
ADVANCED C++ API
USER GUIDE

RELEASE 5.1

March 1998

ObjectStore Advanced C++ API User Guide

ObjectStore Release 5.1 for all platforms, March 1998

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Part number: SW-OS-DOC-AUG-510

Contents

Preface . xxi

Chapter 1 Advanced Persistence . 1

ObjectStore Pvars . 2

Using Pvars to Maintain Pointer Validity . 3

Additional Type Safety . 4

Pvar Example . 4

Initialization Functions . 5

Creating Object Clusters . 7

Setting Data Fetch Policies . 8

os_fetch_segment Policy . 9

os_fetch_page Policy . 9

os_fetch_stream Policy . 9

When the Fetch Quantum Is Too Large 10

Using ObjectStore References . 11

Automatic Database Open. 12

Using memcpy() with Persistent os_references and Related
Classes . 12

Resolution by Relative Pathname . 13

Referring Across Transactions. 13

Generating One Reference from Another 16

Using Nonparameterized References. 17

References and Relative Pathnames . 19

ObjectStore Lightweight References . 20

Local References. 20
Release 5.1 iii

Contents
Using Transient References with os_Reference_transient 21

Reducing Relocation Overhead. 21

ObjectStore Protected References . 23

Summary of ObjectStore Reference Types. 24

Retaining Pointer Validity Across Transactions. 26

Discriminant Functions. 28

Chapter 2 Advanced Transactions . 31

Reducing Wait Time for Locks. 32

Clustering . 32

Locking Granularity . 32

Transaction Length . 32

Multiversion Concurrency Control (MVCC) 33

abort_only Locking Rules . 33

Lock Timeouts . 33

Nested Transactions. 34

Deadlock . 35

Deadlock Victim . 35

Automatic Retries Within Lexical Transactions. 35

Consequences of Automatic Deadlock Abort 36

Deadlocks in Dynamic Transactions . 36

Multiversion Concurrency Control (MVCC) 37

No Waiting for Locks . 37

Snapshots . 37

Accessing Multiple Databases in a Transaction 38

Serializability . 38

The MVCC API . 38

MVCC and the Transaction Log . 39

Logging and Propagation . 41

Transaction Logging . 41

Propagation. 41

Checkpoint: Committing and Continuing a Transaction. . 43

Advantages of a Checkpoint . 44

Calling the os_transaction::checkpoint() Function. 44
iv ObjectStore Advanced C++ API User Guide

Contents
Transaction Locking Examples . 46

Simple Waiting Scenario . 46

Simple Deadlock Scenario . 46

MVCC and the Simple Waiting Scenario 47

MVCC and the Simple Deadlock Scenario 47

MVCC Conflict Scenario . 48

Chapter 3 Threads . 49

ObjectStore Thread Safety. 50

Single-Thread Access. 51

Use of Global Mutex . 51

Mapaside Technique . 51

Transactions . 53

Optimizing Transactions in Threaded Environments 53

Multiple-Threaded Application Models 55

One Multithreaded Process . 55

Separate Read/Write Multithreaded Processes 57

Selecting the Right Application Design 59

Chapter 4 Advanced Collections . 61

Advanced Collections Overview. 63

Using Paths in Navigation . 64

Paths . 64

Creating Paths . 65

Simple Paths . 65

Multiple Member Paths . 65

Rank and Hash Functions . 67

Paths and Member Functions . 68

Restrictions . 68

Prerequisites . 68

The os_query_function() Macro. 69

The os_query_function_returning_ref() Macro 69

The os_query_function_body() Macro . 70

The OS_MARK_QUERY_FUNCTION() Macro. 70
Release 5.1 v

Contents
The os_query_function_body_returning_ref() Macro 71

Path String Syntax Extension. 72

Index Maintenance . 72

Controlling Traversal Order . 73

Rank-Function-Based Traversal . 73

Address Order Traversal . 73

Path-Based Traversal. 74

Using Ranges in Navigation. 76

Ranges . 76

Specifying Collection Ranges. 77

Ranges with Only One Bound . 77

Ranges with Both an Upper and Lower Bound 78

Restricting the Elements Visited in a Traversal 80

Dictionaries . 80

Duplicates . 80

Performing Collection Updates During Traversal 81

Update-Insensitive Cursors . 81

Safe Cursors . 81

Ordered, Safe Traversal . 84

Retrieving Uniquely Specified Collection Elements 86

Ordered Collections . 86

Selecting Individual Collection Elements with pick(). 88

Dictionaries . 88

Picking an Arbitrary Element . 89

Consolidating Duplicates with operator =() 91

Supplying Rank and Hash Functions . 92

The os_index_key() Macro. 92

Rank Functions. 92

Hash Functions. 93

Example Use of Rank and Hash Functions 93

Specifying Expected Size . 95

Customizing Collection Behavior . 96

Behavior Enumerators for Collection Subtypes 96

Behavior Enumerators for Dictionaries . 96
vi ObjectStore Advanced C++ API User Guide

Contents
Required and Forbidden Behaviors. 97

Changing Collection Behavior with change_behavior() 98

Customizing Collection Representation. 100

Representation Classes. 100

Creating Collection Representation Objects 100

Changing Collection Representation with change_rep() . . . 101

os_chained_list . 102

Controlling the Number of Pointers . 102

Pool Allocation of Blocks . 103

Mutation Checks . 104

mutate_when_full Behavior . 104

os_dyn_bag . 105

Time Complexity . 105

Space Overhead. 105

os_dyn_hash . 107

Time Complexity . 107

Space Overhead. 107

os_ixonly and os_ixonly_bc . 109

os_ixonly_bc . 109

Time Complexity . 110

os_ordered_ptr_hash . 112

Time Complexity . 112

Space Overhead and Clustering . 112

os_packed_list . 114

Time Complexity . 114

Space Overhead and Clustering . 115

os_ptr_bag . 116

Time Complexity . 116

Space Overhead and Clustering . 117

os_vdyn_bag . 118

Time Complexity . 118

Space Overhead. 119

os_vdyn_hash. 120

Time Complexity . 120
Release 5.1 vii

Contents
Space Overhead . 121

Summary of Representation Types . 122

Time Complexity Summary. 122

Space Overhead Summary . 123

Chapter 5 Queries and Indexes . 125

Queries and Indexes Overview . 126

Performing Queries with query() . 127

Example Query . 127

Query Arguments . 127

Queries Compared to Collection Traversals 129

Single-Element Queries with query_pick() 130

Example query_pick() . 130

Existential Queries with exists() . 131

Example exists() . 131

Query Functions and Nested Queries 132

Example Nested Query . 132

Nested Existential Queries . 134

Example Nested Existential Query. 134

Preanalyzed Queries . 136

Creating Query Objects with the os_coll_query Class 136

Destroying Query Objects with destroy() 137

Function Calls in Query Strings . 137

Creating Bound Queries. 137

Executing Bound Queries . 139

Indexes and Query Optimization. 140

Adding an Index to a Collection with add_index() 140

Index Maintenance . 140

Pointer-Valued Members and char* Keys 141

Indexes and Performance . 141

Dropping Indexes from a Collection with drop_index() 141

Testing for the Presence of an Index with has_index() 142

Indexes and Complex Paths . 143

Index Options. 144
viii ObjectStore Advanced C++ API User Guide

Contents
The os_index_path::ordered Enumerator 144

Index Option Enumerators . 145

Performing or Enabling Index Maintenance. 148

Paths as Indexes . 148

Declaring an os_backptr Member . 150

Inheritance of the os_backptr . 150

Enabling Automatic Index Maintenance 152

The os_indexable_member() Macro . 152

The os_indexable_body() Macro . 153

The os_index() macro . 153

Avoid White Space in Macro Arguments 153

The Actual Value/Apparent Value Distinction. 154

char* and char() Members . 155

Restriction on Updates . 155

User-Controlled Index Maintenance with an os_backptr. 156

Making and Breaking Links on Indexable Data Members . . . 156

Making and Breaking Links to Indexed Member Functions . . 158

User-Controlled Index Maintenance Without an
os_backptr . 160

Rank and Hash Function Requirements 161

Example: Member Function Calls in Query and
Path Strings . 162

Rectangle Header File — rectangle.hh 163

Schema Source File — schema.cc . 164

Main Program File — rectangle.cc . 164

Chapter 6 Compaction . 173

Compaction Overview . 174

Compaction API — objectstore::compact() 175

Cross-Database Pointers and References 176

Compaction Example. 176

Null Termination . 177

Compaction and Transactions . 177

Measuring Unused Space with
os_segment::unused_space() . 178
Release 5.1 ix

Contents
Header File for Compaction . 178

Compaction Example. 179

Compactor Limitations . 181

Restrictions on Compaction Use . 181

File Systems and Compaction . 182

File Databases . 182

Rawfs Databases. 182

Compaction Utility . 183

Chapter 7 Metaobject Protocol . 185

Metaobject Protocol (MOP) Overview 187

MOP Header Files . 188

Attributes of MOP Classes . 189

Schema Read Access Compared to Schema
Write Access. 191

Schema Read Access . 191

Schema Write Access. 191

Schema Consistency Requirements . 193

Retrieving an Object Representing the Type of a Given
Object . 194

The type_at() Function . 194

The type_containing() Function . 194

Retrieving Objects Representing Classes in a Schema. . . 196

The Transient Schema . 199

Initializing the Transient Schema with initialize() 199

Copying into the Transient Schema with copy_classes() . . . 199

Looking Up a Class in the Transient Schema with find_type() 200

Schema Installation and Evolution Using MOP 202

The Metatype Hierarchy. 204

The Class os_type . 206

Create Functions. 206

The kind Attribute . 206

Retrieving the kind_string Attribute. 207

Retrieving the string Attribute . 207
x ObjectStore Advanced C++ API User Guide

Contents
Determining an os_type’s Type and Status 208

Type-Safe Conversion Operators. 209

The Class os_integral_type . 211

Create Functions . 211

Determining a Signed Type with is_signed() 211

The Class os_real_type . 212

Create Functions . 212

The Class os_class_type . 213

Create Functions . 213

The name Attribute . 214

The class_kind Attribute . 215

The members Attribute . 215

os_base_class Objects . 216

The declares_get_os_typespec_function Function 216

The set_declares_get_os_typespec_function Function 217

The defines_virtual_functions Attribute 217

The introduces_virtual_functions Attribute 217

The is_forward_definition Attribute . 218

The is_persistent Attribute . 218

Finding the Nonvirtual Base Class with find_base_class(). . . . 218

Finding Base Classes from Which this Inherits with
get_allocated_virtual_base_classes(). 218

Finding Classes from Which this Indirectly Inherits with
get_indirect_virtual_base_classes() . 219

Finding the Name of this with find_member() 219

Finding a Containing Object with get_most_derived_class() 219

The Class os_base_class . 223

Create Functions . 223

The class Attribute . 224

The access Attribute . 224

The is_virtual Attribute . 225

The Class os_member . 226

Create Functions . 226

The access Attribute . 227
Release 5.1 xi

Contents
The kind Attribute . 227

The defining_class Attribute. 228

Type-Safe Conversion Operators . 228

The Class os_member_variable . 229

Create Function . 229

The name Attribute . 229

The type Attribute . 230

The storage_class Attribute . 230

The is_field Attribute . 230

The is_static Attribute . 231

The is_persistent Attribute. 231

Type-Safe Conversion Operators . 231

The Class os_relationship_member_variable 232

Create Function . 232

The related_class Attribute . 232

The related_member Attribute . 233

The Class os_field_member_variable 234

Create Functions. 234

The size Attribute . 234

The Class os_access_modifier. 235

Create Function . 235

The base_member Attribute . 235

The Class os_enum_type . 236

Create Function . 236

The name Attribute . 236

The enumerators Attribute . 237

The Class os_enumerator_literal . 238

Create Function . 238

The name Attribute . 238

The Class os_void_type . 239

Create Function . 239

The Class os_pointer_type . 240

Create Function . 240

The target_type Attribute . 240
xii ObjectStore Advanced C++ API User Guide

Contents
Type-Safe Conversion Operators. 241

The Class os_reference_type . 242

Create Function. 242

The target_type Attribute . 242

The Class os_pointer_to_member_type 243

Create Function. 243

The target_type Attribute . 243

The target_class Attribute. 243

The Class os_indirect_type . 245

The Class os_named_indirect_type . 246

Create Function. 246

The target_type Attribute . 246

The name Attribute . 247

The Class os_anonymous_indirect_type 248

Create Function. 248

The target_type Attribute . 248

The is_const Attribute . 249

The is_volatile Attribute. 249

The Class os_array_type . 250

Create Function. 250

The number_of_elements Attribute . 250

The element_type Attribute . 251

Fetch and Store Functions . 252

The os_fetch() Functions . 252

The os_store() Functions . 253

Type Instantiation . 255

Example: Schema Read Access . 256

The Top-Level print() Function . 256

Recursive Execution of print() . 258

The print_a_pointer() function . 263

Other Data Handling Routines. 264

Example: Dynamic Type Creation. 268

Overview of the gen_schema() Example. 268

The gen_schema() Function . 269
Release 5.1 xiii

Contents
Supporting Functions for the gen_schema() Application . . . 271

Call Graph of Non-ObjectStore Functions for gen_schema() 273

The gen_schema.cc Source File . 273

The Driver Definition . 279

Chapter 8 Dump/Load Facility . 285

When Is Customization Required?. 287

Customizing Dumps . 289

Creation Stages. 289

Dumper Actions. 290

Supplying Customized Type-Specific Actions 291

Customizing Loads . 294

Specializing os_Planning_action . 295

Implementing operator ()() . 296

Defining and Registering the Instance 298

Customizing Formatting by Specializing
os_Dumper_specialization . 299

Implementing operator ()() . 299

Implementing should_use_default_constructor() 301

Implementing get_specialization_name() 302

Defining and Registering the Dumper Instance 302

Specializing os_Fixup_dumper . 304

Implementing dump_info() . 304

Implementing duplicate() . 306

Implementing the Constructor . 306

Specializing os_Type_info . 307

Implementing data . 307

Implementing the Constructor . 308

Specializing os_Type_loader . 309

Implementing operator ()() . 309

Implementing load(). 310

Implementing create() . 311

Implementing fixup() . 313

Implementing get() . 315
xiv ObjectStore Advanced C++ API User Guide

Contents
Defining and Registering the Instance 315

Specializing os_Type_fixup_info . 316

Implementing fixup_data . 316

Implementing the Constructor. 316

Specializing os_Type_fixup_loader . 318

Implementing operator ()() . 318

Implementing load() . 319

Implementing fixup(). 321

Implementing get() . 322

Registering the Fixup Loader . 322

os_Database_table. 324

os_Database_table::get() . 324

os_Database_table::insert() . 324

os_Database_table::find_reference() 326

os_Database_table::is_ignored(). 326

os_Dumper_reference . 327

os_Dumper_reference::operator void*() 327

os_Dumper_reference::operator =(). 327

os_Dumper_reference::os_Dumper_reference() 327

os_Dumper_reference::resolve() . 328

os_Dumper_reference::operator ==() 328

os_Dumper_reference::operator <(). 328

os_Dumper_reference::operator >(). 328

os_Dumper_reference::operator !=() 328

os_Dumper_reference::operator >=() 329

os_Dumper_reference::operator <=() 329

os_Dumper_reference::operator !() 329

os_Dumper_reference::get_database() 329

os_Dumper_reference::get_database_number(). 329

os_Dumper_reference::get_segment() 329

os_Dumper_reference::get_segment_number(). 330

os_Dumper_reference::get_offset() 330

os_Dumper_reference::get_string() 330

os_Dumper_reference::is_valid(). 330

os_Type_info . 331
Release 5.1 xv

Contents
os_Type_info::os_Type_info() . 331

os_Type_info::get_original_location() 331

os_Type_info::get_replacing_location() 331

os_Type_info::set_replacing_location(). 331

 os_Type_info::get_type() . 332

os_Type_info::get_replacing_segment(). 332

 os_Type_info::get_replacing_database() 332

os_Fixup_dumper . 333

os_Fixup_dumper::os_Fixup_dumper() 333

os_Fixup_dumper::get_object_to_fix() 333

os_Fixup_dumper::get_type() . 333

os_Fixup_dumper::~os_Fixup(). 333

os_Fixup_dumper::get_number_elements(). 333

Chapter 9 Advanced Schema Evolution . 335

Phases of the Schema Evolution Process 337

Instance Initialization . 338

Pointers to Modified Objects and Their Subobjects 338

Illegal Pointers . 338

C++ References. 339

ObjectStore References. 339

Obsolete Indexes and Queries . 339

Instance Reclassification . 340

Task List Reporting . 341

Instance Transformation . 342

Transformer Functions . 342

Initiating Evolution with evolve() . 344

Databases to Evolve. 344

Removed Classes . 345

Work Database . 345

Resolution of Local References . 346

Example: Changing the Value Type of a Data Member . 347

Using ossevol for Simple Schema Evolution 349

Using Transformer Functions. 350

Signature of Transformer Functions . 350
xvi ObjectStore Advanced C++ API User Guide

Contents
Associating a Transformer with a Class 351

Recycling Old Storage . 351

Accessing Unevolved Objects . 353

Example: Using Transformers . 357

Example: Changing Inheritance . 360

Instance Reclassification . 366

Signature of Reclassification Functions 366

Associating a Reclassifier with a Class 366

Example: Reclassifying Instances . 368

Illegal Pointers . 373

Ignoring Illegal Pointers During Schema Evolution 373

Using a Handler Function for Illegal Pointers 373

Creating a Handler Function . 374

The set_illegal_pointer_handler() Function. 375

Identifying Illegal Pointers Passed to a Handler 375

Example: Using Illegal Pointer Handlers 378

Obsolete Index and Query Handlers 381

Task List Reporting . 382

Instance Initialization Rules. 384

Class Creation . 384

Inheritance Redefinition . 385

Data Member Redefinition. 385

Member Function Redefinition . 385

Class Deletion . 385

Instance Reclassification . 386

Schema Changes Related to Data Members 387

Adding Data Members . 388

Deleting Data Members . 389

Changing the Value Type of a Data Member 390

Changing the Order of Data Members 394

Summary of Data Member Changes Not Requiring Explicit
Evolution . 395

Schema Changes Related to Member Functions 396

Schema Changes Related to Class Inheritance. 397
Release 5.1 xvii

Contents
Adding Base Classes . 398

Removing Base Classes . 400

Changing Between Virtual and Nonvirtual Inheritance . . 401

Class Deletion . 403

Instance Reclassification . 404

Chapter 10 Database Utility API . 405

Database Utility API Overview . 406

Managing Servers. 407

Getting Rawfs Disk Space Information with disk_free() 407

Getting Server Information with svr_stat() 407

Determining Sector Size with get_sector_size() 413

Killing a Client Thread on a Server with svr_client_kill() 414

Determining Whether a Server Is Running with svr_ping() . . . 414

Shutting Down the Server with svr_shutdown() 415

Moving Data Out of the Server Transaction Log with
svr_checkpoint() . 415

Managing Clients . 416

Setting a Client Name with set_client_name() 416

Getting a Client Name with get_client_name() 416

Closing a Server Connection with
close_server_connection() . 416

Closing All Server Connections with
close_all_server_connections() . 416

Managing Cache Managers . 417

Getting Cache Manager Status with cmgr_stat() 417

Deleting Unused Cache and commseg Files with
cmgr_remove_file(). 418

Shutting Down the Cache Manager with cmgr_shutdown() 419

Managing Databases . 420

Changing Database Group Names with chgrp(). 420

Changing Database Owner with chown() 420

Changing Database Permissions with chmod() 420

Changing a Rawfs Hosts with rehost_link() 421

Changing All Rawfs Hosts with rehost_all_links() 421
xviii ObjectStore Advanced C++ API User Guide

Contents
Copying Databases with copy_database() 421

Expanding File Names with expand_global() 422

Creating Rawfs Directories with mkdir() 422

Setting Links in the Rawfs with make_link(). 423

Removing Databases and Rawfs Links with remove() 424

Removing Rawfs Directories with rmdir() 424

Moving Directories and Databases with rename() 425

Testing a Pathname for Specified Conditions with stat() 425

Listing Directory Contents with list_directory() 425

Find Database Size with ossize() . 426

Verifying Pointers and References with osverifydb(). 427

Managing Schemas. 429

Comparing Schemas with compare_schemas() 429

Setting the Application Schema with
set_application_schema_path() . 429

Exceptions Summary . 430

Index . 431
Release 5.1 xix

Contents
xx ObjectStore Advanced C++ API User Guide

Preface

Purpose The ObjectStore Advanced C++ API User Guide describes how to
use the C++ programming interface to ObjectStore to create
database applications, using the more complex features of
ObjectStore. This book supports ObjectStore Release 5.1.

This publication’s companion volume, the ObjectStore C++ API
User Guide, describes the basic features of the C++ programming
interface to ObjectStore.

Audience This book assumes the reader is very experienced with C++ and
with programming with ObjectStore in particular, especially with
the information contained in the ObjectStore C++ API User Guide.

Scope Information in this book assumes that ObjectStore is installed and
configured.

How This Book Is Organized

In contrast to the ObjectStore C++ API Reference and ObjectStore
Collections C++ API Reference manuals, both of which are
organized alphabetically, the two ObjectStore user guides are
organized functionally. This manual, the ObjectStore Advanced
C++ API User Guide, describes advanced functions and macros.
The ObjectStore C++ API User Guide contains basic features.

Most of the chapters of this book parallel the chapters in the
ObjectStore C++ API User Guide, providing a more advanced look
at the ideas and features of ObjectStore, such as persistence,
transactions, threads, and collections. The remainder of the
chapters describe sophisticated features not generally used in
more basic applications; these chapters describe queries and
indexes, compaction, metaobject protocol, and the database utility
Release 5.1 xxi

Preface
API. This publication also organizes the ObjectStore API into
groups of related functions and macros.

Notation Conventions

This document uses the following conventions:

ObjectStore Release 5.1 Documentation

The ObjectStore Release 5.1 documentation is chiefly distributed
on line in Web-browsable format. If you want to order printed
books, contact your Object Design sales representative.

Your use of ObjectStore documentation depends on your role and
level of experience with ObjectStore. You can find an overview
description of each book in the ObjectStore documentation set at

Convention Meaning

Bold Bold typeface indicates user input or
code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a
variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You
can specify only one of the enclosed
items. Vertical bars represent OR
separators. For example, you can specify
a or b or c.

... Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Indicates that the operating system
named inside the circle supports or does
not support the feature being discussed.

UNIX UNIX
xxii ObjectStore Advanced C++ API User Guide

Preface
URL http://www.objectdesign.com . Select Products and then select
Product Documentation to view these descriptions.

Internet Sources of More Information

World Wide Web Object Design’s support organization provides a number of
information resources. These are available to you through a web
browser such as Internet Explorer or Netscape. You can obtain
information by accessing the Object Design home page with the
URL http://www.objectdesign.com . Select Technical Support . Select
Support Communications for detailed instructions about different
methods of obtaining information from support.

Internet gateway You can obtain such information as frequently asked questions
(FAQs) from Object Design’s Internet gateway machine as well as
from the Web. This machine is called ftp.objectdesign.com and its
Internet address is 198.3.16.26. You can use ftp to retrieve the
FAQs from there. Use the login name odiftp and the password
obtained from patch-info . This password also changes monthly,
but you can automatically receive the updated password by
subscribing to patch-info . See the README file for guidelines for
using this connection. The FAQs are in the subdirectory ./FAQ.
This directory contains a group of subdirectories organized by
topic. The file ./FAQ/FAQ.tar.Z is a compressed tar version of this
hierarchy that you can download.

Automatic email
notification

In addition to the previous methods of obtaining Object Design’s
latest patch updates (available on the ftp server as well as the
Object Design Support home page) you can now automatically be
notified of updates. To subscribe, send email to patch-info-
request@objectdesign.com with the keyword SUBSCRIBE patch-
info < your siteid> in the body of your email. This will subscribe you
to Object Design’s patch information server daemon that
automatically provides site access information and notification of
other changes to the on-line support services. Your site ID is listed
on any shipment from Object Design, or you can contact your
Object Design Sales Administrator for the site ID information.

Training

If you are in North America, for information about Object
Design’s educational offerings, or to order additional documents,
call 781.674.5000, Monday through Friday from 8:30 AM to 5:30
PM Eastern Time.
Release 5.1 xxiii

Preface
If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com . To expedite your message, begin the
subject with Doc: . For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
xxiv ObjectStore Advanced C++ API User Guide

Chapter 1
Advanced Persistence

The information in this chapter augments Chapter 2, Persistence,
in the ObjectStore C++ API User Guide. The material is organized
in the following manner:

ObjectStore Pvars 2

Creating Object Clusters 7

Setting Data Fetch Policies 8

Using ObjectStore References 11

Generating One Reference from Another 16

Using Nonparameterized References 17

References and Relative Pathnames 19

ObjectStore Lightweight References 20

ObjectStore Protected References 23

Summary of ObjectStore Reference Types 24

Retaining Pointer Validity Across Transactions 26

Discriminant Functions 28
Release 5.1 1

ObjectStore Pvars
ObjectStore Pvars

When a pointer to persistent memory is assigned to a transiently
allocated variable, the value of the variable is valid only until the
end of the transaction in which the assignment was made. Using
database entry points typically involves looking up a root and
retrieving its value — a pointer to the entry point. Frequently this
pointer is assigned to a transiently allocated variable for future
use. However, its use is limited, since it normally will not remain
valid in subsequent transactions (but see Retaining Pointer
Validity Across Transactions on page 26).

Example of loss of
pointer validity outside
transaction

#include <ostore/ostore.hh>
#include "part.hh"

void f() {

objectstore::initialize();

static os_typespec part_type("part");

part *a_part_p = 0;
employee *an_emp_p = 0;

os_database *db1 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1,0,os_transaction::update)
a_part_p = (part*) (

db1->find_root("part_root")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2,0,os_transaction::update)
an_emp_p = a_part_p->responsible_engineer; /* INVALID! */
. . .

OS_END_TXN(tx2)

db1–>close();
}

Example of
re-retrieving pointers
in subsequent
transactions

One way to ensure that the pointer remains valid is to re-retrieve
the pointer in each subsequent transaction in which it is required.

#include <ostore/ostore.hh>
#include "part.hh"

main() {

objectstore::initialize();

static os_typespec part_type("part");
part *a_part_p = 0;
2 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
employee *an_emp_p = 0;

os_database *db1 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1,0,os_transaction::update)
a_part_p = (part*) (

db1->find_root("part_root")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2,0,os_transaction::update)
a_part_p = (part*) (

db1->find_root("part_root")–>get_value()
); /* re-retrieval */

an_emp_p = a_part_p->responsible_engineer; /* valid */
. . .

OS_END_TXN(tx2)

db1–>close();
}

Using Pvars to Maintain Pointer Validity

A convenient alternative is to use ObjectStore pvars. ObjectStore
pvars allow you to maintain, across transactions, a valid pointer
to an entry point object.

To use pvars, you define the variable you want to hold the pointer
to the entry point. Then you pass the variable’s address to the
function os_pvar::os_pvar() , along with the name of the root that
points to the desired entry point object, and a pointer to the
database containing the root.

This function is the constructor for the class os_pvar , but you
never have to explicitly use the instance of os_pvar that results.
This instance must be a stack object, however, so do not create it
with new .

Once you have called the os_pvar constructor, ObjectStore
automatically maintains an association between the variable and
the entry point. At the beginning of each transaction in the current
process, if the database containing the specified root is open,
ObjectStore establishes a valid pointer to the entry point object as
the value of the variable. It also sets the variable to point to the
entry point when the database becomes open during a
transaction.
Release 5.1 3

ObjectStore Pvars
When control leaves the block in which the os_pvar constructor
was called, the destructor for the resulting instance of os_pvar is
executed, breaking the association between the variable and entry
point. Therefore, if you are using the ObjectStore transaction
macros, you should call the constructor from outside any
transaction, since the macros establish their own block.

Additional Type Safety

As with os_database_root::get_value() , you can also supply an os_
typespec* to os_pvar::os_pvar() for additional type safety.
ObjectStore will check that the specified typespec matches the
typespec stored with the root. Note that it checks only that the
typespec supplied matches the stored typespec, and does not
check the type of the entry point object itself.

See Type Safety for Database Roots in Chapter 2 of the ObjectStore
C++ API User Guide for more information on the use of typespecs.

Pvar Example

Here is an example of the use of pvars:

#include <ostore/ostore.hh>
#include "part.hh"

void f() {

objectstore::initialize();
static os_typespec part_type("part");
part *a_part_p = 0;
employee *an_emp_p = 0;

os_database *db1 = os_database::open("/thx/parts");
os_pvar p(db1, &a_part_p, "part_root", &part_type);

OS_BEGIN_TXN(tx1,0,os_transaction::update)
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2,0,os_transaction::update)
an_emp_p = a_part_p->responsible_engineer; /* valid */
. . .

OS_END_TXN(tx2)

db1–>close();
}

Note that, even though you can use this variable from one
transaction to the next without re-retrieving its value, you cannot
use it in between transactions. As always, you must be within a
4 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
transaction to access persistent data. In between transactions,
ObjectStore automatically sets the variable to 0. The variable is
also set to 0 during a transaction if the database containing its
associated root is closed.

Note also that you should not try to set the value of this variable,
since ObjectStore handles all assignment of values to it. If you
want to retrieve different objects at different times through the use
of a single pvar, use a pvar to associate a pointer-valued variable
with a pointer-valued entry point object. Then you can change
what the entry point points to as needed.

Initialization Functions

You can also create an entry point and root using os_pvar::os_
pvar() , by supplying a pointer to an initialization function. The
function should allocate the entry point object in a given database,
and return a pointer to the new object.

This function will be executed upon the call to os_pvar() or at the
beginning of subsequent transactions, if the database to contain
the root is open and ObjectStore cannot find the specified root in
that database. It will also be called when this database becomes
open during a transaction, and ObjectStore cannot find the root in
that database.

os_pvar constructor
declaration

Here is how the os_pvar constructor is declared:

os_pvar(
os_database *db,
void *location,
char *root_name,
os_typespec *typespec = 0,
void *(*init_fn)(os_database*) = 0

);

ObjectStore provides three standard initialization functions, os_
pvar::init_long() , os_pvar::init_int() , and os_pvar::init_pointer() .
These each allocate an object of the appropriate type (long , int , or
void*), initialize the object to 0, and return a pointer to it. You can
supply either a standard or a user-defined function to the os_pvar
constructor.

Example pvar
initialization function

Here is an example of the use of a pvar initialization function:

#include <ostore/ostore.hh>
#include "part.hh"
Release 5.1 5

ObjectStore Pvars
void *part_init(database *db) {
static os_typespec part_type("part");
return new(db, part_type) part("part_0");

}

void f() {

objectstore::initialize();

static os_typespec part_type("part");
part *a_part_p = 0;
employee *an_emp_p = 0;
database *db1 = database::open("/thx/parts");
os_pvar p(db1, &a_part_p, "part_root", &part_type, part_init);

OS_BEGIN_TXN(tx1,0,os_transaction::update)
a_part_p->display();
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2,0,os_transaction::update)
an_emp_p = a_part_p->responsible_engineer; /* valid */
. . .

OS_END_TXN(tx2)

db1–>close();
}

6 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
Creating Object Clusters

Object clusters, like segments, are created explicitly. Just as you
create a segment by performing os_database::create_segment() on
the database to contain the new segment, you create an object
cluster by performing os_segment::create_object_cluster() on the
segment to contain the new cluster.

os_object_cluster* create_object_cluster(os_unsigned_int32 size) ;

The function returns a pointer to an os_object_cluster . Unlike
segments, however, which are variable sized and expand to
accommodate whatever is added to them, clusters have a fixed
size. You specify the size in bytes of a new cluster as an argument
to create_object_cluster() . This number must be less than 65536,
since 64 KB is the maximum cluster size.

os_segment *seg1;
. . .

os_object_cluster *clust1 = seg1–>create_object_cluster(4096) ;

The actual size of the new cluster is the result of rounding the
specified size up to the next whole number of pages, minus the
platform architecture alignment (see ObjectStore Building C++
Interface Applications).

Do not perform create_object_cluster() on the transient segment.

Allocating a new
object within an
existing cluster

You can use os_object_cluster::of() to allocate a new object in the
same cluster as an existing one:

os_database *db1;
part *an_old_part,

. . .

part *a_new_part = new(
os_object_cluster::of(an_old_part) ,
part_type

) part(111);
Release 5.1 7

Setting Data Fetch Policies
Setting Data Fetch Policies

An ObjectStore application can control, for each segment, the
granularity of data transfers from the Server to the client. When an
application dereferences a pointer to an object that is not already
resident in the client cache, ObjectStore retrieves from the Server
at least the page containing the object. The default behavior is to
retrieve just the page containing the object. However, in some
circumstances retrieving additional pages can improve
performance, if the objects stored nearby in the database are likely
to be referenced within a brief period of time.

Differences in
granularity between
fetch policies

ObjectStore has several fetch policies you can associate with a given
segment to control transfer granularity:

• os_fetch_segment specifies that the entire segment containing
the desired object be fetched.

• os_fetch_page specifies that the page containing the desired
object be fetched, along with zero or more of the pages that
follow it in memory.

• os_fetch_stream specifies that a double buffering policy should
be used to stream data from the referenced object’s segment. It
is useful for special applications scanning large quantities of
data.

Specifying a fetch
policy

You specify the fetch policy for segments or databases using the
member function set_fetch_policy() , declared as follows:

enum os_fetch_policy {
os_fetch_page, os_fetch_segment, os_fetch_stream };

void os_database::set_fetch_policy (
os_fetch_policy, os_int32 bytes);

void os_segment::set_fetch_policy (
os_fetch_policy, os_int32 long bytes);

Using the set_fetch_policy() function on an os_database object
changes the fetch policy for all segments in that database,
including segments created by the current process in the future.

Note that a fetch policy established with set_fetch_policy() (for
either a segment or a database) remains in effect only until the end
of the process making the function call. Moreover, set_fetch_
policy() only affects transfers made by this process. Other
8 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
concurrent processes can use a different fetch policy for the same
segment or database.

os_fetch_segment Policy

For applications that manipulate substantial portions of small
segments, the os_fetch_segment policy is appropriate. Under this
policy, ObjectStore attempts to fetch the entire segment
containing the desired page, in a single client/server interaction,
if the segment will fit in the client cache without evicting any other
data. If there is not enough space in the cache to hold the entire
segment, the specified number of bytes are fetched, rounded up to
the nearest positive number of pages. (Note that if you specify 0
bytes, this will be rounded up, and the unit of transfer will be a
single page.) The os_fetch_segment policy is very efficient if a
significant portion of the segment will be required, but wastes
time and bandwidth if only a few pages will be referenced.

os_fetch_page Policy

If your database contains segments larger than the client cache of
your workstation, or if your application does not refer to a
significant portion of each segment in the database, you should
use the os_fetch_page fetch policy. This policy causes ObjectStore
to fetch a specified number of bytes at a time (rounded up to the
nearest positive number of pages), beginning with the page
required to resolve a given object reference. Appropriate values
for the fetch quantum might range from 4 KB to 256 KB or higher,
depending on the size and locality of the application data
structures.

os_segment *text_segment;

/* The text segment contains long strings of characters */
/* representing page contents, which tend to be referred */
/* to consecutively. So tell ObjectStore to fetch them */
/* 16 KB at a time. */

text_segment->set_fetch_policy (os_fetch_page, 16384);

os_fetch_stream Policy

For special applications that scan sequentially through very large
data structures, os_fetch_stream might considerably improve
performance. As with os_fetch_page , this fetch policy lets you
specify the amount of data to fetch in each client/server
Release 5.1 9

Setting Data Fetch Policies
interaction for a particular segment. But, in addition, it specifies
that a double buffering policy should be used to stream data from
the segment.

This means that, when you scan a segment sequentially, after the
first two transfers from the segment, each transfer from the
segment replaces the data cached by the second-to-last transfer
from that segment. This way, the last two chunks of data retrieved
from the segment will generally be in the client cache at the same
time. And, after the first two transfers, transfers from the segment
generally will not result in eviction of data from other segments.
This policy also greatly reduces the internal overhead of finding
pages to evict.

os_segment *image_segment;

/* The image segment contains scan lines full of pixel data, */
/* which we’re about to traverse in sequence for image */
/* sharpening. Telling ObjectStore to stream the data from */
/* the server in 32 KB chunks gives us access to adjacent */
/* scan lines simultaneously and optimizes client/server traffic. */

image_segment->set_fetch_policy (os_fetch_stream, 32768);

When you perform allocation that extends a segment whose fetch
policy is os_fetch_stream , the double buffering described above
begins when allocation reaches an offset in the segment that is
aligned with the fetch quantum (that is, when the offset mod the
fetch quantum is 0).

When the Fetch Quantum Is Too Large

For all policies, if the fetch quantum exceeds the amount of
available cache space (cache size minus wired pages), transfers are
performed a page at a time. In general, the fetch quantum should
be less than half the size of the client cache.
10 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
Using ObjectStore References

ObjectStore references provide an alternative to using pointers.
ObjectStore references allow you to override default restrictions
on both referring across databases and referring across
transactions. References serve as substitutes for pointers, and you
can usually use them as if they actually were valid pointers.

ObjectStore references carry some extra cost over the use of
pointers. They are larger than pointers (between 8 and 16 bytes,
depending on what kind you use), and dereferencing one usually
involves a table lookup.

The most generally useful ObjectStore references are instances of
the parameterized class os_Reference . More specialized reference
classes are discussed in

• Using Nonparameterized References on page 17

• References and Relative Pathnames on page 19

• ObjectStore Lightweight References on page 20

• ObjectStore Protected References on page 23

Example:
os_Reference

Here is an example of using an os_Reference :

#include <ostore/ostore.hh>
#include <stdio.h>

class employee {
static os_typespec *get_os_typespec();
. . .

};

class part {
static os_typespec *get_os_typespec();
. . .
os_Reference<employee> responsible_engineer;
. . .

};

void f() {
objectstore::initialize();

static os_database *db1 = os_database::open("/thx/parts");
static os_database *db2 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part *a_part = new(db1, part::get_os_typespec()) part;
employee *an_emp =

new(db2, employee::get_os_typespec()) employee;
Release 5.1 11

Using ObjectStore References
a_part->responsible_engineer = an_emp;

printf("%d\n", a_part->responsible_engineer->emp_id);
OS_END_TXN(tx1)

db1–>close();
}

Here, the member responsible_engineer is declared to be of type
os_Reference<employee> . The class name in angle brackets is the
referent type. It indicates that values of responsible_engineer are
references to instances of the class employee .

When the employee* (an_emp) is assigned to a_part->responsible_
engineer , a reference to this employee* is automatically
constructed and stored there. You can use an employee* anywhere
a reference<employee> is expected. In general, you can use a T*
anywhere a reference<T> is expected, because there is a
conversion constructor, os_Reference::os_Reference(T*) .

Now you can use the reference to the employee in many contexts
requiring an employee* . This is because the class os_Reference
overloads the –> operator, and defines a conversion operator so its
instances are converted to pointers to instances of its referent type,
when appropriate. So you just use the reference as you would a
pointer to its referent type, as in the printf statement.

Note that the -> and conversion operators are the only operators
with special reference class overloadings, so references do not
behave like pointers in the context of other operators, like [] and
++.

Automatic Database Open

If an ObjectStore reference refers to an object in a database that is
not open, ObjectStore opens the database automatically when the
object is accessed.

Using memcpy() with Persistent os_references and Related Classes

You can use the C++ memcpy() function to copy a persistent os_
reference only if the target object is in the same segment as the
source object. This is because all persistent os_reference s use os_
segment::of(this) for os_reference resolution processing and the
resolution will be incorrect if the os_reference has been copied to
a different segment. This restriction holds true for the eponymous
types of the parameterized and unparameterized versions of the
12 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
following classes: os_Reference , os_Reference_protected , and os_
Reference_ this_DB.

Resolution by Relative Pathname

As with cross-database pointers, instances of os_Reference store a
relative pathname to identify the referent database. See
References and Relative Pathnames on page 19.

Referring Across Transactions

“Example: os_Reference” on page 11 shows how references can be
used to refer from one database to another. References can also be
used to refer across transactions.

In an ObjectStore application, you typically retrieve pointers to
persistent objects and store them in transiently allocated
variables. You can normally use these pointers only in the
transaction in which they were retrieved:

Example of transiently
allocated (invalid)
pointers

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part.hh"

void f() {

objectstore::initialize();

os_Set<part*> *part_set;
part *a_part;

os_database *db1 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part_set = (os_Set<part*>*) (

db1->find_root("part_set")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2, 0, os_transaction::update)
a_part = part_set->query_pick(/* INVALID! */

"part", "part_number==123456", db1
);
. . .

OS_END_TXN(tx2)

db1–>close();
}

Here, part_set is a pointer to an entry point, a set of part* pointers.
Since part_set is transiently allocated, its value is valid only until
Release 5.1 13

Using ObjectStore References
the end of the current transaction. So its use in the query in the
next transaction is invalid, and will have unpredictable results. If
you want to use this pointer in a subsequent transaction, it must
be retrieved again:

Example of retrieving
a previously allocated
pointer

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part.hh"

main() {

objectstore::initialize();

os_Set<part*> *part_set;
part *a_part;

os_database *db1 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part_set = (os_Set<part*>*) (

db1->find_root("part_set")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2, 0, os_transaction::update)
part_set = (os_Set<part*>*) (

db1->find_root("part_set")–>get_value()
); /* re-retrieval */

a_part = part_set->query_pick(/* OK */
"part", "part_number==123456", db1

);
. . .

OS_END_TXN(tx2)

db1–>close();
}

Using references to
avoid re-retrieving
previously allocated
pointers

But suppose retrieving the required pointers is relatively
complicated or expensive, and you need to use them in many
transactions. Then it might be preferable to use ObjectStore
references:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part.hh"

main() {

objectstore::initialize();
part *a_part;
os_Reference<os_Set<part*> > part_set_ref;
os_database *db1 = os_database::open("/thx/parts");
14 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part_set_ref = (os_Set<part*>*) (

db1->find_root("part_set")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2, 0, os_transaction::update)
a_part = part_set_ref->query_pick(

"part", "part_number==123456", db1
); /* OK */
. . .

OS_END_TXN(tx2)

db1–>close();
}

Here, the variable part_set_ref is declared to be of type os_
Reference< os_Set<part*> > . The class name in angle brackets, os_
Set<part*> , is the referent type. It indicates that part_set_ref refers
to an instance of the class os_Set<part*> . When the os_Set<part*>*
returned by the get_value() is assigned to part_set_ref , a reference
to the os_Set<part*> is automatically constructed and stored in
part_set_ref . You can use an os_Set<part*>* anywhere an os_
Reference< os_Set<part*> > is expected.

As described above, you can use a T* anywhere a os_
Reference<T> is expected, because there is a conversion
constructor, os_Reference::os_Reference(T*) .

You can also use the os_Reference in any context requiring an os_
Set<part*> . As mentioned above, this is because the class os_
Reference overloads the * and –> operators, and defines a
conversion operator so its instances are converted to pointers to
instances of its referent type, when appropriate. So you just use
the reference as you would a pointer to its referent type, as when
calling query_pick() .
Release 5.1 15

Generating One Reference from Another
Generating One Reference from Another

A reference can be used to generate a text stream, which in turn
can be used to generate another reference to the same object. You
do this using ::operator <<() and ::operator >>() . For example:

#include <ostore/ostore.hh>
#include <iostream.h>

void dump_part(part *a_part) {
os_Reference<part> part_ref = a_part;
cout << part_ref;

}

os_Reference<part> read_dump() {
os_Reference<part> part_ref;
cin >> part_ref;
return part_ref;

}

16 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
Using Nonparameterized References

If your compiler does not support class templates, you can use the
nonparameterized reference class os_reference . You also should
use os_reference if you need a reference to an instance of a built-
in type like int or char , since the referent type of an os_Reference
must be a class.

os_reference is just like os_Reference , except the conversion
constructor used is os_reference(void*) instead of os_
Reference(T*) . In addition, the conversion operator used is
operator void*() instead of operator T*() , which means that you
should use a cast to pointer-to-referent type when dereferencing
an os_reference .

Example: using
nonparameterized
references

Here are some examples:

#include <ostore/ostore.hh>
#include <stdio.h>

class employee {
static os_typespec *get_os_typespec();
. . .

};

class part {
static os_typespec *get_os_typespec();
. . .
os_reference responsible_engineer;
. . .

};

f() {
objectstore::initialize();

static os_database *db1 = os_database::open("/thx/parts");
static os_database *db2 = os_database::open("/thx/parts");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part *a_part = new(db1, part::get_os_typespec()) part;
employee *an_emp =

new(db2, employee::get_os_typespec()) employee;
a_part->responsible_engineer = an_emp;

printf("%d\n",(employee*)
(a_part->responsible_engineer)->emp_id);

OS_END_TXN(tx1)
db1–>close();

}

Release 5.1 17

Using Nonparameterized References
Example: using
nonparameterized
references

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part.hh"

main() {

objectstore::initialize();

part *a_part;

os_database *db1 = os_database::open("/thx/parts");

os_reference part_set_ref;

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part_set_ref = (os_set*) (

db1->find_root("part_set")–>get_value()
); /* retrieval */
. . .

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2, 0, os_transaction::update)
a_part = (part*) (

((os_set*) (part_set_ref))->query_pick(
"part", "part_number==123456", db1

)
) ; /* ok */

. . .

OS_END_TXN(tx2)
db1–>close();

}

18 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
References and Relative Pathnames

As is true with cross-database pointers, instances of os_Reference
store a relative pathname to identify the referent database. The
pathname is relative to the lowest common directory in the
pathnames of the referent database and the database containing
the reference. For example, if a reference is stored in /A/B/C/db1
that refers to data in /A/B/D/db2 , the lowest common directory is
A/B , so the relative pathname ../../D/db2 is used.

This means that if you copy a database containing an os_
Reference or os_reference , the reference in the copy and the
reference in the original might refer to different databases. To
change the database a reference refers to, you can use the
ObjectStore utility oschangedbref , which is described in
oschangedbref: Changing External Database References in
ObjectStore Management.

