On-Line Documentation

The documentation for ObjectStore Release 5.1 is distributed in
machine-readable HTML format and PDF. The HTML format
uses HTML frames, so JavaScript must be enabled. To view the
documentation from a browser on UNIX, in the
$OS_ROOTDIR/ODI directory, run the ossearch utility. This
displays the catalog of ObjectStore documentation components.

On Windows platforms, you can invoke the searchable
documentation from the ObjectStore Win32 group with the
ObjectStore Documentation icon. In either case, your browser
appears with a top index displayed. Select the documentation or
bookshelf you want as usual.

You can search the entire ObjectStore Release 5.1 documentation
set from the top-level bookshelf search button for each interface
(for example, 5.1.0.0.0/ostore/doc/index.htm). Once you have
selected a book, you can search the rest of its documentation set
by selecting the search button in the navigation bar above the
book text frame.

Search by entering a word or series of words separated by
commas in the query box and pressing the Return key. If you are
uncertain about how to enter a query, you can refer to an on-line
search query guide by clicking on the string to learn additional
query methods that appears in the search form.
Release 5.1 9

Changes and Additions to the C++ Interface
Changes and Additions to the C++ Interface

The following paragraphs summarize modifications to the C++
interface.

Changes to the API

The following functions are now callable within top-level
transactions, as well as outside top-level transactions. In the
previous release, they were callable only outside top-level
transactions.

static void objectstore::retain_persistent_addresses();

static void objectstore::release_persistent_addresses();

static void objectstore::get_retain_persistent_addresses();

Additions to the API

The following functions have been added for this release. They
make certain aspects of controlling address space behavior more
explicit:

static void objectstore::set_retain_persistent_addresses(
os_boolean value);

static void objectstore::reset_persistent_addresses();

static void objectstore::release_persistent_addresses(
os_boolean force);

These new functions are introduced to make explicit the
distinction between disabling the retain behavior (done by calling
objectstore::set_retain_persistent_addresses() with the value
argument false) and deassigning address space (done by calling
objectstore::reset_persistent_addresses()).
10 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
Controlling Address Space Usage During a
Transaction

ObjectStore Release 5.1 introduces the ability to release address
space during a transaction. In earlier releases, all address space
assignments made during a top-level transaction were retained
until the transaction was completed.

As with top-level transaction boundaries, when
objectstore::retain_persistent_addresses is not in use, releasing
address space during a transaction requires that the application
drop pointers to persistent memory locations that are released.

Restrictions

• This feature cannot be used within nested transactions.

• Some address space assignments cannot be released. These
addresses correspond to the first range of segment 0 of any
database in use, and the first range of any info segment in use.
This is limited to one range per database and one range per
segment.

• When address space is released, encached pages with pointers
to that address space are evicted. This can have an impact on
performance.

• When using multiple threads participating in a global
transaction, those threads must synchronize at
objectstore::release_persistent_address boundaries, just as for
transaction commit.

Changes to the API

The following functions can now be called within top-level
transactions, as well as outside top-level transactions. In the
previous release, they were callable only outside top-level
transactions.

static void objectstore::retain_persistent_addresses();

static void objectstore::release_persistent_addresses();

static void objectstore::get_retain_persistent_addresses();
Release 5.1 11

Controlling Address Space Usage During a Transaction
Additions to the API

The following functions have been added for this release. They
make certain aspects of controlling address space behavior more
explicit:

static void objectstore::set_retain_persistent_addresses(
os_boolean value);

static void objectstore::reset_persistent_addresses();

A new argument, os_boolean force , has been added to
objectstore::release_persistent_addresses()

static void objectstore::release_persistent_addresses(
os_boolean force);

These new functions are introduced to make explicit the
distinction between disabling the retain behavior (done by calling
objectstore::set_retain_persistent_addresses() with the value
argument false) and deassigning address space (done by calling
objectstore::reset_persistent_addresses()).

Calling objectstore::retain_persistent_addresses() is equivalent to
calling objectstore::set_retain_persistent_addresses(true) or to
calling objectstore::set_retain_persistent_addresses(false) and
objectstore::reset_persistent_addresses() .

Functionality associated with objectstore::reset_persistent_
addresses() alone is new in Release 5.1.

Calling objectstore::retain_persistent_addresses() or
objectstore::set_retain_persistent_addresses(true) within a
transaction is no different from calling either of them before the
transaction. All that these functions do is turn on a flag specifying
that the client not perform a release automatically at the end of the
top-level transaction. This flag can be turned on at any time.

New Function Equivalent 5.0 Function

objectstore::set_retain_persistent_addresses(true) objectstore::retain_persistent_addresses()

objectstore::set_retain_persistent_addresses(false)
and objectstore::reset_persistent_addresses()

objectstore::retain_persistent_addresses()

objectstore::reset_persistent_addresses() No equivalent in release 5.0
12 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
Calling objectstore::release_persistent_addresses() with the force
argument true is equivalent to calling release on all existing
mechanisms that are retaining address space.

objectstore::get_address_space_generation_number()

Address Space
Generation Number

os_unsigned_int32 get_address_space_generation_number()

This function returns an unsigned integer that is incremented by
the client whenever it releases any address space. Its primary
purpose is to support pointer caching, such as that used by
ObjectStore collections in several circumstances. A transient cache
of persistent pointers should be considered invalid whenever the
value of objectstore::get_address_space_generation_number()
increases. The objectstore::get_address_space_generation_
number() function simply returns the value read from a variable,
and so is fast enough to be called whenever a pointer cache is
examined.

os_retain_address Class

The class os_retain_address allows an application to specify that
certain address ranges be kept assigned across calls to
objectstore::release_persistent_addresses() and top-level
transactions.

See os_retain_address in ObjectStore C++ API Reference for further
information.

Use of pvars with os_
retain_address

Instances of os_pvar are treated specially by the address release
operation when called within a transaction. Any such os_pvars
that are active when address space is released act like instances of
os_retain_address — the persistent address that they refer to
continues to be assigned. However, unlike os_retain_address ,
active os_pvars do not hold address space across transaction
boundaries when objectstore::retain_persistent_addresses() is not
operating.

objectstore::set_retain_address() and objectstore::get_retain_counter()

The static functions objectstore::set_retain_address() and
objectstore::get_retain_counter() can be used to retain and release
individual address ranges. Each address range maintains a retain_
counter that is initially 0. The function signatures are
Release 5.1 13

Controlling Address Space Usage During a Transaction
static void objectstore::set_retain_address(
void *address, os_boolean value = true);

static os_unsigned_int32 objectstore::get_retain_count(
void *address);

Calls to objectstore::set_retain_address() with value = true on any
address in the range will increment the counter. Calls to
objectstore::set_retain_address() with value = false on any address
in the range will decrement the counter (if it is greater than 0).
Calling objectstore::get_retain_count on any address in a range
returns the current value of the counter for that range.

Whenever a range has a retain count greater than zero, that range
will not be released by any release operations (except a force
release operation).

Incremental Release of Address Space: os_address_space_marker
Class

The objectstore::release_persistent_addresses() call releases
address space reserved since the beginning of a transaction, or
since the last call to objectstore::retain_persistent_addresses() .
Obviously, releasing all address space is something only the
application can do directly, since the application must make sure
that transient pointers to persistent objects get dropped.

However, there are certain address-space-consuming features
that would benefit from having the ability to release address space
in a manner that is transparent to the application. The primary
example of such a feature is a collections query. During a query,
address space might be consumed in large quantities. A new class,
os_address_space_marker , provides the ability for a query to
release the extra address space it consumed that is not required by
the application outside the query. This allows queries that detect
the address space full condition (err_address_space_full) and use
this scheme to release the address space they have consumed and
continue, to examine more objects than could fit into address
space at any one time.

See os_address_space_marker in the ObjectStore C++ API
Reference for a description of this class.
14 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
Interactions Between Different Address-Space Mechanisms

The different APIs for controlling address space can be ordered by
the specificity (least to most) of the target address space, as
follows:

• Default transaction boundary retain/release semantics

• Process-wide

objectstore::retain_persistent_addresses()
objectstore::release_persistent_addresses()
objectstore::reset_persistent_addresses()
objectstore::set_retain_persistent_addresses()
os_address_space_marker class

• Specific range

os_retain_address
os_pvar
objectstore::set_retain_address

For cases where several address space mechanisms are in place,
the rule is that the more specific calls take precedence. The only
exception is the force form of objectstore::release_persistent_
addresses() , which causes all the mechanisms in effect at the time
of the call to release. For calls at the same level of specificity, the
retains take precedence over releases.

Example Constructing an os_retain_address on a variable pointing to
address A, followed by calling objectstore::_reset_address on A,
will not result in A’s being released. (This is the same level of
specificity rule that says that retains take precedence over releases.)

Related Functions

Two functions related to controlling address space allocation are
available in Release 5.1:

objectstore::get_
unassigned_address_
space()

static os_ptr_val objectstore::get_unassigned_address_space();

Returns the total amount of address space that is still available for
assignment. The value returned is always a multiple of 64 KB.

objectstore::get_
largest_contiguous_
unassigned_address_
space()

static os_ptr_val objectstore::
get_largest_contiguous_unassigned_address_space();

Returns the size of the largest contiguous region of address space
that is still available for assignment. The returned value is always
a multiple of 64 KB.
Release 5.1 15

Address Space Usage with Queries
Address Space Usage with Queries

In earlier releases of ObjectStore, queries on very large collections
could terminate because address space ran out. In this release, the
ObjectStore query facility includes two new memory modes that
allow you to create queries that will never run out of address
space. You can control this behavior with the new function os_
collection::set_query_memory_mode() . Specify the enumerator
os_query_memory_mode_none if you want queries to use memory
mode as they did in Release 5.0.