Note that an intradatabase reference (a reference referring to an
object in the same database) uses a pathname of the form
../db-name , where db-name is the terminal component of the
database’s pathname. So if you copy or move this database in such
a way as to change the terminal component of its pathname — say
by making a copy within the same directory — the reference in the
copied or moved database will not be an intradatabase reference;
it will refer to the location ../db-name , which has the same
terminal component as the original. To make sure you get an
intradatabase reference, use os_Reference_this_DB or os_
Reference_local. See ObjectStore Lightweight References on
page 20.

A discussion on how relative pathnames work can be found in
Cross-Database Pointers and Relative Pathnames in Chapter 2 of
the ObjectStore C++ API User Guide.
Release 5.1 19

ObjectStore Lightweight References
ObjectStore Lightweight References

Instances of the class os_Reference take up 12 bytes of storage
each. If you are using a large number of references, you might be
able to use one of the lightweight reference types to save space.

There are three kinds of lightweight references:

• Instances of os_Reference_local or os_reference_local (8 bytes)

• Instances of os_Reference_transient or os_reference_transient
(8 bytes)

• Instances of os_Reference_this_DB or os_reference_this_DB
(8 bytes)

A summary of the various ObjectStore reference classes is
presented in the tables in Summary of ObjectStore Reference
Types on page 24.

Local References

Each os_Reference stores a database pathname. An os_
Reference_local , in contrast, saves space by not storing the
pathname of the referent database, and instead requiring you to
supply a pathname when dereferencing it. So you dereference an
os_Reference_local explicitly, with a call to the function os_
Reference_local::resolve() , which takes a database* argument.

Example: use of os_
Reference_local

Here is an example:

#include <ostore/ostore.hh>
#include <stdio.h>

class employee {
static os_typespec *get_os_typespec();
. . .

};

class part {
static os_typespec *get_os_typespec();
. . .
os_Reference_local<employee> responsible_engineer;
. . .

};

f() {
objectstore::initialize();

static os_database *db1 = os_database::open("/thx/parts");
20 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
static os_database *db2 =
os_database::open("/thx/employees");

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
part *a_part = new(db1, part::get_os_typespec()) part;
employee *an_emp =

new(db2, employee::get_os_typespec()) employee;
a_part->responsible_engineer = an_emp;

printf("%d\n",
a_part->responsible_engineer->resolve(db2)->emp_id);

OS_END_TXN(tx1)

db1–>close();
}

Just as os_reference is the nonparameterized version of os_
Reference , os_reference_local is the nonparameterized version of
os_Reference_local . Resolving an os_reference_local is just like
resolving an os_Reference_local ; no cast is necessary (as is
necessary with an os_reference), since resolution is explicit.

Using Transient References with os_Reference_transient

Instances of os_Reference_transient are used to refer across
transactions, but can only refer from transient memory. So if you
need a reference that can be transiently allocated, you can use an
os_Reference_transient . No explicit resolution is necessary, since
such a reference stores a database* (which saves space compared
to storing a database pathname). You use it just as you would an
os_Reference , except that it cannot be allocated in persistent
storage (since the database* it contains actually points to a
transient object).

There is also a nonparameterized class, os_reference_transient , for
referring from transient memory. You use it just as you would os_
reference , except that it cannot be allocated in persistent storage.

Reducing Relocation Overhead

Using ObjectStore references has an advantage not yet discussed:
they can reduce the amount of virtual memory that ObjectStore
reserves during certain transactions. When ObjectStore retrieves
the objects in a particular database segment, it reserves virtual
memory addresses for all the objects in segments pointed to by
objects in the retrieved segment. In other words, virtual memory
is preassigned corresponding to each outgoing pointer in the
retrieved segment (where an outgoing pointer points to an object
Release 5.1 21

ObjectStore Lightweight References
in a different segment, not necessarily a different database).
Whenever an outgoing ObjectStore reference is used in a segment
instead of an outgoing pointer, this reduces the amount of virtual
memory that must be reserved by transactions that retrieve the
segment.

If you want to use a reference solely for the purpose of saving on
virtual memory addresses, you can use an os_Reference_this_DB .
When ObjectStore resolves one of these references, it assumes the
referent is in the same database as the reference itself. So, even
though these references save space by not storing a database
pathname, they do not have to be resolved explicitly. You use an
os_Reference_this_DB just as you would an os_Reference .

There is also a nonparameterized class os_reference_this_DB ,
which you use just as you would os_reference .
22 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
ObjectStore Protected References

You can ensure referential integrity for ObjectStore references by
using protected versions of the reference classes. Once an object
referred to by a protected reference is deleted, use of the protected
reference causes an err_reference_not_found exception to be
signaled. If the referent database has been deleted, err_database_
not_found is signaled. If you do not use protected references, then,
as with regular C++ pointers, you can access arbitrary memory by
using a reference whose referent has been deleted.

The protected reference classes are

• os_Reference_protected (used just as is os_Reference)

• os_Reference_protected_local (used just as is os_Reference_
local)

Do not use protected references to refer to transient memory.

Each time you create a protected reference, a write to the database
is performed, to maintain a persistent table that associates
protected references with their referents.

You can test a safe reference to see if its referent has been deleted
with the member function deleted() .

A summary of the various ObjectStore reference classes is
presented in Summary of ObjectStore Reference Types on
page 24.
Release 5.1 23

Summary of ObjectStore Reference Types
Summary of ObjectStore Reference Types

Parameterized
reference classes

The table below summarizes the characteristics of the various
parameterized ObjectStore references.

Class Purpose Resolution Reference
Allocation

Referent
Allocation

Size in
Bytes

os_Reference Refer across
databases and
transactions

Implicit Anywhere Anywhere 12

os_Reference_
local

Refer across
databases and
transactions

resolve(
referent-database*)

Anywhere Anywhere 8

os_Reference_
transient

Refer across
transactions

Implicit Transient
memory

Anywhere 8

os_Reference_
this_DB

Save on VM
addresses

Implicit Same
database as
referent

Same
database as
reference

8

os_Reference_
protected

Refer across
databases and
transactions;
referential
integrity

Implicit; signals
error if referent
deleted

Anywhere Persistent
memory

12

os_Reference_
protected_
local

Refer across
databases and
transactions;
referential
integrity

resolve(
referent-
database*) signals
error if referent
deleted

Anywhere Persistent
memory

8

24 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
Nonparameterized
reference classes

The table below summarizes the characteristics of the various
nonparameterized ObjectStore references.

Class Purpose Resolution Reference
Allocation

Referent
Allocation

Size in
Bytes

os_reference Refer across
databases and
transactions

Cast to pointer to
referent type

Anywhere Anywhere 12

os_reference_
local

Refer across
databases and
transactions

resolve(
referent-database*)

Anywhere Anywhere 8

os_reference_
transient

Refer across
transactions

Cast to pointer to
referent type

Transient
memory

Anywhere 8

os_reference_
this_DB

Save on VM
addresses

Cast to pointer to
referent type

Same
database
as referent

Same
database
as
reference

8

os_reference_
protected

Refer across
databases and
transactions;
referential
integrity

Cast to pointer to
referent type;
signals error if
referent deleted

Anywhere Persistent
memory

12

os_reference_
protected_
local

Refer across
databases and
transactions;
referential
integrity

resolve(
referent-database*) ;
signals error if
referent deleted

Anywhere Persistent
memory

8

Release 5.1 25

Retaining Pointer Validity Across Transactions
Retaining Pointer Validity Across Transactions

If you are converting an existing application to use ObjectStore, it
might be inconvenient to rewrite the code to use references,
especially if the application will use many short transactions.
ObjectStore has a feature that enables you to retain persistent
addresses across transaction boundaries, so that it is not necessary
to use references.

The advantage of this feature is that code is easier to port to
ObjectStore. The disadvantage is that ObjectStore might run out of
available persistent addresses if too much persistent data is
referenced. This is because ObjectStore normally unmaps all
persistent data from virtual memory at the end of each
transaction. This feature disables that unmapping. In addition,
database access might be somewhat slower, particularly if
multiple databases are referenced.

The static member function objectstore::retain_persistent_
addresses() globally enables retaining persistent addresses. It has
no arguments.

The static member function objectstore::release_persistent_
addresses() globally releases all persistent addresses. After this
function is called, all existing transient-to-persistent pointers are
invalidated.

You can determine whether persistent addresses are currently
retained with objectstore::get_retain_persistent_addresses() ,
which returns nonzero for true and 0 for false.

Example: retrieving
persistent addresses

Here is an example:

#include <ostore/ostore.hh>
#include "part.hh"

main() {

objectstore::initialize();
os_database *db1;

. . .
person *p, *q;

. . .
objectstore::retain_persistent_addresses();

OS_BEGIN_TXN(tx1,0,os_transaction::update)

p = (person *) (db1->find_root("fred")–>get_value());
26 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
/* Now p is valid, and can be referenced normally. */
p–>print_info();

OS_END_TXN(tx1)

/* p cannot be dereferenced outside a transaction, but it */
/* can be stored anywhere. */
q = p;

OS_BEGIN_TXN(tx1,0,os_transaction::update)

/* If persistent addresses were not retained, we */
/* could not do this without using references for p and q */
q–>print_info();

OS_END_TXN(tx1)

}

Release 5.1 27

Discriminant Functions
Discriminant Functions

For each union type intended to have persistent instances, you
must supply an associated discriminant function. Discriminant
functions allow ObjectStore to determine the actual layout of any
persistent object when mapping it into memory.

Consider the following union:

union myunion {
struct {

 int i;
 foo * fptr;

} S1 ;

struct {
 bar * btr;
 float f;

} S2 ;

} ;

ObjectStore sometimes has the task of modifying all pointers
embedded in an object when the object is brought into memory
(see ObjectStore Memory Mapping Architecture in Chapter 1 of
the ObjectStore C++ API User Guide). In the case above, such an
object will contain a pointer either at offset 0 or at offset 4 bytes,
depending on whether S1 or S2 is the correct interpretation of the
object’s structure.

Because the application can reconfigure the object (switch
between S1 and S2) at will, the application must record the state
of the object relative to layout, and provide a functional interface
for extracting that information. This functional interface is the
discriminant function.

Defining and using
unions with
discriminant functions

The union above can be modified slightly to accommodate this as
follows:

union myunion {
int Tag;

struct {
int T;
int i;
foo * fptr;

} S1 ;

struct {
28 ObjectStore Advanced C++ API User Guide

Chapter 1: Advanced Persistence
int T;
bar * btr;
float f;

} S2 ;

os_int32 discriminant();
} ;

os_int32 myunion::discriminant() { return Tag; }

Applications that use this union type must take care to do

S1.T = 1;

when they want to use the S1 layout.

Likewise, when they want to use the S2 layout, they should do

S2.T = 2;

Switching layouts must be accompanied by reassigning the
leading integer.

Example: defining and
using a class with a
union-valued data
member

You can define a class with a union-valued data member as
follows:

class myclass {
public:
myunion MyU;
int Tag;
os_int32 discriminant();

};

os_int32 myclass::discriminant() { return Tag; }

Now applications must take care that the Tag records the value of
the union layout. For example:

 myclass MyC;

 MyC.Tag = 1; MyC.S1.i = 0;

 /* . . . later on we switch */

 MyC.Tag = 2; MyC.S2.f = 1.1;

In the first example, the name of the discriminant function,
myunion::discriminant , serves to associate the function with the
union myunion . In the second example, the name
myclass::discriminant serves to associate the function with the one
and only union-valued data member of myclass . When a class has
more than one union-valued data member, the name of each
discriminant function should have the form
Release 5.1 29

Discriminant Functions
discriminant_union-name_data-member-name

where union_name is the name of the associated union, and data-
member-name is the name of the associated data member.

For heterogeneity considerations, in the ObjectStore C++ API
Reference, Chapter 5 see Discriminant Functions for additional
details.
30 ObjectStore Advanced C++ API User Guide

Chapter 2
Advanced Transactions

This chapter is intended to augment Chapter 3, Transactions, of
the ObjectStore C++ API User Guide. It includes descriptions of
several advanced transaction concepts, particularly those
pertaining to locks and locking. The information is organized in
the following manner:

Reducing Wait Time for Locks 32

Nested Transactions 34

Deadlock 35

Multiversion Concurrency Control (MVCC) 37

Logging and Propagation 41

Checkpoint: Committing and Continuing a Transaction 43

Transaction Locking Examples 46
Release 5.1 31

Reducing Wait Time for Locks
Reducing Wait Time for Locks

What can you do to reduce the overhead of waiting for locks? One
application can reduce the waiting overhead for other concurrent
applications by avoiding locking data unnecessarily, and by
avoiding locking data for unnecessarily long periods of time. This
section describes several techniques for minimizing wait time.

Clustering

One way to help avoid locking data unnecessarily involves the
use of clustering. Suppose that, during a given transaction, an
application requires object-a but not object-b . If the two objects are
clustered onto the same page, they will both be locked, preventing
other processes from accessing both objects until the end of the
transaction. In contrast, by clustering object-b in a different object
cluster or segment from object-a , you guarantee that the objects
will be on different pages. So, if you use page-level locking
granularity, the objects will not be locked together.

Locking Granularity

Another way to help avoid locking data unnecessarily is to avoid
unnecessary use of segment-level locking granularity; that is, to
avoid unnecessary use of lock_segment_read or lock_segment_
write as the argument to os_segment::set_lock_whole_segment() .
Unnecessary use of lock_segment_write can also increase the
amount of data transferred out of the client cache. The benefit of
segment granularity locking is that it avoids the overhead of a
separate page fault for each page locked, and it can reduce Server
communication.

For more information, see os_segment::set_lock_whole_segment()
in Chapter 2 of the ObjectStore C++ API Reference.

Transaction Length

One way to avoid locking data for unnecessarily long periods of
time is to make (nonnested) transactions as short as possible,
while still guaranteeing that persistent data will be in a consistent
state between transactions (see Nested Transactions on page 34).

The disadvantage of using shorter transactions is that it can mean
using a greater number of transactions. This can increase network
32 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
overhead, because each transaction commit requires the client to
send a commit message to the Server. Nevertheless, this extra
network overhead is often outweighed by the savings from
shorter waits for locks to be released.

It is sometimes particularly important to make transactions that
use persistent new or persistent delete as short as possible.

Multiversion Concurrency Control (MVCC)

Single-database, read-only transactions can use multiversion
concurrency control, or MVCC. When you use MVCC, you can
perform nonblocking reads of a database, allowing another
ObjectStore application to update the database concurrently, with
no waiting by either the reader or the writer. See Multiversion
Concurrency Control (MVCC) on page 37 for additional
information.

abort_only Locking Rules

The locking restrictions are relaxed somewhat when the
transaction is abort_only . Under such circumstances, the client
does not get write locks for any pages that are written during an
abort-only transaction. Thus there can be multiple concurrent
abort-only writers to a database. The client does get read locks for
all pages it reads or writes. This lock relaxation is another method
of reducing wait time.

Lock Timeouts

Lock timeouts provide the ability to limit wait time, and abort if
limits are exceeded. You can set a timeout for read or write lock
attempts, to limit the amount of time your application will wait.
When the timeout is exceeded, an exception is signaled. Handling
the exception allows you to continue with alternative processing,
and make a later attempt to acquire the lock. The set_readlock_
timeout() and set_writelock_timeout() are members of the
objectstore , os_database , and os_segment classes , which are all
described in Chapter 2 of the ObjectStore C++ API Reference.
Release 5.1 33

Nested Transactions
Nested Transactions

Why use nested
transactions?

For a number of reasons, it is useful to allow transactions to be
nested. For example, suppose one transaction is required to hide
intermediate results. This also allows rollback of persistent data to
its state as of the beginning of the transaction. But suppose you
would like to be able to roll back persistent data to its state as of
some point after the beginning of this transaction. To allow this,
you can use a nested transaction that starts at this later point.

In addition, allowing nested transactions means that a routine
that initiates a transaction can be called both from inside and
outside a transaction.

Nested transactions
must be of the same
type

Except when you are using os_transaction::abort_only , when you
nest one transaction within another, the two transactions must be
of the same type (os_transaction::update or os_transaction::read_
only). If they have different types, err_trans_wrong_type is signaled.

Nested transactions
and abort_only

When you are using os_transaction::abort_only , if the top-level
transaction is abort_only , then both abort_only and update
transactions can nest within it.

Note that an abort_only transaction does not automatically abort.
You must specifically use the os_transaction::abort() function to
abort the abort_only transaction, otherwise an exception is
signaled.

You can use abort_top_level() , or for stack transactions use abort() ,
since you know exactly where the transaction ends.

For example:

OS_BEGIN_TXN(txn, 0, os_transaction::abort_only) {
. . .
os_transaction::abort();

} OS_END_TXN(txn);

When a nested transaction is aborted, persistent data is rolled
back to its state as of the beginning of that transaction. However,
no locks are released until the outermost transaction terminates.
This means other processes still have to wait to access the pages
that the aborted transaction accessed.
34 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
Deadlock

ObjectStore sometimes automatically aborts a transaction due to
deadlock. A simple deadlock occurs when one transaction holds a
lock on a page that another transaction is waiting to access, while
at the same time this other transaction holds a lock on a page that
the first transaction is waiting to access. Neither process can
proceed until the other does. See Simple Deadlock Scenario on
page 46. There are other, more complicated forms of deadlock that
are analogous.

Deadlock Victim

ObjectStore has a deadlock detection facility that breaks
deadlocks, when detected, by aborting one of the transactions
involved in the deadlock. By aborting one transaction (the victim),
ObjectStore causes the victim’s locks to be released so other
processes can proceed.

You can control how ObjectStore chooses a victim with
objectstore::set_transaction_priority() (see Chapter 2 of the
ObjectStore C++ API Reference) and the Deadlock Victim Server
parameter (see Chapter 2 of ObjectStore Management).

Automatic Retries Within Lexical Transactions

When a lexical transaction (one specified with the transaction
statement macros) is aborted due to a deadlock, the system
automatically retries the aborted transaction.

In the event that the transaction is repeatedly aborted by the
system, the retries continue until the maximum number of retries
has occurred. This maximum for any transaction in a given
process is determined by the value of the static data member os_
transaction::max_retries . You can retrieve the value of this
member with os_transaction::get_max_retries() .

static os_int32 get_max_retries() ;

Changing the
maximum number of
retries

Its default value is 10. You can change the value of os_
transaction::max_retries at any time with os_transaction::set_
max_retries() .

static void set_max_retries(os_int32) ;
Release 5.1 35

Deadlock
The change remains in effect only for the duration of the process,
and is invisible to other processes.

Consequences of Automatic Deadlock Abort

When a transaction is aborted by the system, its changes are
undone. But only persistent state is rolled back. Transient state is
not undone, and any form of output that occurred before the abort
is not, of course, undone. Sometimes it is a good idea to perform
output outside a transaction, but other times this might not be the
best approach.

Deadlocks in Dynamic Transactions

Dynamic transactions that are aborted because of deadlock are
not retried. If you want to retry a dynamic transaction aborted
because of deadlock, you must do so explicitly by handling the
exception err_deadlock. Call os_transaction::abort_top_level() from
within the handler.

See Using Dynamic Transactions in Chapter 3 of the ObjectStore
C++ API User Guide for more information about dynamic
transactions.
36 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
Multiversion Concurrency Control (MVCC)

When you use multiversion concurrency control (MVCC), you can
perform nonblocking reads of a database, allowing another
ObjectStore application to update the database concurrently, with
no waiting by either the reader or the writer. If your application
contains a transaction that uses a database in a read-only fashion,
you might be able to use multiversion concurrency control.

If a transaction

• Only performs read access on a database, and

• Does not require a view of the database that is completely up to
date, but can instead rely on a snapshot of the data,

you should open the database for multiversion concurrency
control (MVCC). You can do this with members of the class os_
database (see The MVCC API on page 38). You can also use
MVCC in conjunction with os_transaction::abort_only . This can
improve your application’s performance, as well as the
performance of other concurrent ObjectStore applications.

No Waiting for Locks

If an application has a database opened for MVCC, it never has to
wait for locks to be released in order to read the database. Reading
a database opened for MVCC also never causes other applications
to have to wait to update the database; see the example MVCC
and the Simple Waiting Scenario on page 47. In addition, an
application never causes a deadlock by accessing a database it has
opened for MVCC. See the example MVCC and the Simple
Deadlock Scenario on page 47.

Snapshots

In each transaction in which an application accesses a database
opened for MVCC, the application sees what it would see if
viewing a snapshot of the database taken sometime during the
transaction.

This snapshot has the following characteristics:

• It is internally consistent.
Release 5.1 37

Multiversion Concurrency Control (MVCC)
• It might not contain changes committed during the transaction
by other processes.

• It does contain all changes committed before the transaction
started.

Accessing Multiple Databases in a Transaction

When an application reads a database opened for MVCC, the
snapshot it sees is potentially out of date. This means that the
snapshot might not be consistent with other databases accessed in
the same transaction (although it will always be internally
consistent). Even two databases both of which are opened for
MVCC might not be consistent with each other, because updates
might be performed on one of the databases in between the times
of their snapshots.

Serializability

Even though the snapshot might be out of date by the time some
of the access is performed, multiversion concurrency control
retains serializability, if each transaction that accesses an MVCC
database accesses only that one database. Such a transaction sees
a database state that would have resulted from some serial
execution of all transactions, and all the transactions produce the
same effects as would have been produced by the serial execution.

The MVCC API

You open a database for multiversion concurrency control with
one of the following members of os_database :

void open_mvcc() ;

static os_database *open_mvcc(const char *pathname) ;

It is valid to open MVCC databases by following cross-database
pointers.

Once you open a database for MVCC, multiversion concurrency
control is used for access to that database until you close it. If the
database is already opened, but not for MVCC, err_mvcc_nested is
signaled. If you try to perform write access on a database opened
for MVCC, err_opened_read_only is signaled.

You can determine if a database is opened for MVCC with the
following member of os_database :
38 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
os_boolean is_open_mvcc() const ;

This function returns nonzero if this is opened for MVCC, and 0
otherwise.

MVCC and the Transaction Log

Although multiversion concurrency control can cause ObjectStore
to, in effect, take a snapshot of an entire database, the
implementation actually only copies data when needed, on a
page-by-page basis. Moreover, making the copy simply amounts
to retaining the page in the transaction log. See Logging and
Propagation on page 41.

In the absence of multiversion concurrency control, updated
pages from committed transactions are propagated from the log
to the database on a periodic basis. But with MVCC, updated
pages are held in the log as long as necessary, so that the
corresponding page in the database is not overwritten, and can be
used as part of the MVCC snapshot.

Caution Note that this means that long transactions that use multiversion
concurrency control can cause the log to become very large.

Conflict detection Multiversion concurrency control determines whether a page
must be held in the log based on the notion of conflict defined
below. From the time a conflict is detected in a given transaction,
propagation is delayed for subsequently committed data, until the
given transaction ends.

A conflict occurs when one of the following happens:

• A process tries to read a page in a database it has opened for
MVCC, and another process has the page write locked.

• A process tries to write a page in a database, and another
process that has the database opened for MVCC has the page
read locked.

In both these cases, both processes proceed; no one is blocked. The
transaction performed by the MVCC process is placed just before
the conflicting update transaction in the serialization order. This
is effectively when the snapshot is taken. See MVCC Conflict
Scenario on page 48.
Release 5.1 39

Multiversion Concurrency Control (MVCC)
Under some circumstances, the ObjectStore Server might decide
to hold a page in the log in anticipation of a conflict, even if none
has actually occurred.
40 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
Logging and Propagation

The ObjectStore transaction log, as with the log in any database
system, is used to ensure fault tolerance and to support the
functionality involved in transaction aborts. The log is stable
storage (that is, disk storage) used to keep temporary copies of
data en route to the database from the client cache.

Transaction Logging

Data is recorded in the log before being written to the database
(with certain exceptions — see below), and is not removed from
the log until some time after the transaction sending it has
committed. That way, if a failure occurs in the middle of moving
a transaction’s data to the database (for example, because the
network crashes or someone pulls the plug on the Server host), the
data is nevertheless safely in the log, and can be moved to the
database in its entirety during recovery.

If a failure occurs before or during the recording of a transaction’s
data in the log, the transaction is considered to have aborted, and
the data is never written to the database (and similarly, if the
transaction aborts because of deadlock or a call to abort() , the data
is never written to the database).

New data whose creation results in the use of new disk sectors is
handled differently. This data is sometimes moved directly to the
database, and sufficient information is maintained on stable
storage to effectively remove the data from the database if the
creating transaction aborts. For new sectors and segments, this
undo information is kept in the database itself; for new databases
the information is stored in the log, as an undo record.

Propagation

During normal operation, the ObjectStore Server moves, or
propagates, data from the log to the database on a periodic basis.
The Server keeps track of what has been propagated, and always
knows whether the latest committed version of any given sector is
to be found in the log or in the database. That way, when clients
request data from the Server, the Server can send the sector’s most
up-to-date version.
Release 5.1 41

Logging and Propagation
Controlling
propagation

You can control how often propagation occurs with the
ObjectStore Server parameter Propagation Sleep Time ; the default
is every 60 seconds. This determines the time between
propagations, except when the Server temporarily deems it
necessary to propagate on a more frequent basis. By default, the
Server increases the propagation rate when there are more than
8192 sectors waiting to be propagated. You can override the
default of 8192 with the Server parameter Max Data Propagation
Threshold . The Server also increases the propagation rate in order
to empty out a log record segment.

You can control the amount of data propagated each time with the
Server parameter Max Data Propagation Per Propagate . For
propagates that consist of a single disk write (that is, propagation
of data that is contiguous in the database), this specifies the
number of sectors to propagate (the default is 512).

For information on these and other Server parameters, see
Chapter 2, Server Parameters, in ObjectStore Management.
42 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
Checkpoint: Committing and Continuing a
Transaction

ObjectStore includes a way to perform a checkpoint within a
transaction. The checkpoint commits modified data from a top-
level transaction without incurring the overhead of ending a
transaction and starting a new transaction. This done with the os_
transaction::checkpoint() interface.

The os_transaction::checkpoint() interface is similar to os_
transaction::commit() , with the difference that you get the effect of
committing a transaction and then continuing work in a new
transaction in which you have read locks on all or most of the
persistent objects that were locked in the committed transaction.
This is useful when

• You are making modifications to a database. You want to
periodically commit your changes but continue updating the
database without intervention. For example, you might be
loading new data into the database.

• You want to make your changes available to MVCC readers.

• You opened a database for MVCC and you want an updated
snapshot.

Note Checkpoints within a transaction differ from conventional
checkpoints. In this checkpoint, an application might not have all
the locks after the checkpoint that it had before the checkpoint.
The details are explained in the next section.

Caution Checkpoint allows the application to maintain lock assertion,
relocation state, address space assignment, and page protection
state for some pages in the cache across what ordinarily would be
transaction boundaries. This means that for certain classes of
applications that access the same data pages repeatedly in
sequential transactions, you can avoid the cost of setting up and
tearing down access to those pages repeatedly. Like transaction
commit and abort operations, this operation is not thread-safe.
Applications must ensure that other threads do not access
persistent memory during a checkpoint operation.

In conjunction with MVCC-opened databases, checkpoint can
also be used to expose to the current transaction changes that have
Release 5.1 43

Checkpoint: Committing and Continuing a Transaction
been committed to the databases since the transaction started (or
since the last checkpoint invocation). This brings the transaction
up to date with changes that have taken place without its
knowledge.

See os_transaction::checkpoint() and os_transaction::checkpoint_
in_progress() in Chapter 2, Class Library, of the ObjectStore C++
API Reference for further detail.

Advantages of a Checkpoint

The advantage of a checkpoint is that there is less overhead than
when you actually end one transaction and start another. When
you checkpoint a transaction, it is as if you committed the
transaction and then immediately started a new transaction. But
in the new transaction, you already have read locks on most or all
of your persistent objects.

If another client is waiting for a write lock on a persistent object
that was locked in your transaction, you lose that lock when you
checkpoint the transaction. As long as another client is not waiting
for a write lock on an object that was associated with your
transaction, you reacquire as read locks any locks you had before
the checkpoint.

After the checkpoint, you do not have to start from a root object to
set up your access to objects. Your application’s access to objects
can be the same before and after the checkpoint.

After a checkpoint, ObjectStore has read locks on the same objects
as before the checkpoint, unless another client was waiting for a
write lock on one of these objects. In that case, your transaction
loses the lock.

If there were any write locks before the checkpoint, ObjectStore
changes them to read locks, or gives them to any clients waiting
for those write locks. Consequently, you might have to wait for
locks or you might get a deadlock when you try to update the
database again.

Calling the os_transaction::checkpoint() Function

To checkpoint a transaction, call the os_transaction::checkpoint()
function. The function’s overloadings are
44 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
• static void os_transaction::checkpoint();

Invokes checkpoint on the current transaction.

• static os_transaction::checkpoint(os_transaction*);

Invokes checkpoint on the specified transaction.

Caution Before you checkpoint a transaction, you must ensure that the
database is in a consistent state.

During the checkpoint, you must ensure that no other thread tries
to access the database.

For related information, see os_transaction::checkpoint_in_
progress() .
Release 5.1 45

Transaction Locking Examples
Transaction Locking Examples

The following examples illustrate some of the locking situations
described in this chapter.

Simple Waiting Scenario

If one transaction reads a page, and then another transaction reads
the same page, it is not blocked. But if the latter transaction tries
to write to the page, it must wait until the first transaction
commits.

So the actual schedule of operations looks like this:

Simple Deadlock Scenario

In the schedule below, Transaction 2 attempts to write P1, but
cannot proceed until Transaction 1 completes and releases its read
lock on P1. But Transaction 1 cannot proceed until Transaction 2
completes and releases its lock on P2. Since neither Transaction
can proceed until the other does, the result is a classic deadlock
scenario. ObjectStore chooses Transaction 1 as victim and aborts
it, whereupon Transaction 2 can proceed.

Transaction 1 Transaction 2

Read P

Read P

Write P: BLOCKED

Commit

Transaction 1 Transaction 2

Read P

Read P

Commit

Write P (succeeds)

Transaction 1 Transaction 2

Read P1

Read P1

Read P2
46 ObjectStore Advanced C++ API User Guide

Chapter 2: Advanced Transactions
MVCC and the Simple Waiting Scenario

If one transaction reads a page of a database it has opened for
MVCC, and then another transaction attempts to update the same
page, the second transaction is not blocked. Compare this with the
Simple Waiting Scenario on page 46.

MVCC and the Simple Deadlock Scenario

In the schedule below, Transaction 2 writes P1 without waiting; it
can proceed before Transaction 1 completes and releases its read
lock on P1, because Transaction 1 has the database containing the
page opened for MVCC. Similarly Transaction 1 can proceed
before Transaction 2 completes and releases its lock on P2.
Without multiversion concurrency control, deadlock would have
resulted. See the Simple Deadlock Scenario on page 46.

Write P2

Write P1: BLOCKED

Read P2: BLOCKED —
DEADLOCK

Abort

Write P1 (succeeds)

MVCC Transaction 1 Update Transaction 2

Read P

Read P

Write P: NOT BLOCKED

MVCC Transaction 1 Update Transaction 2

Read P1

Read P1

Read P2

Write P2

Write P1: NOT BLOCKED

Read P2: NOT BLOCKED
Release 5.1 47

Transaction Locking Examples
MVCC Conflict Scenario

MVCC and update conflict, because update writes something (A)
which is being read by MVCC. Therefore all pages updated by
update must be retained in the log, so MVCC can see the old
copies of these pages.

MVCC Transaction 1 Update Transaction 2

Read A

Read A, B, C, D, E

Write A, B, C, D, E

Commit

Read B (old)
48 ObjectStore Advanced C++ API User Guide

Chapter 3
Threads

ObjectStore supports the use of multiple threads within a client
application. The key to developing a successful multithreaded
application with ObjectStore is in choosing the right combination
of transaction, process, and thread models. This is evident once
you have good understanding of the process requirements and
ObjectStore's implementation of transactions and how it
accomplishes thread safety.

ObjectStore Thread Safety 50

Single-Thread Access 51

Transactions 53

Multiple-Threaded Application Models 55

Selecting the Right Application Design 59
Release 5.1 49

ObjectStore Thread Safety
ObjectStore Thread Safety

ObjectStore Release 5.1 provides a thread-safe version of the
ObjectStore API. It does this by protecting the body of each API
call with a mutex lock that only one thread can acquire at a time.

While ObjectStore supports multithreaded clients, it currently
supports only one independent transaction per process. However,
multithreaded applications can choose any of the following
models for interacting with ObjectStore:

• One thread dedicated to ObjectStore access

• Multiple threads accessing ObjectStore and sharing a
transaction

• Multiple threads accessing ObjectStore in separate transactions
but also doing other activities (using local transactions, but
limiting the amount of transaction blocking)
50 ObjectStore Advanced C++ API User Guide

Chapter 3: Threads
Single-Thread Access

ObjectStore implements thread safety using a global mutex and a
technique known as mapaside.

Use of Global Mutex

Most access to ObjectStore API is currently serialized with one
global mutex. The only exception to this is within the collection
subsystem, which selectively protects a subset of the collection
API. The one mutex lock protects all libos entry points and some
of the collection entry points (such as queries). It does not protect
all the collection entry points. This allows multiple threads to
manipulate separate collections without blocking one another.

Implications when
using ObjectStore
collections

This means that you must take care to ensure that these operations
do not interfere with one another when two or more threads
manipulate a single collection. You might choose to prevent the
interference by using an application mutex. (Therefore you are not
necessarily thread safe if two threads are operating on the same
collection that has already been mapped into memory.)

ObjectStore Release 5.1 is organized to use independent mutexes
for different subsystems, but currently implements one mutex.
This mutex serializes both implicit access (using a page fault) and
explicit access (using an API call).

Mapaside Technique

ObjectStore's unique memory mapping architecture creates a
condition that cannot be protected by a simple mutex. In order to
handle such a condition ObjectStore uses the technique called
mapaside.

Example: mapaside Consider an example in which two independent threads
dereference a pointer to a nonmapped page X. If Thread 1
dereferences the pointer first, it causes a page fault on page X. This
page fault acquires the global mutex, then fetches, maps, and
relocates page X into the client's address space. During relocation
this page must be writable so ObjectStore can relocate the page. A
problem occurs if Thread 2 dereferences a pointer to page X
during this relocation step. Since the page is writable ObjectStore
will never be notified (no page fault occurs); thus, the global
mutex is not checked.
Release 5.1 51

Single-Thread Access
How mapaside works Since Thread 2 could access page X while page X is in an
inconsistent state, ObjectStore must

• Map the page into an intermediate address

• Perform the relocation

• After relocation, remap the page into its real location

Platform-specific
considerations

The cost of mapaside can vary widely across platforms. It depends
upon the cost of the extra mmap calls (two additional mmap s) or
— in a non-file-based case (for example, HP–UX device driver) —
the extra memmove .
52 ObjectStore Advanced C++ API User Guide

Chapter 3: Threads
Transactions

Independent of thread safety, ObjectStore Release 5.1 has a
restriction that a process can have only one top-level transaction
opened per process. This means that you must choose one of the
following models:

• Only one thread can be in a transaction at a time (locally scoped
transaction).

• Several threads can share a single transaction (globally scoped
transaction).

ObjectStore provides locally scoped transactions for two reasons:

1 Single thread per transaction supports lexical transactions that
can restart in case of deadlock. This means that only one thread
can be accessing persistent data at a time. Since this is the case,
you would not encounter a situation similar to the mapaside
example; therefore, mapaside is unnecessary and can be turned
off for locally scoped transactions.

2 Lexical transactions implement restart by unwinding their
execution stacks and retrying the transaction. Threads do not
share execution stacks, so lexical transactions need to be locally
scoped.

Dynamic transactions can be scoped either locally or globally.
Locally scoped transactions are serialized within a process.
Globally scoped transactions must be managed by the
application. The application needs to guarantee that no thread is
accessing the database during a commit or abort.

Optimizing Transactions in Threaded Environments

In a threaded environment, optimize ObjectStore by using these
techniques when appropriate for your application:

• Restrict the use of locally scoped transactions. Only use locally
scoped transactions when

- The threads of an application do a lot of work outside a
transaction and only a little work within a transaction.

- Deadlock handling is critical and would be difficult to
implement without locally scoped transactions.
Release 5.1 53

Transactions
• Keep dynamically scoped transactions open for as long as
possible. The more times you access a page X during a
transaction, the less the relative cost of relocating that page
(using mapaside). Additionally, there is less time spent in
blocking by the mutex and less time spent starting and
committing transactions.

• Reduce the use of explicit ObjectStore API. This is unlikely to
be an issue since ObjectStore API is not explicitly called very
often.

• The Collection APIs are an exception to the rule because they
only block at query create and execute time. For unoptimized
queries it would be better to iterate than to query the collection
in a multithreaded application.
54 ObjectStore Advanced C++ API User Guide

Chapter 3: Threads
Multiple-Threaded Application Models

Two major models for multithreaded applications are

• Multiple processing threads to accomplish a single task

• Separate concurrent processing threads working on disjoint
tasks, so that the views are independent and self-consistent

The first model is ideally suited for ObjectStore global
transactions. The second model is very typical in application and
data servers. For example, the second model is particularly
suitable for Internet and intranet applications. These applications
are currently very server-centric, where the network browser
(front-end GUI) sends commands to the server application for
processing by means of the common graphical interface (CGI).

Logically, each simple client application, also known as a thin
client, interacts with an application server in independent work
units. When planning for read-only operations, sharing
transactions works well, because there is no risk of interference
between such operations. However, when considering update, or
write, operations, sharing transactions does not work because of
the potential for

• Conflicting updates.

• Data perceived in different states.

• Read-only operations might see intermediate results from
write operations.

The key is to isolate the actions of writers from read-only
operations. Methods of achieving the independence can rely on
varied server application architectures. Several alternatives are
described in the paragraphs that follow.

One Multithreaded Process

Simple single process
architecture

The simplest process architecture would be a single process that
supports all clients. Within this process you want the ability to
handle multiple concurrent read-only units of work within a
global transaction. You can provide a transaction manager that is
responsible for serializing write transactions (which can be local
transactions) and coordinating the read transaction boundaries in
relationship to the write transactions.
Release 5.1 55

Multiple-Threaded Application Models
The diagram that follows depicts such an arrangement. The thin
client refers to a simple client application operation.

Advantages to this
architecture

This architecture has several advantages:

• Easy to write the interface (only one process to communicate
with).

• Optimized for read transactions. This is an excellent design for
applications that need to support a large proportion of readers.

• Easy to implement.

Disadvantages to this
architecture

The disadvantages of this design are that

• Each write operation gets a transaction, increasing the
overhead.

• Readers are blocked by writers.

Complex single
process architecture

A more complicated variation for a single process would allow
multiple client write transactions (units of work) per single global
(or local) transaction. With this architecture you allow multiple
units of work to be carried out regardless of reader or writer and
return success before transaction commit. This design is more
difficult since you must log input events so that they can be
replayed later in case of transaction failure.

Advantages to this
architecture

The advantages of this architecture are

• Batching write transactions cuts down on transaction overhead
and latency.

• Replaying from the log benefits debugging and recovery.

Server System

Process Multithreaded Application Server

Thin client Thin client Thin client Thin client
56 ObjectStore Advanced C++ API User Guide

Chapter 3: Threads
Disadvantages to this
architecture

This architecture has several disadvantages:

• If implementing global concurrent units of work, you must
implement application logic to control visibility and
serialization.

• It is hard to implement (logging might not be trivial).

Separate Read/Write Multithreaded Processes

Another simple approach to properly handling read and write
units of work is to have separate processes for readers and writers.
The reader process (or processes) use global transactions and keep
the transaction open for multiple units of work. The writer process
(or processes) use local transactions and commit after each unit of
work.

The writer process Ideally, a work manager should be made responsible for selecting
an appropriate writer process (from a pool of writers) for a unit of
work based upon selection criteria.

The selection criteria can be

• Client ID

• Unit of work

• Available Server process

The reader process This type of process architecture is very easy to build using
ObjectForms. By using a separate service name for update and
read units of work, you can easily direct which server the client

Server System

Write Process
Multithreaded

Write Process
Multithreaded
Application Server

Read client Read client Write client Write client Write client

Read Process
Multithreaded
Release 5.1 57

Multiple-Threaded Application Models
application communicates with. For the read-only service, you
can set up the service to use multiple threads. For the write
(update) service you can set up the service to use multiple
processes.

Since you have a process dedicated to read-only access you can
configure this process to open the database in an MVCC read-only
mode and coordinate the transaction boundaries using
notification from the writers. This allows you to

• Read a consistent view of the database

• Not block the writer because of a database lock

• Refresh your view when the database is updated or as desired
58 ObjectStore Advanced C++ API User Guide

Chapter 3: Threads
Selecting the Right Application Design

In order to build the proper server application with ObjectStore or
another database with this challenge, you must balance
transaction boundaries, process model, and thread model with
application requirements and development complexity.
Release 5.1 59

Selecting the Right Application Design
60 ObjectStore Advanced C++ API User Guide

Chapter 4
Advanced Collections

This chapter is intended to augment the information contained in
Chapter 5, Collections, of the ObjectStore C++ API User Guide. The
information contained here is organized in the following manner:

Advanced Collections Overview 63

Using Paths in Navigation 64

Creating Paths 65

Paths and Member Functions 68

Controlling Traversal Order 73

Using Ranges in Navigation 76

Specifying Collection Ranges 77

Restricting the Elements Visited in a Traversal 80

Performing Collection Updates During Traversal 81

Retrieving Uniquely Specified Collection Elements 86

Selecting Individual Collection Elements with pick() 88

Consolidating Duplicates with operator =() 91

Supplying Rank and Hash Functions 92

Specifying Expected Size 95

Customizing Collection Behavior 96

Customizing Collection Representation 100

os_chained_list 102

os_dyn_bag 105

os_dyn_hash 107

os_ixonly and os_ixonly_bc 109
Release 5.1 61

os_ordered_ptr_hash 112

os_packed_list 114

os_ptr_bag 116

os_vdyn_bag 118

os_vdyn_hash 120

Summary of Representation Types 122
62 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Advanced Collections Overview

A collection is an object that serves to group together other
objects. It provides a convenient means of storing and
manipulating groups of objects, supporting operations for
inserting, removing, and retrieving elements. Collections also
support set-theory operations such as intersection and set-theory
comparisons such as subset.

In addition, collections form the basis of the ObjectStore query
facility, which allows you to select those elements of a collection
that satisfy a specified condition. Queries with simple conditions
are discussed in this chapter. Queries with complex conditions are
described in Chapter 5, Queries and Indexes, on page 125.

Collections are commonly used to model many-valued attributes,
and they can also be used as class extents (which hold all instances
of a particular class). Collections of one type, dictionaries,
associate a key with each element or group of elements, and so can
be used to model binary associations or mappings.
Release 5.1 63

Using Paths in Navigation
Using Paths in Navigation

The ObjectStore collection facility provides a number of classes
that help you navigate within a collection. The os_Cursor class,
the os_index_path class, and the os_coll_range class all help you
insert and remove elements, as well as retrieve particular
elements or sequences of elements.

• The os_Cursor class is discussed in Using Cursors for
Navigation in Chapter 5 of the ObjectStore C++ API User Guide.
See also os_Cursor in the ObjectStore Collections C++ API
Reference.

• The os_coll_range class is described in Using Ranges in
Navigation on page 76. See also os_coll_range in the ObjectStore
Collections C++ API Reference.

The os_index_path class is discussed here and in the immediately
following sections of this chapter. See also os_index_path in the
ObjectStore Collections C++ API Reference.

Paths

A path, an instance of os_index_path , represents a navigational
path starting from the elements of a collection. Paths are used to
specify index keys, and to specify a cursor’s associated order. See
Creating Paths on page 65, and also Paths and Member Functions
on page 68.

Paths are also used in conjunction with ranges to specify a
restriction on the elements a cursor visits. See Using Ranges in
Navigation on page 76 for information on ranges.
64 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Creating Paths

Paths are used to specify traversal order (see Controlling
Traversal Order on page 73) and index keys (see Indexes and
Query Optimization on page 140).

Simple Paths

Using the simplest kind of path, you can base an index key or
iteration order on the value of some data member or simple
member function. For example, you can iterate through a set of
parts in order of the part’s part numbers (parts with lower
numbers precede parts with higher numbers). The member is
specified with an instance of the class os_index_path , which
designates a member access path.

To iterate in order of part numbers, first create a path with os_
index_path::create() , which returns an os_index_path& :

os_index_path::create("part*", "part_number", db1)

The object created designates the path from part pointers to their
part numbers. Here, part* is the path’s type string, which names the
element type of collections whose elements can serve as path
starting points. part_number is a path string indicating the data
member itself. The argument db1 is a database whose schema
contains the definition of the class part .

Both type strings and path strings can contain white space around
tokens.

The instance of os_index_path generated by the call to create() is
heap-allocated. When you no longer need it, you should
deallocate it with the following static member of os_index_path :

static void destroy(os_index_path&) ;

Multiple Member Paths

Sometimes path expressions specify not just a single member, but
a navigational path involving multiple member accesses. For
example, to base iteration order on the emp_id of a part’s
responsible_engineer , you create the following path:

os_index_path::create(
"part*", "responsible_engineer->emp_id",
Release 5.1 65

Creating Paths
db1
) ;

Examples of path
expressions

A path applied to a pointer to an employee, returning the
employee’s name, is specified by the path expression

os_index_path::create("employee*", "name", db1)

A path applied to a pointer to an employee, returning the
employee’s manager, is specified by

os_index_path::create(
"employee*", "department–>manager",
db1

)

A path applied to a pointer to an employee, returning the name of
each of the employee’s supervisees, is specified by

os_index_path::create(
"employee*", "supervisees[]–>name",
db1

)

Brackets ([]) in a path indicate that the path goes through each
element of the indicated collection. The path mapping follows the
remainder of the specified path for each element. Thus,
application of a path mapping can result in many values.

In this last example, the path maps a single employee* to many
names, the names of the employee’s supervisees. If you use such
a path to specify a key for an index, then the index would handle
lookup of an employee by the name of any one of the employee’s
supervisees.

But paths with brackets cannot be used to specify iteration order.
Iteration in order of names of supervisees is not well defined,
because there is more than one supervisee. In contrast, iterating by
name of supervisor, for example, is well defined, if each employee
has exactly one supervisor.