Customizing Address Space Usage in Collections

ObjectStore provides the following two classes for use in
customizing address space usage with collections.

os_reference_cursor Class

Creates a transient reference-based list (os_packed_rlist) from any
type of collection that can be iterated over using the member
functions.

class os_reference_cursor {

public:
// This is the public reference based API to this class
os_reference * first();
os_reference * last();
os_reference * next();
os_reference * previous();
os_reference * retrieve();
os_int32 more() const;
os_int32 null() const { return !more(); };

// Versions of functions that automatically check for
// err_address_space_full
void * retrieve(os_address_space_marker &);
void * first(os_address_space_marker &);
void * last(os_address_space_marker &);
void * next(os_address_space_marker &);
void * previous(os_address_space_marker &);

// construction
os_reference_cursor(os_collection *, os_unsigned_int32 flags =

0);

// Destruction
16 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
~os_reference_cursor();

os_cursor_holder Class

Remembers the position of the cursor in the collections after a call
to os_collection::release_address_space has been made.

class os_cursor_holder
{

public:
// The public interface to os_cursor holder
os_cursor_holder(os_cursor * cursor);
os_cursor_holder(os_dictionary_cursor * cursor);
os_cursor_holder();
~os_cursor_holder();
void remember();
void remember(os_cursor * cursor);
void remember(os_dictionary_cursor * cursor);
void restore();
void init();

};
Release 5.1 17

Using Component Schemas
Using Component Schemas

ObjectStore Release 5.1 includes a new set of features that allow
you to write applications that use DLLs (dynamically loaded and
associated schemas).

A component schema, also referrred to here as a DLL schema, is a
self-contained schema associated with a DLL. It plays the same
role for the DLL as an application schema plays for an application.
Like a DLL, and unlike an application schema, a DLL schema can
be loaded and unloaded dynamically at run time. Unlike the
application schema, multiple DLL schemas can be in effect at the
same time in a single program. The file name extension .adb is
used for both application schemas and DLL schemas. DLL
schemas are generated by ossg just as application schemas are.

For further information, see

• In ObjectStore C++ API User Guide, see OS_SCHEMA_DLL_ID ,
OS_SCHEMA_INFO_NAME , and OS_REPORT_DLL_LOAD_
AND_UNLOAD .

• In ObjectStore Building C++ Interface Applications, see
Generating an Application or Component Schema in Chapter
3.

In ObjectStore C++ API User Guide, see Chapter 11, Component
Schemas.

In the ObjectStore C++ API Reference, see the new classes os_DLL_
finder , os_DLL_schema_info , os_schema_handle , os_schema_info ,
and additions to the classes objectstore and os_database .
18 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
Support for the XA Standard for Transaction
Processing

ObjectStore supports X/Open's transaction processing standard
(known as XA). For further information see Support for the XA
Standard for Transaction Processing in the ObjectStore C++ API
User Guide.
Release 5.1 19

os_dynamic_extent Class
os_dynamic_extent Class

Derived from os_Collection , an instance of this class can be used
to create an extended collection of all objects of a particular type,
regardless of which segments the objects reside in. All objects are
retrieved in an arbitrary order that is stable across traversals of the
segments, as long as no objects are created or deleted from the
segment, and no reorganization is performed (using schema
evolution or compaction).

For further information see os_dynamic_extent in the ObjectStore
C++ API Reference.
20 ObjectStore C++ Interface Release Notes

Chapter 1: New in Release 5.1
Conversion Between Asian Language String
Encodings

There are many standards for encoding Asian characters. In
Japan, for example, five encodings are in broad use: JIS, SJIS, EUC,
Unicode, and UTF-8.

Usually an application uses one encoding for all strings to be
stored inside a database. The encoding chosen is most often the
one used in the operating system of the ObjectStore client.

However, if the application has heterogeneous clients using a
variety of encodings, conversion from one encoding to another is
necessary at some point. The clients could be traditional
ObjectStore client processes or thin-client browsers that emit data
in different encodings.

This release of ObjectStore provides conversion facilities for
various Japanese language text encoding methods: EUC, JIS, SJIS,
Unicode, and UTF8. For more information, see Using Asian
Language String Encodings in the ObjectStore C++ API User Guide
and os_str_conv in the ObjectStore C++ API Reference.
Release 5.1 21

Conversion Between Asian Language String Encodings
22 ObjectStore C++ Interface Release Notes

Chapter 2
Changes and Additions to
Existing Features

In general, ObjectStore Release 5.1 is drop-in compatible with
Release 4. It is, however, not compatible with applications that use
Versions or other features eliminated from Release 5. If you are
upgrading from Release 3, you must upgrade your databases with
Release 4 before using Release 5.

This chapter includes information about changes to Release 5.1
ObjectStore C++ behavior, and specific conditions that apply
independent of platform. The information is organized by specific
compatibility with earlier releases. Topics covered include

Compilation Compatibility 24

Behavior Compatibility 25

Database Compatibility 26

Utility Compatibility: ossg 27

Changes from the Previous Release 29

Documentation Enhancements 31
Release 5.1 23

Compilation Compatibility
Compilation Compatibility

ObjectStore programs built with Release 5.0.x can be compiled
without source-level modifications and will continue to work
with ObjectStore Release 5.1.

Link Compatibility

ObjectStore programs built using Release 5.0.x can be relinked
using ObjectStore Release 5.1 libraries without the need to
recompile source modules.

Drop-In Compatibility

ObjectStore programs built using Release 5.0.x can be pointed at
ObjectStore Release 5.1 shared libraries without having to be
rebuilt. In other words, ObjectStore Release 5.1 maintains drop-in
compatibility with Release 5.0.x of ObjectStore. A result of this is
that ObjectStore Release 5.1 is an acceptable replacement for the
5.0.x patch release stream.

Note: Applications compiled using ObjectStore Release 5.1 are not
backward compatible with previous versions of ObjectStore.
24 ObjectStore C++ Interface Release Notes

Chapter 2: Changes and Additions to Existing Features
Behavior Compatibility

With the following exceptions, ObjectStore programs from
Release 5.0.x behave similarly:

• OS_IMMEDIATE_THRESH environment variable

This environment variable has been renamed to OS_INBOUND_
RELOPT_THRESH. OS_OUTBOUND_RELOPT_THRESH has
been added also for symmetry and is synonymous with OS_
RELOPT_THRESH.

• OS_MAX_IMMEDIATE_RANGES environment variable

This environment variable is no longer being used.
Release 5.1 25

Database Compatibility
Database Compatibility

There are two areas in which ObjectStore Release 5.1 is
incompatible with Release 5.0.x.

PRM format The first is that in order to use ObjectStore Release 5.1, a database
must have been upgraded to use the enhanced PRM format. The
earlier standard format PRMs are no longer supported. This also
means that you cannot upgrade directly from Release 4.0 to
ObjectStore Release 5.1 without first upgrading to ObjectStore
Release 5.0.x enhanced PRM format. In fact, if you have
ObjectStore Release 5.0.x databases that used the earlier standard
prm format, you must upgrade them using the ObjectStore
Release 5.0.x utility osupgprm .

Server transaction log
change

In order to support XA, it was necessary to update slightly the
format of the Server’s transaction log. The result of this change is
that existing Release 5.0.x ObjectStore Server logs cannot be
propagated using an ObjectStore Release 5.1 Server.
26 ObjectStore C++ Interface Release Notes

Chapter 2: Changes and Additions to Existing Features
Utility Compatibility: ossg

Changes to ossg Default

Object Design has changed the default behavior of ossg so that
weak importing of vtables done on Solaris and other UNIX
platforms is no longer supported by the default. The implication
is that when you are building an application you might see
unresolved symbols that are new.

Object Design recommends that the most portable method of
dealing with this is to create a force_vft() function in your
executable that will cause the vfts to be instantiated. See Symbols
Missing When Linking ObjectStore Applications in ObjectStore
Building C++ Interface Applications for more information.

The other (not recommended) way to deal with this is to use the
-weak_symbols flag to ossg to revert ossg to ObjectStore Release
5.1 behavior. The -no_weak_symbols flag still exists in ossg but
does emit a warning stating that no_weak_symbols is the default
behavior.

-weak_symbols Option

In earlier releases, the schema info linked into an application
schema used weak import references on some platforms to link to
virtual function tables and union discriminant functions. This was
the default behavior. It could be changed with the -no_weak_
symbols option to the schema generation utility, ossg

In Release 5.1, default behavior has been changed so that weak
import references are never used by default. This was done
because using weak import references with DLL schema can
cause unpredictable effects. The affected platforms are versions of
UNIX. If the weak import feature is needed for some reason, you
can restore it by using the -weak_symbols command-line
argument to ossg .

ossg Limitations

Note the following limitations and their solutions for ossg in
ObjectStore Release 5.1.
Release 5.1 27

Utility Compatibility: ossg
Explicit Template Specializations

ossg does not permit explicit template specializations. For
example:

template <class A> class B { ... };
template <> class B<char> { ... }; // not accepted
Ossg: error message: "<file>":LINE <number>, syntax error on input ">"

Work around Instead, use the following to specialize class template B:

class B<char> { ... };

Forward Declarations

Forward declarations, including friend declarations, that involve
template instantiations can cause problems if the same
instantiation appears later in the code. For example:

Example template <class A> class B { ... };
class D {

class B<int>; // or friend class B<int>;
};
class B<int> { ... };
Ossg: error message: "<file>":LINE <number> *** Defining a previously
defined class <class>

Work around The solution is to eliminate the forward reference. In the previous
example, for instance, move class B<int> { ... }; upward to a place
before its use.