Another important point is that if an index path contains a path
through a collection. This collection either has to be
parameterized or you must cast it to the appropriate type of
parameterized collection in the index path string. This is
necessary so thaat the index path parser can determine if, for
example, name is a valid data member of the type of element in
the supervisees collection. For example,
66 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
(os_Collection<employee*>&)supervisees[]->name

Rank and Hash Functions

Paths that end in a class, or that end in a floating numerical type,
must have associated rank and/or hash functions. And you must
register these functions by calling os_index_key() . See The os_
index_key() Macro on page 92.
Release 5.1 67

Paths and Member Functions
Paths and Member Functions

Member functions called in path strings are subject to certain
restrictions and prerequisites, as described in this section.

Restrictions

Member functions called in query or path strings are subject to
certain restrictions:

• The return type can be any type but if it is a user-defined type,
the rank/hash functions for the type must be defined.

• The function must take no arguments.

For example, consider the following class:

class person {
private:

unsigned int age;
person* sibling;

public:
unsigned int get_age();

person* get_sibling();
unsigned int get_age_n_years_ago(unsigned int n);

}

The functions get_age() and get_sibling() can be referenced in a
query or path string. get_age_n_years_ago() violates the second of
the preceding restrictions.

To perform a query, ObjectStore sometimes (depending on what
indexes are present) issues calls to member functions used in
paths and queries. If such a member function allocates memory it
does not free (for example if it returns a pointer to newly allocated
memory), memory leaks can result; ObjectStore does not free the
space the function allocates. So member functions used in paths or
queries should not allocate persistent memory or memory in the
transient heap.

Prerequisites

Applications that use a member function in a query or path string
must do four things:
68 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
1 Define an os_backptr -valued data member in the class that
defines the member function. This data member must appear
before any query functions in the class definitions.

2 Call the macro os_query_function() .

3 Call the macro os_query_function_body() .

4 Call the macro OS_MARK_QUERY_FUNCTION() .

You can name the os_backptr member anything you want. In
addition, you can use the same os_backptr member for indexable
data members and member functions; a class never needs to
define more than one os_backptr -valued member.

The os_query_function() Macro

A call to os_query_function() has the form

Form of the call os_query_function(class,func,return_type)

where

• class is the name of the class defining the member function.

• func is the name of the member function itself.

• return_type names the type of value returned by the member
function.

The os_query_function() macro should be invoked at module level
in a header file (for example, the file containing the definition of
the class that declares the member function). No white space
should appear in the argument list.

The os_query_function_returning_ref() Macro

The application that uses this member function, returning
reference, in a query must call os_query_function_returning_ref() .

Form of the call A call to this macro has the form

os_query_function_returning_ref(class,func,return_type)

where

• class is the name of the class defining the member function.

• func is the name of the member function itself.
Release 5.1 69

Paths and Member Functions
• return_type names the type of value returned by the member
function. The way to use this is to pass just return_type, not
return_type&, to the macro return_type arguments.

Use of functions
returning references in
query strings

In query and index path strings, functions returning references
should be treated as if they returned pointers. For example,
queries over the function

Name& get_name();

Should be written as if the function signature were

Name* get_name();

That is,

*get_name() == *(Name*) Freevar

An index path to support this query would be

*get_name()

The os_query_function_body() Macro

A call to os_query_function_body() has the form

Form of the call os_query_function_body(class,func,return_type,bpname)

where

• class is the name of the class that defines the member function.

• func is the name of the member function itself.

• return_type names the type of value returned by the member
function.

• bpname is the name of the os_backptr -valued member of class .

The os_query_function_body() macro should be invoked at
module level in a source file (for example, the file containing the
definition of the member function). No white space should appear
in the argument list.

The OS_MARK_QUERY_FUNCTION() Macro

A call to OS_MARK_QUERY_FUNCTION() has the form

Form of the call OS_MARK_QUERY_FUNCTION(class,func)

where

• class is the name of the class that defines the member function.
70 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
• func is the name of the member function itself.

The OS_MARK_QUERY_FUNCTION() macro should be invoked
along with the OS_MARK_SCHEMA_TYPE() macros for an
application’s schema, that is, in the schema source file, inside the
dummy function containing the calls to OS_MARK_SCHEMA_
TYPE(). No white space should appear in the argument list of OS_
MARK_QUERY_FUNCTION() .

The os_query_function_body_returning_ref() Macro

This macro enables users to register a query function that returns
a reference. The application that uses this member function in a
query must call os_query_function_body_returning_ref() :

Form of the call os_query_function_body_returning_ref(
class,func,return_type,bpname

)

where

• class is the name of the class defining the member function.

• func is the name of the member function itself.

• return_type names the type of value returned by the member
function. The way to use this is to pass just return_type, not
return_type&, to the return_type arguments of the macro.

• bpname is the name of the os_backptr -valued member of class .

Use of functions
returning references in
query strings

In query and index path strings, functions returning references
should be treated as if they returned pointers. For example,
queries over the function

Name& get_name();

Should be written as if the function signature were

Name* get_name()

That is,

*get_name() == *(Name*) Freevar

An index path to support this query would be

*get_name()
Release 5.1 71

Paths and Member Functions
Path String Syntax Extension

Given a path string that specifies a path ending in pointers to
objects:

path-string

If the last component of the path string is a member function
name, you can construct a path string to specify a path ending in
those objects themselves, using * (asterisk) as follows:

* (path-string)

The parentheses are not necessary if the original path string
specifies a single-step path.

Consider for example the path

os_index_path::create(
"rectangle*",
"get_location()",
db

) ;

If the function rectangle::get_location() returns a pointer to a coord
object, this path ends in pointers to coord objects. So you can also
construct a path that ends in coord objects themselves, rather than
pointers:

os_index_path::create(
"rectangle*",
"*get_location()",
db

) ;

Index Maintenance

To maintain indexes keyed by paths containing member function
calls, use os_backptr::make_link() and os_backptr::break_link() .
See User-Controlled Index Maintenance with an os_backptr on
page 156.
72 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Controlling Traversal Order

To control traversal order, use one of the constructors for os_
Cursor . The various overloadings allow you to specify a traversal
order based on

• A specified path

• The rank function registered for the collection’s element type

• A specified rank function

• The order in persistent memory of the objects pointed to by
collection elements

Rank-Function-Based Traversal

os_Cursor(
const os_collection&,
const char* typename,

) ;

If you create a cursor using this constructor, which takes the name
of the element type as argument, then iteration using that cursor
will follow the order determined by the element type’s rank
function. See Supplying Rank and Hash Functions on page 92.

os_Cursor(
const os_collection&,
_Rank_fcn

) ;

Rank-function-based cursors are update insensitive. See
Performing Collection Updates During Traversal on page 81.

Address Order Traversal

os_Cursor(
const os_Collection&,
os_int32 options

) ;

If you supply os_collection::order_by_address as the options
argument, this cursor iterates in address order. This is the order in
which the objects pointed to by collection elements are arranged
in persistent memory.

If you will dereference each collection element as you retrieve it,
and the objects pointed to by collection elements will not all fit in
Release 5.1 73

Controlling Traversal Order
the client cache at once, this order can dramatically reduce paging
overhead.

An order-by-address cursor is update insensitive.

Path-Based Traversal

os_Cursor(
const os_Collection&,
const os_index_path&

) ;

If you create a cursor using this constructor, which takes a
reference to an os_index_path as an argument, then iteration using
that cursor will follow the order determined by the path. See
Creating Paths on page 65.

Multiple member
paths

In the case of multiple member paths (see page 65), the traversal
will first visit all elements that have a complete path, and then
visit the other elements in order of decreasing path length. That is,
given the path boss->boss->boss->name , the cursor will first visit
those collection elements that actually have a boss->boss->boss in
name order, before visiting any that do not.

Reuse of an os_index_
path

Note that, once you have created an os_index_path , you can reuse
it (for example, to specify the same order for another iteration, or
to specify the key of an index). There is no need to create a
separate index path each time you specify an iteration order or
index.

char* paths Paths whose values are char* are treated specially by the iteration
facility. An ordered iteration based on a char* -valued member
does not iterate in order of addresses (the values, strictly
speaking, of the data member), but rather the iteration proceeds in
the order of the strings pointed to. The order is determined by the
function strcmp() .

Example Here is a code fragment demonstrating iteration by responsible_
engineer ’s emp_id :

os_index_path &a_path = os_index_path::create(
"part*",
"responsible_engineer–>emp_id",
db1

) ;
74 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
os_Cursor<part*> c(a_set, a_path) ;
part *p = 0 ;
for (p = c.first(); p; p = c.next())

printf("%d", e–>emp_id) ;

If an index on the path is present, it is used to make the traversal
more efficient.

If an index on the iteration path is not present, the cursor
constructor copies the collection elements into a separate
structure, applies the path to each element, copies the terminal
key into that structure, and then sorts it according to the key rank.
Care is taken to sort the structure by address whenever the path
interpretation calls for dereferencing a pointer, in order to
improve paging behavior. Cursor creation time depends on the
length of the path, the size of the collection, and the complexity of
the rank function.

When you are performing path-based traversal over some
collection, if you update a data member on which the ordering is
based, you are effectively removing and then reinserting the element
you changed. In other words, when you update such a data
member for an element of a collection, you also update the
collection itself. Therefore, for an ordered iteration with such
updates, the collection’s behavior specification must include os_
collection::maintain_cursors and the cursor must be created with
os_cursor::safe . See Performing Collection Updates During
Traversal on page 81.

Keep in mind some representations of collections never allow
maintain_cursors behavior. These are unordered types of
collections.
Release 5.1 75

Using Ranges in Navigation
Using Ranges in Navigation

The ObjectStore collection facility provides a number of classes
that help you navigate within a collection. The os_Cursor class,
the os_index_path class, and the os_coll_range class all help you
insert and remove elements, as well as retrieve particular
elements or sequences of elements.

• The os_Cursor class is discussed in Using Cursors for
Navigation in Chapter 5 of the ObjectStore C++ API User Guide.
See also os_Cursor in the ObjectStore Collections C++ API
Reference.

• The os_index_path class is described in Using Paths in
Navigation on page 64. See also os_index_path in the
ObjectStore Collections C++ API Reference.

The os_coll_range class is discussed here and in the immediately
following sections of this chapter. See also os_coll_range in the
ObjectStore Collections C++ API Reference.

Ranges

A range, an instance of os_coll_range , represents a range of
values. A range can be used in conjunction with a path to restrict
the elements visited by a cursor. See Specifying Collection Ranges
on page 77 and Restricting the Elements Visited in a Traversal on
page 80.

You can also use an os_coll_range to retrieve from a dictionary the
elements whose key falls within a specified range. See
Dictionaries in Chapter 5 of the ObjectStore C++ API User Guide.

Both these uses of ranges provide a way of performing
inexpensive, simple queries, without some of the overhead
associated with using query() , query_pick() , or exists() . See
Chapter 5, Queries and Indexes, on page 125, for more detailed
information about performing queries.
76 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Specifying Collection Ranges

You can create an object that represents a range of values with the
class os_coll_range . An instance of this class can be used as
argument to the os_Cursor constructor to create a restricted
cursor, or as argument to os_Dictionary::pick() .

The constructor for os_coll_range has several overloadings. Each
overloading falls into one of the following two groups:

• Overloadings that specify both a lower and upper bound on a
range of values (as in “all values greater than 4 and less than or
equal to 7”)

• Overloadings that specify just a lower bound or just an upper
bound (as in “all values less than or equal to 7”)

In each of these two groups, there is one overloading for each C++
fundamental type of value, and one for the type void* . To specify
a range for any type of pointer value, use a void* overloading.

Ranges with Only One Bound

Here are the overloadings for os_coll_range() that specify only an
upper or lower bound.

os_coll_range(int rel_op, int value) ;
os_coll_range(int rel_op, unsigned int value) ;
os_coll_range(int rel_op, short value) ;
os_coll_range(int rel_op, unsigned short value) ;
os_coll_range(int rel_op, char value) ;
os_coll_range(int rel_op, unsigned char value) ;
os_coll_range(int rel_op, long value) ;
os_coll_range(int rel_op, unsigned long value) ;
os_coll_range(int rel_op, float value) ;
os_coll_range(int rel_op, double value) ;
os_coll_range(int rel_op, const void* value) ;

Enumerators for the
rel_op argument

The argument rel_op should be one of the following enumerators:

• os_collection::EQ (equal to)

• os_collection::NE (not equal to)

• os_collection::LT (less than)

• os_collection::LE (less than or equal to)

• os_collection::GT (greater than)

• os_collection::GE (greater than or equal to)
Release 5.1 77

Specifying Collection Ranges
A collection range created with one of these functions is satisfied
by all values that bear the relation rel_op to value . When the value
type is char* , these operators are defined in terms of strcmp() .

So, for example,

os_coll_range(os_collection::LE, 7)

is satisfied by all values less than or equal to 7, and

os_coll_range(os_collection::EQ, 7)

is satisfied only by the value 7.

os_coll_range(os_collection::LE, "foo")

is satisfied by any char* value, s, such that strcmp(s,"foo") is less
than or equal to 0.

os_coll_range(os_collection::EQ, "foo")

is satisfied by any char* value, s, such that strcmp(s, "foo") is 0.

Ranges with Both an Upper and Lower Bound

Here are the overloadings for os_coll_range() that specify both an
upper and lower bound.

os_coll_range(int rel_op1, int value1, int rel_op2, int value2) ;

os_coll_range(int rel_op1, unsigned int value1, int rel_op2,
unsigned int value2) ;

os_coll_range(int rel_op1, short value1, int rel_op2,
short value2) ;

os_coll_range(int rel_op1, char value1, int rel_op2, char value2) ;

os_coll_range(int rel_op1, unsigned char value1, int rel_op2,
unsigned char value2) ;

os_coll_range(int rel_op1, long value1, int rel_op2, long value2) ;

os_coll_range(int rel_op1, unsigned long value1, int rel_op2,
unsigned long value2) ;

os_coll_range(int rel_op1, float value1, int rel_op2, float value2) ;

os_coll_range(int rel_op1, double value1, int rel_op2,
double value2) ;

os_coll_range(int rel_op1, const void *value1, int rel_op2,
const void *value2) ;

Constructs an os_coll_range satisfied by all values that both bear
the relation rel_op1 to value1 and bear the relation rel_op2 to
78 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
value2 . The arguments rel_op and rel_op2 should be one of the
following enumerators:

Enumerators for rel_op
and rel_op2
arguments

• os_collection::EQ (equal to)

• os_collection::NE (not equal to)

• os_collection::LT (less than)

• os_collection::LE (less than or equal to)

• os_collection::GT (greater than)

• os_collection::GE (greater than or equal to)

When the value type is char* , these relations are defined in terms
of strcmp() . So, for example:

os_coll_range(os_collection::GT, 4, os_collection::LE, 7)

is satisfied by all int s greater than 4 and less than or equal to 7.

Do not specify the null range, for example:

os_coll_range(os_collection::LT, 4, os_collection::GT, 7)

Discontinuous ranges Do not specify a discontinuous range, for example:

os_coll_range(os_collection::GT, 4, os_collection::NE, 7)

If you do, the exception err_am is signaled, and the following
message is issued to stdout :

No handler for exception:
<maint-0023-0001>invalid restriction on unordered index (err_am)
Release 5.1 79

Restricting the Elements Visited in a Traversal
Restricting the Elements Visited in a Traversal

A special overloading of the os_Cursor constructor allows you to
create a cursor for including in traversals only those collection
elements that satisfy a specified restriction. Using such a cursor
allows you to perform simple queries that are less expensive than
queries performed with os_collection::query() .

os_Cursor<E> (
const os_Collection<E> & coll,
const os_index_path &path,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

) ;

An element satisfies the cursor’s restriction if the result of
applying path to the element satisfies range (see Specifying
Collection Ranges on page 77). The order of iteration is arbitrary.

See also os_Cursor in Chapter 2 of the ObjectStore C++ API User
Guide.

Dictionaries

For dictionaries, you can specify a restriction that is satisfied by
elements whose key satisfies a specified range.

os_Cursor<E> (
const os_dictionary & coll,
const os_coll_range &range,
os_int32 options = os_cursor::unsafe

);

An element satisfies this cursor’s restriction if its key satisfies
range . If the dictionary’s key type is a class, you must supply rank
and hash functions for the class. See Supplying Rank and Hash
Functions on page 92.

Duplicates

With a restricted cursor, a traversal visits only one occurrence of
each qualified element.
80 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Performing Collection Updates During Traversal

If you want to be able to update a collection while traversing it, you
must use either an update-insensitive cursor, or a safe cursor.

With an update-insensitive cursor, the traversal is based on a
snapshot of the collection elements at the time the cursor was
bound to the collection. None of the inserts and removes
performed on the collection are reflected in the traversal.

A safe cursor at a given point in a traversal visits any elements
inserted later in the traversal order, and does not visit any
elements that are later in the traversal order that are removed.

If you update a collection while traversing it without using an
update-insensitive or safe cursor, the results of the traversal are
undefined.

Update-Insensitive Cursors

You can create an update-insensitive cursor with the following
cursor constructor:

os_Cursor(
const os_Collection&,
os_int32 options

) ;

Supply os_collection::update_insensitive as the options argument.

In addition, the following kinds of cursors are always update
insensitive:

• Rank-function-based cursors. See Rank-Function-Based
Traversal on page 73.

• order_by_address cursors. See Address Order Traversal on
page 73.

Safe Cursors

To traverse a collection with a safe cursor, you must specify
maintain_cursors when you create the collection (or use change_
behavior() — see Changing Collection Behavior with change_
behavior() on page 98 — and you must pass os_collection::safe to
the cursor constructor.
Release 5.1 81

Performing Collection Updates During Traversal
Disadvantages of safe
cursors

Safe cursors have some drawbacks that update-insensitive
cursors do not:

• Updates to collections with safe cursors are slower. For each
collection in a given segment that has maintain_cursors
behavior, there is an entry in a table mapping collections to
their safe cursors. This table is stored in the same segment as
the collections. An update to one of the collections requires a
lookup in the table. Each cursor associated with the collection
is checked and adjusted if necessary.

• Index maintenance for collections with safe cursors is slower.
Whenever index maintenance is performed on an object in an
indexed collection that has maintain_cursors behavior, the safe
cursor table also has to be visited (because there might be safe
ordered cursors that are pointing to the indexes).

• Safe cursors are not supported for ObjectStore dictionaries. If
you try to create a dictionary with maintain_cursors behavior,
you will receive an exception.

Using safe cursors to
implement recursion

One advantage of safe cursors is that they can be used to
implement recursion without the use of recursive function calls.

Consider, for example, the code below:

os_database *db1 ;
. . .
os_Collection<part*> &result_set =

os_Collection<part*>::create(db1) ;
part *a_part, *p ;

. . .

result_set |= a_part ;
os_Cursor<part*> c(result_set) ;
for (p = c.first() ; p ; p = c.next())

result_set |= p->children ; /* UNSAFE!! */

Here, a new (empty) set, result_set , is created, and a_part is added
to it. The for loop then iterates over the elements of result_set ,
adding the children of each element visited to result_set itself. The
first element visited is a_part . But after that, the results of the
iteration are undefined.

You can specify that you want a collection to support recursive
queries by including maintain_cursors in the behavior
specification. And you can specify that you want a new cursor to
82 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
be safe by including the enumerator os_cursor::safe as the second
argument to the constructor for os_Cursor :

os_Collection<part*> &result_set =
os_Collection<part*>::create(

db1,
os_collection::maintain_cursors

) ;
. . .
os_Cursor<part*> c(result_set, os_cursor::safe) ;

Below is an example that builds a set of all the descendents of a
given part (that is, a set containing the part’s children, its
children’s children, and so on). It is just like the first example in
this section, except that the collection is to use maintain_cursors ,
and a safe cursor is created.

os_Collection<part*> &result_set =
os_Collection<part*>::create(

db1,
os_collection::maintain_cursors

) ;

part *a_part, *p ;
. . .
result_set |= a_part ;

os_Cursor<part*> c(result_set, os_cursor::safe) ;

for (p = c.first(); p; p = c.next())
result_set |= p->children ; /* union of two sets */

Every child added to result_set is visited later in the iteration, and
its children are added. By the end of the iteration, all the
descendents are in the set.

Example: recursive
query

Below is another example of a recursive query. This one finds the
primitive descendents of a given part, those descendents that
themselves have no children:

os_Collection<part*> &result_set =
os_Collection<part*>::create(

db1,
os_collection::maintain_cursors

) ;

part *a_part, *p ;
. . .
result_set |= a_part ;

os_Cursor<part*> c(result_set, os_cursor::safe) ;

for (p = c.first(); p; p = c.next())
Release 5.1 83

Performing Collection Updates During Traversal
if (p->children.size()) {
result -= p ; /* remove if not primitive */
result_set |= p->children ; /* union of two sets */

}

Here, each child that itself has children is removed, and the child’s
children are added to the set. These children just added are visited
later in the iteration so that, if they have children, they can be
removed and their children added. By the end of the iteration,
only the primitive descendents remain in the set.

As mentioned above, recursive queries always work for
unordered iteration, but performing recursive queries using
ordered iteration requires more care. A value inserted during an
ordered iteration is visited only if it is inserted later, in the order
of iteration, than the current iteration position.

Ordered, Safe Traversal

If you want to create a cursor that is both ordered and safe, supply
the path argument before the enumerator os_cursor::safe :

os_Cursor<part*> c(a_collection, a_path, os_cursor::safe);

You must perform index maintenance for any data member or
member function in the path used to specify the traversal order, if
during iteration you update a data member controlling iteration
order. See Performing or Enabling Index Maintenance on
page 148.

Caution about infinite
loops

It is important to realize that there are certain dangers associated
with performing updates, within an iteration, to a data member
controlling iteration order. Consider, for example, the following
loop, which iterates through a set of employees, giving some a
raise:

os_Set<part*> &employees = ... ;

os_index_path &emp_path =
os_index_path::create("employee*", "salary", db1);

os_Cursor<part*> c(
employees,
emp_path,
os_cursor::safe

);
employee *e = 0;

for(e = c.first() ; e ; e = c.next())
84 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
if (e–>widgets_sold > 100000)
e–>salary *= 1.2 ;

Because iteration is by increasing salary, any employee who gets
a raise is moved ahead in the iteration order, and so is visited
again. If anyone gets a raise, the loop will be infinite. The proper
approach is to use an iteration order unaffected by the updates.
Release 5.1 85

Retrieving Uniquely Specified Collection Elements
Retrieving Uniquely Specified Collection Elements

The retrieve() function You can retrieve the collection element at which a specified cursor
is positioned with this function:

E retrieve(const os_Cursor<E>&) const ;

If the cursor is null, err_coll_null_cursor is signaled. If the cursor is
nonnull but not positioned at an element, err_coll_illegal_cursor is
signaled.

The only() function You can retrieve the only element of a collection with

E only() const ;

If the collection has more than one element, err_coll_not_singleton is
signaled. If the collection is empty, err_coll_empty is signaled,
unless the collection’s behavior includes os_collection::pick_
from_empty_returns_null , in which case 0 is returned.

Ordered Collections

For collections with maintain_order behavior, you can retrieve the
element with a specified numerical position with this function:

E retrieve(os_unsigned_int32 index) const ;

The index is zero-based. If the index is not less than the
collection’s size, err_coll_out_of_range is signaled. If the collection
does not have maintain_order behavior, err_coll_not_supported is
signaled.

The retrieve_first()
function

You can retrieve a collection’s first element with

E retrieve_first() const ;

This function returns the collection’s first element or 0 if the
collection is empty. If the collection is not ordered, err_coll_not_
supported is signaled.

For collections with allow_nulls behavior, you can use this
function instead:

os_int32 retrieve_first(const E&) const ;

This function modifies the argument to refer to the collection’s
first element. It returns 0 if the specified collection is empty, and
nonzero otherwise. If the collection is not ordered, err_coll_not_
supported is signaled.
86 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
The retrieve_last()
function

To retrieve a collection’s last element, use

E retrieve_last() const ;

This function returns the collection’s last element or 0 if the
collection is empty. If the collection is not ordered, err_coll_not_
supported is signaled.

For collections with allow_nulls behavior, you can use this
function instead:

os_int32 retrieve_last(const E&) const ;

This function modifies the argument to refer to the collection’s last
element. It returns 0 if the specified collection is empty, and
nonzero otherwise. If the collection is not ordered, err_coll_not_
supported is signaled.
Release 5.1 87

Selecting Individual Collection Elements with pick()
Selecting Individual Collection Elements with pick()

The function os_collection::pick() can be used to perform simple
queries. It provides a relatively inexpensive alternative to os_
collection::query_pick() and os_collection::exists() . With the
following overloading, you can retrieve a collection element such
that the result of applying path (see Creating Paths on page 65) to
the element is a value that satisfies range (see Specifying
Collection Ranges on page 77):

void* pick(
const os_index_path &path,
const os_coll_range &range

) const;

Example: pick() For example:

const os_index_path &id_path =
os_index_path::create("employee*", "id", db1) ;

os_coll_range range_eq_1138(EQ, 1138) ;
. . .
employee *e = a_coll.pick(id_path, range_eq_1138) ;

assigns to e an employee in a_coll whose id equals 1138.

If there is more than one such element, an arbitrary one is picked
and returned. If there is no such element, err_coll_empty is
signaled, unless the collection has behavior os_collection::pick_
from_empty_returns_null , in which case 0 is returned.

Dictionaries

For dictionaries, you can retrieve an element with the specified
key with one of the following two functions:

E pick(const K const &key_ref) const ;

E pick(const K *key_ptr) const ;

These two differ only in that with one you supply a reference to
the key, and with the other you supply a pointer to the key. Again,
if there is more than one element with the key, an arbitrary one is
picked and returned. If there is no such element and the
dictionary has pick_from_empty_returns_null behavior, 0 is
returned. If there is no such element and the dictionary does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.
88 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
For dictionaries, you can also retrieve an element whose key
satisfies a specified collection range (see Specifying Collection
Ranges on page 77) with

E pick(const os_coll_range&) const ;

Example: dictionary
pick()

For example:

a_dictionary.pick(os_coll_range(GE, 100))

returns an element of a_dictionary whose key is greater than or
equal to 100.

As with the other pick() overloadings, if there is more than one
such element, an arbitrary one is picked and returned. If there is
no such element and the collection has pick_from_empty_returns_
null behavior, 0 is returned. If there is no such element and the
dictionary does not have pick_from_empty_returns_null behavior,
err_coll_empty is signaled.

If the dictionary’s key type is a class, you must supply rank and
hash functions for the class (see Supplying Rank and Hash
Functions on page 92).

The key types char* , char[] , and os_char_star_nocopy are each
treated as a class whose rank and hash functions are defined in
terms of strcmp() . For example, for char* :

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string Smith
(that is, whose key, k, is such that strcmp(k, "Smith") is 0).

Picking an Arbitrary Element

You can retrieve an arbitrary collection element with

E pick() const ;

If the collection is empty and has pick_from_empty_returns_null
behavior, 0 is returned. If the collection is empty and does not
have pick_from_empty_returns_null behavior, err_coll_empty is
signaled.

This is sometimes useful when all the elements of a collection have
the same value for a data member, and the easiest way to retrieve
this value is through one of the elements.
Release 5.1 89

Selecting Individual Collection Elements with pick()
Example: retrieving an
arbitrary collection
element

For example, suppose the class bus defines a member for the set
of pins connected to it, but no member for the cell in which it
resides, while pin defines a member pointing to its attached cell,
which in turn has a member pointing to its containing cell. Then
the best way to find the cell on which a given bus resides is to find
the pins connected to it, and then find the cell on which one of the
pins resides.

a_cell = a_bus–>pins.pick()–>cell->container ;
90 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Consolidating Duplicates with operator =()

You can use the assignment operator os_Collection::operator =()
(see Copying, Combining, and Comparing Collections in Chapter
5 of the ObjectStore C++ API User Guide) to consolidate duplicates
in a bag or other collection. Do this by assigning the collection
with duplicates to an empty collection that does not allow (but
does not signal) duplicates.

Example:
consolidating
duplicates

os_database *db1 ;
part *a_part, *p ;
employee *e ;
. . .

os_Collection<employee*> &emp_bag =
os_Collection<employee*>::create(

db1,
os_collection::allow_duplicates

) ;

os_Collection<employee*> &emp_set =
os_Collection<employee*>::create(db1) ;

. . .

os_Cursor<part*> c(a_part->children) ;
for (p = c.first() ; p ; p = c.next())

emp_bag.insert(p–>responsible_engineer) ;

emp_set = emp_bag ; /* consolidate duplicates */

os_Cursor<employee*> c(emp_set) ;

for (e = c.first() ; e ; e = c.next())
cout << e–>name << "\t" << emp_bag.count(e) << "\n" ;

If two of a_part ’s children have the same responsible_engineer ,
that engineer appears twice as an element of emp_bag . We
consolidate duplicates in emp_set so we can iterate over it,
retrieving each engineer only once in the loop, and then we use
count() to see how many times the engineer occurs in emp_bag .
This is the number of parts for which the engineer is responsible.
Release 5.1 91

Supplying Rank and Hash Functions
Supplying Rank and Hash Functions

In all these examples, iteration order is based on integer-valued
data members (part_number , emp_id , or salary); that is, the paths
end in integer values. The integers have a system-supplied order,
defined by the comparison operators <, >, and so forth. The same
is true for pointers. For char* pointers, which are treated
differently from other pointers, the order is defined by
performing strcmp() on the string pointed to. But what if a path
ends in some other type of value; that is, what if it ends in the
instances of some class or floating-point numerical type?

If you want to use such a path to control iteration order, you must
make known to ObjectStore a utility specific to the class, a rank
function that defines an ordering on the type’s instances.

You must also supply a rank function if you use such a path to
specify a key for an ordered index (see Index Options on
page 144). For unordered indexes keyed by such paths, you must
supply both a rank and a hash function (the rank function is used
to resolve hashing collisions). ObjectStore uses these utilities to
maintain proper information on index paths that end in the class.

The os_index_key() Macro

You make these utilities known to ObjectStore by calling the
macro os_index_key() . Calls to os_index_key() have the following
form:

os_index_key(type,rank-function,hash-function);

For example:

os_index_key(date,date_rank,date_hash);

The type is the type that is at the end of the path.

Rank Functions

The rank-function is a user-defined global function that, for any pair
of instances of class , provides an ordering indicator for the
instances, much as strcmp does for strings. The rank function
should return one of os_collection::LT , os_collection::GT , or os_
collection::EQ .
92 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Rank functions for floating-point numerical types (float , double ,
and long double) should follow these guidelines:

• NaN and inf must be handled specially. For example, the
representation of NaN is not unique. In the rank function, test
for these values before doing anything else. You might want
NaN to rank below any other value.

• For the purpose of ranking, comparisons should be precise. For
example, the rank function should consider x and y to be equal
if x == y but not if abs(x – y) < e (for some small value of e) as
long as > and < also check for equality using e. Using imprecise
comparisons can lead to corrupt indexes and incorrect query
results.

Hash Functions

The hash-function is a user-defined global function that, for each
instance of class , returns a value, an os_unsigned_int32 , that can
be used as a key in a hash table. It takes a const void* argument. If
you are not supplying a hash function for the class, this argument
should be 0.

Example Use of Rank and Hash Functions

Suppose you have a collection of pointers to messages, instances
of a class that you have defined. Further suppose you want to
iterate through the messages in order of their dates to display each
message. If a message has an indexable data member whose value
is its date, you can code such an iteration this way:

os_collection &messages = . . . ;
message *a_msg;

os_index_path &date_path =
os_index_path::create("message", "date_received", msg_db);

os_cursor c(messages, date_path);
for (a_msg = (message*) c.first(); a_msg; a_msg =

(message*)c.next()) a_msg->display();

This assumes that dates have an order that is known to
ObjectStore. This is true if dates are instances of an integer or
pointer type such as int . But suppose that dates are instances of a
user-defined class:

class date{
public:
Release 5.1 93

Supplying Rank and Hash Functions
int month;
int day;
int year;

};

In this case you must define the rank function and make it known
to ObjectStore. Here is how you might define it:

int date_rank(const void* arg1, const void *arg2) {
const date *date1 = (const date *) arg1;
const date *date2 = (const date *) arg2;

if (date1->year < date2->year)
return os_collection::LT;

else if (date1->year > date2->year)
return os_collection::GT;

else if (date1->month < date2->month)
return os_collection::LT;

else if (date1->month > date2->month)
return os_collection::GT;

else if (date1->day < date2->day)
return os_collection::LT;

else if (date1->day > date2->day)
return os_collection::GT;

return os_collection::EQ;
}

If you also use unordered indexes keyed by date , you must supply
a hash function, which might be defined this way:

os_unsigned_int32 date_hash(const void* x) {
const date* d = (const date*) x;
return ((os_unsigned_int32) (d->year) << 16) ^

(d->month << 8) ^ d->day;
}

Finally, you must call os_index_key() before your application
performs any iteration or query employing an index path ending
on a data member of type date .

main() {
. . .
os_index_key(date,date_rank,date_hash);
. . .

}

If unordered indexes are never created, the hash function is not
needed, and the registration could be done as follows:

 os_index_key(date,date_rank,0);
94 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Specifying Expected Size

Frequently, a collection has a loading phase, in which it is loaded
with elements before being the subject of other kinds of
manipulation such as queries and traversal. In these cases, it is
desirable to create the collection with a representation
appropriate to the size it will have once loading is complete. This
saves on the overhead of transforming the collection’s
representation as it grows during the initial loading phase, and
can improve locality of reference.

To presize a collection, use the expected_size argument to a
collection create() operation or constructor.
Release 5.1 95

Customizing Collection Behavior
Customizing Collection Behavior

You can customize the behavior of new collections with regard to
the optional properties for the collection’s type. You do this by
supplying a behavior argument to create() , an unsigned 32-bit
integer, a bit pattern indicating the collection’s properties. The bit
pattern is obtained by using | (bitwise or) to form the bit-wise
disjunction of enumerators taken from the following possibilities.

Behavior Enumerators for Collection Subtypes

The following enumerators can be applied via the behavior
argument to create() or change_behavior() for os_Collection and its
subtypes. Enumerators that can be applied to the os_Dictionary
class are listed in the following section. These enumerators are all
described in Chapter 2, Collection, Query, and Index Classes, of
the ObjectStore Collections C++ API Reference.

• os_collection::pick_from_empty_returns_null : Performing pick()
on an empty result of querying the collection returns 0 rather
than raising an exception.

• os_collection::allow_nulls : The pointer 0 is allowed as an
element.

• os_collection::maintain_cursors : For traversals with safe cursors
(see Performing Collection Updates During Traversal on
page 81), an element inserted during a traversal will be visited
later in that same traversal. An element removed during a
traversal of its elements will not be visited later in that same
traversal.

• os_collection::allow_duplicates : Duplicate elements are
allowed.

• os_collection::be_an_array : For collections that maintain order

only. With this behavior, access to the nth element is an O(1)
operation.

Behavior Enumerators for Dictionaries

The following enumerators can be applied using the behavior
argument to create() for os_Dictionary. These enumerators are all
described in Chapter 2, Collection, Query, and Index Classes, of
the ObjectStore Collections C++ API Reference.
96 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
• os_collection::pick_from_empty_returns_null : Performing
pick() on an empty dictionary returns 0 rather than raising an
exception.

• os_dictionary::signal_dup_keys : Duplicate keys are not
allowed; err_am_dup_key is signaled if an attempt is made to
establish two or more elements with the same key.

• os_dictionary::maintain_key_order : Range lookups are
supported using pick() or restricted cursors. See Selecting
Individual Collection Elements with pick() on page 88 and
Restricting the Elements Visited in a Traversal on page 80.

• os_dictionary::dont_maintain_size : For dictionaries that
maintain key order only. With this behavior insert() and
remove() do not update size information, avoiding contention
in the collection header. This can significantly improve
performance for large dictionaries subject to contention. The
disadvantage of this behavior is that size() is an O(n) operation,
requiring a scan of the whole dictionary. See os_ixonly and os_
ixonly_bc on page 109.

Required and Forbidden Behaviors

Here is a table summarizing the required and forbidden behaviors
of the collection subtypes:

Collections
Class

Allow
Duplicates

Signal
Duplicates

Maintain
Order

Allow
Nulls

O(1)
Positional
Access

Maintain
Cursors

os_Set Forbidden Off by
default

Forbidden Off by
default

Forbidden Forbidden

os_Bag Required Forbidden Forbidden Off by
default

Forbidden Forbidden

os_List On by
default

Off by
default

Required Off by
default

Off by
default

Off by
default

os_Dictionary Required Forbidden Forbidden Required Not
applicable

Forbidden

os_Array On by
default

Off by
default

Required Required Required Off by
default
Release 5.1 97

Customizing Collection Behavior
Changing Collection Behavior with change_behavior()

You can change the behavior of a collection any time after its
creation with the function os_Collection::change_behavior() .
There are restrictions about what combinations of behaviors are
allowed. Any illegal combination causes an exception to be
signaled when change_behavior is called.

Fully specifying the
new behavior

You supply a bit pattern (an unsigned 32-bit integer) as argument,
fully specifying the behavior the collection is to have after the
change.

os_database *db1; . . .
os_Collection<part*> &some_parts =

os_Collection<part*>::create(
db1,
os_collection::allow_nulls,

) ;
. . .
some_parts.change_behavior(

os_collection::maintain_order |
os_collection::allow_duplicates

) ;

This changes the collection some_parts from an unordered
collection that allows nulls but does not allow duplicates into an
ordered collection that does not allow nulls and does allow
duplicates. Both before and after the change, maintain_cursors is
off.

Changing to default
behavior

The following call changes some_parts into a collection with
default behavior for its type, whatever its original behavior:

some_parts.change_behavior(0) ;

Removing behavior To remove behavior from a collection, you can conjoin (using &)
the collection’s current behavior with the bit-wise negation (~) of
the enumerator representing the behavior to remove. You obtain
a bit pattern representing the current behavior with os_
collection::get_behavior() , which returns an os_unsigned_int32 (a
32-bit unsigned integer).

Here is a function that changes a collection to disallow duplicates
and signal duplicates, and that otherwise does not affect its
original behavior:

f(os_collection &some_parts) {
os_unsigned_int32 current_behavior =
98 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
some_parts.get_behavior() ;

some_parts.change_behavior(
(current_behavior & ~os_collection::allow_duplicates) |
os_collection::signal_duplicates

) ;
}

Incompatibility
between behavior
and representation

Some behavior is incompatible with some of the possible
collection representations. If a collection whose behavior you are
changing has a user-defined representation policy, and that policy
is incompatible with the new behavior, an err_illegal_arg exception
is signaled. If the collection has the default representation policy,
the representation can change to accommodate the new behavior.

Automatic checking
for nulls and
duplicates

When you change a collection so that it no longer allows duplicate
or null insertions, you might want to check to see if duplicates or
nulls are already present. Such a check is performed for you if you
supply the enumerator os_collection::verify as the second
argument.

os_database *db1; . . .
os_Collection<part*> &some_parts =

os_Collection<part*>::create(
db1,
os_collection::allow_nulls |
os_collection::allow_duplicates |
os_collection::maintain_order

) ;
. . .
some_parts->change_behavior(

os_collection::maintain_order,
os_collection::verify

) ;

This changes some_parts from an ordered collection that allows
both nulls and duplicates into an ordered collection that allows
neither nulls nor duplicates. The argument os_collection::verify
indicates that the function should check for duplicates and nulls.

If nulls are found, err_coll_nulls is signaled. If duplicates are found,
and signal_duplicates is on, err_coll_duplicates is signaled. If
signal_duplicates is not on, the first among each set of duplicates
is retained and trailing duplicates are silently removed.

If os_collection::verify is not used, the resulting collection is
assumed to be free of duplicates or nulls. This could lead to
application errors if this is not the case.
Release 5.1 99

Customizing Collection Representation
Customizing Collection Representation

Each ObjectStore collection type permits a variety of
representations. The collection type (os_Set or os_Bag or os_List ,
and so on) determines the allowable behavior; the collection
representation determines the performance and storage
characteristics.

Representation Classes

The performance and storage characteristics of each
representation are discussed in the following sections of this
chapter:

• os_chained_list on page 102

• os_dyn_bag on page 105

• os_dyn_hash on page 107

• os_ixonly and os_ixonly_bc on page 109

• os_ordered_ptr_hash on page 112

• os_packed_list on page 114

• os_ptr_bag on page 116

• os_vdyn_bag on page 118

• os_vdyn_hash on page 120

A summary of these classes is provided in Summary of
Representation Types on page 122, and all the classes are
described in detail in Chapter 3, Representation Types, of the
ObjectStore Collections C++ API Reference.

Creating Collection Representation Objects

Creating os_rep
objects

You create an os_rep object with the os_rep constructor:

os_rep(os_rep_type rep_enum, os_unsigned_int32 size) ;

Enumerators for the
first argument of the
os_rep constructor

The first argument to the os_rep constructor is one of the
enumerators listed below. See os_rep::os_rep() in Chapter 2 of the
ObjectStore Collections C++ API Reference for more information.

• os_chained_list_rep

• os_dyn_bag_rep

• os_dyn_hash_rep
100 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
• os_ixonly_rep

• os_ixonly_bc_rep

• os_packed_list_rep

• os_ptr_bag_rep

• os_vdyn_bag_rep_os_reference

• os_vdyn_hash_rep_os_reference

The second argument to the os_rep constructor is the size at which
the transition to the next representation is to be made. Use

~(os_unsigned_int32)0

to specify no upper bound.

Changing Collection Representation with change_rep()

You can change a collection’s associated representation type at
any time, using the member function os_collection::change_rep() .

temp_bag->change_rep (
100,
&os_rep

);

The first argument is the expected size, used just as it is in create
to determine the initially active representation. The second
argument is the os_rep .

If you specify an os_rep and expected size that determine an
initial representation incompatible with the behavior of the
collection you want to change, err_coll_illegal_arg is signaled.
Moreover, if the type and size subsequently determine a
representation incompatible with the collection’s behavior, err_
coll_illegal_arg is also signaled.

Note that changing the representation of a collection is in effect
creating a new collection and copying all elements from the old to
the new collection.
Release 5.1 101

os_chained_list
os_chained_list

The class os_chained_list is a representation type that is optimized
(in both time and space) for small to medium-sized collections.
Each os_chained_list consists of a header and any number of
blocks. The header has a vptr , one word of state, and up to 20
pointers. When the number of pointers in the header is exhausted,
an os_chained_list_block is allocated, and chained to the header.

Each os_chained_list_block can contain up to 255 pointers. It has
two or three words of overhead: one word of state information, a
previous pointer, and possibly a next pointer (the first os_chained_
list_block allocated does not have a next pointer until the next
block is allocated). The default version of os_chained_list contains
four pointers in the header and seven or eight pointers in its
blocks.

The maximum size for os_chained_list s is 131070.

For more information, see os_chained_list in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Controlling the Number of Pointers

When you create an os_chained_list , what is really allocated is an
instance of a parameterized class derived from os_chained_list :
os_chained_list_pt<NUM_PTRS_IN_HEAD,NUM_PTRS_IN_
BLOCKS> . The default parameterization is <4,8>, but you can
specify a different parameterization with the following macros:

• OS_MARK_CHAINED_LIST_REP(ptrs_in_header,ptrs_in_blocks)

• OS_INSTANTIATE_CHAINED_LIST_REP(ptrs_in_header,ptrs_
in_blocks)

• OS_INITIALIZE_CHAINED_LIST_REP(ptrs_in_header,ptrs_in_
blocks)

Use OS_MARK_CHAINED_LIST_REP() in the same dummy
function as OS_MARK_SCHEMA_TYPE() .

Use OS_INSTANTIATE_CHAINED_LIST_REP() at file scope. It
declares some static state needed by the representation.

Execute OS_INITIALIZE_CHAINED_LIST_REP() in a function. It
registers the new parameterization with the collections library.
102 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Include the files <coll/chlist.hh> , <coll/chlistpt.hh> , and
<coll/chlistpt.c> if you use these macros.

In order to create a collection using a chained list with other than
the default parameterization, you invoke the following static
member function:

static os_coll_rep_descriptor*
os_chained_list_descriptor::find_rep(os_int32 ptrs_in_hdr,

os_int32 ptrs_in_blocks);

If the requested parameterization has been specified with the
above macros, the appropriate representation descriptor is
returned. Otherwise, 0 is returned.

Note that an os_chained_list must have at least four pointers in
the header but not more than 20 pointers.

An os_chained_list with a four-pointer header can change freely
into any other collection representation and the reverse. However,
other collection representations cannot change into os_chained_
lists with more than four pointers in the header. A normal
collection header is 24 bytes. An os_chained_list with more than
four pointers exceeds this limit. It is possible for an os_chained_
list with an oversized header to change into another
representation (with the same or smaller size header).

Pool Allocation of Blocks

You can request pool allocation of os_chained_list_block s with the
environment variable OS_COLL_POOL_ALLOC_CHLIST_BLOCKS
to the function os_chlist_pool::configure_pool() . In some cases this
decreases the time needed for individual allocation of os_
chained_list_blocks and increases the chance of getting good
locality of reference.

Setting OS_COLL_POOL_ALLOC_CHLIST_BLOCKS turns on pool
allocation. There is one pool per segment; each pool consists of an
array of subpools. Each subpool is two pages by default.

By allocating larger subpools, you can defer the cost of allocating
new subpools at the expense of potentially wasted space. To
allocate larger subpools, use this function:
Release 5.1 103

os_chained_list
static void
os_chlist_pool::configure_pool(

os_unsigned_int32 config_options,
os_unsigned_int32 blks_per_subpool=2);

config_options can have one of the following values:

• os_chlist_pool_no_pooled_allocation

• os_chlist_pool_allocate_blks

The second argument, which is optional and defaults to 2, controls
the number of pages allocated per subpool.