Class Declarations in Templates

Class declarations in templates can produce link errors if the class
is derived from another class that defines virtual functions. For
example:

Example struct C { virtual void f(){} };
template< class T > struct A {

struct B : public C { ... };
};
Ossg: ossg does not break but generates incorrect names

Work around The work around for this is to move inner declarations to outside
the template. In the previous example, for instance, use the
following instead to specialize class template B:

class B<char> { ... };
28 ObjectStore C++ Interface Release Notes

Chapter 2: Changes and Additions to Existing Features
Changes from the Previous Release

Deprecated Features and Interfaces

NETBIOS support Support for NETBIOS is removed.

os_database::alloc()
and os_segment::alloc()

The entrypoints os_database::alloc() and os_segment::alloc() will
be removed from the next major release of ObjectStore.

C library interface The C library interface to ObjectStore is deprecated in this release.
Support for it will be removed in the next major release of
ObjectStore.

Persistent relocation
maps

The following functions related to persistent relocation maps are
deprecated in this release and will be removed in the next major
release of ObjectStore.

• objectstore::set_new_dbs_standard_prm_format(osbool)

This signals an exception in ObjectStore Release 5.1 and is
deprecated. It will be removed in the next major release of
ObjectStore.

• objectstore::get_new_dbs_with_standard_prm_format()

This now always return false and is deprecated. It will be
removed in the next major release of ObjectStore.

• os_database::get_prms_are_in_standard_prm_format()

This now always return false and is deprecated. It will be
removed in the next major release of ObjectStore.

• os_database::get_prms_are_in_standard_format()

This now always return false and is deprecated. It will be
removed in the next major release of ObjectStore.

• objectstore::read_counter() and objectstore::unassigned_
address_space_counter()

Support for these functions has been removed. Use
objectstore::get_unassigned_address_space() instead.

IP Addresses in UNC Pathnames

You can use IP addresses in UNC pathnames when opening a
database. For example:
Release 5.1 29

Changes from the Previous Release
//198.316.17/top/dbs/db1

New Documentation for -O option to osrestore

The osrestore utility takes an option, -O, that restores the database
image specified with the -f flag and then exits. There is no prompt
for additional volumes.

Incompatible Changes to os_CString

To fix several reported problems, os_CString was substantially
rewritten in Release 5.1. Applications that use os_CString must be
recompiled.

The following changes were made:

1 The use of a common empty string was eliminated to avoid
cross-segment pointers. The default constructor provides each
os_CString object with its own empty string.

2 Like regular CString s, os_CString s share data when copied, by
default. This can lead to undesirable cross-segment pointers.
To avoid this, Object Design recommends that you call os_
CString::LockBuffer() on persistent os_CStrings . Copying a
transient os_CString to a persistent location, or copying a
persistent os_CString from one database to another, will copy
the data instead of sharing it.

3 Internal operations on os_CString use _ODI_strlen instead of
lstrlen . If a persistent string is not currently mapped into
memory, _ODI_strlen causes it to be mapped and returns the
correct length, unlike lstrlen , which returns 0.
30 ObjectStore C++ Interface Release Notes

Chapter 2: Changes and Additions to Existing Features
Documentation Enhancements

Use of Change-Record Files with osbackup

For every set of databases you plan to back up, you need one
change record file. Only one level 0 backup can be recorded in a
change-record file. Subsequent level 0 backups refresh the change
records, so you will lose information about the prior databases’
backup status.

For example, the following will work and is the recommended
usage:

osbackup -f ./test1.db.back0 -i test1.db.record -l 0 -a test1.db
osbackup -f ./test2.db.back0 -i test2.db.record -l 0 -a test2.db

osbackup -f ./test1.db.back4 -i test1.db.record -l 4 -a test1.db
osbackup -f ./test2.db.back4 -i test2.db.record -l 4 -a test2.db

However, using the default incremental record file for two
backups like this will result in lost information about the backup
level of test1.db :

osbackup -f ./test1.db.back0 -l 0 -a test1.db
osbackup -f ./test2.db.back0 -l 0 -a test2.db

osbackup -f ./test1.db.back4 -l 4 -a test1.db
osbackup -f ./test2.db.back4 -l 4 -a test2.db

In general, Object Design advises against using the default record
file because it is easy to make this kind of mistake. You should
always specify a unique record file for each set of databases
backed up with the -i option.

Correction to Some Examples in the ObjectStore C++ API User Guide

Examples in the following section of the ObjectStore C++ API User
Guide have some incorrect lines. They should appear as described
in this section.