Mutation Checks

In order to improve performance, an os_chained_list does not
necessarily check to see if it should change to another
representation after every insert or remove operation. By default,
it checks when the size is roughly a multiple of 7. However, you
can control the frequency with which it checks by invoking the
static member function.

static void
os_chained_list_descriptor::set_reorg_check_interval(

os_unsigned_int32 v);

ObjectStore sets the check interval to one less than the power of 2
that is greater than or equal to v. For example, in order to check on
every other insert or remove, pass 1 or 2 as an argument. Passing
3 or 4 results in a check on every third operation. Passing 0 inhibits
mutation. However, if the maximum size for an os_chained_list is
reached, it will change to another representation.

mutate_when_full Behavior

For collections whose representation is os_chained_list , if you
specify the behavior enumerator os_collection::chained_list_
mutate_when_full , the collection’s representation will not change
until it reaches the maximum size for chained lists.
104 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
os_dyn_bag

Instances of this class are used as ObjectStore collection
representations. The os_dyn_bag representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_dyn_
bag takes up somewhat more space than an os_packed_list .

The representation os_dyn_bag minimizes reorganization
overhead at the expense of some extra space overhead, compared
with os_ptr_bag . At large sizes, os_dyn_bag uses a structure
pointing to many small hash tables that can reorganize
independently.

This representation type does not support maintain_order or
maintain_cursors behavior.

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_dyn_bag in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

Space Overhead

If

size <= 64k

insert() O(1)

remove() O(1)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
Release 5.1 105

os_dyn_bag
the small-medium size data structure is used. It contains the
following:

• Header (24 bytes)

• Entry for each element (eight bytes each)

• Some number of empty entries (eight bytes each)

On average, an os_dyn_bag at low-medium sizes is 69% full. You
can estimate the average size as follows:

Avg. total size in bytes = 24 + (size/.69) * 8

If

size > 64k

the large size data structure is used. It contains the following:

• Header (24 bytes)

• Directory (60 byte header + 12 bytes per directory entry)

• Some number of small hash tables (two pages each, eight bytes
per entry)

On average, each small hash table in an os_dyn_bag at high sizes
is 70% full. You can estimate the average size as follows:

n_entries = Avg. number of entries per small hash table = (8192/8) * .7

n_tables = Avg. number of small hash tables = size / n_entries

dir_size = Avg. directory size in bytes = 60 + (n_tables+1) * 12

Avg. total size in bytes = 24 bytes + dir_size + n_tables * 8192
106 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
os_dyn_hash

Instances of this class are used as ObjectStore collection
representations. The dynamic hash representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_dyn_
hash takes up somewhat more space than an os_packed_list .

At large sizes, os_dyn_hash uses a structure pointing to many
small hash tables that can reorganize independently.

This representation type does not support allow_duplicates ,
maintain_order , or maintain_cursors behavior.

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_dyn_hash in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

Space Overhead

If

size <= 64k

the small-medium size data structure is used. It contains the
following:

• Header (24 bytes)

• Entry for each element (four bytes each)

insert() O(1)

remove() O(1)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
Release 5.1 107

os_dyn_hash
• Some number of empty entries (four bytes each)

On average, the an os_dyn_hash at low-medium sizes is 69% full.
You can estimate the average size as follows:

Avg. total size in bytes = 24 + (size/.69) * 4

If

size > 64k

the large size data structure is used. It contains the following:

• Header (24 bytes)

• Directory (60 byte header + 12 bytes per directory entry)

• Some number of small hash tables (two pages each, four bytes
per entry)

On average, each small hash table in an os_dyn_hash at high sizes
is 70% full. You can estimate the average size as follows:

n_entries = Avg. number of entries per small hash table = (8192/4) * .7

n_tables = Avg. number of small hash tables = size / n_entries

dir_size = Avg. directory size in bytes = 60 + (n_tables+1) * 12

Acg. total size in bytes = 24 bytes + dir_size + n_tables * 8192
108 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
os_ixonly and os_ixonly_bc

Instances of these classes are used as ObjectStore collection
representations. They are both index-only representations that
support O(1) element lookup. Operations such as contains() and
remove() are O(1) (in the number of elements). But they take up
somewhat more space than an os_packed_list .

For large collections subject to contention, os_ixonly_bc can
provide significantly better performance than os_ixonly . See os_
ixonly_bc , below.

The next chapter discusses associating indexes with collections to
improve the efficiency of queries. With os_ixonly or os_ixonly_bc ,
you can save space by telling ObjectStore to record the
membership of the collection in one of its indexes, as opposed to
recording the membership in both the index and the collection. In
other words, you can save space by using an index as a collection’s
representation.

When these representation types are specified for a collection, you
must add an index to it before any operations are performed on it.
Additional indexes can also be added.

These representation types are incompatible with the following
behaviors: maintain_order , maintain_cursors , allow_nulls , and
allow_duplicates .

Note that using these representations can save on space overhead
at the expense of reducing the efficiency of some collection
operations. If the only time-critical collection operation is index-
based element lookup, an index-only representation is likely to be
beneficial.

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_ixonly and os_ixonly_bc in Chapter
3 in the ObjectStore Collections C++ API Reference.

os_ixonly_bc

os_ixonly_bc is just like os_ixonly , except that insert() and
remove() do not update size information, avoiding contention in
Release 5.1 109

os_ixonly and os_ixonly_bc
the collection header. The disadvantage of os_ixonly_bc is that
size() is an O(n) operation, requiring a scan of the whole collection.

You can determine if a collection updates its size in this way with
the following member of os_collection :

os_int32 size_is_maintained() const;

This function returns nonzero if the collection maintains size; it
returns 0 otherwise.

The following member of os_collection , which returns an estimate
of a collection’s size, is an O(1) operation in the size of the
collection:

os_unsigned_int32 size_estimate() const;

This function returns the size as of the last call to os_
collection::update_size() . For collections that maintain size, the
actual size is returned.

Before you add a new index to an os_ixonly_bc collection, call the
following member of os_collection :

os_unsigned_int32 update_size();

If you do not, add_index() will work correctly, but less efficiently
than if you do. This function updates the value returned by os_
collection::size_estimate() by scanning the collection and
computing the actual size.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

insert() O(1)

remove() O(1)

size(), os_ixonly O(1)

size(), os_ixonly_bc O(n)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
110 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary. This locks the info segment and can cause contention.
Release 5.1 111

os_ordered_ptr_hash
os_ordered_ptr_hash

Instances of this class are used as ObjectStore collection
representations. Unlike the other hash tables, this representation
supports maintain_order behavior. The ordered pointer hash
representation supports O(1) element lookup, which means that
operations such as contains() and remove() are O(1) (in the number
of elements). But an os_ordered_ptr_hash takes up somewhat
more space than an os_packed_list .

This representation type does not support be_an_array behavior.

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_ordered_ptr_hash in Chapter 3 in
the ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic).

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary. This locks the info segment and can cause contention.

Space Overhead and Clustering

An ordered pointer hash has the following components:

• Header

insert() O(1)

Position-based insert() O(n)

remove() O(1)

Position-based remove() O(n)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
112 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
• Entry for each element

• Some number of empty entries

The entry for a given element is likely to be on a different page
from the collection header.

On average, a pointer hash is 58.3% full. You can estimate the
average size of a pointer hash as follows:

if size <= 65535
average total size in bytes = 56 + size * 8 / 58.3

if size > 65535
average total size in bytes = 56 + size * 12 / 58.3

The minimum fill for a packed list is 46.7%, so an upper bound on
collection space overhead can be calculated as follows:

if size <= 65535
maximum total size in bytes = 56 + size * 8 / 46.7

if size > 65535
maximum total size in bytes = 56 + size * 12 / 46.7
Release 5.1 113

os_packed_list
os_packed_list

Instances of this class are used as ObjectStore collection
representations. The packed list representation is relatively space-
efficient, but element lookup is an O(n) operation, which means
that operations such as remove() and contains() are O(n) (in the
number of elements). If duplicates are allowed, this
representation provides the fastest insertion times, but if
duplicates are not allowed (requiring element lookup to check for
the presence of a duplicate) insert() is O(n).

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_packed_list in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

There might be “holes” in an os_packed_list if any elements have
been removed.

insert() , duplicates allowed O(1)

insert() , duplicates not allowed O(n)

Position-based insert() , no “holes” O(1)

Position-based insert() , with “holes” O(n)

remove() O(n)

Position-based remove() , no “holes” O(1)

Position-based remove() , with
“holes”

O(n)

size() O(1)

contains() O(n)

Comparisons (<=, ==, and so on) O(n2)

Merges (| , &, –) O(n2)
114 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

Space Overhead and Clustering

A packed list has the following components:

• Header

• Entry for each element

• Some number of empty entries

The entry for a given element is likely to be on a different page
from the collection header.

On average, a packed list is 83.3% full. You can estimate the
average size of a collection as follows:

average total size in bytes = 40 + size * 4 / 83.3

The minimum fill for a packed list is 66.7%, so an upper bound on
collection space overhead can be calculated as follows:

maximum total size in bytes = 40 + size * 4 / 66.7
Release 5.1 115

os_ptr_bag
os_ptr_bag

Instances of this class are used as ObjectStore collection
representations. The pointer hash representation supports O(1)
element lookup, which means that operations such as contains()
and remove() are O(1) (in the number of elements). But an os_ptr_
bag takes up somewhat more space than an os_packed_list .

In addition, as an os_ptr_bag grows, there can be overhead during
collection updates, for reorganization. In contrast, the
representation os_dyn_bag minimizes reorganization overhead at
the expense of some extra space overhead. At large sizes, os_dyn_
bag uses a structure pointing to many small hash tables that can
reorganize independently. See os_dyn_bag on page 105.

This representation type does not support maintain_order
behavior.

For sizes below 20, os_chained_list might be a better
representation type.

For more information, see os_ptr_bag in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

If there are safe cursors open on a particular collection, each insert
or remove operation visits each of those cursors and adjusts them
if necessary.

insert() O(1)

remove() O(1)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
116 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Space Overhead and Clustering

A pointer hash has the following components:

• Header

• Entry for each element

• Some number of empty entries

• Count slot for each entry

• Some number of empty count slots

The entry for a given element is likely to be on a different page
from the collection header. In addition, the count slot for a given
element is likely to be stored on a different page from both the
header and the entry for the element.

On average, a pointer bag is 58.3% full. You can estimate the
average size of a pointer bag as follows:

average total size in bytes = 48 + size * 8 / 58.3

The minimum fill for a packed list is 46.7%, so an upper bound on
collection space overhead can be calculated as follows:

maximum total size in bytes = 48 + size * 8 / 46.7
Release 5.1 117

os_vdyn_bag
os_vdyn_bag

Instances of this class are used as ObjectStore collection
representations. The os_vdyn_bag representation saves on
relocation overhead and address space by recording its
membership using ObjectStore references instead of pointers. It
supports O(1) element lookup, which means that operations such
as contains() and remove() are O(1) (in the number of elements).
But an os_vdyn_bag takes up somewhat more space than an os_
packed_list .

The representation os_vdyn_bag minimizes reorganization
overhead at the expense of some extra space overhead, compared
with os_ptr_bag . At large sizes, os_vdyn_bag uses a structure
pointing to many small hash tables that can reorganize
independently.

This representation type does not support maintain_order or
maintain_cursors behavior.

For sizes below 20, os_chained_list might be a better
representation type.

This class is parameterized, with a parameter indicating the type
of ObjectStore reference to use for recording membership. Actual
parameters can be os_reference, for general use.

For more information, see os_vdyn_bag in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

insert() O(1)

remove() O(1)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
118 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Space Overhead

For an os_vdyn_bag whose reference type parameter is REF_
TYPE, if

size <= 64k

the small-medium size data structure is used. You can estimate its
size as follows:

extra_slot = (((size / .69) % 16) ? 1 : 0)
average total size = 24 bytes (header) +

(((size / .69) / 16) + extra_slot) *
((sizeof(REF_TYPE) * 16) + (16 * 4) + 4)

If

size > 64k

the large size data structure is used. You can estimate its size as
follows:

entry_size:
os_reference: 20
os_reference_version: 28

if REF_TYPE != os_reference_protected:
n_tables = (size / (((8192 / <entry-size>) * 2) * .7)

else
n_tables = (size / ((8192 / (<entry-size>)) * .7))

dir_size= (n_tables +1) * 12 bytes + 60
average total size = 24 bytes (header) +

dir_size + n_tables * 8192 bytes
Release 5.1 119

os_vdyn_hash
os_vdyn_hash

Instances of this class are used as ObjectStore collection
representations. The os_vdyn_hash representation saves on
relocation overhead and address space by recording its
membership using ObjectStore references instead of pointers. It
supports O(1) element lookup, which means that operations such
as contains() and remove() are O(1) (in the number of elements).
But an os_vdyn_hash takes up somewhat more space than an os_
packed_list .

At large sizes, os_vdyn_hash uses a structure pointing to many
small hash tables that can reorganize independently.

This representation type does not support allow_duplicates ,
maintain_order , or maintain_cursors behavior.

For sizes below 20, os_chained_list might be a better
representation type.

This class is parameterized, with a parameter indicating the type
of ObjectStore reference to use for recording membership. Actual
parameters can be os_reference, for general use.

For more information, see os_vdyn_hash in Chapter 3 in the
ObjectStore Collections C++ API Reference.

Time Complexity

In the following table, complexities are shown in terms of
collection size, represented by n. (These complexities reflect the
nature of the computational overhead involved, not overhead due
to disk I/O and network traffic.)

insert() O(1)

remove() O(1)

size() O(1)

contains() O(1)

Comparisons (<=, ==, and so on) O(n)

Merges (| , &, –) O(n)
120 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Space Overhead

For an os_vdyn_bag whose reference type parameter is REF_
TYPE, if

size <= 64k

the small-medium size data structure is used. You can estimate its
size as follows:

extra_slot = (((size / .69) % 16) ? 1 : 0)
average total size = 24 bytes (header) +

(((size / .69) / 16) + extra_slot) *
((sizeof(REF_TYPE) * 16) + 4)

If

size > 64k

the large size data structure is used. You can estimate its size as
follows:

entry_size:
os_reference: 12
os_reference_version: 20

if REF_TYPE != os_reference_protected:
n_tables = (size / (((8192 / <entry-size>) * 2) * .7))

else
n_tables = (size / ((8192 / (<entry-size>)) * .7))

dir_size= (n_tables +1) * 12 bytes + 60
average total size = 24 bytes (header) + dir_size +

n_tables * 8192 bytes
Release 5.1 121

Summary of Representation Types
Summary of Representation Types

Time Complexity Summary

In the table below, complexities are shown in terms of collection
size, represented by n. (These complexities reflect the nature of the
computational overhead involved, not overhead due to disk I/O
and network traffic.)

An ordered hash table is an os_ordered_ptr_hash . Unordered
hash tables include the following:

• os_dyn_bag on page 105

• os_dyn_hash on page 107

• os_ptr_bag on page 116

• os_vdyn_bag on page 118

• os_vdyn_hash on page 120

There might be holes in an os_packed_list if any elements have
been removed.

Unordered
Hash
Tables

Ordered
Hash
Tables

os_packed_ list os_ixonly os_chained_
list

insert() O(1) O(1) O(1) if duplicates are
allowed; O(n)
otherwise

O(1) O(1) if
duplicates are
allowed; O(n)
otherwise

Position-based
insert()

Not
possible

O(n) O(1) if there are no
holes; O(n) otherwise

Not
possible

O(n)

remove() O(1) O(1) O(n) O(1) O(n)

Position-based
remove()

Not
possible

O(n) O(1) if there are no
holes; O(n) otherwise

Not
possible

O(n)

size() O(1) O(1) O(1) O(1) O(1)

contains() O(1) O(1) O(n) O(1) O(n)

Comparisons
(<=, ==, and so
on)

O(n) O(n) O(n2) O(n) O(n2)

Merges (| , &, –) O(n) O(n) O(n2) O(n) O(n2)
122 ObjectStore Advanced C++ API User Guide

Chapter 4: Advanced Collections
Note that among O(1) operations, the constant varies from one
structure to another. So, for example, os_packed_list insertion
with duplicates allowed is fastest, and os_ixonly is slowest.

Similarly, the constant for O(n) operations varies. So, for example,
while position-based insert and remove are O(n) for os_chained_
list , the constant is 1/(the number of pointers per block). So
position-based insert and remove are relatively fast operations at
small sizes.

Note also that if there are safe cursors open on a particular
collection, each insert or remove operation visits each of those
cursors and adjusts them if necessary.

Space Overhead Summary

This section contains a description of the data structures used by
each of the following collection representations:

• os_ordered_ptr_hash on page 112

• os_packed_list on page 114

• os_ptr_bag on page 116

These descriptions will allow you to estimate the amount of
storage occupied by a collection with a given size and a given
representation type. Information on clustering (what is likely to
be on the same page as what) is also included to help you predict
paging behavior.

Representation
components

Each type of representation has the following components:

• Header

• Entry for each element

• Some number of empty entries

Representations that
support duplicates

Representations that support duplicates also have the following:

• Count slot for each entry

• Some number of empty count slots

The entry for a given element is likely to be on a different page
from the collection header. In addition, the count slot for a given
element is likely to be stored on a different page from both the
header and the entry for the element.
Release 5.1 123

Summary of Representation Types
Estimating the
average size of a
collection

The number of empty entries and count slots is, on average,
proportional to the collection’s size. You can estimate the average
size of a collection with a given representation using the following
pieces of information:

• Average fraction of total entries that are not empty (the average
fill)

• Size of each kind of component

• Size of the collection

Formula for
calculating size

Here is the formula to use:

average total size = size_of(header) + size *
(size_of(entry) + size_of(count slot)) / (average fill)

Here is the information you need for each type of representation:

Minimum
representation fills

The minimum fills for each type of representation are as follows:

Calculating an upper
bound on collection
space

You can use this information to get an upper bound on collection
space overhead:

maximum total size = size_of(header) + size *
(size_of(entry) + size_of(count slot)) / (minimum fill)

Representation Type Header Size
in Bytes

Entry Size
in Bytes

Count Slot
Size in Bytes

Average
Fill %

os_ptr_bag 48 4 4 58.3

os_order_ptr_hash,
size <= 65535

56 8 0 58.3

os_order_ptr_hash,
size > 65535

56 12 0 58.3

os_packed_list 40 4 0 83.3

Representation Type Minimum Fill %

os_ptr_bag 46.7

os_order_ptr_hash,
size <= 65535

46.7

os_order_ptr_hash, size > 65535 46.7

os_packed_list 66.7
124 ObjectStore Advanced C++ API User Guide

Chapter 5
Queries and Indexes

The information about queries and indexes is organized in the
following manner:

Queries and Indexes Overview 126

Performing Queries with query() 127

Single-Element Queries with query_pick() 130

Existential Queries with exists() 131

Query Functions and Nested Queries 132

Nested Existential Queries 134

Preanalyzed Queries 136

Indexes and Query Optimization 140

Index Options 144

Performing or Enabling Index Maintenance 148

Declaring an os_backptr Member 150

Enabling Automatic Index Maintenance 152

User-Controlled Index Maintenance with an os_backptr 156

User-Controlled Index Maintenance Without an os_backptr 160

Rank and Hash Function Requirements 161

Example: Member Function Calls in Query and Path Strings 162
Release 5.1 125

Queries and Indexes Overview
Queries and Indexes Overview

The C++ language makes possible the sort of navigational data
access required by typical design applications. But, while
navigation provides the most efficient form of access in many
circumstances, other situations require associative access. Lookup
of an object by name or ID number, for example, is a simple form
of associative access. Both associative and navigational retrieval
are indispensable to databases supporting complex, data-
intensive design applications.

Therefore, among the database services provided by ObjectStore
is support for query processing. A query facility with adequate
performance must go beyond support for linear searches. So
ObjectStore provides a query optimizer, which formulates efficient
retrieval strategies, minimizing the number of objects examined
in response to a query. The query facilities are used from within
C++ programs, and they treat persistent and nonpersistent data in
an entirely uniform manner.
126 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Performing Queries with query()

To retrieve a collection of those elements that satisfy a specified
condition, use the function os_Collection::query() .

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Declaration This function is declared

os_Collection<E> &query(
char *type_string,
char *query_string,
os_database *schema_database = 0,
char *file_name = 0,
os_unsigned_int32 line = 0,
os_boolean dups = query_dont_preserve_duplicates

) const;

where E is the element type parameter.

Example Query

Here is an example:

os_database *people_database;
os_Set<person*> *people;

. . .

os_Set<person*> &teenagers = people->query(
"person*",
"this->age >= 13 && this->age <= 19",
people_database

);

Query Arguments

Form of the call Calls to the function can take the form

collection-expression.query(
element-type-name,
query-string,
schema-database

)

collection-expression The collection-expression in the above example is *people , and
defines the collection over which the query will be run.

element-type-name The argument element-type-name, person* in this example, is a
string indicating the element type of the collection being queried.
Release 5.1 127

Performing Queries with query()
query-string The query-string is a C++ control expression indicating the query’s
selection criterion. In this example it is this->age >= 13 && this-
>age <= 19. An element, e, satisfies the selection criterion if the
control expression evaluates to a nonzero int (true) when e is
bound to this .

Any string consisting of an int -valued C++ expression is allowed,
as long as

• There are no variables that are not data members.

• There are no function calls, except calls to strcmp() or strcoll() ,
calls involving a comparison operator for which the user has
defined a corresponding rank function and/or hash function,
and calls to member functions that satisfy the restrictions
described in Paths and Member Functions on page 68.

schema-database The schema-database is a database whose schema contains all the
types mentioned in the selection criterion. This database provides
the environment in which the query is analyzed and optimized.
The database in which the collection resides is often appropriate.

If the transient database is specified, the application’s schema
(stored in the application schema database) is used to evaluate the
query. The application schema database almost always contains
the required schema, but it might be closed at the time of the call
to query() . So using it as the schema_database argument might
involve the overhead of a database open.

file_name and line
arguments

ObjectStore uses the file_name and line arguments when reporting
errors related to the query. You can set them to identify the
location of the query’s source code.

dups arguments If the dups argument is the enumerator query_dont_preserve_
duplicates , duplicate elements that satisfy the query condition are
not included in the query result. If dups is the enumerator query_
preserve_duplicates , duplicate elements that satisfy the query
condition are included in the query result. Using query_dont_
preserve_duplicates (the default) typically results in better
performance.

Return value The return value of query() refers to a collection that is allocated
on the heap. So when you no longer need the resulting collection,
you should reclaim its memory with ::operator delete() to avoid
memory leaks. The resulting collection has the same behavior as
128 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
the collection being queried. The order of the elements in the
result cannot be guaranteed to be the order of the elements in the
collection being queried.

Queries Compared to Collection Traversals

The query above serves as a sort of shorthand for the following
collection traversal:

os_Set<person*> *people;
. . .

os_Cursor<person*> c(*people);
os_Set<person*> *teenagers =&os_collection::create(

os_database::get_transient_database()
);

person *p = 0;
for(p = c.first(); c.more() ; p = c.next())

if (p->age >= 13 && p->age <= 19)
*teenagers |= p;

os_set *people;
. . .

os_cursor c(*people);
os_set *teenagers =

&collection::create(os_database::transient_database);
person *p = 0;

for(p = (person*) c.first(); c.more() ; p = (person*) c.next())
if (p->age >= 13 && p->age <= 19)

*teenagers |= p;

Optimizing queries Queries, however, can be optimized so that, unlike this traversal,
they need not involve examination of every element of the
collection being queried. This happens when indexes are added to
a collection. Query optimization is discussed later in this chapter
(see Executing Bound Queries on page 139).

Within the selection criterion of query expressions, member
names are implicitly qualified by this , just as are member names
in function member bodies. So the above query can be rendered as

os_database *people_database;
os_Set<person*> *people;
. . .

os_Set<person*> &teenagers = people->query(
"person*",
"age >= 13 && age <= 19",
people_database

);
Release 5.1 129

Single-Element Queries with query_pick()
Single-Element Queries with query_pick()

The sample query above returns a reference to a collection. But
some queries are intended to locate just one element. In such
cases, it might be more convenient to use os_Collection::query_
pick() , a query function that returns a single element rather than a
collection. Using this form has the additional advantage that more
opportunities for optimization are available when it is known that
only a single element is sought.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Declaration This function is declared

E query_pick(char*, char*, os_database*) const;

where E is the element type parameter.

Calls to query_pick() have the same form as calls to query() . If
using the parameterized version, os_Collection::query_pick() , the
return value is the the os_Collection parameter type. If you are
using the nonparameterized version, os_collection::query_pick() ,
the return value is void* , and you will often have to apply a cast to
the result.

Example query_pick()

Here is an example:

os_database * parts_database;
os_Set<part*> *parts;
. . .

part *part_number_411 = parts->query_pick(
"part*",
"part_number == 411",
parts_database

);

If more than one element satisfies the query’s selection criterion,
one of them is picked and returned. So, except for the additional
opportunities for optimization, using query_pick() is equivalent to
calling os_Collection::pick() on the result of invoking query() .

If no element satisfies the query, 0 is returned.
130 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Existential Queries with exists()

Sometimes a collection is queried to determine whether there
exists some element that satisfies the selection criterion, and the
identity of the particular element or elements that do satisfy the
criterion is not of interest. For such cases, you should use os_
Collection::exists() . More opportunities for optimization are
available when it is known that this is the ultimate intent of the
query.

Existential queries are also discussed in Nested Existential
Queries on page 134.

Calls to exists() have the same form as calls to query() and query_
pick() , but instead of returning a collection or element, they return
a nonzero os_int32 (int or long , whichever is 32 bits on your
platform) for true, and 0 for false.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Example exists()

Here is an example:

os_database *print_request_db;
class page {...int page_number;...};
class print_request {...os_List<page*> *pages;...};
print_request *request;
. . .

if (request->pages->exists(
"page*",
"page_number > 100",
print_request_db

)
)
request->queue_at_end(print_queue);
Release 5.1 131

Query Functions and Nested Queries
Query Functions and Nested Queries

In all three forms of queries, the query string can itself contain
queries. A nested collection query has the form

collection-expression [: int-expression :]

where collection-expression is some element of the top-level
integer-expression of type os_Collection , and int-expression is the
selection criterion for the nested query.

A nested single-element query has the form

collection-expression [% int-expression %]

where collection-expression and int-expression are as for nested
collection queries.

These nested queries all have the same characteristics as the query
expressions discussed in Performing Queries with query() on
page 127, except that the collection returned is converted to an int
by the query processor. The returned collection is converted to 0
(that is, false) if it is empty, and a nonzero int (that is, true) if it is
nonempty.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Example Nested Query

Here is a query that finds the musicians among a company’s
employees:

class employee {... os_Set<hobby*>& hobbies; ...};
class hobby {... char *name; ...};
os_Set<employee*> &employees = ...;
. . .

os_Set<employee*> musicians = employees->query(
"employee*",
"hobbies[:!strcmp(name, "music"):]",
db

);

In this query, the selection criterion is the query string
hobbies [: !strcmp(name, "music") :] . Since this is a nested query
expression, the collection that it designates is converted to an int .
The nested query is converted to 0 (false) when it returns an
132 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
empty set (there is no hobby named music). Otherwise it is
converted to a nonzero value.

The query string in the above example is therefore equivalent to

[:hobbies[:!strcmp(name, "music"):].size !=0:]
Release 5.1 133

Nested Existential Queries
Nested Existential Queries

The collection returned by a nested query is converted to an int by
the query processor. The returned collection is converted to 0 (that
is, false) if it is empty, and a nonzero int (that is, true) if it is
nonempty.

This is particularly useful for performing existential queries.
Consider the following query:

os_database *db;
os_Set<part*> &a_set ... ;
a_set->query("part*", "children[:1:]", db);

This query selects all parts in a_set that have children. This is
because, for each element, e, of a_set , e–>children[:1:] returns
e->children , which is converted to an integer, and if the integer is
nonzero (true), e is selected. If e->children is empty, it is converted
to 0 (false), and so is not selected.

To find the parts in a_set that have no children, you can use the
following query:

os_database *db;
os_Set<part*> &a_set ... ;
a_set->query("part*", "!children[:1:]", db);

Here is a query that selects those descendents of a_part that have
children all of which are primitive. So it selects all descendents
that are strictly on the second level from the bottom of the
assembly.

os_database *db;
part *a_part;

a_part->get_descendents()->query(
"person*",
"children[:1:] && !children[:children:]",
db

);

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Example Nested Existential Query

Below is a final example involving nesting of queries. This locates
the employee whose child has social security number 123456789.
134 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
employees->query_pick(
"employee*",
"children[:ss==123456789:]",
db

);

The inner query returns 0 (false), for a given employee, if none of
her children has social security number 123456789. In this case,
the employee is not selected. If, for a given employee, at least one
of her children does have social security number 123456789, the
inner query returns an int greater than 0 (true), and the employee
is selected.
Release 5.1 135

Preanalyzed Queries
Preanalyzed Queries

It is useful to think of query evaluation as consisting of three
logical steps:

1 Analysis of the query expression

2 Binding of the free variable and function references in the
query (that is, binding of all identifiers except member names),
if any

3 Actual interpretation of the bound query

The first step, analysis of the query expression, is likely to be a
relatively expensive operation. If the same query is performed
several times, perhaps with different values for the free variables
each time, and perhaps on different collections each time, you
should use a preanalyzed query.

Creating Query Objects with the os_coll_query Class

To use a preanalyzed query, you create a query object, an instance
of the class os_coll_query . This query will be analyzed upon
creation. Subsequently, each time you want to perform the query,
you provide bindings for the free variable and function
references, and you specify the collection over which the query is
to be performed. This way, the cost of analyzing the query is
incurred only once for a query that is bound and interpreted
several times.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Form of the call A preanalyzed query is created with one of the static member
functions os_coll_query::create() , os_coll_query::create_pick() , or
os_coll_query::create_exists() . Calls to these functions have the
form

os_coll_query::create(
element-type-name,
query-string,
schema-database

)

A const os_coll_query& is returned in each case.
136 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
os_coll_query::create() must be called from within an ObjectStore
transaction. An os_coll_query object can be created persistently,
but it is up to the application to keep track of how to get at it in
subsequent transactions (navigable from a root).

Destroying Query Objects with destroy()

os_coll_query::destroy deletes the specified instance of os_coll_
query . Call os_coll_query::destroy only if you are certain a query
is no longer needed.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Function Calls in Query Strings

As with the query strings introduced earlier, the query string here
is an int -valued expression, and calls to strcmp() and strcoll() are
allowed, as are calls involving comparison operators for which
the user has defined a corresponding rank function, and calls to
member functions satisfying the restrictions described in Paths
and Member Functions on page 68.

For preanalyzed queries, the query string can also include calls to
other nonoverloaded global functions, as long as

• The return type of each function is specified explicitly with a
cast.

• The function references are bound as described below.

• All function calls involve zero, one, or two arguments, and, for
two-argument calls, the first argument is a pointer.

Creating Bound Queries

Variables (including data members) can appear in a query string,
as long as the type of each variable (except data members) is
specified explicitly with a cast. Consider, for example:

const os_coll_query &age_range_query =
os_coll_query::create(

"person*",
"age >= *(int*)min_age_ptr && age <=*(int*)max_age_ptr",
db1

);
Release 5.1 137

Preanalyzed Queries
This creates a preanalyzed query for people in a given age range.
Note the type casts used to specify the types of the free variables
min_age_ptr and max_age_ptr .

Binding a query’s
variables

Once you have a preanalyzed query, you can create a bound query
at any time, using the constructor for the class os_bound_query .
Bound queries must be transiently allocated; they should not be
created with persistent new .

The bound query constructor takes two arguments: a preanalyzed
query, and a keyword_arg list, an instance of os_keyword_arg_list .
Here is an example:

int teenage_min_age = 13, teenage_max_age = 19;

os_bound_query teenage_range_query(
age_range_query, (

os_keyword_arg("min_age_ptr", &teenage_min_age),
os_keyword_arg("max_age_ptr", &teenage_max_age)

)
);

This creates a bound query for finding teenagers using the
analyzed query in the previous example.

Comma operator
overloading

The comma operator is overloaded in such a way that you can
designate a keyword_arg_list with an expression of the following
form:

(
keyword_arg-expr,
keyword_arg-expr,
. . . ,
keyword_arg-expr

)

You create a keyword_arg with the constructor for the class os_
keyword_arg , as in

os_keyword_arg("min_age_ptr", &teenage_min_age)

This binds the address teenage_min_age to the variable min_age_
ptr in the query string, specifying the value to be used in analyzing
the query.

Binding a query’s
functions

Just as a query’s free variable references must be bound before the
query is evaluated, so must all function names. For example, the
query:

const os_coll_query &the_query = os_coll_query::create(
138 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
"person*",
"age >= (int)a_func((int) x)",
db1

);

might be bound with

int current_x = 7;

os_bound_query the_bound_query(
the_query, (

os_keyword_arg("x", current_x),
os_keyword_arg("a_func", a_func)

)
);

Note that when a query is evaluated, functions will be invoked an
undefined number of times, depending on the evaluation plan
formulated by the query optimizer. So, for functions with side
effects, the actual results are undefined.

The functions strcmp() and strcoll() are specially recognized by the
query optimizer, so you do not have to bind them.

Executing Bound Queries

A version of os_Collection::query() takes a const os_bound_
query& argument, as do versions of os_Collection::query_pick()
and os_Collection::exists() .

The bound query can then be used directly in query evaluation, as
in

people.query(teenage_range_query);

Note that, as with the other overloadings of query functions, the
return value refers to a collection that is allocated on the heap. So
when you no longer need the resulting collection, you should
reclaim its memory with ::operator delete() to avoid memory
leaks.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.
Release 5.1 139

Indexes and Query Optimization
Indexes and Query Optimization

Adding an Index to a Collection with add_index()

You can direct ObjectStore to optimize queries over a particular
collection by adding an index into the collection with the member
function os_collection::add_index() .

Suppose, for example, you want to optimize lookup of parts in a_
set by part number, as in the following query:

a_set->query_pick("part*", "part_number==411", db1)

Example: add_index() You request an index into the set a_set . You specify the key of the
index as the value of the data member part_number . To do this, use
the member function os_collection::add_index() :

os_Set<part*> *a_set;
. . .

os_index_path &key_spec =
os_index_path::create("part*", "part_number",db1);

a_set->add_index(key_spec);

The key here is specified with a reference to a path. See Creating
Paths on page 65.

The last argument to add_index() specifies the database, segment,
or object cluster in which the index is stored. The index remains
until it is removed with drop_index() . By default, an index is
placed in the same segment as the collection for which the index
is being added.

Once you invoke this function, any query over a_set involving
lookup by part_number is optimized.

Indexes can also end in functions. In this case, the query must end
in the function in order to employ the index.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Index Maintenance

You might need to perform index maintenance for any data
member or member function in the path used to specify the index
key. See Performing or Enabling Index Maintenance on page 148.
140 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Pointer-Valued Members and char* Keys

If you create an index with a path to a pointer-valued data
member — other than a char* -valued member — you can
optimize lookup based on address. char* -valued data members
are treated specially. An index based on a char* member optimizes
lookup by the string pointed to.

However, because the query is on the address and not the value,
pointer-valued members are limited in their usefulness.

Indexes and Performance

Without the index, a linear search must be used to perform such
queries, and each element of a_set will have to be examined. By
adding an index into a_set , you are instructing the system to
maintain an access method (consisting of hash tables and/or a B-
tree) allowing efficient lookup by part_number .

Adding an index into a collection slows down updates to the
collection somewhat. It also slows down updates to the data
member specifying the index key. This is because index
maintenance is performed whenever such an update occurs. But
indexes make the associated lookups significantly faster. So it is a
good idea to request an index if the ratio of lookups to updates is
large.

Dropping Indexes from a Collection with drop_index()

Indexes can be added and dropped during the run of an
application. If an index makes sense for only part of an
application’s run, the application can add an index and then
remove it later. For example, if the first part of an application
performs many lookups but relatively few updates, and the
second part performs many updates and relatively few lookups,
the program can add an index at the beginning of the first part,
and then remove the index at the beginning of the second part.

Because of this, you might unexpectedly find that you want to
temporarily drop and later re-add an index. It is a good idea to
design your application to keep track of your indexes so you can
easily drop and re-add them at a later time, especially if you have
many indexes.
Release 5.1 141

Indexes and Query Optimization
Example:
drop_index()

You remove an index with the member function drop_index() .
Here is an example:

os_Set<part*> *a_set;
. . .
os_index_path &key_spec =

os_index_path::create("part*","part_number", db1);
. . .
a_set->drop_index(key_spec);

Note that you specify the key, with an os_index_path , when
dropping an index, because the same collection can have several
different indexes — to optimize different kinds of lookups.

The os_index_path argument does not need to be the same
instance of os_index_path supplied when the index was added,
but it must specify the same key. If the path strings used to create
two os_index_path s differ only with regard to white space, the os_
index_path s specify the same index key.

If an index with the specified key was never added to the
collection, err_no_such_index is signaled.

You can add and drop indexes at run time as frequently as you
like. The ObjectStore query optimizer adapts dynamically.

For more information, see Chapter 2, Collection, Query, and Index
Classes, in the ObjectStore Collections C++ API Reference.

Testing for the Presence of an Index with has_index()

You can also test for the presence of an index with a specified key,
using the member function has_index() .

This function returns a value saying whether an index can
support the index type specified with index_options .

You must supply a path string and one of the index options. An
index that supports exact match queries (hash table) can only be
used for exact matches. An index that supports range queries
(binary tree) can be used for both exact match and range queries.
In effect, os_collection::has_index answers the question “can this
index support this type of query” and not what option was used
to create the index.

Possible values for index_option are ordered and unordered .
142 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
• For an index created with the ordered option the following is
true:

• For an index created with the unordered option the following
is true:

Here is an example:

os_Set<part*> *a_set;
. . .
os_index_path &key_spec = ...
. . .
if (a_set->has_index(key_spec options)) ...

options for has_index can have the value ordered or unordered .

The function os_collection::get_indexes() allows you to retrieve
information on all the indexes into a specified collection. For more
information, see Chapter 2, Collection, Query, and Index Classes,
in the ObjectStore Collections C++ API Reference.

Indexes and Complex Paths

Path expressions can specify not just a single data member, but a
navigational path involving multiple member accesses. Such path
expressions can be used to specify index keys. For example,
suppose you want to optimize lookup of a part based on the emp_
id of any of the responsible_engineers for the part (suppose that
the member responsible_engineers is collection valued). You can
use the following path:

os_index_path::create(
"part*","(*responsible_engineers)[]->emp_id", db1)

This path is like ones you have seen before, except that here the
data member name responsible_engineers is followed by the
symbols [] , indicating that the next component of the path (emp_
id) is to be applied to each element of the collection of responsible
engineers, rather than to the collection itself. Note that you cannot
end an expression with the symbols [] .

has_index(path,os_index::ordered) Returns true

has_index(path,os_index::unordered) Returns true

has_index(path,os_index::ordered) Returns false

has_index(path,os_index::unordered) Returns true
Release 5.1 143

Index Options
Index Options

As mentioned above, the index from part numbers to parts is
implemented as hash tables (unordered indexes). This is the
default. But if your application performs range queries involving
part_number , you can request an ordered index, implemented
using a B-tree. With a B-tree, queries involving <, <=, >, or >=
comparisons on part numbers can be computed more efficiently
than with an index implemented only with hash tables.

Example: B-tree query Here is an example:

part_extent->query(
"part*", "part_number > 411", db1

)

part_extent[:part_number > 411:]

Use of a B-tree also makes iteration in order of part_number more
efficient (see Controlling Traversal Order on page 73).

The os_index_path::ordered Enumerator

You request an ordered index by specifying os_index_
path::ordered as the second argument to add_index() when
requesting the index:

os_Set<part*> *a_set;
. . .
os_index_path &a_path =

os_index_path::create("part*","part_number", db1);
a_set->add_index(a_path, os_index_path::ordered);

Here, os_index_path::ordered is an ObjectStore-supplied
enumerator.

Of course, if a B-tree is best for parts of your application, and a
hash table is best for other parts, you can add and drop indexes of
these types dynamically, as appropriate. You cannot have an
ordered and unordered index using the same os_index_path on a
collection.

For more information, see os_index_path::ordered in Chapter 2 of
the ObjectStore Collections C++ API Reference.
144 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Index Option Enumerators

You can also specify a variety of other index options using various
other enumerators. The enumerators can be combined into a bit
pattern with bit-wise disjunction (using | (bit-wise or)). Here is the
complete list of index option enumerators; for additional
information see the corresponding entries in Chapter 2,
Collection, Query, and Index Classes, in the ObjectStore Collections
C++ API Reference.

• os_index_path::ordered : indicates an ordered index,
implemented as a B-tree, supporting optimization of range
queries, that is, queries involving the comparison operators <,
>, <=, and >=. Specifying both ordered and unordered (see os_
index_path::unordered , below) for the same index results in an
ordered index.

• os_index_path::unordered : indicates an unordered index,
implemented as a hash table. Such an index does not support
optimization of range queries. Specifying both ordered and
unordered for the same index results in an ordered index.

• os_index_path::allow_duplicates : indicates an index that allows
duplicate keys. You should use such an index for collections in
which two or more elements can share a key value. Specifying
both allow_duplicates and no_duplicates (see os_index_
path::no_duplicates , below) for the same index results in a no_
duplicates index.

• os_index_path::no_duplicates : indicates an index that does not
allow duplicate key values. You should use such an index for
collections in which no two elements can share a key value. If
duplicate key values might accidentally occur, use this
enumerator together with os_index_path::signal_duplicates
(see os_index_path::signal_duplicates , below). Without signal_
duplicates , duplicate keys are not detected and can have
unpredictable results. Specifying both allow_duplicates and
no_duplicates for the same index results in a no_duplicates
index.

• os_index_path::signal_duplicates : indicates an index that
detects duplicate key values. Can only be used together with
os_index_path::no_duplicates . If an index that signals
duplicates is added to a collection containing two or more
elements that share a key value, the exception err_index_
Release 5.1 145

Index Options
duplicate_key is signaled. In addition, for a collection with an
index that signals duplicates, inserting an element with the
same key value as some other element also provokes an err_
index_duplicate_key exception.

• os_index_path::copy_key : indicates an index with entries
consisting of key-value/element pairs, as opposed to pointer-
to-key-value/element pairs (see os_index_path::point_to_key ,
below). For a copy_key index, an entry is formed by copying
the object at the end of the os_index_path that specifies the key.
Such an index generally takes up more space than one that
points to its keys, but it provides notably faster access times
because of reduced paging costs. Specifying both copy_key and
point_to_key for the same index results in a point_to_key index.

• os_index_path::point_to_key : indicates an index with entries
consisting of pointer-to-key-value/element pairs, as opposed
to key-value/element pairs. For a point_to_key index, an entry
includes a pointer to the object at the end of the os_index_path
that specifies the key. With point_to_key behavior, the entire
page containing the key is paged in. Because of increased
paging costs, such an index generally provides slower access
times than an index that copies its keys, but a point_to_key
index takes up less space. If keys are sparse, for instance, one
key contained in a large object, performance can be very slow.

Specifying both copy_key and point_to_key for the same index
results in a point_to_key index.

• os_index_path::use_references : indicates a reference-based (as
opposed to pointer-based) index. For very large collections,
using an os_ixonly representation and a reference-based index
(or indexes) can, for many operations, significantly reduce
address space consumption (see also os_index_path::copy_
key). Cannot be specified together with os_index_
path::ordered . Collections using any reference-based index
must use only reference-based indexes.

Default index
behavior

The following disjunction of enumerators specifies the default
index behavior:

os_index_path::unordered |
os_index_path::allow_duplicates |
os_index_path::copy_key
146 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
By default, an index is allocated in the same segment as its
associated collection. But if you want, you can supply an os_
database* or os_segment* indicating where to allocate a new
index. Supply this information as the third argument, for calls that
include an options argument. Otherwise, supply the clustering
information as the second argument.
Release 5.1 147

Performing or Enabling Index Maintenance
Performing or Enabling Index Maintenance

Whenever you use a path, for each data member mentioned in the
path string, except const and collection-valued members, you
must perform or enable index maintenance. Note that failing to
perform or enable index maintenance can result in corrupted
indexes, incorrect query results, and program failures.

os_indexable data
members

Data members declared as os_indexable do automatic index
maintenance on update. Pointer-valued data members should not
be declared as os_indexable because the index will be on the
address, not the value.

Collections and
indexes

For all collections, a collection can either participate in an index,
or own an index over itself. In either case, when items are inserted
into and removed from collections automatic index maintenance
occurs. This is true whether or not the item is os_indexable and is
also true for indexed member functions. However, you must still
do index maintenance on update.

Non-os_indexable
data members

For data members that are not declared os_indexable (for instance
pointer-valued data members) you must do index maintenance
when you modify the object that the pointer points to.

Paths as Indexes

If you use a path as an index key, or to specify traversal order for
a safe cursor, you have two or three options for each data member
in the path.

Option 1: automatic
index maintenance

Declare an os_backptr member and enable automatic index
maintenance. See Declaring an os_backptr Member on page 150.
See also Enabling Automatic Index Maintenance on page 152.

This option simplifies the coding of updates, compared to options
2 and 3.

Like option 2, this option carries extra space overhead, compared
to option 3, in the form of an os_backptr member for each object
containing the member.

Option 2: user-
controlled index
maintenance (using
os_backptr)

Declare an os_backptr and perform user-controlled index
maintenance, using make_link() and break_link() . See Declaring an
os_backptr Member on page 150 and User-Controlled Index
Maintenance with an os_backptr on page 156.
148 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Like option 3, this option can make coding updates to the member
slightly more complex, compared to option 1, but it avoids the use
of "wrapper objects" and the apparent value/actual value
distinction. See The Actual Value/Apparent Value Distinction on
page 154 for more information.

Like option 1, this option carries extra space overhead, compared
to option 3, in the form of an os_backptr member for each object
containing the member.

Option 3: user-
controlled index
maintenance (without
os_backptr)

Do not declare an os_backptr and perform user-controlled index
maintenance, using the collection operations insert() and remove() .
This option only applies if the member is not mentioned in any
multistep path used as an index key. See User-Controlled Index
Maintenance Without an os_backptr on page 160.

Like option 2, this option can make coding updates to the member
slightly more complex, compared to option 1, but it avoids the use
of "wrapper objects" and the apparent value/actual value
distinction. See The Actual Value/Apparent Value Distinction on
page 154 for more information.

With this option, you do not need to declare an os_backptr, so you
avoid the space overhead, incurred with options 1 and 2, of an os_
backptr member for each object containing the member. But the
index maintenance accompanying each data member update can
be more expensive.

Such index maintenance will be more expensive if there is an
index that 1) is not keyed by the data member, and 2) indexes a
collection on which you perform insert() and remove() for index
maintenance associated with updating the member.

With option 3, each such index will be updated, whereas with
options 1 and 2, such indexes are not updated.
Release 5.1 149

Declaring an os_backptr Member
Declaring an os_backptr Member

To make a data member indexable, you add to the class whose
data member you want to be indexable a public or private data
member of type os_backptr . The declaration of the data member
of type os_backptr must precede the declaration of the data
member (or member functions) you want to make indexable.

Example: os_backptr
declaration

Here is an example:

class part {
public:

. . .
os_backptr b ;
int id ;
department *dept ;
. . .
part();
~part();
. . .

};

Note that it is sufficient to define a single data member of type os_
backptr for all indexable members of a class.

Inheritance of the os_backptr

ObjectStore supports inheritance of the os_backptr data member
provided that the member is inherited from a base class along the
leftmost side of the type inheritance lattice and provided that the
leftmost base class is not a virtual base class (directly or through
inheritance). In all other cases, you must define a data member of
type os_backptr directly in the class defining the members you
want to be indexable.

Example: os_backptr
class definitions

Consider, for example, the following class definitions:

class base1 {... os_backptr b1 ; ...} ;
class base2a : public base1 {...} ;
class base2b {... os_backptr b2b ;...} ;
class derived : public base2a, public base2b {

char *name ;
} ;

Class derived ’s name member can use class base1 ’s os_backptr
member b1. Any data member in class base2a can also use class
base1 ’s os_backptr member b1. Indexable members in class
base2b should continue to use base2b ’s os_backptr member b2b .
150 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Now consider

class base1 {...os_backptr b1 ;...} ;
class base2a : virtual public base1 {...} ;
class base2b {...os_backptr b2b ; ... } ;
class derived : public base2a, public base2b {

os_backptr d ;
char *name ;

} ;

It is not possible for class derived ’s indexable data members to use
base1 ’s os_backptr member, because base2a inherits class base1
virtually. For the same reason, data members in class base2a
cannot use class base1 ’s os_backptr member b1. Since base2b is
not inherited along the leftmost side of the type inheritance lattice,
an additional os_backptr member (d in this example) must be
defined to allow name to be indexable.
Release 5.1 151

Enabling Automatic Index Maintenance
Enabling Automatic Index Maintenance

Using the functions os_backptr::break_link() and os_
backptr::make_link() whenever you update the member allows
ObjectStore to perform index maintenance under user control (see
User-Controlled Index Maintenance with an os_backptr on
page 156).

This is also true for pointer-valued data members. Because the
pointer is the index value, ObjectStore does not detect updates
and you must use os_backptr::break_link() and os_backptr::make_
link() for index maintenance whenever you update the member.

But, for all other data members that are not char* or char[] valued,
you can avoid using these functions by declaring the data member
using the following macros:

• os_indexable_member()

• os_indexable_body()

• os_index()

If you use these macros, updates to the data member trigger
automatic index maintenance.

For more information, see also Chapter 4, Macros and User-
Defined Functions, in the ObjectStore Collections C++ API
Reference.

The os_indexable_member() Macro

For a data member normally declared as

value-type member-name ;

declare it instead as

os_indexable_member(class-name,member-name,value-type)
member-name ;

where class-name is the name of the class defining the indexable
member, member-name is the name of the data member being
made indexable, and value-type is the member’s type.
152 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
The os_indexable_body() Macro

The last thing you must do to make a data member indexable is
call the macro os_indexable_body() to instantiate the bodies of the
functions that provide access to the indexable member. These
functions ensure that any indexes keyed by that data member are
properly updated when the member is. The macro call should
appear (at top level) in a file associated with the class defining the
indexable member:

os_indexable_body(part,id,int,os_index(part,b));
os_indexable_body(part,idx2,int,os_index(part,b));

Here, the macro calls have the form

os_indexable_body(class,member,value-type,backptr-spec)

where

• class is the name of the class defining the indexable member.

• member is the name of the data member being made indexable
and value-type is that member’s value type.

• backptr-spec is a call to the macro os_index() indicating the
name of the class’s os_backptr member.

The os_index() macro

Calls to os_index() have the form

os_index(class,member)

where class is the name of the class defining the indexable
member, and member is the name of the os_backptr -valued data
member appearing before indexable members of the class.

Avoid White Space in Macro Arguments

Some macro arguments are used (among other things) to
concatenate unique names. The details of cpp macro
preprocessing differ from compiler to compiler, and in some cases
it is necessary to enter these macro arguments without white space
to ensure that the argument concatenation will work correctly. All
the examples given in this section follow this important
convention, and should therefore work with any cpp .
Release 5.1 153

Enabling Automatic Index Maintenance
The Actual Value/Apparent Value Distinction

The actual value of an indexable data member is a special
container object that encapsulates the apparent value. For
example, the apparent value of the data member id of the previous
examples is an int , but the actual value is an instance of a class
defined implicitly by the member macro.

This implicitly defined class defines operator =() and a conversion
operator (operator int() in this example) for converting instances of
the implicitly defined type to instances of the apparent value type.
Under most circumstances these operators make the container
object transparent.

Examples For example, to set the id of a part to 411, you simply do

a_part->id = 411

And to get the value and pass it to a function expecting an int
argument, you do

f(a_part->id)

Since f() expects an int argument (the apparent but not actual value
type of id), the conversion operator will be invoked, making the
above call equivalent to

f(a_part->id.operator int())

For cases where the actual value cannot be transparent, you
should use the functions getvalue() and setvalue() defined by the
actual value type of the indexable member. For example:

printf("The id is %d \n", a_part->id); /* This won’t work correctly */

will not work because the compiler cannot tell that the second
argument to printf() is supposed to be an int , so the conversion
operator is not invoked. Instead you should use

printf("The id is %d \n", a_part->id.getvalue());

or

printf("The id is %d \n", (int)(a_part->id));

The getvalue() and setvalue() functions will always work correctly
for getting and setting indexable data member values.
154 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
char* and char() Members

char* and char[] indexable data members are typically intended to
be associated with indexes keyed by string rather than address.
For example, iteration based on a char* member will proceed in
order of the string pointed to rather than in order of address. To
ensure proper index maintenance for such members, you must
use user-controlled index maintenance. See User-Controlled
Index Maintenance with an os_backptr on page 156.

Restriction on Updates

Note that if the values of an indexable data member are instances
of a user-declared class (not pointers to such instances), the values
of such an instance’s data members cannot be directly altered
without circumventing the required index maintenance. To make
such a change, the value of the indexable data member must be
replaced wholesale with a modified copy of the old value. That is,
the instance must be copied and altered, and then the altered
object must be copied back as the new value of the indexable
member.
Release 5.1 155

User-Controlled Index Maintenance with an os_backptr
User-Controlled Index Maintenance with an os_
backptr

Using the macros described in Enabling Automatic Index
Maintenance on page 152 allows ObjectStore to perform fully
automatic index maintenance for data members. But, for any data
member, you can avoid using these macros (and the
accompanying actual value/apparent value distinction) by using
the functions os_backptr::break_link() and os_backptr::make_link()
whenever you update the member. In this case you need only
define the os_backptr member; the indexable member itself can be
declared in the normal way.

You also use overloadings of make_link() and break_link() to
perform index maintenance for member functions called in query
or path strings.

Making and Breaking Links on Indexable Data Members

Call break_link() just before making a change to an indexable data
member (this removes an entry from each relevant index), and call
make_link() just after making the change (this inserts a new entry
into each relevant index, indexing the object by the new value of
the relevant path). You can ensure that this happens by
encapsulating these calls in a member function for setting the
value of the data member.

For indexes keyed by paths that go through the elements of a
collection, index maintenance is performed automatically when
you change the membership of a collection.

Example: message
class definition

For example, given the following class definition:

#include <stddef.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
. . .

class message {
public:

. . .
os_backptr b;
int id; /* an indexable member */
char *subject_line; /* a second indexable member */
class date {
156 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
public:
int day;
int month;
int year;

} date_received; /* a third indexable member */
. . .
message(int id, char*subj, int dd, int mm, int yy);
~message();
int set_id(int);
char *set_subject_line(char*);
void set_date(int dd, int mm, int yy);

};

Example: function
definitions

You should define functions for setting each data member as
follows:

int message::set_id(int i) {
b.break_link(

&id,
&id,
os_index(message,b) - os_index(message,id)

);
id = i;
b.make_link(

&id,
&id,
os_index(message,b) - os_index(message,id)

);
return i;

} /* end set_id() definition */

char *message::set_subject_line(char *subj) {
b.break_link(

&subject_line,
&subject_line,
os_index(message,b) - os_index(message,subject_line)

);
if (strlen(subj) < 500)

strcpy(subject_line, subj);
else

error("string too long");
b.make_link(

&subject_line,
&subject_line,
os_index(message,b) - os_index(message,subject_line)

);
return subj;

} /* end set_subject_line() definition*/

void message::set_date(int dd, int mm, int yy) {
b.break_link(

&date_received,
Release 5.1 157

User-Controlled Index Maintenance with an os_backptr
&date_received,
os_index(message,b) - os_index(message,date_received)

);
date_received.day = dd;
date_received.month = mm;
date_received.year = yy;
b.make_link(

&date_received,
&date_received,
os_index(message,b) - os_index(message,date_received)

);
} /* end set_date() definition */

Note that since the values of date_received are instances of a user-
defined class, date , this example assumes that you have defined
and registered a rank function (and possibly a hash function) for
the class date . See the examples in Supplying Rank and Hash
Functions on page 92.

If these set-value functions provide the only interface for
modifying the values of indexable members, indexes will be
properly maintained. Circumventing the interface, for example,
by passing the address of an indexable member value to a
function that alters its value through the pointer, can result in
inconsistent indexes.

Making and Breaking Links to Indexed Member Functions

To maintain indexes keyed by paths containing member function
calls, use the following new overloadings of os_backptr::make_
link() and os_backptr::break_link() :

void make_link(
void* ptr_to_obj,
void* ptr_to_obj,
const char* class_name,
const char* function_name

) const ;

void break_link(
void* ptr_to_obj,
void* ptr_to_obj,
const char* class_name,
const char* function_name

) const;

Automatic index maintenance is not available for such indexes.
158 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Arguments to make_
link() and break_link()

ptr_to_obj is the object whose state changed, requiring an update
to one or more indexes. When you call these functions, supply the
same value for the first and second arguments.

class_name is the name of the class that defines the member
function called in the path of the indexes to be updated.

function_name is the name of the member function itself.

When to use these
functions

Call these functions whenever you perform an update that affects
the return value of any member function appearing in a query or
path string. You must make a pair of calls (one to break_link() and
one to make_link()) for each such member function affected by
each data member change.

Call break_link() just before making the change (this removes an
entry from each relevant index), and call make_link() just after
making the change (this inserts a new entry into each relevant
index, indexing the object by the new value of the relevant path).
You can ensure that this happens by encapsulating these calls in a
member function for setting the value of the data member.

For indexes keyed by paths that go through the elements of a
collection (for example, * ((*get_children())[]->get_location()))
index maintenance is performed automatically when you change
the membership of a collection. See Example: Member Function
Calls in Query and Path Strings on page 162.
Release 5.1 159

User-Controlled Index Maintenance Without an os_backptr
User-Controlled Index Maintenance Without an
os_backptr

Collections do automatic index maintenance. Therefore you avoid
os_backptr overhead in the following way: If a member is not
mentioned in any multistep path used as an index key, you can
perform index maintenance by using collection insert and remove
operations. Performing index maintenance in this way allows you
to avoid declaring an os_backptr member. See Performing or
Enabling Index Maintenance on page 148.

When you update the data member, follow this procedure:

1 For each index keyed by the member, remove the object
containing the member from the indexed collection (it might or
might not actually be an element of this collection).

2 Update the member.

3 Insert the object back into each collection, if any, mentioned in
step 1, provided the object was a member of that collection
prior to your performing step 1.
160 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Rank and Hash Function Requirements

If your application uses paths ending in instances of a class, you
must define and register a rank function and possibly a hash
function for the path’s terminal type. For ordered indexes keyed
by such paths, you must supply a rank function. For unordered
indexes keyed by such paths, you must supply both a rank and a
hash function (the rank function is used to resolve hashing
collisions). See Supplying Rank and Hash Functions on page 92.
Release 5.1 161

Example: Member Function Calls in Query and Path Strings
Example: Member Function Calls in Query and Path
Strings

Below is a listing of three files that make up a simple program
using member function calls in paths and queries:

Files used in this
example

• rectangle.hh . This file defines two classes, coord and rectangle ,
and includes calls to the os_query_function() macro.

• schema.cc . This is the schema source file for the program. It
contains the calls to OS_MARK_SCHEMA_TYPE() as well as to
OS_MARK_QUERY_FUNCTION() .

• rectangle.cc . This file contains the implementation of the
member functions of rectangle , as well as calls to the os_query_
function_body() macro. There is also a driver program
consisting of the main() routine and the function mquery() . A
rank function for the class coord is also provided, to support
range queries involving coord s.

The rectangle class The class rectangle defines public accessor functions for the
following pieces of abstract state:

• Label

• Length

• Width

• Children (a collection of related rectangles)

• Location (an instance of the class coord)

• Area

The values for label, length, width, children, and location are
stored in private data members. The value for area is computed
from the values for length and width.

Query functions Each function for reading a piece of abstract state (a get function)
is declared as a query function. In addition, the public members
coord::x and coord::y are declared as indexable data members.
This allows the member function rectangle::get_location() , for
example, to be called in a query, and allows indexes to be keyed
by, for example, the path

get_location()->x
162 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
that is, the x-coordinate of a rectangle’s location.

Rectangle Header File — rectangle.hh

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

class coord {
public:

os_backptr b ; /* needed for indexable member */
os_indexable_member(coord,x,int) x ;
os_indexable_member(coord,y,int) y ;
coord(int x1, int y1) { x = x1 ; y = y1 ; }
coord() { x = 0 ; y = 0 ; }

} ;

class rectangle {
private:

os_backptr b ; /* needed for query functions */
char *label ;
int length ;
int width ;
os_Collection<rectangle*> &children ;
coord location ;

public:
rectangle(

const char *lbl,
int l,
int w,
const os_Collection<rectangle*> *chldrn_ptr,
coord lcn

) ;

rectangle(const char *lbl) ;
~rectangle() ;
char *get_label() ;
void set_label(const char *lbl) ;
int get_length() ;
void set_length(int l) ;
int get_width() ;
void set_width(int w) ;
os_Collection<rectangle*> *get_children() ;
coord *get_location() ;
void set_location(coord lcn) ;
int get_area() ;
static os_typespec *get_os_typespec() ;

} ;

os_query_function(rectangle,get_label,char*) ;
Release 5.1 163

Example: Member Function Calls in Query and Path Strings
os_query_function(rectangle,get_length,int) ;
os_query_function(rectangle,get_width,int) ;
os_query_function(rectangle,get_location,coord*) ;
os_query_function(rectangle,get_area,int) ;
os_query_function(rectangle,get_children,\
os_Collection<rectangle*>*) ;

Notice that there is no function for setting the children of a given
rectangle. This is because the same collection is used to record the
children of a rectangle throughout the rectangle’s lifetime.
Changes in a rectangle’s children are reflected by insertions and
removals performed on this collection. This means that
rectangle::get_children() does not need to call make_link() and
break_link() ; index maintenance is performed by the collection’s
insert and remove operations.

Schema Source File — schema.cc

Here is schema.cc containing the calls to OS_MARK_QUERY_
FUNCTION().

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>
#include "rectangle.hh"

OS_MARK_SCHEMA_TYPE(rectangle);
OS_MARK_SCHEMA_TYPE(coord);
OS_MARK_QUERY_FUNCTION(rectangle,get_label);
OS_MARK_QUERY_FUNCTION(rectangle,get_length);
OS_MARK_QUERY_FUNCTION(rectangle,get_width);
OS_MARK_QUERY_FUNCTION(rectangle,get_location);
OS_MARK_QUERY_FUNCTION(rectangle,get_area);
OS_MARK_QUERY_FUNCTION(rectangle,get_children);

Main Program File — rectangle.cc

Macro calls and rank
functions

Below is the first part of rectangle.cc :

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <iostream.h>
#include "rectangle.hh"

os_indexable_body(coord,x,int,os_index(coord,b)) ;
os_indexable_body(coord,y,int,os_index(coord,b)) ;

os_query_function_body(rectangle,get_label,char*,b) ;
os_query_function_body(rectangle,get_length,int,b) ;
os_query_function_body(rectangle,get_width,int,b) ;
os_query_function_body(rectangle,get_location,coord*,b) ;
164 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
os_query_function_body(rectangle,get_area,int,b) ;
os_query_function_body(\
rectangle,get_children,os_Collection<rectangle*>*,b) ;

int coord_rank(const void *arg1, const void *arg2) {
const coord *c1 = (const coord *)arg1 ;
const coord *c2 = (const coord *)arg2 ;

if (c1->x < c2->x)
return os_collection::LT ;

else if (c1->x > c2->x)
return os_collection::GT ;

else if (c1->y < c2->y)
return os_collection::LT ;

else if (c1->y > c2->y)
return os_collection::GT ;

else
return os_collection::EQ ;

}

Notice the calls to os_query_function_body() . The rank function
coord_rank() is defined here so that we can perform queries
comparing coord objects, and so we can create an index keyed by
a path ending in coord objects, in our case the path

* ((*get_children())[]->get_location())

Rectangle member
function
Implementations

Here is the second part of rectangle.cc :

rectangle::rectangle(
const char *lbl,
int l,
int w,
const os_Collection<rectangle*> *chldrn_ptr,
coord lcn

):children(os_Collection<rectangle*>::create(
os_segment::of(this))

) {
label = new(

os_segment::of(this),
os_typespec::get_char(),
strlen(lbl)+1

) char[strlen(lbl)+1] ;

strcpy(label, lbl) ;
length = l ;
width = w ;
children = *chldrn_ptr ;
location.x = lcn.x ;
location.y = lcn.y ;

}

rectangle::rectangle(const char *lbl) :
Release 5.1 165

Example: Member Function Calls in Query and Path Strings
children(os_Collection<rectangle*>::create(
os_segment::of(this))

) {
label = new(
os_segment::of(this),

os_typespec::get_char(),
strlen(lbl)+1

) char[strlen(lbl)+1] ;
strcpy(label, lbl) ;
length = 0 ;
width = 0 ;
location.x = 0 ;
location.y = 0 ;

}

rectangle::~rectangle() {
delete [] label ;

}

char *rectangle::get_label() {
return label ;

}

void rectangle::set_label(const char *lbl) {
b.break_link(this, this, "rectangle", "get_label") ;
label = new(

os_segment::of(this),
os_typespec::get_char()
strlen(lbl)+1

) char[strlen(lbl)+1] ;
strcpy(label, lbl) ;
b.make_link(this, this, "rectangle", "get_label") ;

}

int rectangle::get_length() {
return length ;

}

void rectangle::set_length(int l) {

/* two query member functions depend on this data member */
/* so we call each of make_link() and break_link() twice */

b.break_link(this, this, "rectangle", "get_length") ;
b.break_link(this, this, "rectangle", "get_area") ;
length = l ;
b.make_link(this, this, "rectangle", "get_length") ;
b.make_link(this, this, "rectangle", "get_area") ;

}

int rectangle::get_width() {
return width ;

}

void rectangle::set_width(int w) {
166 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
/* two query member functions depend on this data member */
/* so we call each of make_link() and break_link() twice */

b.break_link(this, this, "rectangle", "get_width") ;
b.break_link(this, this, "rectangle", "get_area") ;
width = w ;
b.make_link(this, this, "rectangle", "get_width") ;
b.make_link(this, this, "rectangle", "get_area") ;

}

os_Collection<rectangle*> *rectangle::get_children() {
return &children ;

}

coord *rectangle::get_location() {
return &location ;

}

void rectangle::set_location(coord lcn) {
b.break_link(this, this, "rectangle", "get_location") ;
location.x = lcn.x ;
location.y = lcn.y ;
b.make_link(this, this, "rectangle", "get_location") ;

}

int rectangle::get_area() {
return length * width ;

}

void print_rects(os_Collection<rectangle*> &the_rects) {
os_Cursor<rectangle*> c(the_rects) ;
for (rectangle *r = c.first() ; r ; r = c.next())

cout << r->get_label() << "\n" ;
cout << "\n" ;

}

Note that the set functions perform index maintenance, calling
break_link() and make_link() for each query function whose return
value depends on the underlying private data member. For
example, set_width() calls break_link() once for the query function
get_width() and once for the query function get_area() , since both
get_width() and get_area() use the private data member width to
derive their return values.

As noted earlier, there are no make_link() and break_link() calls
associated with changing a rectangle’s children, because index
maintenance is performed automatically by the insertion and
removal operations of the collection get_children() returns.

The driver Here is the last part of rectangle.cc :

void mquery(os_database *db) {
Release 5.1 167

Example: Member Function Calls in Query and Path Strings
os_index_key(coord,coord_rank,0) ;

rectangle *r1 = new(db, rectangle::get_os_typespec())
rectangle("1") ;

rectangle *r2 = new(db, rectangle::get_os_typespec())
rectangle("2") ;

rectangle *r3 = new(db, rectangle::get_os_typespec())
rectangle("3") ;

os_Collection<rectangle*> &the_rectangles =
os_Collection<rectangle*>::create(db) ;

the_rectangles |= r1 ;
the_rectangles |= r2 ;
the_rectangles |= r3 ;

os_index_path &label_path =
os_index_path::create("rectangle*", "get_label()", db) ;

os_index_path &length_path =
os_index_path::create("rectangle*", "get_length()", db) ;

os_index_path &width_path =
os_index_path::create("rectangle*", "get_width()", db) ;

os_index_path &x_location_path =
os_index_path::create("rectangle*",
"get_location()->x",db);

os_index_path &y_location_path =
os_index_path::create("rectangle*",
"get_location()->y", db) ;

os_index_path &area_path =
os_index_path::create("rectangle*", "get_area()", db) ;

os_index_path &children_loc_path =
os_index_path::create("rectangle*",
"* ((*get_children())[]->get_location())", db) ;

the_rectangles.add_index(label_path,
os_index_path::unordered) ;

the_rectangles.add_index(length_path,
os_index_path::ordered) ;

the_rectangles.add_index(width_path,
os_index_path::ordered) ;

the_rectangles.add_index(x_location_path,
os_index_path::ordered) ;

the_rectangles.add_index(y_location_path,
os_index_path::ordered) ;

the_rectangles.add_index(area_path,
os_index_path::ordered) ;

the_rectangles.add_index(children_loc_path,
168 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
os_index_path::ordered) ;

r1->set_label("rect1") ;
r1->set_length(20) ;
r1->set_width(60) ;
r1->set_location(coord(10, 20)) ;
r1->get_children()->insert(r2) ;

r2->set_label("rect2") ;
r2->set_length(40) ;
r2->set_width(35) ;
r2->set_location(coord(20, 40)) ;
r2->get_children()->insert(r3) ;

r3->set_label("rect3") ;
r3->set_length(200) ;
r3->set_width(80) ;
r3->set_location(coord(50, 60)) ;

cout << "Rectangles labeled \"rect1\":\n" ;

os_Collection<rectangle*> &answer = the_rectangles.query(
"rectangle*","strcmp(\"rect1\", get_label()) == 0",db) ;

print_rects(answer) ;
cout << "Rectangles with length < 100:\n" ;

answer = the_rectangles.query("rectangle*",
"get_length() < 100",db) ;

print_rects(answer) ;
cout << "Rectangles with width > 50:\n" ;

answer = the_rectangles.query("rectangle*",
"get_width() > 50",db) ;

print_rects(answer) ;
cout << "Rectangles with location x coord <= 25:\n" ;

answer = the_rectangles.query("rectangle*",
"get_location()->x <= 25",db) ;

print_rects(answer) ;
cout << "Rectangles with area >= 3000:\n" ;

answer = the_rectangles.query("rectangle*",
"get_area() >= 3000",db) ;

print_rects(answer) ;
cout<<"Rectangles with children whose location < (30, 50):\n";

const os_coll_query &children_loc_query =
os_coll_query::create("rectangle*",
"(*get_children())[:*get_location()<*(coord*)a_coord_ptr :]",
db) ;

coord a_coord(30, 50) ;
Release 5.1 169

Example: Member Function Calls in Query and Path Strings
os_bound_query bound_children_loc_query(
children_loc_query,
os_keyword_arg("a_coord_ptr", &a_coord)) ;

answer = the_rectangles.query(bound_children_loc_query) ;
print_rects(answer) ;
os_Collection<rectangle*> *answer_ptr = &answer ;
delete answer_ptr ;

}

The main() driver
function

main(int, char **argv) {

/* argv[1] is the database */

cout << "\nStarting mquery ...\n\n";

objectstore::initialize();
os_collection::initialize();

OS_BEGIN_TXN(tx1, 0, os_transaction::update)
mquery(os_database::create(argv[1])) ;

OS_END_TXN(tx1)

cout << "Done.\n\n" ;
}

The function main() initializes ObjectStore and ObjectStore
collections, and calls mquery() , passing in a newly created
database. The function mquery() registers the coord rank function,
and then creates three rectangles, adding them to a collection, the_
rectangles .

Next, mquery() creates several index paths involving member
functions. Then it adds indexes to the_rectangles , specifying the
paths as index keys. Then various set functions are used,
triggering the index maintenance coded earlier in rectangle.cc .
The collection of children for two of the rectangles is modified
with rectangle::get_children() and os_Collection::insert() , which
triggers index maintenance performed by insert() .

Finally, various queries involving member functions are
performed on the_rectangles .

Example: driver output The output looks like this:

Starting mquery ...

Rectangles labeled "rect1":
rect1

Rectangles with length < 100:
rect1
rect2
170 ObjectStore Advanced C++ API User Guide

Chapter 5: Queries and Indexes
Rectangles with width > 50:
rect1
rect3

Rectangles with location x coord <= 25:
rect1
rect2

Rectangles with area >= 3000:
rect3

Rectangles with children whose location < (30, 50):
rect1

Done.

This driver demonstrates how to express queries with member
functions. To verify that index maintenance is being performed
properly, you can modify the driver to create more rectangles and
insert them into the_rectangles . If the_rectangles has only three
elements, the query optimizer chooses not to use indexes in query
evaluation. Here is an example:

char s[500];
rectangle *rx = i
rectangle *ry = 0 ;

for (int i = 0 ; i < 200 ; i++) {
sprintf(s, "%d", i);
rx = new(db, rectangle::get_os_typespec()) rectangle(s) ;
the_rectangles |= rx ;
rx->set_length(i) ;
rx->set_width(i) ;
rx->set_location(coord(i, i)) ;
if (ry)

rx->get_children()->insert(ry) ;
ry = rx ;

}

Release 5.1 171

Example: Member Function Calls in Query and Path Strings
172 ObjectStore Advanced C++ API User Guide

Chapter 6
Compaction

The information about compaction is organized in the following
manner:

Compaction Overview 174

Compaction API — objectstore::compact() 175

Compaction Example 179

Compactor Limitations 181

File Systems and Compaction 182

Compaction Utility 183
Release 5.1 173

Compaction Overview
Compaction Overview

ObjectStore databases consist of segments containing persistent
data. As persistent objects are allocated and deallocated in a
segment, internal fragmentation in the segment can increase
because of the presence of holes produced by deallocation. Of
course, the ObjectStore allocation algorithms recycle deleted
storage when objects are allocated, but nonetheless, there might
be a need to compact persistent data by squeezing out the deleted
space. Such compaction frees persistent storage space so that it
can be used by other segments.
174 ObjectStore Advanced C++ API User Guide

Chapter 6: Compaction
Compaction API — objectstore::compact()

The programming interface to compaction is provided by a single
function, objectstore::compact(). The function is described in
detail in objectstore::compact() in Chapter 2 of the ObjectStore C++
API Reference.

Declaration The function is declared this way:

static void objectstore::compact (
char **dbs_to_be_compacted,
os_pathname_and_segment_number

**segments_to_be_compacted = 0,
char **dbs_referring_to_compacted_ones = 0,
os_pathname_and_segment_number

**segs_referring_to_compacted_ones = 0
);

Function arguments Here, dbs_to_be_compacted is a null-terminated array of the
pathnames of all the databases that are to be compacted in their
entirety. That is, ObjectStore will compact every segment of every
database named by an element of dbs_to_be_compacted . A simple
call to compact() can supply only this one argument:

char *compact_dbs[NUM_COMPACT_DBS];
. . .
objectstore::compact (compact_dbs);

The argument segments_to_be_compacted , like dbs_to_be_
compacted , specifies what data you want compacted, but it does
so at segment granularity rather than database granularity. This
argument is a null-terminated array of pointers to instances of the
class os_pathname_and_segment_number . Each such instance
identifies a particular segment by encapsulating the pathname of
the database containing the segment together with the segment
number of that segment within the database. The constructor for
this class is declared this way:

os_pathname_and_segment_number::
os_pathname_and_segment_number(

const char *db,
os_unsigned_int32 seg_number

);

You can obtain the segment number of a segment with an os_
segment::get_number whose value type is a const char* . So here is
Release 5.1 175

Compaction API — objectstore::compact()
how you might create an os_pathname_and_segment_number to
identify a particular segment:

os_database *db1 = os_database::lookup("/user/parts/db1");
. . .

/* retrieve obj1 from db1*/
. . .

os_segment *seg1 = os_segment::of(obj1);

os_pathname_and_segment_number *seg1_identifier =
os_pathname_and_segment_number(

db1,
seg1->get_number()

);

Cross-Database Pointers and References

The argument dbs_referring_to_compacted_ones can be
understood as follows. When ObjectStore compacts a segment, it
must adjust all pointers and ObjectStore references to the objects
in that segment. ObjectStore always adjusts any pointers and
references to these objects that are in the same database, but if
there are pointers or references to these objects in other databases,
you must specify these other databases explicitly. You do this
with a null-terminated array of the databases’ pathnames.

If you know that the pointers and references to compacted objects
are restricted to certain segments in certain databases, you can
specify just these segments rather than the entire databases. This
can speed up the compaction operation. You do this with the
argument segs_referring_to_compacted_ones , which is a null-
terminated array of pointers to instances of pathname_and_
segment_number .

Compaction Example

Here is a program fragment that calls this function with all four
arguments (a full program is presented at the end of this section):

char *compact_dbs[NUM_COMPACT_DBS];
char *reference_dbs[NUM_REFERENCE_DBS];

os_pathname_and_segment_number *
compact_segs[NUM_COMPACT_SEGS];

os_pathname_and_segment_number *
reference_segs[NUM_REFERENCE_SEGS];
176 ObjectStore Advanced C++ API User Guide

Chapter 6: Compaction
. . .

objectstore::compact(
compact_dbs, compact_segs, reference_dbs,

reference_segs
);

Null Termination

Remember that each argument is a null-terminated array. In each
array, you must set to 0 the element immediately following the
last element specifying a database or segment. In addition, it is the
caller’s responsibility to delete the storage associated with the
arguments when the function returns.

The function will signal the exception err_os_compaction if any
invalid arguments are supplied.

Compaction and Transactions

The function objectstore::compact() must be invoked outside any
ObjectStore transaction. The function itself initiates a transaction,
and does all its work within that one transaction. During this time,
all the specified databases and segments will be locked,
preventing access by other processes.

You can control the amount of time that other applications are
locked out of data access by compacting a few segments at a time.
For example, to compact a single segment in a particular database,
you can use the following code:

char* referencing_dbs[2];
os_pathname_and_segment_number* compact_segs[2];
os_pathname_and_segment_number seg(

"database_foo",
segment_to_be_compacted->get_number()

);

referencing_dbs[0] = "database_foo" ;
referencing_dbs[1] = 0 ;
compact_segs[0] = &seg ;
compact_segs[1] = 0 ;
objectstore::compact (0, compact_segs, referencing_dbs);
. . .

If you want to run compaction in a separate process, the
application can use the UNIX exec facility to start up another
process that calls the function.
Release 5.1 177

Compaction API — objectstore::compact()
Measuring Unused Space with os_segment::unused_space()

To serve as a rough guide in determining whether a segment
needs to be compacted, ObjectStore provides the function os_
segment::unused_space() :

os_unsigned_int32 os_segment::unused_space() const;

This function returns the amount of space (in bytes) in the
segment not currently occupied by any object. It accounts for
space resulting from objects that have been deleted as well as
space that cannot be used as a result of internal ObjectStore
alignment considerations. Here is an example of its use:

if ((float) (seg1->unused_space()) / (float) (seg1->get_size()) > .10)
compact_segs[i++] = seg1 ;

See also os_segment::unused_space() in Chapter 2 of the
ObjectStore C++ API Reference.

Header File for Compaction

Programs using compaction must include the header file
<ostore/compact.hh> , and link with the compaction library.
178 ObjectStore Advanced C++ API User Guide

Chapter 6: Compaction
Compaction Example

Here is a complete program that uses the compact() function:

#include <iostream.h>
#include <ostore/ostore.hh>
#include <ostore/compact.hh>

extern "C" {
char* getenv(const char*);
int strcmp(const char*, const char*);
int atoi(const char*);

}

static void printUsage() {
cout << "Usage: apicompact [-s] [-bs] (-d <dbname>)+ \

(-r <dbname>)+ \n"
<< " (-ds <dbname> <seg>)+ (-rs <dbname> <seg>)+ \n"
<< " -s is for silent operation.\n"
<< " -bs is for batch schema installation.\n"
<< " -d database to compact.\n"
<< " -r database with ref’s to compacted data.\n"
<< " -ds database segment to compact.\n"
<< " -rs database segment with ref’s to compacted data.\n";

cout.flush();
}

int apicompact_main(int argc , char* argv[]) {
char* compact_dbs[16];
int compact_dbs_no = 0;
char* reference_dbs[16];
int reference_dbs_no = 0;
os_pathname_and_segment_number* compact_segs[16];
int compact_segs_no = 0;
os_pathname_and_segment_number* reference_segs[16];
int reference_segs_no = 0;

int silent = 0;
int inc_schema = 1;
for(int i = 1; i < argc; i++) {

if (strcmp(argv[i], "-d") == 0 && i < argc - 1) {
i++;
compact_dbs[compact_dbs_no++] = argv[i];

} /* end if */

else if (strcmp(argv[i], "-r") == 0 && i < argc - 1) {
i++;
reference_dbs[reference_dbs_no++] = argv[i];

} /* end else *if /

else if (strcmp(argv[i], "-ds") == 0 && i < argc - 2) {
compact_segs[compact_segs_no++] =

new os_pathname_and_segment_number(
Release 5.1 179

Compaction Example
argv[i+1], atoi(argv[i+2]));
i += 2;

} /* end else if */

else if (strcmp(argv[i], "-rs") == 0 && i < argc - 2) {
reference_segs[reference_segs_no++] =

new os_pathname_and_segment_number(
argv[i+1], atoi(argv[i+2]));

i += 2;
} /* end else if */

else if (strcmp(argv[i], "-s") == 0) {
silent = 1;

} /* end else if */

else if (strcmp(argv[i], "-bs") == 0) {
inc_schema = 0;

} /* end else if */

else {
printUsage();
cout << "No option \"" << argv[i] << "\"\n";

} /* end else */

} /* end for loop */

compact_dbs[compact_dbs_no] = 0;
reference_dbs[reference_dbs_no] = 0;
compact_segs[compact_segs_no] = 0;
reference_segs[reference_segs_no] = 0;

if(!silent)
cout << "Starting " << argv[0] << endl << flush;

objectstore::initialize();

objectstore::set_incremental_schema_installation(
inc_schema);

objectstore::compact (
compact_dbs, compact_segs,
reference_dbs, reference_segs);

if(!silent)
cout << "Finished " << argv[0] << endl << flush;

return 0;

} /* end apicompact_main */
180 ObjectStore Advanced C++ API User Guide

Chapter 6: Compaction
Compactor Limitations

The compactor operates under the following restrictions.

The compactor compacts all C and C++ persistent data, including
ObjectStore collections, indexes, and bound queries, and correctly
relocates pointers and all forms of ObjectStore references to
compacted data.

ObjectStore os_reference_local references are relocated assuming
that they are relative to the database containing them.

The compactor respects ObjectStore clusters, in that compaction
ensures that objects allocated in a particular cluster remain in the
cluster, although the cluster itself can move as a result of
compaction.

Restrictions on Compaction Use

The following data restrictions must be observed in using this
compactor:

• Union discriminant functions require access to the
representation to be compacted in order to run.

• The classic example of a data structure that might require user
transformation is a hash table that hashes on the offset of an
object within a segment. Since compaction modifies these
offsets, there is no way such an implicit dependence on the
segment offset can be accounted for by compaction. Of course,
transformation of ObjectStore collections is supported in the
compactor. Invocation of user data transforms is not currently
supported.

• Since the ObjectStore objectstore::retain_persistent_
addresses() facility requires that persistent object locations
within a segment remain invariant, no client application using
this facility and referencing segments to be compacted can run
concurrently with the ObjectStore compactor.

• Transient ObjectStore references into a compacted segment
become invalid after compaction completes.
Release 5.1 181

File Systems and Compaction
File Systems and Compaction

ObjectStore supports two file systems for storing databases, and
the compactor can run against segments in databases in either file
system.

File Databases

In the case of a single database stored as a single host system file,
the segments are made up of extents, all of which are allocated in
the space provided by the host operating system for the single
host file. When there are no free extents left in the host file, and
growth of an ObjectStore segment is required, the ObjectStore
Server extends the host file to provide the additional space. The
compactor permits holes contained in segments to be compacted
to be returned to the allocation pool for the host file, and hence
that space can be used by other segments in the same database.
However, since operating systems provide no mechanism to free
disk space allocated to regions internal to the host file, any such
free space remains inaccessible to other databases stored in other
host files.

Rawfs Databases

An ObjectStore rawfs database, on the other hand, stores all
databases in a single region, either one or more host files or a raw
partition. When using a rawfs, any space freed by the compaction
operation can be reused by any segment in any database stored in
the rawfs.
182 ObjectStore Advanced C++ API User Guide

Chapter 6: Compaction
Compaction Utility

In addition to the programming interface described in
Compaction API — objectstore::compact() on page 175,
ObjectStore provides an executable, oscompact , that can be used
to compact specified databases and segments. See oscompact:
Compacting Databases in Chapter 4 of ObjectStore Management for
information on the oscompact utility.
Release 5.1 183

Compaction Utility
184 ObjectStore Advanced C++ API User Guide

Chapter 7
Metaobject Protocol

The information about metaobject protocol (MOP) is organized in
the following manner:

Metaobject Protocol (MOP) Overview 187

MOP Header Files 188

Attributes of MOP Classes 189

Schema Read Access Compared to Schema Write Access 191

Schema Consistency Requirements 193

Retrieving an Object Representing the Type of a Given Object 194

Retrieving Objects Representing Classes in a Schema 196

The Transient Schema 199

Schema Installation and Evolution Using MOP 202

The Metatype Hierarchy 204

The Class os_type 206

The Class os_integral_type 211

The Class os_real_type 212

The Class os_class_type 213

The Class os_base_class 223

The Class os_member 226

The Class os_member_variable 229

The Class os_relationship_member_variable 232

The Class os_field_member_variable 234

The Class os_access_modifier 235

The Class os_enum_type 236
Release 5.1 185

The Class os_enumerator_literal 238

The Class os_void_type 239

The Class os_pointer_type 240

The Class os_reference_type 242

The Class os_pointer_to_member_type 243

The Class os_indirect_type 245

The Class os_named_indirect_type 246

The Class os_anonymous_indirect_type 248

The Class os_array_type 250

Fetch and Store Functions 252

Type Instantiation 255

Example: Schema Read Access 256

Example: Dynamic Type Creation 268
186 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Metaobject Protocol (MOP) Overview

The ObjectStore metaobject protocol (MOP) is a library of classes
that allow you to access ObjectStore schema information. Schema
information for ObjectStore databases and applications is stored
in the form of objects that represent C++ types. These objects are
actually instances of ObjectStore metatypes, so called because they
are types whose instances represent types. Every object
representing a type is an instance of a subtype of the metatype os_
type . For example, objects representing classes (as opposed to
built-in types like int) are instances of os_class_type , which is
derived from os_type . (See the hierarchy diagram in The
Metatype Hierarchy on page 204).

There are several classes in the metaobject protocol whose
instances represent schema objects other than types, such as os_
base_class and os_member and its subtypes. These auxiliary
classes are part of the metaobject protocol (MOP) but are not
metatypes and are not, therefore, part of the metatype hierarchy.
Descriptions of these auxiliary classes begin on page 206.

Besides telling you how to perform run-time read access to
ObjectStore application, compilation, and database schemas, this
chapter explains how to create classes dynamically and add them
to ObjectStore database schemas.
Release 5.1 187

MOP Header Files
MOP Header Files

Programs using the metaobject protocol must include
<ostore/ostore.hh> , followed by <ostore/coll.hh> (if collection is
being used), followed by <ostore/mop.hh> .
188 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Attributes of MOP Classes

It is useful to think of classes in the metaobject protocol as having
attributes, that is, pieces of abstract state that you can access using
create, get, and set functions.

You initialize an attribute with a create function. You perform
read access on an attribute with a get function. And you update an
attribute with a set function. Most of the functions in the
metaobject protocol are create, get, or set functions, members of
the class whose state they access.

Attributes of
os_class_type

Consider for example the class os_class_type , whose instances
represent C++ classes. Here is a diagram showing its attributes.

Each arrow represents an attribute, and points to the type of
values the attribute has. The arrow’s label is the name of the
corresponding attribute. The attribute name , for example, is string
valued. Double arrows indicate a multivalued attribute. For
example, the attribute members has zero or more os_member s as
its values. These values, for a given instance of os_class_type ,
each represent a member of the class represented by the given os_
class_type .

os_class_type os_booleanchar*

os_class_kind

os_member

is_forward_definition

is_persistentname

class_kind

members

os_base_class

base_classes

is_template_class

declares_get_os_typespec_function

defines_virtual_functions
Release 5.1 189

Attributes of MOP Classes
Key to arrow shades

The shade of the arrows used throughout this chapter indicates
what type of access to the corresponding attribute is supported.
The darkest arrows correspond to attributes with create, get, and
set functions. The arrows of medium shade correspond to
attributes with get and set functions. And the lightest arrows
correspond to attributes with get functions only.

create() function for
MOP classes

The create function (or functions) for each class is called create() ,
and is used to create instances of the class. The get and set
functions for each attribute have names based on the attribute
name, as follows. For attributes that are not Boolean valued, the
functions are

get_attribute-name()

and

set_attribute-name()

For Boolean-valued attributes, the get and set functions are,
respectively,

attribute-name()

and

set_attribute-name()

create, set and get

set and get

get
190 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Schema Read Access Compared to Schema Write
Access

Many applications that use the MOP perform only read access on
schema information. A browser application, for example, might
allow viewing of schema information, but never perform updates
to schemas. Such an application would not use create or set
functions.

Schema Read Access

Read access to schema information always starts in one of two
ways:

• By looking up a schema object by name in an application,
compilation, or database schema

• By retrieving the class of which a specified object is an instance

In either case, a pointer to a const object is returned. Other schema
objects are the result of performing get functions on these initial
const objects (and the result of performing get functions on these
results, and so on). For class-valued attributes, these get functions,
in turn, return pointers or references to const objects. Since set
functions only take non-const this arguments, direct updates to
application, compilation, and database schemas are prevented
(assuming you use no explicit casts to non-const).

Schema Write Access

To update a database schema, you must first construct, in the
transient schema, the classes you want to modify or add to the
database schema (see The Transient Schema on page 199). Then
you perform installation or evolution on the schema you want to
update, specifying the classes in the transient schema as input to
the installation or evolution process (see Schema Installation and
Evolution Using MOP on page 202).

Creating a transient
schema

Creating classes in the transient schema always starts in one of
two ways:

• By invoking a create function

• By copying a class from an application, compilation, or
database schema into the transient schema, and then looking
Release 5.1 191

Schema Read Access Compared to Schema Write Access
up the class by name in the transient schema (see The Transient
Schema on page 199)

In either case, a reference or pointer to a non-const object is
returned. The get functions, when performed on non-const
objects, will return non-const objects. This is because, except for
get functions that return built-in types, get functions come in
pairs:

• const attribute-value-type &get _attribute-name() const ;

• attribute-value-type &get _attribute-name() ;

or

• const attribute-value-type *get_attribute-name() const ;

• attribute-value-type *get_attribute-name() ;
192 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Schema Consistency Requirements

Constraints on
database schemas

Schema objects in a database schema must meet certain
consistency requirements that can be (temporarily) violated by
objects in the transient schema. For example, in a database
schema, if an os_class_type , c, has an os_member , m, as a value of
the attribute members , then m must have c as the value for its
attribute defining_class .

Flexibility of database
schemas

To allow flexibility in the construction of schemas, the transient
schema has no such restrictions. That way you can, for example,
create an os_member without at first specifying the class that
defines it. However, before using classes in the transient schema
as input to installation or evolution, you should ensure that the
consistency requirements are met. ObjectStore checks such an
input for consistency before modifying a database schema, and
signals err_mop if any requirements are not met.

In the MOP interface, pointer arguments to create and set functions
generally indicate that 0 is an acceptable initial value for the
argument’s corresponding attribute; if 0 is not an acceptable
value, a reference (&) argument is used instead of a pointer
argument. But note that a nonnull value for the attribute might
have to be supplied before installation or evolution, in order to
meet the consistency requirements.

For an attribute that must have a nonnull value in order to meet
the consistency requirements, the get functions return a reference
type (unless they return a built-in type). When performed on an
object that does not yet have a nonnull value for the attribute, such
a get function returns an unspecified object (see The is_
unspecified() function on page 209).