Using Nonparameterized References

If your compiler does not support class templates, you can use
the nonparameterized reference class os_reference . You also
should use os_reference if you need a reference to an instance
of a built-in type like int or char ; the referent type of an os_
Reference must be a class.
Release 5.1 31

Documentation Enhancements
os_reference is just like os_Reference , except the conversion
constructor used is os_reference(void*) instead of os_
Reference(T*) . In addition, the conversion operator used is
operator void*() instead of operator T*(), which means that you
should use a cast to pointer-to-referent type when
dereferencing an os_reference .

Corrections to
nonparameterized
example 1

Nonparameterized example 1

Here are some examples:

#include <ostore/ostore.hh>
#include <stdio.h>
class employee {

The following line was omitted:

public:
static os_typespec *get_os_typespec();
. . .

The following line was omitted:

int emp_id;

};
class part {

The following line was omitted:

public:
static os_typespec *get_os_typespec();
. . .
os_reference responsible_engineer;
. . .
};
f() {
objectstore::initialize();
static os_database *db1 = os_database::open("/thx/parts");
static os_database *db2 = os_database::open("/thx/parts");
OS_BEGIN_TXN(tx1, 0, os_transaction::update)

part *a_part = new(db1, part::get_os_typespec()) part;
employee *an_emp =

new(db2, employee::get_os_typespec()) employee;
a_part->responsible_engineer = an_emp;

This line is incorrect:

printf("%d\n",
(employee*) (a_part->responsible_engineer)->emp_id);

It should be
32 ObjectStore C++ Interface Release Notes

Chapter 2: Changes and Additions to Existing Features
printf("%d\n",
((employee*) (void*)
(a_part->responsible_engineer))->emp_id);

OS_END_TXN(tx1)
db1->close();
}

Corrections to
nonparameterized
example 2

Nonparameterized example 2

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part.hh"
main() {
objectstore::initialize();
part *a_part;
os_database *db1 = os_database::open("/thx/parts");
os_reference part_set_ref;
OS_BEGIN_TXN(tx1, 0, os_transaction::update)

part_set_ref = (os_set*) (
db1->find_root("part_set")->get_value()

); /* retrieval */
. . .

OS_END_TXN(tx1)
OS_BEGIN_TXN(tx2, 0, os_transaction::update)

This line is incorrect:

a_part = (part*) (
((os_set*) (part_set_ref))->query_pick(
"part", "part_number==123456", db1
)

) ; /* OK */

It should be

a_part = (part*) (
((os_set*)(void*) (part_set_ref))->query_pick(

"part", "part_number==123456", db1
)
) ; /* OK */
. . .

OS_END_TXN(tx2)
db1->close();
}

Release 5.1 33

Documentation Enhancements
34 ObjectStore C++ Interface Release Notes

Chapter 3
Platform-Specific
Considerations

This chapter describes platform-related considerations you
should anticipate when using ObjectStore Release 5.1.

Note that some of the books contain platform-specific information
about platforms for which ObjectStore Release 5.1 is not yet
available. Such information refers to behavior using the previous
version of ObjectStore. These release notes and the other
documents in the documentation set will be updated as
ObjectStore Release 5.1 becomes available on additional
platforms.

The topics are organized in the following manner:

Windows 36

Solaris 2 37

HP 38

16K Page Size and Heterogeneous Database Access 39
Release 5.1 35

Windows
Windows

The following paragraphs describe platform-specific
considerations for ObjectStore Release 5.1 on Windows NT.

Installing DEBUG.ZIP or DDEBUG.ZIP

To install DEBUG.ZIP or DDEBUG.ZIP, follow the steps described
here.

1 Install ObjectStore Release 5 with the SETUP program. See
ObjectStore Installation for Windows NT documentation for
instructions.

2 Shut down the ObjectStore Server and Cache Manager by using
the ObjectStore SETUP program. Answer Yes to the question
about shutting down servers, then exit from SETUP.

3 Go to the %OS_ROOTDIR% directory.

4 Rename bin and binsngl directories (from the command
prompt window or Windows Explorer) to retail.bin and
retail.binsngl .

5 Unzip the file (DEBUG.ZIP or DDEBUG.ZIP) from the command
prompt by typing the following command.The -d option
creates and restores the directories included in the zip file.

pkunzip -d debug.zip

6 Run the ObjectStore SETUP program to start the Server. In the
first setup dialog select the Setup Server option. In the menu
Choosing to start ObjectStore services automatically , select Yes.
Then a Confirm Message dialog asks if you want to start the
services right now. Select Yes.