For an attribute that might have a null value and still meet the
consistency requirements, the get functions return a pointer type
(unless they return a built-in type).
Release 5.1 193

Retrieving an Object Representing the Type of a Given Object
Retrieving an Object Representing the Type of a
Given Object

The type_at() Function

You can retrieve an instance of os_type that represents the type of
a given persistent object by passing the object’s address to the
static member function os_type::type_at() . This function is
declared as follows:

type_at() declaration static const os_type *type_at(const void *p) ;

Note that p must point to persistent memory.

For pointers that point to the beginning of more than one object
(that is, pointers that point to co-located objects), this function
returns the type of the outermost object. For example, consider a
pointer typed as a part* that points to a direct instance of
mechanical_part , derived from part ; and suppose that part has no
base types. Passing this pointer to type_at() results in an os_type
representing the class mechanical_part — unless the object is
embedded as a data-member value in the initial bytes of some
other object, in which case the function would return an os_type
representing this other object.

Example: type_at() Here is an example of the function’s use:

f () {
part *p = ... ;
. . .
const os_type *t = os_type::type_at(p);
. . .
}

The type_containing() Function

You can also retrieve the type of the outermost object containing
a given persistent object using os_type::type_containing() .

type_containing()
declaration

static const os_type *type_containing(
const void *p,
const void*& p_container,
os_unsigned_int32& element_count

);

Unlike type_at() , the object whose type is returned does not
necessarily begin at the specified address; that is, the argument p
194 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
might point to a subobject or data-member value embedded in the
middle of the object whose type is returned.

The address of the object whose type is returned, the outermost
object containing the specified object, is referred to by p_container
when the function returns.

Arrays are handled specially by type_containing() . If the
outermost containing object is an array, the element type of the
array is returned, and element_count is set to refer to the array’s
size. If the containing object is not an array, element_count is set to
1.
Release 5.1 195

Retrieving Objects Representing Classes in a Schema
Retrieving Objects Representing Classes in a
Schema

ObjectStore schemas are represented by instances of classes
derived from os_schema .

Instances of these classes represent ObjectStore schemas.

Retrieving database
schema

You can retrieve the compilation, application, or database schema
in a given database with the static member functions os_comp_
schema::get() , os_app_schema::get() , and os_database_
schema::get() .

static const os_app_schema &os_app_schema::get(
const database&);

static const os_comp_schema &os_comp_schema::get(
const database&);

static const os_database_schema &os_database_schema::get(
const database&);

Retrieving application
schema

You can also retrieve the application schema for the current
application with

static const os_app_schema &os_app_schema::get();

Retrieving classes in a
given schema

You can retrieve objects representing the classes in a given schema
with os_schema::get_classes() .

os_Collection<const os_class_type*>
os_schema::get_classes() const;

You can also retrieve the class with a given name in a given
schema with os_schema::find_type() .

const os_type *os_schema::find_type(const char*) const;

os_app_schema os_database_schema

os_schema

os_comp_schema
196 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Retrieving class types You can retrieve the os_class_type s in a given compilation schema
this way (the examples in this chapter use the parameterized
collection classes; if your compiler does not support class
templates, use the nonparameterized collection classes instead):

f () {
os_database *my_db =

os_database::open("/foo/bar/comp_schema");

os_Collection<const os_class_type*> the_classes =
os_comp_schema::get(*my_db).get_classes();

. . .

}

You can retrieve the os_class_type s in a given application schema
this way:

f () {
os_database *my_db =

os_database::open("/foo/bar/app_schema");

os_Collection<const os_class_type*> the_classes =
os_app_schema::get(*my_db).get_classes();

. . .

}

You can retrieve the types in a database schema this way:

f () {
os_database *my_db = os_database::open("/foo/bar/db1");

os_Collection<const os_class_type*> the_classes =
os_database_schema::get(*my_db).get_classes();

. . .

}

Finally, you can retrieve the class with a given name in a given
schema this way:

f () {
os_database *my_db = os_database::open("/foo/bar/db1");

const os_type *the_type =
os_database_schema::get(*my_db).find_type("part");

. . .

}

Release 5.1 197

Retrieving Objects Representing Classes in a Schema
See the entries for the classes os_schema , os_comp_schema , os_
app_schema , and os_database_schema in the ObjectStore C++ API
Reference.
198 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Transient Schema

The metaobject protocol provides the ability to programmatically
update a database’s schema. All modification of database
schemas, however, is mediated by the transient schema. As
described earlier, to update a database schema, you must first
construct, in the transient schema, the classes you want to modify
or add to the database schema. Then you perform installation or
evolution on the database schema, specifying the classes in the
transient schema as input to the installation or evolution process.

Initializing the Transient Schema with initialize()

Before using the transient schema, you must always call os_
mop::initialize() .

static void initialize() ;

Recall that creating classes in the transient schema always starts in
one of two ways:

• By invoking a create function

• By copying a class from an application, compilation, or
database schema into the transient schema, and then looking
up the class by name in the transient schema

Copying into the Transient Schema with copy_classes()

To copy classes from a schema into the transient schema, you use
the static member function os_mop::copy_classes() .

static void copy_classes(
const os_schema &schema,
os_Set<const os_class_type*> &classes

) ;

The first argument is the schema containing the classes to be
copied, and the second argument is a set of pointers to the classes
to be copied. So before calling this function, you must perform
these steps:

Preparation for the
copy operation

1 First, retrieve the schema from which you want to copy classes.
For example the following retrieves the application schema for
the current application:

const os_app_schema &the_app_schema =
os_app_schema::get() ;
Release 5.1 199

The Transient Schema
2 Next, before calling copy_classes() , you must create a set to
hold the pointers to the classes you want to copy, as in

os_Set<const os_class_type*>
to_be_copied_to_transient_schema ;

3 Then, for each class you want to copy, follow these steps:

- Look up the class to be copied. For example, the following
finds the class os_collection in the application schema:

const os_type *the_const_type_os_collection =
the_app_schema.find_type("os_collection") ;

- The function find_type() can return 0, so check the result, as
in

if (!the_const_type_os_collection)
error("Could not find the type os_collection in \
the app schema") ;

- Then dereference the result of find_type() and convert it from
a const os_type& to a const os_class_type& , as in

const os_class_type *the_const_class_os_collection =
*the_const_type_os_collection ;

- Finally, insert the class into the set, as in

to_be_copied_to_transient_schema |=
the_const_class_os_collection ;

4 Once this is done for each class you want to copy, you are ready
to call copy_classes() :

os_mop::copy_classes(
the_app_schema,
to_be_copied_to_transient_schema

) ;

Looking Up a Class in the Transient Schema with find_type()

After you have copied a class into the transient schema, you can
look it up by name in the transient schema with os_mop::find_
type() .

static os_type *find_type(const char *name) ;

Notice that os_mop::find_type() , unlike os_schema::find_type() ,
returns a pointer to a non-const os_type . This means you can
modify the os_type by performing set functions on it, and you can
retrieve other modifiable objects by performing get functions on
200 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
it. You can also make other objects in the transient schema refer to
it.

For example, if you do

os_type *the_non_const_type_os_collection =
os_mop::find_type("os_collection") ;

You can then create a collection-valued data member (see The
Class os_member_variable on page 229):

assert (the_non_const_type_os_collection) ;

os_member_variable &new_member =
os_member_variable::create(

member_name,
the_non_const_type_os_collection

) ;
Release 5.1 201

Schema Installation and Evolution Using MOP
Schema Installation and Evolution Using MOP

os_database_
schema::install()

To install classes from the transient schema into a database
schema, you use the function os_database_schema::install() .

void install(os_schema &new_schema) ;

os_mop::get_
transient_schema()

The actual argument should be a reference to the transient
schema. You can retrieve such a reference with os_mop::get_
transient_schema() .

static os_schema &get_transient_schema() ;

os_database_
schema::get_for_
update()

The this argument is a pointer to the schema you want to modify.
Notice that install() function cannot take a const this argument. So
you cannot use os_database_schema::get() to retrieve the schema
to be modified. Instead, you use os_database_schema::get_for_
update() , which takes a const database& argument.

static os_database_schema &get_for_update(
const os_database&)

Example: schema
install

So a call to install might look like

os_database_schema::get_for_update(*db).install(
os_mop::get_transient_schema()

) ;

Nondefault behavior To specify nondefault installation behavior, you can use the
alternate overloading of os_database_schema::install that takes
an os_schema_install_options argument.

void install (os_schema &new_schema,
os_schema_install_options

) ;

See os_schema_install_options in Chapter 2 of the ObjectStore C++
API Reference for a description of the specific installation options
available.

The os_schema_install_options allows you to control whether
member functions are copied into the database schema during
installation. The default behavior is to not copy member
functions.

os_schema_
evolution::evolve()

If you want to modify a database schema in a way that requires
evolution, you should use os_schema_evolution::evolve() rather
than install() .
202 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
static void evolve(
const char *workdb_name,
const char*database_name,
os_schema &new_schema

) ;

The new_schema argument should be the transient schema. So a
call to evolve might look like

static void evolve(
"/example/workdb",
"/example/partsdb",
os_mop::get_transient_schema()

) ;
Release 5.1 203

The Metatype Hierarchy
The Metatype Hierarchy

All the types in the C++ type system can be divided into the
following categories: class types, integer types, real types,
enumeration types, array types, pointer types, function types, and
the type void . For each of these categories, there is a subclass of
os_type in the metatype hierarchy.

os_instantiated_class_
type

The class os_instantiated_class_type , derived from os_class_type ,
represents the category of template class instantiations. (The class
os_Collection<part*> , for example, is an instantiation of the
template class os_Collection .)

How different types
are represented

Pointer types, such as void* and part* , are represented by direct
instances of os_pointer_type . Reference types, such as part& , are
represented by instances of os_reference_type , derived from os_
pointer_type . Pointer-to-member types are represented by
instances of os_pointer_to_member_type , also derived from os_
pointer_type .

Types with const or volatile specifiers are represented by instances
of os_anonymous_indirect_type , and typedef s are represented by
instances of os_named_indirect_type .

os_type

os_function_type

os_pointer_type

os_array_typeos_enum_type

os_real_type

os_integral_type

os_instantiated_class_type

os_void_type

os_named_indirect_type

os_reference_type os_pointer_to_member_type

os_anonymous_indirect_type

os_indirect_typeos_class_type
204 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
All the classes in the metatype hierarchy are documented in
Chapter 2, Class Library, of the ObjectStore C++ API Reference.
Note that these are not all the types in the metaobject protocol.
There are several classes in the metaobject protocol whose
instances represent schema objects other than types, such as os_
base_class (see The Class os_base_class on page 223), and os_
member and its subtypes (see The Class os_member on page 226).
The rest of this chapter contains a section on each class in the
protocol.
Release 5.1 205

The Class os_type
The Class os_type

Below is a diagram showing the attributes of the class os_type .
Each arrow represents an attribute and points to its value type.
The darkest arrows have corresponding set functions, get
functions, and create arguments. The medium arrows have
corresponding set functions and get functions. The lightest arrows
have corresponding get functions only.

See os_type in Chapter 2 of the ObjectStore C++ API Reference for
a complete description of this class.

Attributes of os_type

Create Functions

This class defines no create functions. You always create an
instance of os_type using a create function defined by one of the
subtypes of os_type .

The kind Attribute

The kind of an os_type is an enumerator indicating what kind of
type is represented by the os_type . The enumerators are

kind enumerators os_type::Void
os_type::Named_indirect
os_type::Anonymous_indirect
os_type::Char
os_type::Unsigned_char

os_type os_boolean

os_type_kind

is_integral_type

is_real_type

is_volatile

is_const

string

kind_string

kindchar*

os_class_type

enclosing_class
char*
206 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
os_type::Signed_char
os_type::Unsigned_short
os_type::Signed_short
os_type::Integer
os_type::Unsigned_integer
os_type::Signed_long
os_type::Unsigned_long
os_type::Float
os_type::Double
os_type::Long_double
os_type::Pointer
os_type::Reference
os_type::Pointer_to_member
os_type::Array
os_type::Class
os_type::Instantiated_class
os_type::Enum
os_type::Function
os_type::Type

Finding the kind of an
os_type with get_
kind()

The function os_type::get_kind() returns the kind of the specified
os_type .

os_type_kind get_kind() const ;

Given an object typed as an os_type , you can use get_kind() to
determine the subtype of os_type that the object is an instance of.
Then you can convert the object to that subtype using the type-
safe conversion operators. See Type-Safe Conversion Operators
on page 209.

Retrieving the kind_string Attribute

There is a static member function that returns the name of a given
os_type_kind :

static const char *get_kind_string(os_type_kind) ;

For example os_type::get_kind_string(os_type::Class) returns
Class .

Retrieving the string Attribute

The function os_type::get_string() returns a new string containing
an expression designating the specified type (like part or const
part).

char *get_string() const ;
Release 5.1 207

The Class os_type
Note that this function allocates the returned string on the heap,
so you should delete it when it is no longer needed.

Determining an os_type’s Type and Status

The is_const() function The function os_type::is_const() returns nonzero if the specified
os_type is an os_anonymous_indirect_type representing a const
type (such as const char*). Returns 0 otherwise.

os_boolean is_const() const ;

The is_volatile()
function

The function os_type::is_volatile() returns nonzero if the specified
os_type is an os_anonymous_indirect_type representing a volatile
type (such as volatile short). Returns 0 otherwise.

os_boolean is_volatile() const ;

The is_integral_type()
function

The function os_type::is_integral_type() returns nonzero if the
specified os_type is an instance of os_integral_type (such as one
representing the type unsigned int). Returns 0 otherwise.

os_boolean is_integral_type() const ;

The is_real_type()
function

The function os_type::is_real_type() returns nonzero if the
specified os_type is an instance of os_real_type (such as one
representing the type long double). Returns 0 otherwise.

os_boolean is_real_type() const ;

The enclosing_class()
function

If a class’s definition is nested within that of another class, this
other class is the enclosing class of the nested class.

There is a pair of get functions, get_enclosing_class() , one taking
const this and returning a const os_class_type* , and one taking
non-const this and returning an os_class_type* .

const os_class_type *get_enclosing_class() const ;

os_class_type *get_enclosing_class() ;

The function returns 0 if there is no enclosing class.

The strip_indirect_
types() function

There are also functions, os_type::strip_indirect_types() , declared

const os_type &strip_indirect_types() const ;

os_type &strip_indirect_types() ;

For types with const or volatile specifiers, this function returns the
type being specified as const or volatile . For example, if the
specified os_type represents the type const int , strip_indirect_
types() will return an os_type representing the type int . If the
208 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
specified os_type represents the type char const * const , strip_
indirect_types() will return an os_type representing the type char
const * .

For typedefs, this function returns the original type for which the
typedef is an alias.

This function calls itself recursively, until the result is not an os_
indirect_type . So, for example, consider an os_named_indirect_
type representing

typedef const part const_part

The result of applying strip_indirect_types() to this is an os_class_
type representing the class part (not an os_anonymous_indirect_
type representing const part — which would be the result of os_
indirect_type::get_target_type()).

The is_unspecified()
function

Some os_type -valued attributes in the metaobject protocol are
required to have values in a consistent schema, but might lack
values in the transient schema, before schema installation or
evolution is performed. The get function for such an attribute
returns a reference to an os_type or os_class_type . The fact that a
reference rather than a pointer is returned indicates that the value
is required in a consistent schema.

In the transient schema, if such an attribute lacks a value (because
you have not yet specified it), the get function returns the
unspecified type. This is the only os_type for which the following
predicate returns nonzero:

os_boolean is_unspecified() const ;

Type-Safe Conversion Operators

The class os_type also defines conversion operators for converting
an os_type& to a reference to any of the subtypes of os_type :

operator os_void_type&() ;
operator os_named_indirect_type&() ;
operator os_anonymous_indirect_type&() ;
operator os_integral_type&() ;
operator os_real_type&() ;
operator os_pointer_type&() ;
operator os_reference_type&() ;
operator os_pointer_to_member_type&() ;
operator os_array_type&() ;
operator os_class_type&() ;
Release 5.1 209

The Class os_type
operator os_instantiated_class_type&() ;
operator os_enum_type&() ;
operator os_function_type&() ;

The existence of these operators allows you to supply an
expression of type os_type or os_type& as the actual parameter for
a formal parameter of type, for example, os_integral_type& —
provided the designated os_type is actually an instance of os_
integral_type . If it is not, err_mop_illegal_cast is signaled. Each of
these operators is type safe in the sense that err_mop_illegal_cast is
always signaled if it is used to perform an inappropriate
conversion.

There are also conversion operators for converting a const os_
type& to a const reference to any of the subtypes of os_type :

operator const os_void_type&() const ;
operator const os_named_indirect_type&() const ;
operator const os_anonymous_indirect_type&() const ;
operator const os_integral_type&() const ;
operator const os_real_type&() const ;
operator const os_pointer_type&() const ;
operator const os_reference_type&() const ;
operator const os_pointer_to_member_type&() const ;
operator const os_array_type&() const ;
operator const os_class_type&() const ;
operator const os_instantiated_class_type&() const ;
operator const os_enum_type&() const ;
operator const os_function_type&() const ;
210 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_integral_type

Instances of this class represent one of the following types:

int
unsigned int
short
unsigned short
long
unsigned long
char
signed char
unsigned char

See os_integral_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Attribute of
os_integral_type

This class defines one attribute, is_signed :

Create Functions

This class has several create functions for the various kinds of
integer types.

static os_integral_type &create_signed_char() ;

static os_integral_type &create_unsigned_char() ;

static os_integral_type &create_defaulted_char(
os_boolean signed) ;

static os_integral_type &create_short(os_boolean signed) ;

static os_integral_type &create_int(os_boolean signed) ;

static os_integral_type &create_long(os_boolean signed) ;

Determining a Signed Type with is_signed()

The following function can be used to determine if the specified
type is signed:

os_boolean is_signed() const ;

os_integral_type

os_boolean

is_signed
Release 5.1 211

The Class os_real_type
The Class os_real_type

Instances of this class represent one of the following types:

float
double
long double

See os_real_type in Chapter 2 of the ObjectStore C++ API Reference
for a complete description of this class.

Create Functions

This class has three create functions, one for each of the real types
listed above.

static os_real_type &create_float() ;

static os_real_type &create_double() ;

static os_real_type &create_long_double() ;
212 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_class_type

An instance of os_class_type represents a C++ class. In addition
to classes declared with the keyword class , structs and unions are
also represented by instances of os_class_type .

See os_class_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Attributes of
os_class_type

Below is a diagram showing some of the important pieces of
abstract state associated with the class os_class_type . Each arrow
represents a piece of state and points to its value type. In the case
of double arrows, the value type is an os_List , and the type
pointed to by the arrow is the element type of the os_List .

Create Functions

This class has two create functions:

static os_class_type &create (const char *name) ;

The argument specifies the initial value for the name attribute. The
initial values for the remaining attributes are as follows:

os_class_type os_booleanchar*

os_class_kind

os_member

is_forward_definition

is_persistentname

class_kind

members

os_base_class

base_classes

is_template_class

declares_get_os_typespec_function

defines_virtual_functions

Attribute Value

base_classes empty os_List<os_base_
class*>

members empty os_List<os_member*>

defines_virtual_functions 0
Release 5.1 213

The Class os_class_type
The second overloading allows specification of more attribute
initial values:

static os_class_type &create (
const char *name ,
const os_List<os_base_class*> &base_classes ,
const os_List<os_member*> &members ,
os_boolean defines_virtual_functions

) ;

The arguments specify the initial values for the attributes name ,
base_classes , members , and defines_virtual_functions . The initial
values for the remaining attributes are as follows:

The name Attribute

Getting the attribute The name of the class represented by a given instance of os_class_
type is returned by the following function:

const char *get_name() const ;

The returned value points to the beginning of the persistent
character array holding the class’s name.

Setting the attribute You can specify a new character string to serve as a class’s name
with the following function:

void set_name(const char*) ;

class_kind os_class_type::Class

defines_get_os_typespec_function 0

is_template_class 0

is_persistent 0

is_forward_definition 1

Attribute Value

class_kind os_class_type::Class

defines_get_os_typespec_function 0

is_template_class 0

is_persistent 0

is_forward_definition 0

Attribute Value
214 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The class_kind Attribute

The value of class_kind for a given os_class_type is an
enumerator that indicates the kind of class specified. The
enumerators are:

class_kind
enumerators

• os_class_type::Class : for a class declared with the keyword
class

• os_class_type::Struct : for a struct

• os_class_type::Union : for a named union

• os_class_type::Anonymous_union : for an anonymous union

Getting the attribute You can get the class_kind with

os_unsigned_int32 get_class_kind() const ;

Setting the attribute You can set it with

void set_class_kind(os_unsigned_int32) ;

The members Attribute

With the metaobject protocol, the members (both data members
and member functions) of a class are sometimes manipulated as a
group, using an ObjectStore list of either type:

• os_List<os_member*>

• os_List<const os_member*>

Each instance of os_member represents a member of the class (see
The Class os_member on page 226). The order of elements in the
os_List signifies the declaration order of the members.

Getting the attribute You can retrieve a list of the members of a specified class using the
following functions:

os_List<os_member*> get_members() ;

os_List<const os_member*> get_members() const ;

These functions signal err_mop_forward_definition if the value of is_
forward_definition is nonzero for the specified os_class_type.

Setting the attribute You can specify the members of a class using

void set_members(const os_List<os_member*>&) ;

This replaces the members of the specified class with the specified
members.
Release 5.1 215

The Class os_class_type
You can also initialize the members of a class with a create
function; see Create Functions on page 213.

os_base_class Objects

As with members, the os_base_class objects associated with a
class are sometimes manipulated as a group. The list has one of
the following two types:

• os_List<os_base_class*>

• os_List<const os_base_class*>

Each instance of os_base_class represents the derivation of one
class from another (see The Class os_base_class on page 223). The
order of elements in the os_List signifies the declaration order of
the base classes involved.

Retrieving the objects You can retrieve a list of the os_base_class objects for a specified
class using the following functions:

os_List<os_base_class*> get_base_classes() ;

os_List<const os_base_class*> get_base_classes() const ;

These functions signal err_mop_forward_definition if the value of is_
forward_definition is nonzero for the specified os_class_type .

Specifying the objects You can specify the os_base_class objects for a class using

void set_base_classes(const os_List<os_base_class*>&) ;

This replaces the os_base_class objects for the specified class with
the specified os_base_class objects.

Initialization You can also initialize the os_base_class objects for a class with a
create function; see Create Functions on page 213.

The declares_get_os_typespec_function Function

You can determine if a given class declares a get_os_typespec()
member function with

os_boolean declares_get_os_typespec_function() const ;

which returns nonzero if the class does declare such a member
function, and 0 otherwise.
216 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The set_declares_get_os_typespec_function Function

You can specify that a given class declares a get_os_typespec()
member function with

void set_declares_get_os_typespec_function(os_boolean) ;

If you supply 1, the class will declare such a member function; if
you supply 0, it will not.

The defines_virtual_functions Attribute

The value of this attribute for a given class is nonzero if and only
if the class has a field for a pointer to a virtual function table. This
value is never computed based on the functions in members . It is
zero by default, and nonzero only if so initialized or set by the
user.

When you attempt to install a class in a schema, if a function in
members is virtual, defines_virtual_functions must be nonzero, or
installation will fail.

Getting the attribute You can retrieve this value with the following function:

os_boolean defines_virtual_functions() const ;

Setting the attribute You can set this attribute with

void set_defines_virtual_functions(os_boolean) ;

Initialization You can also initialize defines_virtual_functions with a create
function; see Create Functions on page 213.

The introduces_virtual_functions Attribute

The value of this attribute for a given class is nonzero if the class
defines a virtual function but does not inherit any virtual
functions.

Getting the attribute You can retrieve this value with the following function:

os_boolean introduces_virtual_functions() const ;

Setting the attribute You can set this attribute with

void set_introduces_virtual_functions(os_boolean) ;
Release 5.1 217

The Class os_class_type
The is_forward_definition Attribute

Sometimes a class, C, appears in a schema only as a forward
definition, because some other class uses the type C* in its
definition (or uses some other pointer type involving C) but a full-
fledged definition for C is not required. For such a class, is_
forward_definition is nonzero.

Getting the attribute You can get the value of this attribute with

os_boolean is_forward_definition() const ;

Setting the attribute You can set this attribute with

void set_is_forward_definition(os_boolean) ;

The is_persistent Attribute

In order to be installed into a database schema, a class must either
be persistent — that is, have a nonzero (true) value for this
attribute — or be reachable from a persistent class. Making a class
persistent is similar to marking it with OS_MARK_SCHEMA_
TYPE().

Getting the attribute You can get the value of this attribute with

os_boolean is_persistent() const ;

Setting the attribute You can set it with

void is_persistent(os_boolean) ;

Finding the Nonvirtual Base Class with find_base_class()

The following functions return the os_base_class representing
the derivation of this from the nonvirtual base class with the
specified name.

const os_base_class *find_base_class(const char *name) const ;

os_base_class *find_base_class(const char *name) ;

The functions return 0 if there is no such base class, and signal err_
forward_definition if this is a forward definition.

Finding Base Classes from Which this Inherits with
get_allocated_virtual_base_classes()

The get_allocated_virtual_base_classes() function returns base
classes from which this inherits:
218 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
os_List<const os_base_class*>
get_allocated_virtual_base_classes() const;

os_List<os_base_class*> get_allocated_virtual_base_classes() ;

The function returns 0 if there are no such base classes, and signals
err_forward_definition if this is a forward definition.

Finding Classes from Which this Indirectly Inherits with
get_indirect_virtual_base_classes()

The get_indirect_virtual_base_classes() function returns base
classes from which this indirectly and virtually inherits:

os_List<const os_base_class*>
get_indirect_virtual_base_classes() const;

os_List<os_base_class*> get_indirect_virtual_base_classes() ;

The function returns 0 if there are no such base classes, and signals
err_forward_definition if this is a forward definition.

Finding the Name of this with find_member()

The find_member() function returns the member value of this that
has the specified name:

const os_member_variable
*find_member(const char *name) const ;

os_member_variable *find_member(const char *name) ;

The function returns 0 if there is no such member.

Finding a Containing Object with get_most_derived_class()

The get_most_derived_class() function can be used to determine
the object containing a specified data member value, as well as the
class of that object:

static const os_class_type &get_most_derived_class (
const void *object,
const void* &most_derived_object

) const ;

If object points to the value of a data member for some other
object, o, this function returns a reference to the most derived class
of which o is an instance. A class, c1, is more derived than another
class, c2, if c1 is derived from c2, or derived from a class derived
from c2, and so on. most_derived_object is set to the beginning of
Release 5.1 219

The Class os_class_type
the instance of the most derived class. There is one exception to
this behavior, described below.

If object points to an instance of a class, o, but not to one of its data
members (for example, because the memory occupied by the
instance begins with a virtual table pointer rather than a data
member value), the function returns a reference to the most
derived class of which o is an instance. most_derived_object is set
to the beginning of the instance of the most derived class. There is
one exception to this behavior, described below.

If object does not point to the memory occupied by an instance of
a class, most_derived_object is set to 0, and err_mop is signaled.
ObjectStore issues an error message like the following:

<err-0008-0010>Unable to get the most derived class in
os_class_type::get_most_derived_class() containing the

address 0x[[some-address]].

Example: get_most_
derived_class()

Here is an example:

Class and
function

declarations

class B {
public:

int ib ;
} ;

class D : public B {
public:

int id ;
} ;

class C {
public:

int ic ;
D cm ;

} ;

void baz () {
C* pC = new (db) C;
D *pD = &pC->cm ;
int *pic = &pC->ic, *pid = &pC->cm.id, *pib = &pC->cm.ib ;
. . .

}

Function result Invoking get_most_derived_class() on the pointers pic , pid , and
pib has the results shown in the following table:

object most_derived_object os_class_type

pic pC C
220 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The exception to the behavior described above can occur when a
class-valued data member is collocated with a base class of the
class that defines the data member. If a pointer to such a data
member (which is also a pointer to such a base class) is passed to
get_most_derived_class() , a reference to the value type of the data
member is returned, and most_derived_object is set to the same
value as object .

Example: class
hierarchy

Consider, for example, the following class hierarchy:

Class
definitions

class C0 {
public:

int i0;
};

class B0 {
public:

void f0();
};

class B1 : public B0 {
public:

virtual void f1();
C0 c0;

};

class C1 : public B1 {
public:

static os_typespec* get_os_typespec();
int i1;

};

Some compilers will optimize B0 so that it has zero size in B1 (and
C1). This means the class-valued data member c0 is collocated
with a base class, B0, of the class, C1, that defines the data
member.

Given

C1 c1;
C1 * pc1 = & c1;
B0 * pb0 = (B0 *)pc1;
C0 * pc0 = & pc1->c0;

pid pD D

pib pD D

object most_derived_object os_class_type
Release 5.1 221

The Class os_class_type
the pointers pb0 and pc0 will have the same value, because of this
optimization.

Function result In this case get_most_derived_class() called on the pb0 or pc0 will
return a reference to the os_class_type for C0 (the value types of
the data member c0) and most_derived_object are set to the same
value as object .

If B1 is instead defined as

class B1 : public B0 {
public:

virtual void f1();
int i;
C0 c0;

};

and

int * pi = & pc1->i;

pb0 and pi have the same value because of the optimization, but
the base class, B0, is collocated with an int -valued data member
rather than a class-valued data member. get_most_derived_class()
called on pb0 or pi returns a pointer to the os_class_type for the
class C1 and sets most_derived_object to the same value as pc1 .
222 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_base_class

An instance of os_base_class represents the derivation of one
class from another. Such an instance serves to associate the base
class with the nature of the derivation (virtual or nonvirtual, and
public, private, or protected).

See os_base_class in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Attributes of
os_base_class

Create Functions

This class has one create function:

static os_base_class &create (
os_unsigned_int32 access ,
os_boolean is_virtual ,
os_class_type *associated_class

) ;

Function arguments The arguments specify the initial values for the attributes access ,
is_virtual , and class .

To represent the derivation of mechanical_part from part , you
might create an os_base_class as follows:

Example: os_base_
class

os_class_type *the_class_part = ...

os_class_type *the_class_mechanical_part = ...
. . .
os_base_class & a_base = os_base_class::create (

os_base_class::Public ,
0,
os_class_type *the_class_part

) ;

os_boolean

os_class_type

os_base_access

is_virtual

class

access

os_base_class
Release 5.1 223

The Class os_base_class
os_List<os_base_class*> bases ;
bases |= a_base ;
the_class_mechanical_part->set_base_classes (bases) ;

The class Attribute

The class of an os_base_class is the base class for the derivation
represented by the os_base_class . For example, suppose
mechanical_part is derived from part . Performing get_base_
classes() on an os_class_type representing mechanical_part
results in a list containing an os_base_class representing the
derivation of mechanical_part from part . Performing get_class()
on this os_base_class object results in an os_class_type
representing part .

Getting the attribute You can get the class of a given os_base_class with the following
functions:

const os_class_type &get_class() const ;

os_class_type &get_class() ;

If no class was specified when the os_base_class was created (that
is, if the associated class argument to create() was 0), the
unspecified type is returned. This is the only os_type for which
os_type::is_unspecified() returns nonzero (see The is_
unspecified() function on page 209).

Setting the attribute You can set the class of an os_base_class with

void set_class(os_class_type&) ;

Initialization You can initialize the class attribute with os_base_class::create() .

The access Attribute

The value of the access attribute for a given os_base_class is one
of the following enumerators:

os_base_class::Public
os_base_class::Private
os_base_class::Protected

Getting the attribute You can get the access for an os_base_class with

os_unsigned_int_32 get_access() const ;

Setting the attribute You can set the access with

void set_access(os_unsigned_int_32) ;
224 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Initialization You can initialize the access attribute with os_base_
class::create() .

The is_virtual Attribute

The value of is_virtual for a given os_base_class is nonzero if the
os_base_class represents a virtual derivation, and is 0 otherwise.
The following function returns the value of the is_virtual attribute:

Getting the attribute os_boolean is_virtual() const ;

Setting the attribute You can set this attribute with

void set_is_virtual(os_boolean) ;
Release 5.1 225

The Class os_member
The Class os_member

An instance of os_member represents a data member or member
function.

See os_member in Chapter 2 of the ObjectStore C++ API Reference
for a complete description of this class.

Some member
functions of
os_member

Class os_member and
its subclasses

This class has no direct instances. Every instance of os_member is
a direct instance of one of the subclasses of os_member .

Create Functions

Since this class has no direct instances, it has no create function.
You create an instance of os_member with a create function for
one of the subclasses of os_member .

os_member_kind

os_class_type

os_member_access

kind

defining_class

access

os_member

os_member_function os_access_modifier

os_member_variable os_member_type

os_relationship_member_variable os_field_member_variable

os_member
226 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The access Attribute

Attribute enumerators The access of a given os_member is one of the following
enumerators:

os_member::Public
os_member::Private
os_member::Protected

Getting the attribute You can get the access of an os_member with

os_unsigned_int32 get_access() const ;

Setting the attribute You can set the access of an os_member with

void set_access(os_unsigned_int32) ;

If the specified os_unsigned_int32 does not have the same value as
one of the above enumerators, err_mop is signaled.

Initialization This attribute is initialized to os_member::Public by the create
functions for the subclasses of os_member .

The kind Attribute

Attribute enumerators The kind of an os_member is one of the following enumerators:

Each of these enumerators corresponds to a subclass of os_
member .

Initialization The value of kind for a given os_member is initialized to the
enumerator corresponding to the subclass of which the os_
member is a direct instance. This initialization is performed by the
create function for the subclass.

Getting the attribute You can get the kind of an os_member with

os_unsigned_int32 get_kind() const ;

os_member::Variable For data members

os_member::Function For member functions

os_member::Type For nested classes

os_member::Access_modifier For access declarations

os_member::Field_variable For bit fields

os_member::Relationship For ObjectStore inverse members
Release 5.1 227

The Class os_member
The defining_class Attribute

The defining_class of an os_member is an os_class_type , the class
that defines the os_member .

Getting the attribute You can get the defining class of an os_member with

const os_class_type &get_defining_class() const ;

os_class_type &get_defining_class() ;

Initialization This attribute is always initialized by a create function to a special
instance of os_class_type , the unspecified class (see The is_
unspecified() function on page 209).

Setting the attribute The defining_class of an os_member is automatically set when os_
class_type::set_members() is passed a collection containing a
pointer to the os_member . The os_member ’s defining_class is set
to the os_class_type for which set_members() is called.

Type-Safe Conversion Operators

Like the class os_type , os_member defines type-safe conversion
operators for converting const os_member s to const references to
an instance of a subtype.

operator const os_member_variable&() const ;
operator const os_field_member_variable&() const ;
operator const os_relationship_member_variable&() const ;
operator const os_member_function&() const ;
operator const os_access_modifier&() const ;
operator const os_member_type&() const ;

There are also type-safe conversion operators for converting non-
const os_member s to non-const references to an instance of a
subtype.

operator os_member_variable&() ;
operator os_field_member_variable&() ;
operator os_relationship_member_variable&() ;
operator os_member_function&() ;
operator os_access_modifier&() ;
operator os_member_type&() ;

If an attempt is made to perform an inappropriate conversion, err_
mop_illegal_cast is signaled.
228 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_member_variable

Attributes of
os_member_variable

This diagram shows some of the important attributes of os_
member_variable.

See os_member_variable in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

This class has one create function:

static os_member_variable &create (
const char *name ,
os_type *value_type

) ;

Function arguments The arguments specify the initial values for the attributes name
and type .

The initial values for the remaining attributes are as follows:

The name Attribute

The name of an os_member_variable is its unqualified name (for
example, components rather than part::components).

os_booleanchar*

os_type

static

persistent

field

name

type

os_unsigned_int32

storage_class

os_member_variable

Attribute Value

storage_class os_member_variable::Regular

is_field 0

is_static 0

is_persistent 0
Release 5.1 229

The Class os_member_variable
Getting the attribute You can get the value of name with

const char *get_name() const ;

Setting the attribute You can set the value of name with

void set_name(const char *name) ;

Initialization You can initialize name with os_member_variable::create() .

The type Attribute

The type of a given os_member_variable is its value type. You can
retrieve an os_member_variable ’s type with

Getting the attribute const os_type &get_type() const ;

os_type &get_type() ;

Setting the attribute You can set the type with

void set_type(os_type&) ;

Initialization You can initialize type with os_member_variable::create() .

The storage_class Attribute

The value of storage_class for a given os_member_variable is one
of the following enumerators:

os_member_variable::Regular
os_member_variable::Persistent
os_member_variable::Static

Initialization This attribute is initialized to os_member_variable::Regular by os_
member_variable::create() .

Getting the attribute You can get the value of storage_class with

os_unsigned_int32 get_storage_class() const ;

Setting the attribute You can set storage_class with

void set_storage_class(os_unsigned_int32) ;

The is_field Attribute

This attribute is nonzero (true) for all and only instances of os_
field_member_variable .

Initialization It is initialized to nonzero by os_field_member_variable::create() ,
and is initialized to 0 by os_member_variable::create() and os_
relationship_member_variable::create() .
230 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Getting the attribute You can retrieve the value of is_field with

os_boolean is_field() const ;

The is_static Attribute

The attribute is_static indicates whether a given os_member_
variable is static.

Initialization Initializing or setting the attribute storage_class causes is_static to
be set automatically.

Getting the attribute You can retrieve the value of is_static with

os_boolean is_static() const ;

The is_persistent Attribute

The attribute is_persistent indicates whether a given os_member_
variable is a persistent data member.

Initialization Initializing or setting the attribute storage_class causes is_
persistent to be set automatically.

Getting the attribute You can retrieve the value of is_persistent with

os_boolean is_persistent() const ;

Type-Safe Conversion Operators

The class os_member_variable defines type-safe conversion
operators for converting const os_member_variable s to const
references to an instance of a subtype.

operator const os_field_member_variable&() const ;
operator const os_relationship_member_variable&() const ;

There are also type-safe conversion operators for converting non-
const os_member_variable s to non-const references to an instance
of a subtype.

operator os_field_member_variable&() ;
operator os_relationship_member_variable&() ;

These functions signal err_mop_illegal_cast if an attempt is made to
perform an inappropriate conversion.
Release 5.1 231

The Class os_relationship_member_variable
The Class os_relationship_member_variable

Attributes of os_
relationship_member_
variable

Here is a diagram showing some of the important members of os_
relationship_member_variable . Note that attributes inherited from
os_member_variable and os_member are not shown.

See os_relationship_member_variable in Chapter 2 of the
ObjectStore C++ API Reference for a complete description of this
class.

Create Function

This class has one create function:

static os_relationship_member_variable &create (
const char *name ,
const os_type *value_type,
const os_class_type *related_class,
const os_relationship_member_variable *related_member

) ;

Function arguments The arguments specify the initial values for the attributes name ,
type , related_class , and related_member .

The initial values for the remaining attributes are as described for
os_member_variable::create() .

The related_class Attribute

The related_class of a given os_relationship_member_variable is
the class defining the inverse of the given member.

Getting the attribute You can get the related_class with

const os_class_type &get_related_class() const ;

os_class_type &get_related_class() ;

os_relationship_member_variable

os_class_type

related_class

related_member
232 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Setting the attribute You can set the related_class with

void set_related_class(os_class_type&) ;

The related_member Attribute

The related_member of a given os_relationship_member_variable
is the inverse member of the given member.

Getting the attribute You can get the value of this attribute with

const os_relationship_member_variable &
get_related_member() const ;

os_relationship_member_variable &get_related_member() ;

Setting the attribute You can set the related_member with

void set_related_member(os_relationship_member_variable&) ;
Release 5.1 233

The Class os_field_member_variable
The Class os_field_member_variable

Attribute of os_field_
member_variable

Here is a diagram of the attributes of os_field_member_variable .
Note that attributes inherited from os_member_variable and os_
member are not shown.

See os_field_member_variable in Chapter 2 of the ObjectStore C++
API Reference for a complete description of this class.

Create Functions

This class has one create function:

static os_field_member_variable &create (
const char *name ,
const os_type *value_type,
os_unsigned_int8 size_in_bits

) ;

Function arguments The arguments specify the initial values for the attributes name ,
type , and size . If value_type is not 0, a pointer to an os_integral_
type , or a pointer to an os_enum_type , err_mop is signaled.

The initial values for the remaining attributes are as described for
os_member_variable::create() .

The size Attribute

The size of a given os_field_member_variable is the number of bits
in the value of the given member.

Getting the attribute You can get the size with

os_unsigned_int8 get_size() const ;

Setting the attribute You can set the size with

void set_size(os_unsigned_int8) ;

os_field_member_variable

os_unsigned_int8

size
234 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_access_modifier

Attribute of os_
access_modifier

An os_access_modifier represents an access modification
performed by a class on an inherited member. Note that attributes
inherited from os_member are not shown.

See os_access_modifier in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

This class has one create function:

static os_access_modifier &create(os_member*) ;

Function argument The argument is used to initialize the base_member attribute.

The base_member Attribute

The base_member of a given os_access_modifier is the member
whose access is being modified.

Getting the attribute You can get this with

const os_member &get_base_member() const ;

os_member &get_base_member() ;

Setting the attribute You can set this with

void set_base_member(os_member&) ;

os_access_modifier

os_member

base_member
Release 5.1 235

The Class os_enum_type
The Class os_enum_type

Attributes of os_
enum_type

Here is a diagram showing the attributes of os_enum_type . Note
that the attributes inherited from os_type are not shown.

See os_enum_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

This class has one create function:

static os_enum_type &create (
const char *name,
const os_List<os_enumerator_literal*> &enumerators

) ;

Function arguments The arguments initialize the name and enumerators attributes.

The name Attribute

The value of this attribute for an os_enum_type is the os_enum_
type ’s name.

Getting the attribute You can get this attribute with

const char *get_name() const ;

Setting the attribute You can set the attribute with

void set_name(const char *name) ;

os_enum_type

os_enumerator_literal

enumerators

char*

name
236 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The enumerators Attribute

The value of this attribute for a given os_enum_type is a list of the
enumerators of the given type, that is, an os_List<os_enumerator_
literal*> .

Getting the attribute You can get the value with

os_List<const os_enumerator_literal*>
get_enumerators() const ;

os_List<os_enumerator_literal*> get_enumerators() ;

Setting the attribute You can set the value with

void set_enumerators(const os_List<os_enumerator_literal*>&) ;
Release 5.1 237

The Class os_enumerator_literal
The Class os_enumerator_literal

Attributes of os_
enumerator_literal

Instances of this class represent enumerators. Here is a diagram
showing the attributes of os_enumerator_literal :

See os_enumerator_literal in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

This class has one create function:

static os_enumerator_literal &create (
const char *name,
os_int32 value

) ;

Function arguments The arguments specify the initial values for name and value .

The name Attribute

The value of name for a given os_enumerator_literal is its
unqualified name (for example, ordered rather than os_
collection::ordered).

Getting the attribute You can get the name with

const char *get_name() const ;

Setting the attribute You can set the name with

void set_name(const char *name) ;

Initialization The name is initialized by the create function.

os_enumerator_literal

os_int32

value

char*

name
238 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_void_type

Instances of this class represent the type void , which can be used
as a return type for functions, or can be used in conjunction with
os_pointer_type to form the type void* .

See os_void_type in Chapter 2 of the ObjectStore C++ API Reference
for a complete description of this class.

Create Function

This class’s create function is

static os_void_type &create() ;
Release 5.1 239

The Class os_pointer_type
The Class os_pointer_type

Attribute of
os_pointer_type

Instances of this class are used to represent pointer types.

See os_pointer_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

The create function for this class is

static os_pointer_type &create(os_type *target_type) ;

Function argument The argument is used to initialize the attribute target_type .

The target_type Attribute

The value of this attribute for a given os_pointer_type is the type
of object pointed to by instances of the given pointer type. For
example, the target_type of an os_pointer_type representing part*
is an os_type representing the type part .

Getting the attribute You can get the target_type of a given os_pointer_type with

const os_type &get_target_type() const ;

os_type &get_target_type() ;

If no type was specified when the os_pointer_type was created
(that is, if the class argument to create() was 0), the unspecified
type is returned. This is the only os_type for which os_type::is_
unspecified() returns nonzero (see The is_unspecified() function
on page 209).

Setting the attribute You can set the target_type with

void set_target_type(os_type&)

This attribute is initialized with the create function.

os_pointer_type

os_type

target_type
240 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Type-Safe Conversion Operators

The class os_pointer_type defines type-safe conversion operators
for converting const os_pointer_type s to const references to an
instance of a subtype.

operator const os_pointer_to_member_type&() const ;
operator const os_reference_type&() const ;

There are also type-safe conversion operators for converting non-
const os_pointer_type s to non-const references to an instance of a
subtype.

operator os_pointer_to_member_type&() const ;
operator os_reference_type&() ;

These functions signal err_mop_illegal_cast if an attempt is made to
perform an inappropriate conversion.
Release 5.1 241

The Class os_reference_type
The Class os_reference_type

Attribute of
os_reference_type

Instances of this class are used to represent reference types. Note
that the following diagram shows attributes inherited from os_
pointer_type , but not those inherited from os_type .

See os_reference_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

The create function for this class is

static os_reference_type &create(os_type *target_type) ;

Function argument The argument is used to initialize the attribute target_type .

The target_type Attribute

The value of this attribute for a given os_reference_type is the type
of object pointed to by instances of the given pointer type. For
example, the target_type of an os_reference_type representing
part& is an os_type representing the type part .

Getting and setting
this attribute

You can get and set the target_type with functions inherited from
os_pointer_type .

os_reference_type

os_type*

target_type
242 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_pointer_to_member_type

Attributes of
os_pointer_to_
member_type

Instances of this class are used to represent pointer-to-member
types. Note that the following diagram shows attributes inherited
from os_pointer_type , but not those inherited from os_type .

See os_pointer_to_member_type in Chapter 2 of the ObjectStore
C++ API Reference for a complete description of this class.

Create Function

The create function for this class is

static os_pointer_to_member_type &create (
os_type *target_type,
os_class_type *target_class

) ;

Function argument The argument is used to initialize target_class and target_type .

The target_type Attribute

The value of this attribute for a given os_pointer_to_member_type
is the type of object referred to by instances of the given pointer
type.

Getting and setting
this attribute

You can get and set the target_type with functions inherited from
os_pointer_type .