Now you can debug your application. For more information
about required compilation options, see the Windows DEBUG
and DDEBUG Builds of ObjectStore in the Windows section of
Chapter 4, Compiling, Linking, and Debugging Programs in
ObjectStore Building C++ Interface Applications.
36 ObjectStore C++ Interface Release Notes

Chapter 3: Platform-Specific Considerations
Solaris 2

The following paragraphs describe platform-specific
considerations for ObjectStore Release 5.1 on Solaris 2.
Release 5.1 37

HP
HP

HP aC++ source file
naming clarification

A clarification has been added to the Chapter 4, Compiling,
Linking, and Debugging Programs, of ObjectStore Building C++
Interface Applications. See HP aC++ Source Files for details.
38 ObjectStore C++ Interface Release Notes

Chapter 3: Platform-Specific Considerations
16K Page Size and Heterogeneous Database
Access

In releases prior to ObjectStore Release 5.1, there is a bug in the
support of heterogeneous access to databases created on
machines with a 16K page size, such as SGI platforms: databases
created on 16K page big-endian platforms cannot be accessed
from small-endian platforms. Although this has been fixed in
Release 5.1, older databases created on 16K page size platforms
must be upgraded to be accessible to small-endian platforms.

In Release 5.1 a tool is provided that can be used to check whether
a database has such limitations. The tool can also be used to
upgrade a database if such limitations exist. It can be used from a
command line option to osverifydb, or with the API os_
dbutil::osverifydb() .

Note There is no need to use this tool if the database has been created
on a platform that has a 4K or 8K page size.

New Option to osverfiydb

To check or upgrade a database for hetergeneous accessibility
with the osverifydb command line utility, you can specify a newly
added command line option, -info_sector_tag_verify_opt option.
This verifies info segment sector tags in accordance with the
option value you specify.

Valid options are

0 Skips verifying info segment sector tags (default).

1 Verifies info segment sector tags and reports whether
the database can be used heterogeneously.

2 Upgrades the database for heterogeneous
accessibility.

5 Causes osverifydb to report information for this
option only. Other verifications usually performed by
osverifydb are not made.

6 Performs an upgrade only. Other verifications
usually performed by osverifydb are not made.
Release 5.1 39

16K Page Size and Heterogeneous Database Access
New Argument to osdbutil::osverifydb()

You can also use the upgrade tool by means of the os_verifydb_
options argument to the API os_dbutil::osverifydb() with os_
verifydb_options::info_sector_tag_verify_opt set to the desired
value:

class os_verifydb_options
{ public:

...
enum info_sector_tag_verify_opt_enum {

verify_skip = 0, /* do not verify info sector tag */
verify_report_only = 1, /* report only */
verify_upgrade = 2, /* upgrade info sector tag */
verify_skip_others = 4, /* skip other verifications */

} info_sector_tag_verify_opt ;
...

}

Valid os_verifydb_options::info_sector_tag_verify_opt values are

verify_skip
verify_report_only
verify_upgrade
verify_report_only | verify_skip_others
verify_upgrade | verify_skip_others
40 ObjectStore C++ Interface Release Notes

Chapter 4
Sources of Technical
Information

This chapter describes methods of obtaining technical assistance.
Sources of technical information include Object Design’s

• Local distributor or value-added reseller

• Training and Education

• Consulting

• Technical Support

The following paragraphs summarize each support alternative.

Local Distributor or VAR

If you obtained ObjectStore through a distributor or VAR, contact
your representative for specific information.

Object Design Training and Education

Object Design provides a variety of courses that cover all aspects
of Object Design products and object-oriented analysis, design,
and programming. These courses are available in Public
Education Centers around the world, or you can arrange to have
them presented on site at your offices.

For immediate information about courses, send email inquiries to
ooclass@odi.com or call the Object Design Education Hotline at
781.674.5047.
Release 5.1 41

Object Design Consulting

Object Design Consulting Services is dedicated to helping you
turn technology innovations into real business solutions. Through
Object Design’s versatile suite of services, consultants enable you
to deliver projects that are timely, flexible, and cost-effective
solutions. Object Design consultants are ready to assist you
throughout the software development cycle, from design through
deployment, whether you are creating a single application, or
revamping your entire technology infrastructure.

With many years of combined experience in building distributed
object computing solutions for intranet, Internet, and local
solutions, a dedicated staff of consultants is equipped to help you
deploy world-class systems.

For more information on how Object Design consultants can start
helping you maximize your technology investment, check the
World Wide Web at http://www.odi.com/Services or contact your
local sales office.

Object Design Technical Support

Object Design Technical Support provides subscribers with
technical assistance and software updates. The goal of Object
Design Technical Support is your success when using Object
Design’s software products. The Object Design Technical Support
team stands ready to provide the highest quality technical
support and assistance with a range of services that include

• Worldwide availability — support centers in North America,
Europe, and Asia

• Access to highly trained Support Engineers through email and
by phone during normal business hours

• Around-the-clock support for critical applications

• Subscriber World Wide Web site that includes FAQ database,
Product Documentation, Known Bugs Lists, coding examples,
and miscellaneous additional information

• Subscriber FTP site containing the latest product updates and
software patches

• Participation in restricted mail discussion groups
42 ObjectStore C++ Interface Release Notes

Chapter 4: Sources of Technical Information
• Software update, patch, and support news by means of
electronic mail