The target_class Attribute

The value of this attribute for a given os_pointer_to_member_type
is the class defining the pointed-to member.

os_pointer_to_member_type

target_type

os_class_type

target_class

os_type
Release 5.1 243

The Class os_pointer_to_member_type
Getting the attribute You can get the target_class of a given os_pointer_to_member_
type with

const os_class_type &get_target_class() const ;

os_class_type &get_target_class() ;

If no class was specified when the os_pointer_to_member_type
was created (that is, if the target_class argument to create() was 0),
the unspecified type is returned. This is the only os_type for which
os_type::is_unspecified() returns nonzero (see The is_
unspecified() function on page 209).

Setting this attribute You can set the target_class with

void set_target_class(os_class_type&)

Initialization This attribute can be initialized with the create function as well.
244 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The Class os_indirect_type

Attribute of
os_indirect_type

Instances of this type are direct instances of either os_indirect_
type or os_anonymous_indirect_type .

See os_named_indirect_type (page 246) and os_anonymous_
indirect_type (page 248).

See also os_indirect_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

os_indirect_type

os_class_type

target_type
Release 5.1 245

The Class os_named_indirect_type
The Class os_named_indirect_type

Attribute of os_
named_indirect_type

An instance of this class represents a C++ typedef . The diagram
below shows the attribute target_type , inherited from os_indirect_
type , but it does not show attributes inherited from os_type .

See os_named_indirect_type in Chapter 2 of the ObjectStore C++
API Reference for a complete description of this class.

Create Function

The create function for this class is

static os_named_indirect_type &create (
os_type *target_type,
const char *name

) ;

Function arguments The arguments are used to initialize target_type and name .

The target_type Attribute

The value of this attribute for a given os_named_indirect_type is
the type named by the typedef .

Getting the attribute You can get the target_type of a given os_named_indirect_type
with

const os_type &get_target_type() const ;

os_type &get_target_type() ;

Setting the attribute You can set the target_type with

void set_target_type(os_type&)

os_class_type

target_type

char*

name

os_named_indirect_type
246 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Initialization This attribute can be initialized with the create function.

The name Attribute

The value of name for a given os_named_indirect_type is the name
the typedef introduces.

Getting the attribute You can get the name with

const char *get_name() const ;

Setting the attribute You can set the name with

void set_name(const char *name) ;

Initialization name can be initialized by the create function as well.
Release 5.1 247

The Class os_anonymous_indirect_type
The Class os_anonymous_indirect_type

Member functions of
os_anonymous_
indirect_type

An instance of this class represents a const or volatile type. The
diagram below shows the attribute target_type , inherited from os_
indirect_type , but it does not show attributes inherited from os_
type .

See os_anonymous_indirect_type in Chapter 2 of the ObjectStore
C++ API Reference for a complete description of this class.

Create Function

The create function for this class is

static os_anonymous_indirect_type &create (
os_type *target_type

) ;

Function argument The argument is used to initialize target_type .

The target_type Attribute

The value of this attribute for a given os_anonymous_indirect_
type is the type to which the const or volatile specifier applies. For
example, the type const int is represented as an instance of os_
anonymous_indirect_type whose target_type is an instance of os_
integral_type .

Getting the attribute You can get the target_type of a given os_anonymous_indirect_
type with

const os_type &get_target_type() const ;

os_type &get_target_type() ;

os_anonymous_indirect_type

os_class_type&

target_type

is_volatileis_const

os_boolean
248 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Setting the attribute You can set the target_type with

void set_target_type(os_type&)

Initialization This attribute can be initialized with the create function as well.

The is_const Attribute

The value of is_const is nonzero for const types and 0 otherwise.

Getting the attribute You can get the value with

os_boolean is_const() const ;

Setting the attribute You can set the value with

void set_is_const(os_boolean) ;

The is_volatile Attribute

The value of is_volatile is nonzero for volatile types and 0
otherwise.

Getting the attribute You can get the value with

os_boolean is_volatile() const ;

Setting the attribute You can set it with

void set_is_volatile(os_boolean) ;
Release 5.1 249

The Class os_array_type
The Class os_array_type

Attributes of
os_array_type

Instances of this class are used to represent array types. Note that
attributes inherited from os_type are not shown.

See os_array_type in Chapter 2 of the ObjectStore C++ API
Reference for a complete description of this class.

Create Function

This class has one create function:

static os_array_type &create(
os_unsigned_int32 number_of_elements,
os_type *element_type

) ;

Function arguments The arguments initialize the attributes number_of_elements and
element_type .

The number_of_elements Attribute

The value of this attribute for a given os_array_type is the number
of elements that instances of the array type are declared to
accommodate.

Getting the attribute You can get this attribute with

os_unsigned_int32 get_number_of_elements() const ;

Setting the attribute You can set it with

void set_number_of_elements(os_unsigned_int32) ;

os_array_type

os_type&

element_type

os_unsigned_int32

number_of_elements
250 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
The element_type Attribute

The value of this attribute for a given os_array_type is the type of
element that instances of the array type are declared to have.

Getting the attribute You can get this type information with

const os_type &get_element_type() const ;

os_type &get_element_type() ;

Setting the attribute You can set it with

void set_element_type(os_type&) ;
Release 5.1 251

Fetch and Store Functions
Fetch and Store Functions

ObjectStore provides a number of global (that is, nonmember)
functions that allow you to fetch the value of a specified data
member (specified with an os_member_variable) for a specified
object, and to store a specified value in a specified data member for
a specified object. There are different functions for fetching or
storing different types of values.

The first parameter to functions in the os_fetch and os_store
classes is a void pointer to an arbitrary object. This pointer must
refer to the closest containing class. If, for example, the relevant
member variable being accessed is part of an inherited class, you
must pass the address of the base class, not the outermost class. If
you pass the wrong pointer, you will end up accessing the wrong
address.

The os_fetch() Functions

Note that the os_fetch() functions store a reference to the fetched
value in the argument value , and also return the value.

The first parameter to os_fetch and os_store is a void pointer to an
arbitrary object. This pointer must refer to the closest containing
class. If, for example, the relevant member variable being accessed
is part of an inherited class, you must pass the address of the base
class, not the outermost class. If you pass the wrong pointer, you
will end up accessing the wrong address.

For more information, see ::os_fetch() in Chapter 3 of the
ObjectStore C++ API Reference.

void* os_fetch(
const void *p, const os_member_variable&, void *&value);

unsigned long os_fetch(
const void *p, const os_member_variable&,
unsigned long &value);

long os_fetch(
const void *p, const os_member_variable&, long &value);

unsigned int os_fetch(
const void *p, const os_member_variable&,
unsigned int &value);

int os_fetch(
const void *p, const os_member_variable&, int &value);
252 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
unsigned short os_fetch(
const void *p, const os_member_variable&,
unsigned short &value);

short os_fetch(
const void *p, const os_member_variable&, short &value);

unsigned char os_fetch(
const void *p, const os_member_variable&,
unsigned char &value);

char os_fetch(
const void *p, const os_member_variable&, char &value);

float os_fetch(
const void *p, const os_member_variable&, float &value);

double os_fetch(
const void *p, const os_member_variable&, double &value);

long double os_fetch(
const void *p, const os_member_variable&, long double &value);

The os_store() Functions

For more information, see ::os_store() in Chapter 3 of the
ObjectStore C++ API Reference.

void os_store(
void *p, const os_member_variable&, const void *value);

void os_store(
void *p, const os_member_variable&,
const unsigned long value);

void os_store(
void *p, const os_member_variable&, const long value);

void os_store(
void *p, const os_member_variable&, const unsigned int value);

void os_store(
void *p, const os_member_variable&, const int value);

void os_store(
void *p, const os_member_variable&,
const unsigned short value);

void os_store(
void *p, const os_member_variable&, const short value);

void os_store(
void *p, const os_member_variable&,
const unsigned char value);

void os_store(
void *p, const os_member_variable&, const char value);
Release 5.1 253

Fetch and Store Functions
void os_store(
void *p, const os_member_variable&, const float value);

void os_store(
void *p, const os_member_variable&, const double value);

void os_store(
void *p, const os_member_variable&, const long double value);
254 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Type Instantiation

You can instantiate the class represented by a given os_class_type
by calling the global function ::operator new() without a
constructor call. Use the function os_type::get_size() to supply the
size_t argument to ::operator new() . A void* is returned. For
example:

void *a_part_ptr = ::operator new(
the_class_part.get_size(),
db,
&part_typespec

) ;

You can use the function ::os_store() to initialize the new instance.
Release 5.1 255

Example: Schema Read Access
Example: Schema Read Access

This section presents an example that illustrates the use of the
metaobject protocol. The example consists of a routine that prints
information about a specified class instance: its class, its address,
and the values of its data members. The routine is generic instead
of being class specific, so it can operate on an instance of any class.
This is what necessitates the use of the metaobject protocol —
schema information must be accessed in order to identify, at run
time, the members of the specified object, so their values can be
fetched and presented. Something like this functionality might be
offered by a browser or debugger.

The Top-Level print() Function

This example involves several functions. The function print()
below is the top-level function. As arguments it takes a pointer to
an object and an os_class_type& representing the object’s type.
There are two other arguments, member_prefix and indentation ,
that are supplied only when the function calls itself recursively
(see below).

print() function
definition

#include <ostore/mop.hh>

const os_unsigned_int32 max_buff_size = 100 ;

static void print(const void* p, const os_class_type& c,
char* member_prefix = "", os_unsigned_int8 indentation = 0

{

if (!*member_prefix)
fprintf(stdout, "\n%sclass %s /* 0x%x */ {\n",

indent(indentation), c.get_name(), p) ;

os_Cursor<const os_base_class*> bc(c.get_base_classes()) ;

for (const os_base_class* b=bc.first(); b ; b = bc.next()) {

char buff[1024] ;
os_strcpy(buff, member_prefix) ;
os_strcat(buff, b->get_class().get_name()) ;
os_strcat(buff, "::") ;
print((void*) ((char*)p+b->get_offset()), b->get_class(),

buff, indentation) ;
} /* end of for loop */

os_Cursor<const os_member*> mc(c.get_members()) ;

for (const os_member* m=mc.first(); m ; m=mc.next())
switch (m->kind())
256 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
{
case os_member::Variable:
case os_member::Relationship:
case os_member::Field_variable:
{

const os_member_variable& mv = *m ;
char* type_string = mv.get_type().get_string() ;
if (mv.is_static() || mv.is_persistent())
continue ;

fprintf(stdout, "%s %s\t%s%s = ",
indent(indentation), type_string,

member_prefix, mv.get_name()) ;

print(p, mv, indentation) ;
fprintf(stdout, " ;\n") ;
delete [] type_string ;
break ;

} /* end of case statement*/

} /* end of for loop */

if (!*member_prefix)
fprintf(stdout, "%s}", indent(indentation)) ;

} /* end of print() function */

Let us explain the function by considering some sample input.

Sample input: class
definitions

Suppose an application uses the classes part , mechanical_part , and
date , with the data members shown in the following definitions:

class date {
private:

int day;
int month;
int year;

public:
date(int dd, int mm, int yy) {

day = dd; month = mm; year = yy;
}
. . .

};

class part {
private:

int part_id;
date date_created;

public:
part(int id, date d) {part_id = id; date_created = d;}

. . .
};

class mechanical_part : public part {
Release 5.1 257

Example: Schema Read Access
private:
mechanical_part *parent;

public:
mechanical_part(int id, date d, mechanical_part *p) :

part(id, d) {parent = p;}
. . .

};

Creating objects And suppose you create objects like this:

date d(1, 15, 1993);

mechanical_part *parent = new(db) mechanical_part(1, d, 0);

mechanical_part *child = new(db) mechanical_part(2, d, parent);

Pass child to print() Finally, suppose you pass child to print() :

print(child, os_type::type_at(child));

print() begins with a check of the argument member_prefix , which
defaults to a pointer to the null character (0). Since this is 0, you
have just started printing an object, and so the function outputs
the name of the object’s class with a call to os_class_type::get_
name() :

c.get_name()

The object’s address is also printed.

Sample output For the sample input, the output so far might look like this:

class mechanical_part /* 0xCB320 */ {

Recursive Execution of print()

Iterating through the
base types

Next, the function iterates through the collection of the specified
type’s base types, obtained with a call to os_class_type::get_base_
classes() :

c.get_base_classes()

For each base class, the function prints the portion of the specified
object that corresponds to that base class. It does this by calling
itself recursively, specifying the address of the appropriate
subobject, and specifying the base type as its type.

How the object’s
address is obtained

The address of the appropriate object is obtained by adding the
base type’s offset to p, the address of the original object. The offset
is obtained using os_base_class::get_offset() .
258 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
How the object’s type
is obtained

The type is obtained using os_base_class::get_class() . Remember,
an os_base_class encapsulates information about the derivation
of one class from another (for example, the offset of the base class
within instances of the derived class — which you just used). An
os_base_class is not itself an os_class_type . To get the associated
os_class_type object, you use get_class() .

For the sample input, the only base class is part , so an os_class_
type& representing part is passed as the second argument in the
recursive call to print() .

In addition, since this is a recursive call, a member prefix and
indentation are passed as well. The prefix consists of the base
type’s name followed by :: (part:: for the sample input). This will
be used when printing the names of data members defined by the
base type. By using a qualified name for a base class member, the
output identifies the defining class.

During the execution of the recursive call, first the member prefix
is tested. Since it is nonnull, you do not print the header,
class class-na /* address */ {

Iterating through the
base classes of the
specified class

Next you iterate through the base classes of the specified class,
part in this case. This takes care of subobjects corresponding to
indirect base classes. Since part itself has no base classes, this loop
is null for the sample input.

Iterating through
members of the
specified class

Then you iterate through the collection of members of the
specified class, obtained with a call to os_class_type::get_
members() :

c.get_members()

Since you are within the recursive execution, the specified class is
part . You test the kind of each member using os_member::kind() ,
and for each nonstatic, nonpersistent data member, you output
the data member’s name (using member_prefix) and type, and call
an overloading of print() that prints data member values
(described below).

Converting
os_member to
os_member_variable

This involves first converting the os_member to an os_member_
variable :

const os_member_variable &mv = *m;
Release 5.1 259

Example: Schema Read Access
Recall that there are type-safe conversions from os_member to
const os_member_variable& , as well as to all the other subtypes of
os_member .

You get the value type of the member using os_member_
variable::get_type() and you get the name of this type using os_
type::get_string() :

char *type_string = mv.get_type().get_string()

Note that get_string() allocates a character array, which is deleted
when no longer needed:

delete [] type_string;

Sample output: first
member of part

For the sample input, the output after retrieving the first member
of part might look like this:

class mechanical_part /* 0xCB320 */ {
int part::part_id =

print() function for
data members

Now consider the function print() for data members, which is
called in the line

print(p, mv, indentation);

Here is how this function is defined:

/* Prints the value at p. It is the value of the data member */
/* indicated by the "m" argument */

static void print(const void* p,
 const os_member_variable& m,
 const os_unsigned_int8 indentation)

{
const os_type& mt = m.get_type().strip_indirect_types() ;
if (mt.is_integral_type()) {

if (((const os_integral_type&)mt).is_signed()) {
os_int32 value ;
fprintf(stdout, "%ld", os_fetch(p, m, value)) ;

} /* end if */

else {
os_unsigned_int32 value ;
fprintf(stdout, "%lu", os_fetch(p, m, value)) ;

} /* end else */

return ;

} /* end if */

else if (mt.kind()==os_type::Enum) {
os_int32 value = 0 ;
const os_enumerator_literal* lit=
260 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
((os_enum_type&)mt).get_enumerator(
os_fetch(p, m, value)) ;

fprintf(stdout, "%ld(%s)", value,
(lit ? lit->get_name() : "?enum literal?")) ;

return ;
} /* end else if */

switch (mt.kind()) {
case os_type::Float: {

float value ;
fprintf(stdout, "%f", os_fetch(p, m, value)) ;
return ;

}

case os_type::Double: {
double value ;
fprintf(stdout, "%lg", os_fetch(p, m, value)) ;
return ;

}

case os_type::Long_double: {
long double value ;
fprintf(stdout, "%lg", os_fetch(p, m, value)) ;
return ;

}

case os_type::Pointer:
case os_type::Reference:

print_a_pointer((char*)p+m.get_offset()) ;
return ;

case os_type::Class:
case os_type::Instantiated_class:

print((char*)p+m.get_offset(),
(const os_class_type&)mt, "",
indentation+1) ;

return ;

case os_type::Array:
print((char*)p+m.get_offset(), (const os_array_type&)mt,

indentation+1) ;
return ;

default:
/* print its address */
fprintf(stdout, "*0x%x*", (char*)p + m.get_offset()) ;

} /* end switch */
}

Behavior of print() for
data members

This function begins by retrieving the value type of the specified
data member, and applying strip_indirect_types() . The result will
be an os_type that is not an os_indirect_type . Next, it determines
the kind of this type, and acts accordingly.
Release 5.1 261

Example: Schema Read Access
For the sample input, the member is currently part::part_id and
the value type is int . This is a signed integer type, so the value is
printed with the format "%ld" . The value is obtained with os_
fetch() :

os_fetch(p, m, value);

Sample output: data
members

When this function returns, the output would be

class mechanical_part /* 0xCB320 */ {
int part::part_id = 2

For the next member, part::date_created , the output is
supplemented to look like

class mechanical_part /* 0xCB320 */ {
int part::part_id = 2
date date_created =

before print() for member values is called again.

Next recursion of
print()

Now the value type of part::date_created is determined to be a
class, so the original print() function is called recursively again.
This will put us two levels of recursion down from the top-level
execution of print() .

print((char*)p+m.get_offset(), (const os_class_type&)mt, "",
indentation+1) ;

The arguments are a pointer to the data member value (obtained
with the help of os_member_variable::get_offset()) and the
member’s value type (which you cast to a const os_class_type&).

This call to print() supplements the output with a representation of
the date object that serves as the data member value:

class mechanical_part /* 0xCB320 */ {
int part::part_id = 2
date part::date_created = class date /* 0xCB324 */ {

int day = 1
int month = 1
int year = 1993

}

Exit from base class
loop of print()

Now you have finished the portion of the object corresponding to
the base class part , and you pop up to the top-level print()
execution and exit from the base class loop. Then you handle the
members defined by the object’s direct type, mechanical_part .

Looping through the
class’s members

This involves looping through that class’s members, and
presenting the data members. This class defines one data member,
262 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
mechanical_part::parent , whose value type is part* . So print()
supplements the output with the member’s name and type name:

class mechanical_part /* 0xCB320 */ {
int part::part_id = 2
date part::date_created = class date /* 0xCB324 */ {

int day = 1
int month = 1
int year = 1993

}
part* parent =

and then calls print() for data members.

The print_a_pointer() function

This function determines that the value type of the current
member is a pointer type, and so it calls print_a_pointer() on the
data member’s address.

print_a_pointer()
definition

/* print a pointer value along with as much useful info as possible */

static void print_a_pointer(const void** p)
{

static os_type::os_type_kind string_char =
char(0x80) > 0 ? os_type::Signed_char
os_type::Unsigned_char ;

if (*p)
{

const os_type* type = os_type::type_at(*(void**)p) ;
char* tstr = type ? type->get_string() : os_strdup("???") ;

fprintf(stdout, "(%s*)%#lx%s",
tstr, (unsigned long)*(void**)p,
((type && (type->kind() == string_char)) ?
get_string((char*)*p, string_char) : "")) ;

delete tstr ;

const void* op = 0 ;
os_unsigned_int32 ecount = 0 ;
const os_type* otype = os_type::type_containing(

*p, op, ecount) ;

if (op && (op != *p) && (otype != type))
{

/* the enclosing object is different */

if (ecount > 1)
{

/* point to the appropriate array element */
os_unsigned_int32 offset = (char*)op - (char*)*p ;
os_unsigned_int32 i = offset / otype->get_size() ;
Release 5.1 263

Example: Schema Read Access
op = (char*)op + (i * otype->get_size()) ;
} /* end if */

char* tstr = type ? otype->get_string() : os_strdup("???") ;
fprintf(stdout, " /* enclosing object @ (%s*)%#lx */ ",

tstr, (unsigned long)op) ;

delete tstr ;

} /* end if */

} /* end if */

else fprintf(stdout, "0") ;

} /* end print_a_pointer() */

print_a_pointer() prints the specified pointer’s type and value,
and, if the pointer is a char* , it prints up to the first 100 characters
of the designated string (with the help of get_string() , shown
below). In addition, if the object pointed to is embedded in some
other object or array, the type and address of the enclosing object
are printed.

Sample output from
print_a_pointer()

So the sample output might end up like this:

class mechanical_part /* 0xCB322 */ {
int part::part_id = 2
date part::date_created = class date /* 0xCB326 */ {

int day = 1
int month = 1
int year = 1993

}
part* parent = (part*) 0xCB300

}

Other Data Handling Routines

Array-valued data members are handled with the following
routines.

The get_string()
function

This function builds a printable representation for a char* string
and returns it. Only strings up to max_buff_size are printed. If
they are longer, they are truncated and a trailing ...%d... is used
to indicate the true length.

static char* get_string(const char* p, os_type::
os_type_kind string_char)

{

const void* op = 0 ; os_unsigned_int32 ecount = 0 ;

/* Ignore embedded strings for now */
264 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
const os_type* otype = os_type::type_containing(p, op, ecount) ;

/* +5 for the quotes + null character*/
static char buff[max_buff_size+5];

char *bp = buff ;
os_strcpy(bp, " \"") ;
bp += 2 ;

if (op && otype && (otype->kind() == string_char)) {
ecount=ecount-(p-(char*)op);

/*in case it is pointing into the middle */
os_unsigned_int32 count =

(ecount <= max_buff_size)? ecount : max_buff_size ;

for (; count && (*bp = *p); bp++, p++, count--) ;

if (*p) {
/* determine its true length */
count = ecount - max_buff_size ;
for (; count && (*p); p++, count--) ;
ecount -= count ;
os_sprintf(bp-(3+10+3), "...%d...", ecount) ;
bp = buff + os_strlen(buff) ;

} /* end if */

os_strcpy(bp, "\" ") ;

} /* end if */

else buff[0] = 0 ;

return buff ;

} /* end of get_string() */

The print() function for
an array

Print the value at p as an array. The array is described by the
argument at.

static void print(const void* p, const os_array_type& at,
const os_unsigned_int8 indentation)

{
const os_type& element_type =

at.get_element_type().strip_indirect_types();

fprintf(stdout, " { ") ;

for (int i = 0; i < at.number_of_elements();
i++, p = (char*)p + element_type.get_size()) {
print(p, element_type, indentation) ;
fprintf(stdout,
"%s", (i+1) == at.number_of_elements() ?
" }" : ", ") ;

} /* end of for loop */

}

Release 5.1 265

Example: Schema Read Access
The print() function for
a pointer

Print the value indicated by the pointer p, interpreting it as the
type supplied by the argument et.

static void print(const void* p, const os_type& et,
const os_unsigned_int8 indentation) {

switch (et.kind()) {
case os_type::Unsigned_char:

fprintf(stdout, "%lu", (os_unsigned_int32)*
(unsigned char*)p) ;

break ;

case os_type::Signed_char:
fprintf(stdout, "%ld", (os_int32)*(char*)p) ;
break ;

case os_type::Unsigned_short:
fprintf(stdout, "%lu", (os_unsigned_int32)*

(unsigned short*)p) ;
break ;

case os_type::Signed_short:
fprintf(stdout, "%ld", (os_int32)*(short*)p) ;
break ;

case os_type::Integer:
fprintf(stdout, "%ld", (os_int32)*(int*)p) ;
break ;

case os_type::Enum:
case os_type::Unsigned_integer:

fprintf(stdout, "%lu", (os_unsigned_int32)*
(unsigned int*)p) ;

break ;

case os_type::Signed_long:
fprintf(stdout, "%ld", (os_int32)*(int*)p) ;
break ;

case os_type::Unsigned_long:
fprintf(stdout, "%lu", (os_unsigned_int32)*

(unsigned int*)p) ;
break ;

case os_type::Float:
fprintf(stdout, "%f", *(float*)p) ;
break ;

case os_type::Double:
fprintf(stdout, "%lg", *(double *)p) ;
break ;

case os_type::Long_double:
fprintf(stdout, "%lg", *(long double *)p) ;
break ;
266 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
case os_type::Pointer:
case os_type::Reference:

print_a_pointer((void**)p) ;
break ;

case os_type::Array:
print(p, (const os_array_type &)et, indentation) ;
break ;

case os_type::Class:
case os_type::Instantiated_class:

print(p, (const os_class_type&)et, "", indentation+1) ;
return ;

default:
/* a type we do not understand how to print */
fprintf(stdout, "?%s?", et.kind_string(et.kind())) ;
break ;

} /* end of switch */
}

indent() function for
formatting

This function returns a string of blanks corresponding to the
indentation specified by the argument ilevel .

static const char* indent(os_unsigned_int32 ilevel)
{

static char indent_string[256] ;
static os_unsigned_int32 maxilevel = 0, cilevel = 0 ;
const os_unsigned_int32 indent_tab = 3 ;

if (ilevel > (256/indent_tab)) ilevel = 256/indent_tab ;

if (ilevel <= maxilevel) {
indent_string[cilevel*indent_tab]= ‘ ‘ ;
indent_string[ilevel*indent_tab]= 0 ;
cilevel = ilevel ;
return indent_string ;

} /* end if */

os_unsigned_int32 limit = ilevel * indent_tab ;

for (os_unsigned_int32 i = maxilevel*indent_tab; i < limit; i++)
indent_string[i] = ‘ ‘ ;

maxilevel = cilevel = ilevel ;
return indent_string ;

}

Release 5.1 267

Example: Dynamic Type Creation
Example: Dynamic Type Creation

Here is an example of using the metaobject protocol to create
types and update schemas.

Overview of the gen_schema() Example

The example centers around a function, gen_schema() , that might
serve as the back end of a much simplified schema designer
application. The front end would be a tool for drawing an entity-
relationship diagram. An entity-relationship diagram is a graph
in which the nodes represent types and the arcs represent possible
relationships between instances of the types. The schema designer
would translate such a diagram into a set of C++ classes, with one
or a pair of data members corresponding to each arc in the
diagram.

Entity-relationship
diagram for the
example

The arcs (represented as arrows in the diagram) have single or
double arrows at one or both ends. Here is what the arrows mean:

• Each single or double arrow corresponds to a data member.

• Each single arrow points to the node representing the value
type of the corresponding data member.

• Each double arrow corresponds to a collection-valued data
member. It points to the node representing the element type of
the collection.

int
part_id

components

emps deptresp_engs

parts_resp_for

head_ofdept_head

part

employee department
268 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
• The data member corresponding to a given single or double
arrow is defined by the class represented by the node at the
other end of the arc containing the arrow.

Schema class
definitions for the
example

The entity-relationship diagram represents the following schema:

class part {
public:

int part_id ;
os_collection &components ;
os_collection &resp_engs ;

} ;

class employee {
public:

department *head_of ;
department *dept ;
os_collection &part_resp_for ;

} ;

class department
{

public:
employee *dept_head ;
os_collection &emps ;

} ;

Note that if a single arrow points to a node with a class name as
label, a pointer to that class is used as the value type of the
corresponding data member. This is a simple way to prevent
circular dependencies (assuming arrays of classes are not used).
Note also that double arrows correspond to data members whose
value type is os_collection& . A future release will support the
dynamic creation of parameterized types, so it will be possible to
use, for example, os_Collection<part*>& , instead of os_
collection& .

The gen_schema() Function

Function arguments The function gen_schema() takes as argument an entity-
relationship diagram represented as an os_Collection<arc*> . An
arc has two associated nodes and two associated labels. It also has
two associated ends, each of which can have no arrow, a single
arrow, or a double arrow.

node and arc class
definitions

Here are the definitions of the classes node and arc as defined in
the graph.hh header file:

/* graph.hh */
Release 5.1 269

Example: Dynamic Type Creation
#include <string.h>

enum end_enum { no_arrow, single_arrow, double_arrow } ;

class node {
public:

char *label ;
static os_typespec *get_os_typespec() ;
node (char *l) ;

};

class arc {
public:

node *node_1 ;
node *node_2 ;
end_enum end_1 ;
end_enum end_2 ;
char *label_1 ;
char *label_2 ;

static os_typespec *get_os_typespec() ;

arc (
node *n1,
node *n2,
end_enum e1,
end_enum e2,
char *l1,
char *l2

) ;
};

node and arc
constructors

Here are the implementations of the node and arc constructors, as
defined in the graph.cc program file:

/* graph.cc */

#include <ostore/ostore.hh>

#include "graph.hh"

arc::arc (
node *n1,
node *n2,
end_enum e1,
end_enum e2,
char *l1,
char *l2

) {
node_1 = n1;
node_2 = n2;

end_1 = e1;
end_2 = e2;

if (l1) {
270 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
label_1 = new(
os_segment::of(this),
os_typespec::get_char(),
strlen(l1) + 1

) char[strlen(l1) + 1];
strcpy(label_1, l1);
} /* end if */

else
label_1 = 0;

if (l2) {
label_2 = new(

os_segment::of(this),
os_typespec::get_char(),
strlen(l2) + 1

) char[strlen(l2) + 1];
strcpy(label_2, l2);
} /* end if */

else
label_2 = 0;

}

node::node (char *l) {
label = new(

os_segment::of(this),
os_typespec::get_char(),
strlen(l) + 1

) char[strlen(l) + 1];
strcpy(label, l);

}

Supporting Functions for the gen_schema() Application

The function gen_schema() is supported by five other functions
that we have defined:

• ensure_in_trans() (defined on page 275)

• copy_to_trans() (defined on page 274)

• add_single_valued_member() (defined on page 275)

• add_many_valued_member() (defined on page 276)

• add_member() (defined on page 273)

The function gen_schema() processes each arc in the diagram one
at a time. For each arc it first looks at the two associated nodes.
gen_schema() performs ensure_in_trans() on each of the two
node s.
Release 5.1 271

Example: Dynamic Type Creation
ensure_in_trans() determines whether there is a type in the
transient schema whose name is the node ’s label. If there is not, it
determines whether there is a type in the application schema
whose name is the node ’s label. If there is, ensure_in_trans() copies
it to the transient schema (using copy_to_trans()). If there is not,
ensure_in_trans() creates a class with that name. It returns a
pointer to the newly created, copied, or retrieved type.

Copying types from the application schema to the transient
schema is the typical means of getting ObjectStore system-
supplied classes into the transient schema. Note, however, that
built-in C++ types, like int , are already present in the transient
schema.

Notice also that lookups in the application schema and copying
from the application schema must be performed within a
transaction, since they are operations on a database (the
application schema database).

Next gen_schema() determines which of the following eight cases
applies to the arc at hand:

• end_1 has a single arrow and end_2 has no arrow.

• end_1 has no arrow and end_2 has a single arrow.

• end_1 has a double arrow and end_2 has no arrow.

• end_1 has no arrow and end_2 has a double arrow.

• end_1 has a single arrow and end_2 has a single arrow.

• end_1 has a double arrow and end_2 has a single arrow.

• end_1 has a single arrow and end_2 has a double arrow.

• end_1 has a double arrow and end_2 has a double arrow.

In each case one or two data members are created, depending on
whether there are arrows at one or both ends. A future release will
support the dynamic creation of ObjectStore relationship
members, so it will be possible to create relationship members in
the case where an arc has arrows at both ends. For now, the
example just creates regular data members.

Each data member is created as well as added to the appropriate
defining class. This is accomplished by add_single_valued_data_
member() or add_many_valued_member() . Each of these functions
272 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
creates a data member and then calls add_member() . add_
member() adds a specified member to a specified class.

Call Graph of Non-ObjectStore Functions for gen_schema()

Once gen_schema() finishes processing all the arcs, the transient
schema contains the schema represented by the diagram.

The gen_schema.cc Source File

Here is the code for gen_schema() and its supporting functions, all
of which is contained in the gen_schema.cc file.

/* gen_schema.cc */

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/mop.hh>
#include <stdlib.h>
#include <iostream.h>
#include <assert.h>

#include "graph.hh"

void error(char *m) {
cout << m << "\n" ;
exit (1) ;

}

add_member()
function definition

This function makes new_member a member of defining_class .

void add_member(os_class_type &defining_class,

copy_to_trans()

add_single_valued_member()

add_member()

gen_schema()

ensure_in_trans() add_many_valued_member()
Release 5.1 273

Example: Dynamic Type Creation
os_member &new_member) {

os_List<os_member*> members(
defining_class.get_members()

);

members |= &new_member ;
defining_class.set_members(members) ;

}

Notice that os_class_type::get_members() returns an os_List<os_
member*> . To add or remove a member, copy the returned list and
update the copy. Then pass the list to os_class_type::set_
members() .

copy_to_trans()
function definition

This function copies the class named class_name from the
application schema to the transient schema. It returns a pointer to
the new copy. If the class cannot be found, the function returns 0.

os_type *copy_to_trans(const char *class_name) {

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

const os_type *the_const_type_ptr =
os_app_schema::get().find_type(class_name) ;
if (!the_const_type_ptr) return 0 ;

const os_class_type &the_const_class =
*the_const_type_ptr ;

os_Set<const os_class_type*>
to_be_copied_to_transient_schema ;

to_be_copied_to_transient_schema |= &the_const_class ;
os_mop::copy_classes (

os_app_schema::get(),
to_be_copied_to_transient_schema

) ;

OS_END_TXN(tx1)
return os_mop::find_type(class_name) ;

}

Notice that os_mop::copy_classes() requires an os_Set<const os_
class_type*> . In order to create this set with the appropriate
contents, this function first retrieves a const os_type* ,
dereferences it, and converts it to a const os_class_type& . The
const os_class_type& is then dereferenced and inserted into an
os_Set<const os_class_type*> . Next, this set is passed to os_
mop::copy_classes() , which copies the set’s element into the
transient schema.
274 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
Finally, os_mop::find_type() is used to retrieve from the transient
schema a (non-const) os_type* , which is returned. The function
does not simply return the_const_type_ptr , because copy_to_
trans() should return a modifiable object, one to which you can
add members. Looking up a class in any schema except the
transient schema results in a const os_type* . Only a lookup in the
transient schema results in a non-const os_type* .

ensure_in_trans()
function definition

If no type named type_name is in the transient schema, copy it into
the transient schema from the application schema. If no type
named type_name is in the application schema, create it in the
transient schema. The function returns a reference to type in the
transient schema named type_name .

os_type &ensure_in_trans(const char *type_name){

os_type *t = os_mop::find_type(type_name) ;
if (!t)

t = copy_to_trans(type_name) ;
if (!t) {

os_class_type &c = os_class_type::create(type_name) ;
c.set_is_forward_definition(0) ;
c.set_is_persistent(1) ;
t = &c ;

} /* end if */

return *t ;
}

When you create a class, the attribute is_forward_definition
defaults to true. Here it is set to false after creation, because gen_
schema() will generate a class definition for each node that
represents a class. Similarly, is_persistent defaults to false. Here,
it is set to true so the new class can be installed in a database
schema.

add_single_valued_
member() function
definition

This function creates an os_member_variable with value type
value_type , and makes it a member of defining_type . If member_
name is null, the function prints an error and exits. If defining_
class is not a class, the exception err_mop_illegal_cast is signaled.

void add_single_valued_member(
os_class_type &defining_class,
os_type &value_type,
const char *member_name

) {

if (!member_name)
error("unspecified member name") ;
Release 5.1 275

Example: Dynamic Type Creation
os_member_variable &new_member =
os_member_variable::create(member_name, &value_type) ;

add_member(defining_class, new_member) ;
}

Note that while the formal parameter defining_class is of type os_
class_type& , the corresponding actual parameter can be typed as
os_type& . If you pass in such an actual parameter, MOP invokes
os_type::operator os_class_type&() , which converts the actual
parameter to an os_class_type& . If the object designated by the
actual parameter is not really an instance of os_class_type , the
operator signals err_mop_illegal_cast.

add_many_valued_
member() function
definition

This function creates an os_member_variable with value type os_
collection& , and makes it a member of defining_type . If member_
name is null, the function prints an error and exits. If defining_
class is not a class, err_mop_illegal_cast is signaled.

void add_many_valued_member(
os_class_type &defining_class,
const char *member_name

) {

if (!member_name)
error("unspecified member name") ;

os_type *the_type_os_collection_ptr =
os_mop::find_type("os_collection") ;
if (!the_type_os_collection_ptr)

the_type_os_collection_ptr =
copy_to_trans("os_collection") ;

if (!the_type_os_collection_ptr)
error("Could not find the class os_collection in the \
application schema") ;

os_member_variable &new_member =
os_member_variable::create(

member_name,
&os_reference_type::create(the_type_os_collection_ptr)

) ;

add_member(defining_class, new_member) ;
}

This function copies the class os_collection from the application
schema to the transient schema, if it is not already present in the
transient schema.

gen_schema()
function definition

This function creates classes in the transient schema database
based on the graph specified by the arcs.
276 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
void gen_schema(const os_Collection<arc*> &arcs) {

/* process each arc in the graph */

os_Cursor<arc*> c(arcs) ;
for (arc *a = c.first(); a; a = c.next()) {

os_type &t1 = ensure_in_trans(a->node_1->label) ;
os_type &t2 = ensure_in_trans(a->node_2->label) ;

/* handle 1 of 8 cases, depending on arc’s arrows */

if (a->end_1 == no_arrow && a->end_2 == single_arrow)
if (t2.get_kind() != os_type::Class)

add_single_valued_member(
t1, /* defining type */
t2,/* value type */
a->label_2 /* member with value type t2 */

) ;
else

add_single_valued_member(
t1, /* defining type */
os_pointer_type::create(&t2), /* value type */
a->label_2 /* of member with value type t2 */

) ;

else if (a->end_1 == single_arrow && a->end_2 ==
no_arrow)

if (t1.get_kind() != os_type::Class)
add_single_valued_member(
t2, /* defining type */
t1, /* value type */
a->label_1 /* member with value type t1 */

) ;
else

add_single_valued_member(
t2, /* defining type */
os_pointer_type::create(&t1), /* value type */
a->label_1 /*member with value type t1 */

) ;

else if (a->end_1 == no_arrow && a->end_2 ==
double_arrow)

add_many_valued_member(
t1, /* defining type */
a->label_2 /* name of many-valued member */

) ;

else if (a->end_1 == double_arrow && a->end_2 ==
no_arrow)

add_many_valued_member(
t2, /* defining type */
a->label_1 /* name of many-valued member */

) ;

else if (a->end_1 ==single_arrow && a->end_2 ==
Release 5.1 277

Example: Dynamic Type Creation
single_arrow) {
/* binary relationship */
add_single_valued_member(

t1, /* defining type */
os_pointer_type::create(&t2), /* value type */
a->label_2 /* member with value type t2 */

) ;
add_single_valued_member(

t2, /* defining type */
os_pointer_type::create(&t1), /* value type */
 a->label_1 /* member with value type t1 */

) ;
} /* end of else if */

else if (a->end_1 == single_arrow && a->end_2 ==
double_arrow) {

/* binary relationship */
add_single_valued_member(

t2, /* defining type */
os_pointer_type::create(&t1), /* value type */
a->label_1 /* member with value type t1 */

) ;
add_many_valued_member(

t1, /* defining type */
a->label_2 /* name of many-valued member */

) ;
} /* end of else if */

else if (a->end_1 == double_arrow && a->end_2 ==
single_arrow) {

/* binary relationship */
add_single_valued_member(

t1, /* defining type */
os_pointer_type::create(&t2), /* value type */
a->label_2 /* member with value type t2 */

) ;
add_many_valued_member(

t2, /* defining type */
a->label_1 /* name of many-valued member */

) ;
} /* end of else if */

else if (a->end_1 == double_arrow && a->end_2 ==
double_arrow) {

/* binary relationship */
add_many_valued_member(

t1, /* defining type */
a->label_2 /* name of many-valued member */

) ;
add_many_valued_member(

t2, /* defining type */
a->label_1 /* name of many-valued member */
278 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
) ;
} /* end of else if */

} /* finish processing arcs (for loop)*/

}

The Driver Definition

Here is a driver that creates a graph representing the diagram
shown on page 273. It then passes the graph to gen_schema() ,
which updates the transient schema. Next, the driver installs in
the schema of a specified database those classes that are in the
transient schema. Finally, it creates an instance of each
dynamically created class.

The driver relies on two functions, find_class() and find_member() ,
to instantiate the dynamically created classes. These supporting
functions are shown first.

find_class() function
definition

This function returns a reference to the class in the_schema with
name class_name . If the class is not found, the function returns an
error. If class_name is not a class, err_mop_illegal_cast is signaled.

const os_class_type &find_class(
const char *class_name,
const os_schema &the_schema

) {

const os_type *the_type_ptr =
the_schema.find_type(class_name) ;

if (!the_type_ptr)
error("Cannot find class with specified name") ;

return *the_type_ptr ;
}

find_member_
variable() function
definition

This function returns a reference to the member of defining_class
with name member_name . If member_name is not found, the
function returns an error. If member_name is not a data member,
err_mop_illegal_cast is signaled.

const os_member_variable &find_member_variable(
const os_class_type &defining_class,
const char *member_name

) {

const os_member *the_member =
defining_class.find_member(member_name) ;

if (!the_member)
error("Could not find member with specified name.") ;
Release 5.1 279

Example: Dynamic Type Creation
return *the_member ;
}

Driver main() function
definition

void main(int, char **argv) {

objectstore::initialize() ;
os_collection::initialize() ;
os_mop::initialize() ;

if (!argv[1])
error("null database name\n") ;

/* create a graph representing an entity-relationship diagram */
/* the graph is a collection of arcs */

os_Collection<arc*> &arcs =
os_Collection<arc*>::create(

os_database::get_transient_database()
) ;

node *part_node = new node("part") ;
node *employee_node = new node("employee") ;
node *int_node = new node("int") ;
node *department_node = new node("department") ;

arcs |= new arc(
part_node,
int_node,
no_arrow,
single_arrow,
0,
"part_id"

) ;

arcs |= new arc(
part_node,
part_node,
no_arrow,
double_arrow,
0,
"components"

) ;

arcs |= new arc(
employee_node,
department_node,
single_arrow,
single_arrow,
"dept_head",
"head_of"

) ;

arcs |= new arc(
employee_node,
department_node,
280 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
double_arrow,
single_arrow,
"emps",
"dept"

) ;

arcs |= new arc(
part_node,
employee_node,
double_arrow,
double_arrow,
"parts_resp_for",
"resp_engs"

) ;

cout << "Calling gen_schema() ...\n" ;
gen_schema(arcs) ;
cout << "Schema generated. Installing schema ...\n" ;
os_database *db = os_database::open(argv[1], 0, 0664) ;

/* install schema in db */

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

os_database_schema::get_for_update(*db).install(
os_mop::get_transient_schema()

) ;

OS_END_TXN(tx1)

OS_BEGIN_TXN(tx2, 0, os_transaction::update)

/* create a part, an employee, and a department */
/* and partially initialize them */

os_typespec part_typespec("part") ;
os_typespec employee_typespec("employee") ;
os_typespec department_typespec("department") ;

const os_database_schema &the_database_schema =
os_database_schema::get(*db) ;

const os_class_type &the_class_part = find_class("part",
the_database_schema) ;

const os_class_type &the_class_employee = find_class(
"employee", the_database_schema) ;

void *a_part_ptr = ::operator new(
the_class_part.get_size(),
db,
&part_typespec

) ;

void *an_emp_ptr = ::operator new(
the_class_employee.get_size(),
db,
&employee_typespec
Release 5.1 281

Example: Dynamic Type Creation
) ;

void *a_dept_ptr = ::operator new(
find_class("department",

the_database_schema).get_size()
db,
&department_typespec

) ;

os_collection &the_components_coll =
os_collection::create(os_segment::of(a_part_ptr)) ;
os_collection &the_resp_engs_coll =

os_collection::create(os_segment::of(a_part_ptr)) ;

the_resp_engs_coll |= an_emp_ptr ;

os_store(
a_part_ptr,
find_member_variable(the_class_part, "part_id"),
1

) ;

os_store(
a_part_ptr,
find_member_variable(the_class_part,

"resp_engs"),
&the_resp_engs_coll

) ;

os_store(
a_part_ptr,
find_member_variable(the_class_part,

"components"),
&the_components_coll

) ;

os_store(
an_emp_ptr,
find_member_variable(the_class_employee,

"dept"),
a_dept_ptr

) ;

db->create_root("part_root")->set_value(
a_part_ptr, &part_typespec) ;

OS_END_TXN(tx2)
db->close() ;
cout << "Done.\n" ;

}

How the driver works The driver performs schema installation using os_database_
schema::install() . To perform installation on a database schema,
you must retrieve the schema with os_database_schema::get_for_
update() instead of os_database_schema::get() . The function os_
282 ObjectStore Advanced C++ API User Guide

Chapter 7: Metaobject Protocol
database_schema::get() returns a const os_database_schema&
and install requires a non-const schema& .

The driver instantiates the classes part , employee , and department
by calling the global function ::operator new() without a
constructor call. The function os_type::get_size() is used to supply
the size_t argument to ::operator new() . The function ::os_store() is
used to partially initialize the instance of part .

You can run this program and use the Browser to verify that it
produces the class definitions presented on page 269.
Release 5.1 283

Example: Dynamic Type Creation
284 ObjectStore Advanced C++ API User Guide

Chapter 8
Dump/Load Facility

The ObjectStore dump/load facility allows you to

• Dump to an ASCII file the contents of a database or group of
databases.

• Generate a loader executable capable of creating, given the
ASCII as input, an equivalent database or group of databases.

The dumped ASCII has a compact, human-readable format. It is
editable with tools such as Perl, Awk, and Sed. You can use edited
or unedited ASCII as input to the loader.

By default, objects are dumped in terms of the primitive values
they directly or indirectly contain. You can use the default dump
and load processes, or customize the dumping and loading of
particular types of objects. You can, for example, dump and load
objects in terms of sequences of high-level API operations needed
to recreate them, rather than in terms of the primitive values they
contain. This is appropriate for certain location-dependent
structures, such as hash tables.

To enhance efficiency during a dump, database traversal is
performed in address order whenever possible. To enhance
efficiency during loads, loaders are generated by the dumper and
tailored to the schema involved. This allows the elimination of
most run-time schema lookups during the loading.