For more information, see the World Wide Web URL
http://support.odi.com or send mail to support@objectdesign.com .
Release 5.1 43

44 ObjectStore C++ Interface Release Notes

Release 5.1
Index
A
address space reset feature 5
application server 6

C
change record files 31
changes coming to ObjectStore

access hook implementation 4
os_database::open, close and destroy 4
os_database::set_access_hook 4
union discriminant functions 4

checkpoint/refresh 8
collections of references

changes to query subsystem 6
compatibility 24
compiling 24
component DLL schema feature 6
component server 6

D
dump/load 5

E
8-bit vector-assisted relocation 6
enhanced PRM format 26

G
get_new_dbs_standard_prm_

format(osbool)
os_database , defined by

obsolete 29
get_news_dbs_with_standard_prm_

format()
os_database , defined by

obsolete 29
get_prms_are_in_standard_format()

os_database , defined by
obsolete 29

get_prms_are_in_standard_prm_format()
os_database , defined by

obsolete 29
get_unassigned_address_space()

objectstore , defined by 29

I
incremental loading and unloading of

schema 5
installing on-line documentation 8
IP addresses 29

J
Japanese string conversion 6
45

L

L
linking 24

N
NETBIOS 29

O
on-line documentation

accessing 9
installing 8
viewing 9

os_dynamic_extent , the class 20–??
OS_IMMEDIATE_THRESH environment

variable
renamed 25

OS_MAX_IMMEDIATE_RANGES
environment variable

obsolete 25
os_rDictionary class 8
osrestore utility

option 30
ossg utility

change in behavior 27

Q
queries

that return collections of references 6

R
read_counter()

objectstore , defined by
See get_unassigned_address_space()

in current ObjectStore
documentation 29

S
searchable on-line docuementation

accessing and viewing 9

Servers
change in transaction log 26

64-bit-enabled address space 8
string conversion 6

T
transaction log

change in format 26
transaction processing with X/Open 5

U
unassigned_address_space_counter()

objectstore , defined by
See get_unassigned_address_space()

in current ObjectStore
documentation 29

V
vector-assisted relocation 6

W
-weak_symbols option 27

X
X/Open support 6
46 ObjectStore C++ Interface Release Notes

	C++ Interface Release Notes
	ObjectStore C++ Interface Release Notes
	Preface
	How This Book Is Organized
	Notation Conventions
	ObjectStore Documentation
	Internet Sources of More Information
	Training
	Your Comments

	New in Release 5.1
	About This Release
	Product Modules
	Platforms and Compilers

	ANSI C++ Exceptions
	Upcoming Changes
	New Features
	Component Server Framework
	Dump/Load
	Component Schema for DLL Use
	X/Open’s XA Transaction Processing Standard Is Sup...
	Address Space Reset
	Reduced Address Space Consumption in Queries
	Dynamic Extents
	String Conversion for Asian Language String Encodi...
	Bit Vector-Assisted Relocation
	osgc Utility Capabilities

	Documentation Enhancements
	Clarification of Functionality
	Installing the On-Line Documentation
	Viewing the On-Line Documentation

	Changes and Additions to the C++ Interface
	Changes to the API
	Additions to the API

	Controlling Address Space Usage During a Transacti...
	Restrictions
	Changes to the API
	Additions to the API
	objectstore::get_address_space_generation_number()...
	os_retain_address Class
	objectstore::set_retain_address() and objectstore:...
	Incremental Release of Address Space: os_address_s...
	Interactions Between Different Address-Space Mecha...
	Related Functions

	Address Space Usage with Queries
	Customizing Address Space Usage in Collections
	os_reference_cursor Class
	os_cursor_holder Class

	Using Component Schemas
	Support for the XA Standard for Transaction Proces...
	os_dynamic_extent Class
	Conversion Between Asian Language String Encodings...

	Changes and Additions to Existing Features
	Compilation Compatibility
	Link Compatibility
	Drop-In Compatibility

	Behavior Compatibility
	Database Compatibility
	Utility Compatibility: ossg
	Changes to ossg Default
	-weak_symbols Option
	ossg Limitations
	Explicit Template Specializations
	Forward Declarations
	Class Declarations in Templates

	Changes from the Previous Release
	Deprecated Features and Interfaces
	IP Addresses in UNC Pathnames
	New Documentation for -O option to osrestore
	Incompatible Changes to os_CString

	Documentation Enhancements
	Use of Change-Record Files with osbackup
	Correction to Some Examples in the ObjectStore C++...

	Platform-Specific Considerations
	Windows
	Installing DEBUG.ZIP or DDEBUG.ZIP

	Solaris 2
	HP
	16K Page Size and Heterogeneous Database Access
	New Option to osverfiydb
	New Argument to osdbutil::osverifydb()

	Sources of Technical Information
	Local Distributor or VAR
	Object Design Training and Education
	Object Design Consulting
	Object Design Technical Support

	Index