Read about the dump/load facility in ObjectStore Management
Chapter 4, Utilities, osdump: Dumping Databases before you read
the discussion in this chapter. This chapter focuses on When Is
Customization Required? and addresses the following topics:
Release 5.1 285

• Customizing Dumps on page 289

• Customizing Loads on page 294

• Specializing os_Planning_action on page 295

• Customizing Formatting by Specializing os_Dumper_
specialization on page 299

• Specializing os_Fixup_dumper on page 304

• Specializing os_Fixup_dumper on page 304

• Specializing os_Type_info on page 307

• Specializing os_Type_loader on page 309

• Specializing os_Type_fixup_info on page 316

• Specializing os_Type_fixup_loader on page 318

• os_Database_table on page 324

• os_Dumper_reference on page 327

• os_Type_info on page 331

• os_Fixup_dumper on page 333
286 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
When Is Customization Required?

In most cases, customization is unnecessary. The basic types,
pointers, ObjectStore references, collections, indexes, and most
instances of classes are handled without any customization.

You might want to use customization to:

• Change representation

• Improve locality

• Reduce the size of the dump output file

• Make the dump format more readable

There are also some circumstances when you must take
advantage of specialization. For example, if you have a database
with objects whose structure depends on the locations of other
objects, you might have to customize the dumping and loading of
those objects.

A dumped object and its equivalent loaded object do not
necessarily have the same location, that is, the same offsets in their
segment. Among the implications of this are the following:

• Other objects might use different pseudoaddresses (the
identifier a segment uses for an object pointed to by that
segment) to refer to them.

• Their addresses might hash to different values; that is, for
example, objectstore::get_pointer_numbers() might return
different values for them.

The default dumper and loader take into account the first
implication, and the loader automatically adjusts all pointers in
loaded databases to use the new locations.

The default dumper and loader also take into account the second
implication for ObjectStore collections with hash-table
representations. Since a dumped collection element hashes to a
different value than the corresponding loaded element does, their
hash-table slots are different. So the facility does not simply dump
and load the array of slots based on fundamental values (which
would result in using the same slot for the dumped and loaded
objects).
Release 5.1 287

When Is Customization Required?
Instead, it dumps the collection in terms of sequences of high-
level API operations (that is, string representations of create() and
insert() arguments) that the loader can use to recreate the
collection with the appropriate membership.

The default dumper and loader do not take into account the
second implication for non-ObjectStore classes. If you have
collection classes that use hash-table representations, you must
customize their dumping and loading. Any other location-
dependent details of data structures (such as encoded offsets)
should also be dealt with through customization.

Although the facility provides a great deal of flexibility,
customization typically takes the form described for ObjectStore
collections above.
288 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Customizing Dumps

If you want to dump and load a database containing a location-
dependent data structure, you should dump and load the data
structure in terms of a sequence of operations that recreates the
data structure. The dumper emits the arguments for each
operation in the sequence, and the loader recreates the data
structure by performing the operations using the arguments in the
dumped ASCII.

Creation Stages

Typically, this sequence of operations can be divided into two
stages, corresponding to two stages of loading a data structure:

• Initialization stage: creates an instance of the structure in a
location-independent state. For example, it creates an empty
collection. The object created is called the root of the dumped
object.

• Fixup stage: This stage performs operations on the root portion
to recreate the dumped object in the appropriate location-
dependent state. For example, this stage inserts elements into
the empty collection. Any additional objects created as a result
of these fixup operations are called nonroot objects.

Since some objects required for the fixup stage might not exist
during the initialization stage, the loader must typically perform
the initialization stage, load other objects, and then perform the
fixup stage. This means the dumper must dump the arguments
for the initialization stage, dump all other objects (except nonroot
objects), and then dump the arguments for the fixup stage.

For example, when the root of a collection is loaded, the collection
elements might not yet exist, so the loader usually creates an
empty collection, loads the elements (as well as other objects), and
then inserts the elements. And the dumper usually dumps the
create() arguments, dumps the elements (and all other objects
except nonroot objects), and then dumps the insert() arguments.

It is important to distinguish between nonroots of a data structure
and objects that are not part of the data structure at all. For
example, if a collection’s elements are pointers, the pointer objects
Release 5.1 289

Customizing Dumps
are nonroots of the collection’s data structure, but the objects
pointed to by the elements are not part of the datastructure at all.

Dumper Actions

To accommodate these stages, the dumper operates in three
different modes, performing different kinds of actions in each
mode:

• Plan mode: While in plan mode, the dumper invokes type-
specific planner actions to identify the nonroot portions of
dumped objects. Planner actions store this information, which
the dumper accesses when in object-dump mode, in order to
avoid dumping nonroot portions. Since nonroot portions of
objects are effectively dumped in fixup-dump mode, they must
be ignored while in object-dump mode.

• Object-dump (object form generation) mode: While in object-
dump mode, the dumper invokes type-specific object-dumper
actions, which typically emit strings from which the loader can
reconstruct arguments. The loader creates the root object by
passing the arguments to a high-level API (like a create()
function). Object dumpers also create fixup dumpers.

• Fixup-dump (fixup form generation) mode: While in fixup-
dump mode, the dumper invokes type-specific fixup-dump
actions, which typically emit strings from which the loader can
reconstruct arguments. The loader updates the root portion
and creates the nonroot portion by passing the arguments to a
high-level API (like an insert() function).

The following pseudocode summarizes the flow of control among
modes:

for each database, db, specified on the command line {

for each segment, seg, in db {

// plan mode
for each top-level object, o, in seg

Invoke the planner for o’s type on o

// dump mode
for each top-level object, o, in seg

Invoke the object dumper for o’s type on o
If necessary, create a fixup dumper for o, and
associate it with either seg, db, or the whole dump
290 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
// fixup mode
for each fixup dumper associated with seg

Invoke that fixup dumper
}

// fixup mode
for each fixup dumper associated with db

Invoke that fixup dumper
}

// fixup mode
for each fixup associated with the whole dump

invoke that fixup dumper

By default, object-dump actions sometimes invoke other object-
dump actions on embedded objects. The following summarizes
the behavior of the different object dump actions invoked by the
default dumper for different types of objects:

• If the object is a fundamental value, pointer, or C++ reference,
a type-specific dumper is invoked that dumps the value using
the C++ stream operator.

• If the object is an array, the array dumper, which handles these
cases recursively for each array element, is invoked.

• If the object is an instance of a class, a class-specific dumper is
invoked, if there is one. Otherwise the generic class-instance
dumper is invoked, which handles these cases recursively for
each data member and base class of the class.

• If the object is an instance of an ObjectStore class, it invokes a
class-specific dumper.

Default fixup-dump actions also invoke fixup-dump actions on
embedded objects, in just the same way.

For each object form the loader processes, it invokes a type-
specific object loader, in a manner similar to that described for the
dumper.

Supplying Customized Type-Specific Actions

To customize the dumping of objects of a given type, you
specialize base classes whose instances represent the three kinds
of dumper actions:

• Planner classes: one or more subclasses of os_Planning_action
that handle identification of nonroot objects
Release 5.1 291

Customizing Dumps
• Object-dumper class: a subtype of os_Dumper_specialization
that handles generation of object forms

• Fixup-dumper class: a subtype of os_Fixup_dumper that
handles generation of fixup forms

In order to support planning for a given class, class, choose one of
the following approaches:

• Shallow approach: For each type of nonroot object associated
with instances of class, derive a class from os_Planning_action .
For example, if you are customizing the dump of instances of
my_hash_table , derive a class corresponding to each class of
nonroot object that forms a hash table, such as my_hash_table_
slot and my_hash_table_overflow_list .

• Deep approach: Derive one class from os_Planning_action . An
instance of this derived class will serve as the planner for class.
For example, if you are customizing the dump of instances of
my_hash_table , derive the class my_hash_table_planner .

The invocation operator of a planner corresponding to a given
class takes an instance of the class as argument. For example, my_
hash_table_planner::operator ()() takes an instance of my_hash_
table as argument. With the deep approach, the invocation
function typically navigates from the root object to the nonroots,
and creates an ignore record for each nonroot object.

With the shallow approach, the invocation function creates an
ignore record for the argument or does nothing, depending on
whether the argument is a nonroot object of the data structure
whose dump is being customized.

The shallow approach has better paging behavior, so use it if
possible.

For each derived class supporting object dumping, planning, and
fixup dumping, perform these steps:

• Declare the derived class with certain members (see table,
following)

• Implement the members

In addition, for each derived class supporting object dumping and
planning, perform these steps:

• Define an instance (planner and object dumper only)
292 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
• Register the instance (planner and object dumper only)

The following table shows what members of each class you
should implement. Your implementations of these functions
specify the objects to be ignored and the dump formats.

Base Class Members

os_Planning_action operator ()

os_Dumper_specialization operator ()

should_use_default_constructor()

get_specialization_name()

os_Fixup_dumper Constructor

dump_info()

duplicate()
Release 5.1 293

Customizing Loads
Customizing Loads

During a load, the loader processes object and fixup forms in the
order in which they were emitted by the dumper. To provide a
customized loader for a given type, you implement functions that
support the following tasks:

• Translation of an object form for the given type into the
creation of a root object

• Translation of a fixup form for the given type into operations
that will modify the root object and/or recreate the nonroot
portion of the an object

To do this, derive a class from each of the following base classes:

• os_Type_loader (handles object form translation)

• os_Type_info (holds information about the load of the current
object form)

• os_Type_fixup_loader (handles fixup form translation)

• os_Type_fixup_info (holds information about the load of the
current fixup form)

For each derived class, you must perform these steps:

• Declare the class with certain members (see table, following).

• Implement the members.

• Define an instance.

• Register the instance.

The following table shows what members of each class you
should implement.

Base Class Members

os_Type_info data

Constructor

os_Type_loader operator ()

load()

create()

fixup()

get()
294 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Specializing os_Planning_action

Your specialization of os_Planning_action handles planning,
including the identification of objects for which object forms
should not be generated.

If you are using the shallow approach to planning, then, for each
type, type, of nonroot object you must define a class that is

• Named type_planner

• Derived from os_Planning_action

For example, if my_table_entry is a type of nonroot object, use the
following:

class my_table_entry_planner : public os_Planning_action {...}

If you are using the deep approach to planning, then, for the type,
type, of the root object, you must define a class that is

• Named type_planner

• Derived from os_Planning_action

For example, if my_hash_table is a type whose dump and load you
want to customize, use the following:

class my_table_entry_planner : public os_Planning_action {...}

The derived class must implement operator ()() .

You must also define and register an instance of the derived class.

If a class does not require fixups, then it does not require planning.
Even if it does require fixups, it might not require planning. If the
fixups do not create any objects that would be dumped normally
without planning, planning might be unnecessary.

os_Type_fixup_info fixup_data

Constructor

os_Type_fixup_loader operator ()

load()

fixup()

get()
Release 5.1 295

Specializing os_Planning_action
Implementing operator ()()

void type_planner::operator () (
const os_type& actual_type,
void* object

)

Using shallow
approach

If you are taking the shallow approach to planning, implement
type_planner::operator ()() (where type is one type of nonroot
object) to do the following:

• Do type verification (optional). The actual_type argument is
supplied for this purpose.

• Dereference object and cast the result to type& .

• Determine if the object should be ignored during object-dump
mode. This is entirely application-specific.

If the object should be ignored, do the following:

• Create a stack-based os_Dumper_reference to the object. Use
os_Dumper_reference::os_Dumper_Reference(void*) .

• Retrieve the database table. Use os_Database_table::get() .

• Insert the os_Dumper_reference into the database table. Use os_
database_table::insert(os_Dumper_reference&) .

Here is a typical implementation:

void type_planner::operator () (
const os_type& actual_type,
void* object

)
{

...

/* Do type verification (optional) */
assert_is_ type(actual_type, object);

...

type& obj = (type&)*object;
...

if (should_ignore(obj) {
Dumper_reference ignored_object(&obj);
Database_table::get().insert(ignored_object);

}
...

}

296 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
In this example, assert_is_ type() and should_ignore() are user-
defined.

If necessary, you can include application-specific processing in
place of the "..."s.

Using deep approach If you are using the deep approach to planning, implement type_
:oplanner::operator ()() (where type is the type of the root object) to
do the following:

• Do type verification (optional). The actual_type argument is
supplied for this purpose.

• Dereference object and cast the result to type& .

• Retrieve the database table. Use os_Database_table::get() .

• Find the associated nonroot objects.

For each associated nonroot object, do the following:

• Create a stack-based os_Dumper_reference to the object, or set
one to refer to the object. Use os_Dumper_reference::os_
Dumper_Reference(void*) or os_Dumper_reference::operator
=().

• Insert the os_Dumper_reference into the database table. Use os_
Database_table::insert(os_Dumper_reference&) .

Here is a typical implementation:

{
...
/* Do type verification (optional) */
assert_is_ type(actual_type, object);
...
type& obj = (type&)*object;
...
if (should_ignore(obj) {

Dumper_reference ignored_object(&obj);
Database_table::get().insert(ignored_object);

}

(*reachable_type_planner)(obj.reachable_pointer);
...

}

If you can define dump-related members of type, you can use the
following approach:

void < type>_planner::operator () (const os_type& actual_type,
void* object)
Release 5.1 297

Specializing os_Planning_action
{
...
type& obj = (type&)*object;
obj.plan_dump();
...

}

void type::plan_dump ()
{

...

if (should_ignore(obj) {
Dumper_reference ignored_object(&obj);
Database_table::get().insert(ignored_object);

}
...

/* consider directly reachable objects */
reachable_pointer->plan_dump();
...

}

Defining and Registering the Instance

You must define an instance:

static type_planner the_ type_planner;

and register it by including an entry in the global array entries[] :

static os_Planner_registration_entry planner_entries[] = {
...
os_Planner_registration_entry(" type", &the_ type_planner),
...

}

static const unsigned number_planner_registration_entries
= OS_NUMBER_REGISTRATIONS(

planner_entries,
os_Planner_registration_entry

);

static os_Planner_registration_block block(
planner_entries,
number_planner_registration_entries,
__FILE__,
__LINE__

);

This code should be at top level.
298 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Customizing Formatting by Specializing os_
Dumper_specialization

Your specialization of os_Dumper_specialization handles the
dumping of object forms.

To customize the dump and load of instances of a type, type,
define a class that is

• Named type_dumper

• Derived from os_Dumper_specialization

For example, to customize the dump and load of instances of my_
collection , use the following:

class my_collection_dumper : public os_Dumper_specialization {...}

The derived class must implement the following functions:

• operator ()() : handles generation of the value portion of object
forms

• should_use_default_constructor() : determines which
constructor is called in dumper-generated code for
constructing embedded objects

Under some circumstances, you must also implement type_
dumper::get_specialization_name() .

You must also define and register an instance of the derived class.

Implementing operator ()()

void type_dumper::operator () (
const os_class_type& actual_class,
void* object
)

An object form has the following structure:

id (Type) value

When you supply an object-form dumper, you are responsible for
generation of the value portion only. The functions that generate
the rest of the object form are inherited from os_Dumper_
specialization .

The value portion is generated by operator ()() . Implement operator
()() to generate ASCII from which a loader can reconstruct
Release 5.1 299

Customizing Formatting by Specializing os_Dumper_specialization
function arguments. The arguments should be those required for
recreation of the root portion of the object being dumped.

Define operator ()() to do the following:

• Dereference the void* argument and cast the result to type.
(Optionally, do type-verification first.)

• Output the value portion of the object form.

• Create a type_fixup_dumper on the stack, passing the void*
argument and the os_class_type& argument to the type_fixup_
dumper constructor.

• Insert the type_fixup_dumper into the database table.

Inserting a fixup dumper causes the dumper to generate a fixup
form for object after generating all the object forms. When a load
processes this kind of fixup form for object , it adjusts all pointers
and C++ references in object so that they refer to the appropriate,
newly loaded referent.

If type is a nonarray type, the typical implementation has the
following form:

void type_dumper::operator () (
const os_class_type& actual_class,
void* object

)
{

...
// optional type verification
// assert function defined by user
assert_is_ type(actual_class, object);
...
// cast the void*
type& obj = (<Type&>)*object;
...

// output the object form
get_stream() << obj.get_representation() << ' '

<< obj.get_size() << ' ';
...

// create a Fixup_dumper on the stack
type_fixup_dumper fixup(

get_stream(),
*this,
actual_class,
object

);
300 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
// insert a fixup dumper for processing at the end of the dump
Database_type::get().insert(fixup);

}

This example assumes that the output of type::get_representation()
and type::get_size() provides sufficient information to create the
root of object .

You can insert application-specific processing in place of the "..."s,
but this is not required.

You do not usually have to customize array types, since you can
customize the element type of an array type. The default array
dumper will call the custom dumper on each array element.

If you do want to customize the array dumper, implement this
overloading of the invocation operator:

void type_dumper::operator () (
const os_class_type& actual_class,
void* object,
unsigned number_elements

)
{

...
}

Implementing should_use_default_constructor()

os_boolean should_use_default_constructor(
const os_class_type& class_type

) const;

When you customize the dump and load of a type, you supply
code to construct instances of the type during a load — see
Implementing create() on page 311. This code is used for all
nonembedded instances of the type. For an instance of the type
embedded in a noncustomized type, the loader calls the
customized type’s constructor automatically, using code
generated by the dumper.

For a given customized type, type, you determine which of two
constructors is called in the dumper-generated code:

• The no-argument constructor, type:: type()

• Define the special loader constructor type(type_data&)
Release 5.1 301

Customizing Formatting by Specializing os_Dumper_specialization
type_data has a data member for each data member and base class
of type. For pointer and (C++) reference members of type, the type_
data member should be of type os_Fixup_reference . For
embedded class members, the type should be embedded_class_
data. All data members corresponding to a base class should have
the base class as value type.

All other data members should have the same value type as the
coreresponding member of type. All data members of type_data
should have the same name as the coreresponding member or
base class of type.

If you implement type_Loader::should_use_default_constructor()
to return 0, the dumper-generated code calls the no-argument
constructor. If you implement type_Loader::should_use_default_
constructor() to return 1, the dumper-generated code calls the
special loader constructor.

Implementing get_specialization_name()

char* get_specialization_name(
const os_class_type& class_type

) const;

You must define this function only if there is a subtype of type
such that both of the following hold:

• In the database to be dumped, an instance of the subtype is
embedded in another object.

• The subtype is not customized.

In this case, define the function to return the character string "type"
given an os_class_type& for each such subtype.

Deleting the returned string is the responsibility of the caller of
this function.

Defining and Registering the Dumper Instance

You must define an instance of type_dumper :

static type_dumper the_ type_dumper;

and register it by including an entry in the global array entries[] :

static os_Dumper_registration_entry entries[] = {
...
os_Dumper_registration_entry(" type", &the_ type_dumper),
302 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
...
};

static const unsigned number_dumper_registration_entries
= OS_NUMBER_REGISTRATIONS(

entries,
os_Dumper_registration_entry

);

static os_Dumper_registration_block block(
entries,
number_dumper_registration_entries,
__FILE__,
__LINE__

);

This code should be at top level.
Release 5.1 303

Specializing os_Fixup_dumper
Specializing os_Fixup_dumper

The dumper invokes type-specific fixup-dump actions, that
typically emit strings from which the loader can reconstruct
arguments. Your specialization of os_Fixup_dumper handles the
dumping of fixup forms.

To customize the dump and load of instances of a type, type,
define a class that is

• Named type_fixup_dumper

• Derived from os_Fixup_dumper

For example, to customize the dumping and loading of instances
of my_collection , use the following:

class my_collection_fixup_dumper :
public os_Fixup_Dumper {...}

The derived class must implement the following functions:

• dump_info() : handles generation of the value portion of Fixup
forms

• duplicate() : supports insertion of an instance of type_fixup_
dumper into the database table

• Constructor: passes arguments to base type constructor

Implementing dump_info()

void type_fixup_dumper::dump_info()

A fixup form has the following structure:

fixup id (Type) info

When you supply a fixup-form dumper, you are responsible for
generation of the info portion only. The functions that generate the
rest of the fixup form are inherited from os_Fixup_dumper .

The info portion is generated by dump_info() . Implement dump_
info() to generate ASCII from which a loader can reconstruct
function arguments. The arguments should be those required for
recreation of the nonroot portion of the object being fixed up.

Where type is the type of object being fixed up, the function should
304 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
• Do type verification (optional). Retrieve the type of the object
being fixed with os_Fixup_dumper::get_type() .

• Retrieve the object being fixed with os_Fixup_dumper::get_
object_to_fix() . Cast the result to type&.

• Output the strings from which the loader will reconstruct the
arguments.

To dump arguments that are pointers or C++ references, use the
class os_Dumper_reference :

• Use os_Dumper_reference::operator =() to create a stack-based
dumper reference corresponding to the pointer or C++
reference.

• Pass the dumper reference to operator <<() , to add its ASCII to
the dump stream.

A loader can reconstruct the dumper reference from the load
stream with operator >>() , and get the location of the newly loaded
referent with os_Dumper_reference::resolve() or os_Dumper_
reference::resolve() .

For example, a fixup form for a collection might include ASCII
from which a dumper can reconstruct pointers to all the
collection’s elements:

void type_fixup_dumper::dump_info() const
{

...
const void* object = get_object_to_fix();
assert_is_ type(get_type(), object);
...
type& obj = (type&)*object;
 ...
os_Dumper_reference ref;
for (unsigned count = 0; count < obj.get_size(); ++count) {

element_type& element = obj[count];
ref = element;
get_stream() << ref << ' ';

}
// info terminator -- assumes no null elements
ref = 0;
get_stream() << ref << ' ';
...

}

In this example,
Release 5.1 305

Specializing os_Fixup_dumper
• element_type is the type of object contained by instances of type
(the example assumes instances of type are collections).

• assert_is_ type() type::operator []() and type::operator []() are
user-defined.

If necessary, you can include additional application-specific
processing in place of the "..."s.

Implementing duplicate()

Fixup& type_fixup_dumper::duplicate()

Implement duplicate() to allocate a copy of this type_fixup_dumper
in the specified segment. The following example assumes type_
fixup_dumper defines a copy constructor and a get_os_typespec()
function.

Fixup& type_fixup_dumper::duplicate (
os_segment& segment

) const
{

return *new(segment, type_fixup_dumper::get_os_typespec())
type_fixup_dumper(*this);

}

Be sure to include type_fixup_dumper in the application schema of
the emitted loader.

Implementing the Constructor

type_fixup_dumper (
os_Dumper_stream&,
os_Dumper&,
const os_class_type&,
const os_Dumper_reference object_to_fix,
unsigned number_elements = 0

);

Implement the constructor to pass the arguments to the base type
constructor:

os_Fixup_dumper (
os_Dumper_stream&,
os_Dumper&,
const os_class_type&,
const os_Dumper_reference object_to_fix,
unsigned number_elements = 0

);
306 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Specializing os_Type_info

class type_info : public os_Type_info

A type_info holds information about the loading of the object form
currently being processed. See os_Type_info on page 331. The
derived type must define two members:

• type_info::data : points to an instance of type_data , which holds
the information required to construct the object being loaded.

• type_info constructor: takes a type_data argument; passes other
arguments to a base type constructor.

For each instance of type being loaded, type_loader::operator ()()
makes an instance of type_data , as well as an instance of type_info
that points to the type_data . It passes the type_data to load() , which
sets the fields of the type_data based on the contents of the dump
stream.

type_loader::operator ()() then passes the type_info to create() ,
which uses the information to create the postload object.

Your specialization can add any members you find convenient.

Implementing data

type_data &data;

To implement this public data member, derive a type, type_data ,
from os_Type_data (this base class has no members). Define a data
member of type_data for each portion of the object-form value
emitted by type_dumper::operator ()() . These members will be set
by load() based on information in the load stream, and used later
by create() and fixup() to recreate the object being loaded.

type_data should have a data member for each data member and
base class of type. For pointer and (C++) reference members of
type, the type_data member should be of type os_Fixup_reference .
For embedded class members, the type should be embedded_
class_data. All data members corresponding to a base class should
have the base class as value type.

All other data members should have the same value type as the
coreresponding member of type. All data members of type_data
should have the same name as the coreresponding member or
base class of type.
Release 5.1 307

Specializing os_Type_info
Implementing the Constructor

type_info (
os_Type_loader cur_loader,
os_Loader_stream lstr,
os_Object_info& info,
type_data &data_arg

);

Implement this function to set type_info::data to data_arg . Pass the
first three arguments to the following os_Type_info constructor:

os_Type_info (
os_Type_loader& cur_loader,
os_Loader_stream& lstr,
os_Object_info& info

);

cur_loader is the loader for the object currently being loaded.

lstr is the dump stream from which the current object form is
being processed.

info is the loader info for the object being loaded.

When you call type_info ::type_info() from within type_
loader::operator ()() ,

• Pass *this as cur_loader .

• Pass the stream passed in to operator ()() as lstr .

• Cast to os_Object_info& the loader info passed in to operator
()(). Pass the result of the cast as info .

You can define this constructor to have additional arguments if
necessary for your specialization.
308 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Specializing os_Type_loader

Your specialization of os_Type_loader handles the loading of
object forms.

To customize the dumping and loading of instances of a type, type,
define a class that is

• Named type_loader

• Derived from os_Type_loader

For example, to customize the dumping and loading of instances
of my_collection , use the following:

class my_collection_loader :
public os_Type_loader {...}

The derived class must implement the following functions:

• operator ()() : Calls load() and create() .

• load() : Reads the value portion of an object form from the load
stream.

• create() : Creates the postload object based on information set
by load() . Also calls fixup() .

• fixup() : Inserts fixup records into the database table for pointer
or reference adjustment.

• get() : Returns the one and only instance of the derived class.

You must also define and register an instance of the derived class.

Implementing operator ()()

os_Loader_action* type_loader::operator () (
os_Loader_stream& stream,
os_Loader_info& previous_info

)

Implement the invocation operator to do the following:

• Create an instance of type_data on the stack.

• Create a stack-based instance of type_info , passing the type_data
and previous_info to the type_info ’s constructor. Cast previous_
info to os_Object_info& before passing it to the constructor.

• Pass the type_data to load() .

• Pass the type_info to create() .
Release 5.1 309

Specializing os_Type_loader
Here is an example:

Loader_action* type_loader::operator () (
os_Loader_stream& stream,
os_Loader_info& previous_info

)
{

os_Object_info& object_info = previous_info;
type_data data;
type_info info(*this, stream, object_info, data);
load(stream, data);
create(info);
return 0;

}

Implementing load()

Loader_action* type_loader::load (
Loader_stream& stream,
Type_data& given_data

)

This function is responsible for reading the value portion of the
object form from the load stream, and setting the data members of
given_data accordingly.

Once load() sets the data members of given_data , create() or fixup()
uses given_data to guide recreation of the object being loaded.

The function should do the following:

• Cast given_data to type_data& .

• Input each part of the dumped value; use the current portion of
the dumped value to set a data member of type_data . This value
is used by type_loader::create() to create the object being loaded.

Returns 0 for success.

Here is an example:

Loader_action* type_loader::load (
Loader_stream& stream,
Type_data& given_data

)
{

type_data& data = (type_data&) given_data;
...
/* Input each part of the dumped value. */
stream >> data.representation;
stream >> data.size;
...
310 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
return 0;
}

If the current portion of the dumped value is an embedded object
form for a class, embedded_class, retrieve that class’s loader with
embedded_class_loader::get() , and call embedded_class_
loader::load() , passing stream and the embedded_class_data
embedded in type_data :

/* Load embedded class. */
embedded_type_loader::get().load(

stream,
data.member

);

Implementing create()

void type_loader::create (Loader_info& given_info) ;

This function is responsible for creating the persistent object
corresponding to the object form being loaded. Arguments to
persistent new can be retrieved from given_info . Arguments to the
object constructor can be retrieved from the type_data associated
with given_info .

The function should

• Cast given_info to type_info& .

• Call os_Type_info::get_replacing_location() on the result of the
cast.

• If the result is nonzero, the object being created is an element of
a top-level array. Call top-level operator new with the result of
get_replacing_location() as placement argument.

• If the result of get_replacing_location() is 0, the object is not
being created as an element of a top-level array. Call persistent
new with the result of os_Type_info::get_replacing_segment()
as placement argument.

• In either case, pass type_data to the type constructor (if there is
a constructor that takes a type_data& argument), or call the no-
argument type constructor.

If you call the no-argument constructor, you must do the
following:

• Define fixup() to set the values of the new object’s data
members.
Release 5.1 311

Specializing os_Type_loader
• Define type_dumper::should_use_default_constructor() to
return 1.

If create() rather than fixup() sets the data member values, and
there are embedded instances of type, you must do the following:

• Define the special loader constructor type(type_data&) , where
type_data has a data member for each data member and base
class of type. For pointer and (C++) reference members of type,
the type_data member should be of type os_Fixup_reference .
For embedded class members, the type should be embedded_
class_data. All data members corresponding to a base class
should have the base class as value type. All other data
members should have the same value type as the
coreresponding member of type. All data members of type_data
should have the same name as the coreresponding member or
base class of type..

• Define type_dumper::should_use_default_constructor() to
return 0.

Since create() is not called for embedded objects, either the special
loader constructor must exist, or fixup() must set all the data
members.

The function must also create a mapping record that records the
predump and postload locations of the object being loaded:

• Get the type of object being loaded by performing os_Type_
info::get_type() on given_info .

• Construct a stack-based os_Dumper_reference corresponding
to the postload location of the object being loaded. Pass the
location of the newly loaded object (that is, the pointer returned
by new) to the constructor.

• Call os_Type_info::set_replacing_location() on the type_info ,
passing the location of the newly loaded object as argument.

• Get the original (that is, predump) location of the loaded object
with os_Type_info::get_original_location() .

• Retrieve the database table using os_Database_table::get() .

• Call os_Database_table::insert() on the database table, passing
the original location, the dumper reference, and the type of the
dumped object.
312 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Finally, the function must call type_loader ::fixup() , passing as
arguments the type_data and the location of the newly loaded
object (that is, the pointer returned by new).

Here is an example:

void <Type>_loader::create (Loader_info& given_info)
{

type_info& info = (type_info&) given_info;
type* value;
void* location = info.get_replacing_location();

if (location)
value = ::new(location) type(info.data);

else {

value = new (
&info.get_replacing_segment(),
type::get_os_typespec()

) type(info.data);

// Insert a mapping of the constructed object's original
// location to its replacing location into the Database_table.

const os_type& value_type = info.get_type();
Dumper_reference replacing_location(value);
info.set_replacing_location(value);

Database_table::get().insert(
info.get_original_location(),
replacing_location,
value_type

);

}

fixup(info.data, value);
}

Implementing fixup()

void type_loader::fixup (Type_data& given_data, void* object)

The default loader automatically adjusts pointers and references
in loaded objects. If you supply a type-specific loader, type_loader ,
you must explicitly direct the loader to make these adjustments
for instances of type.
Release 5.1 313

Specializing os_Type_loader
You do this by defining fixup() to insert fixup records into the
database table. Perform one insert for each pointer, C++ reference,
or ObjectStore reference contained directly within instances of
type. For each one, do the following:

• Construct a stack-based os_Dumper_reference corresponding
to the address of the pointer or reference contained in object .

• Construct a stack-based os_Dumper_reference corresponding
to the predump value of the pointer or reference contained in
object .

• Retrieve the database table using os_Database_table::get() .

• Call os_Database_table::insert() on the database table, passing
the enumerator os_reference_fixup_kind::pointer and the two
dumper references.

fixup() is also responsible for setting members of the newly loaded
object, if create() uses the no-argument constructor to construct
the object being loaded.

If create() does not use the no-argument constructor, and
instances of type contain no pointers, no C++ references, and no
ObjectStore references, you do not have to implement this
function. You never have to implement a no-op fixup() .

Here is a typical implementation:

void type_loader::fixup (Type_data& given_data, void* object)
{

type_data& data = (type_data&) given_data;
type& obj = type& *object;
...
/* Fixup pointer. */
Dumper_reference pointer_location(&obj.pointer);
Dumper_reference original_referent_location(data.pointer);
Database_table::get().insert

(Reference_fixup_kind::pointer, pointer_location,
original_referent_location);

...
}

If a portion of the dumped value is an embedded object form for
a class, embedded_class, retrieve that class’s loader with
embedded_class_loader::get() , and call embedded_class_
loader::fixup() , passing the embedded_class_data embedded in
type_data and the corresponding object embedded in obj :
314 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
/* Fixup embedded object. */
embedded_type_loader::get().fixup(

data.member,
&obj. member

);

Implementing get()

Define a global variable whose value is an instance of type_loader .
Define type_loader::get() to return this instance:

static type_loader the_ type_loader;

Type_loader& type_loader::get ()
{

return the_ type_loader;
}

Defining and Registering the Instance

You must define an instance:

static type_loder the_ type_loader;

and register it by including an entry in the global array entries[] :

static os_Loader_registration_entry entries[] = {
...
os_Loader_registration_entry(" type", &the_ type_loader),
...

}

static const unsigned number_loader_registration_entries =
OS_NUMBER_REGISTRATIONS(

entries,
os_Loader_registration_entry

);

static os_Loader_registration_block block(
entries,
number_loader_registration_entries,
__FILE__,
__LINE__

);

This code should be at top level.
Release 5.1 315

Specializing os_Type_fixup_info
Specializing os_Type_fixup_info

class type_fixup_info : public os_Type_fixup_info

A type_fixup_info holds information about the loading of the fixup
form currently being processed. os_Type_fixup_info is derived
from os_Type_info .

type_fixup_info must define two members:

• type_fixup_info::fixup_data : points to an instance of type_fixup_
data , which holds the information required to construct the
object being loaded.

• type_fixup_info constructor: passes arguments to a base type
constructor.

For each instance of type being loaded, type_fixup_loader::operator
()() makes an instance of type_fixup_data , as well as an instance of
type_fixup_info that points to the type_fixup_data . It passes the
type_fixup_data to load() , which sets the fields of the type_fixup_
data based on the contents of the dump stream.

type_loader::operator ()() then passes the type_fixup_info to fixup() ,
which uses the information to create the postload object.

Your specialization can add any members you find convenient.

Implementing fixup_data

type_fixup_data &fixup_data;

To implement this public data member, derive a type, type_fixup_
data , from os_Type_data . Define a data member of type_fixup_data
for each portion of the object-form value emitted by type_fixup_
dumper::dump_info() . These members will be set by load() based
on information in the load stream, and used later by fixup() to
recreate the object being loaded.

Implementing the Constructor

type_fixup_info (
os_Type_fixup_loader cur_fixup_loader,
os_Loader_stream lstr,
os_Object_info& info,
type_fixup_data &data_arg

);
316 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Implement this function to set type_fixup_info::data to data_arg .
Pass the first three arguments to the following os_Type_fixup_info
constructor:

os_Type_fixup_info (
os_Type_loader& cur_loader,
os_Loader_stream& lstr,
os_Fixup_info& info

);

cur_loader is the loader for the object currently being fixed up.

lstr is the dump stream from which the current fixup form is being
processed.

info is the fixup loader info for the object being fixed up.

When you call type_fixup_info ::type_fixup_info() from within type_
loader::operator ()()

• Pass *this as cur_loader .

• Pass the stream passed in to operator ()() as lstr .

• Cast to os_Fixup_info& the loader info passed in to operator ()() .
Pass the result of the cast as info .

You can define this constructor to have additional arguments if
necessary for your specialization.
Release 5.1 317

Specializing os_Type_fixup_loader
Specializing os_Type_fixup_loader

Your specialization of os_Type_fixup_loader handles the loading
of fixup forms.

To customize the dump and load of instances a type, type, define
a class that is:

• Named type_fixup_loader

• Derived from os_Type_fixup_loader

For example, to customize the dump and load of instances of my_
collection , use the following:

class my_collection_fixup_loader :
public os_Type_fixup_loader {...}

The derived class must implement the following functions:

• operator ()() : Calls load() and fixup() .

• load() : Reads the info portion of a fixup form from the load
stream.

• fixup() : Performs fixup based on information set by load() .

• get() : Returns the one and only instance of the derived class.

You must also define and register an instance of the derived class.

Implementing operator ()()

os_Loader_action* type_fixup_loader::operator () (
os_Loader_stream& stream,
os_Loader_info& previous_info

)

Implement the invocation operator to do the following:

• Create an instance of type_fixup_data on the stack.

• Create a stack-based instance of type_fixup_info , passing the
type_fixup_data and previous_info to the type_fixup_info ’s
constructor. Cast previous_info to os_Fixup_info& before
passing it to the constructor.

• Pass the type_data to load() .

• Pass the type_info to fixup() .

This assumes that one call to load() consumes the entire info
portion of a fixup form. You can also implement load() to consume
318 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
just a part of the info portion, and call load() and fixup() multiple
times from operator ()() . The latter approach makes loaders more
scalable for large info portions.

Here is an example:

os_Loader_action* type_fixup_loader::operator () (
os_Loader_stream& stream,
os_Loader_info& previous_info

)
{

os_Fixup_info& fixup_info = previous_info;
type_fixup_data data;
type_fixup_info info(*this, stream, fixup_info, data);
while(load(stream, data))

fixup(info);
return 0;

}

This assumes load() is implemented to return 0 when the entire
info portion has been consumed.

If the info portion is made up of dumped char* s, allocate the type_
Fixup_info inside the load loop:

os_Loader_action* type_fixup_loader::operator () (
os_Loader_stream& stream,
os_Loader_info& previous_info

)
{

os_Fixup_info& fixup_info = previous_info;
type_fixup_data data;
while(load(stream, data))

type_fixup_info info(*this, stream, fixup_info, data);
fixup(info);

return 0;
}

Implementing load()

Loader_action* load (
Loader_stream& stream,
Type_data& given_data

);

This function is responsible for reading the info portion of the
fixup form from the load stream, and setting the data members of
given_data accordingly. If the invocation operator calls load() just
once, load() must consume all of the info portion. If the invocation
Release 5.1 319

Specializing os_Type_fixup_loader
operator calls load() multiple times, each call to load() must
consume just part of the info portion.

Once load() sets the data members of given_data , fixup() uses
given_data to guide recreation of the nonroot portion of the object
being fixed up.

The function should do the following:

• Cast given_data to type_fixup_data& .

• Input each part of the dumped value; use the current portion of
the dumped value to set a data member of type_data .

If load() consumes the entire info portion, returns 0 for success.

If load() consumes just part of the info portion, you can return 0
when the entire info portion has been consumed, and return
nonzero otherwise. You must cast the return value to os_Loader_
action* .

Here is an example:

Loader_action* type_fixup_loader::load (
Loader_stream& stream,
Type_data& given_data

)
{

type_fixup_data& data = (type_fixup_data&) given_data;
...
/* Input one part of the dumped value. */
os_Dumper_reference original_ref;
stream >> original_ref;
if (original_ref == 0) // info terminator

return ((os_Loader_action*) 0);
else {

data.dumper_ref =
os_database_table::get().find_reference(original_ref);

return ((os_Loader_action*) 1);
}

}

If a portion of the dumped info is an embedded fixup form for a
class, embedded_class, load it as follows:

• Retrieve that class’s fixup loader with embedded_class_fixup_
loader::get()

• Call embedded_class_fixup_loader::load() , passing stream and
the embedded_class_fixup_data embedded in type_fixup_data .
320 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
For example:

/* Load embedded class. */
embedded_type_fixup_loader::get().load(

stream,
data.member_3

);

Implementing fixup()

void fixup (os_Type_fixup_info& info);

This function performs fixup based on the information passed in.
For example, if the object being fixed up is a collection, and each
portion of the fixup form identifies a collection element, fixup()
would insert an element in the collection.

The function should

• Cast given_info to type_fixup_info& .

• Construct an os_Dumper_reference to the predump object.

• Construct a dumper reference to the postload object, by
performing os_Database_table::find_reference() on the dumper
reference to the predump object.

• Cast the dumper reference to the postload object to type*.

• Perform fixup on the postload object based on the information
in info .

Here is an example:

void type_fixup_loader::fixup (Type_fixup_info& given_info)
{

type_fixup_info& info = (type_fixup_info&) info;

Dumper_reference original_location =
info.get_original_location();

if (! original_location) {
// Handle error, there should only be a fixup for an
// existing object.

}

Dumper_reference replacing_location =
os_Database_table::get().find_reference(original_location);

if (! replacing_location) {
// Handle error, there should only be a fixup for an
// existing object.

}

type* object = replacing_location;
Release 5.1 321

Specializing os_Type_fixup_loader
...
/* Do whatever needs to be done to fix the designated object. */

element_type *the_element = (element_type*) (
info.fixup_data.dumper_ref.resolve()

);
object.insert(the_element)
...

}

Note that info.fixup_data_.dumper_ref is set by type_fixup_
loader::load() .

Implementing get()

static os_Type_fixup_loader& get ();

Define a global variable whose value is an instance of type_loader .
Define the static function type_loader::get() to return this instance:

static type_fixup_loader the_ type_fixup_loader;

os_Type_fixup_loader& type_fixup_loader::get ()
{

return the_ type_fixup_loader;
}

Registering the Fixup Loader

Define an instance of the derived type:

static type_fixup_loader the_ type_fixup_loader;

Register the instance of the derived class by including an entry in
the global array fixup_entries[] :

static os_Fixup_registration_entry fixup_entries[] = {
...
os_Fixup_registration_entry(" type", &the_ type_fixup_loader),
...

}

static const unsigned number_fixup_registration_entries =
OS_NUMBER_REGISTRATIONS(

fixup_entries,
os_Fixup_registration_entry

);

static os_Fixup_registration_block block(
fixup_entries,
number_fixup_registration_entries,
__FILE__,
322 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
__LINE__
);
Release 5.1 323

os_Database_table
os_Database_table

The database table records the mapping between predump
objects and postload objects, and stores sets of various kinds of
fixups, as well as the ignored set. You can obtain the one and only
instance of this class with the static member get() .

os_Database_table::get()

static os_Database_table& get ();

Returns a reference to the (one and only) database table.

os_Database_table::insert()

void insert (
const os_Dumper_reference source,
const os_Dumper_reference target,
const os_type& referent_type

);

Inserts a mapping record that associates a predump object with a
postload object. Normally you call this from type_loader::create() .

source is a dumper reference to the predump object.

target is a dumper reference to the postload object.

referent_type refers to an os_type representing the type of the
object.

void insert (
os_Reference_fixup_kind::Kind kind,
const os_Dumper_reference reference,
const os_Dumper_reference referent_original_location

);

Inserts a fixup record that instructs the loader to adjust the
pointer, C++ reference, or ObjectStore reference referred to by
reference . The loader makes the adjustment after loading all object
forms and before loading any fixup forms. Normally you call this
from type_loader::fixup() .

kind is one of the following:

• os_Reference_fixup_kind::pointer

• os_Reference_fixup_kind::reference_local

• os_Reference_fixup_kind::reference_this_db
324 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
• os_Reference_fixup_kind::reference

• os_Reference_fixup_kind::reference_protected_local

• os_Reference_fixup_kind::reference_protected

reference refers to the pointer or reference to be fixed up.

referent_original_location refers to the predump referent of the
pointer or reference to be fixed up.

void insert (
os_segment&,
const os_Fixup& fixup

);

Associates the specified fixup dumper with the specified segment.
Each fixup dumper associated with a segment is invoked after all
object forms for that segment have been dumped. See Dumper
Actions on page 290. Normally you call this function from type_
dumper::operator ()() .

void insert (
os_database&,
const os_Fixup& fixup

);

Associates the specified fixup dumper with the specified
database. Each fixup dumper associated with a database is
invoked after all object forms for that database have been
dumped. See Dumper Actions on page 290. Normally you call this
function from type_dumper::operator ()() .

void insert (
const os_Fixup& fixup

);

Associates the specified fixup dumper with the entire dump. Each
fixup dumper associated with the entire dump is invoked after all
object forms for the dump have been dumped. See Dumper
Actions on page 290. Normally you call this function from type_
dumper::operator ()() .

void insert (
const os_Dumper_reference ignored_object

);

Inserts the specified object into the ignored set. If the object is
already in the ignored set, the insertion is silently ignored. Before
Release 5.1 325

os_Database_table
dumping an object, the dumper checks to see if the object is in the
ignored set. If it is, the dumper does not dump the object.

ignored_object is a dumper reference to the object that should not
be dumped.

os_Database_table::find_reference()

os_Dumper_reference find_reference (
const os_Dumper_reference given_reference

) const;

Finds the postload object corresponding to a given predump
object. Both objects are specified with instances of os_Dumper_
reference . given_reference refers to the predump object. The
returned reference refers to the corresponding postload object.

If there is no object that corresponds to the referent of given_
reference , a null reference is returned.

If given_reference is null, a null reference is returned.

See also os_Database_table::insert() on page 324 (the first
overloading, for mapping records).

os_Database_table::is_ignored()

os_boolean is_ignored (const os_Dumper_reference obj) const;

Returns nonzero if obj is in the ignored set; returns nonzero
otherwise. See os_Database_table::insert() on page 324.
326 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
os_Dumper_reference

Instances of the class os_reference can be used as substitutes for
pointers to predump or postload objects. Given a reference to a
predump object, you can retrieve a reference to the corresponding
postload object (using os_Database_table::find_reference()).
Dumper references are required as arguments to certain functions
your specializations call, such as os_Database_table::insert() .

As with a pointer, once the object referred to by a dumper
reference is deleted, use of the reference accesses arbitrary data
and might cause a segmentation violation.

You can construct or set a reference with os_Dumper_
reference::os_Dumper_reference() or os_Dumper_
reference::operator =() . You can resolve a reference with os_
Dumper_reference::resolve() or os_Dumper_reference::resolve() .

os_Dumper_reference::operator void*()

operator void*() const;

Returns the pointer for which the specified reference is a
substitute.

os_Dumper_reference::operator =()

os_Dumper_reference& operator = (const os_Dumper_reference&);

Establishes the referent of the right operand as the referent of the
left operand.

os_Dumper_reference& operator = (void* object);

Establishes the object pointed to by the right operand as the
referent of the left operand.

os_Dumper_reference::os_Dumper_reference()

os_Dumper_reference (const void*);

Constructs a reference to substitute for the specified void* .

os_Dumper_reference (
os_unsigned_int32 database_number,
os_unsigned_int32 segment_number,
os_unsigned_int32 offset

);
Release 5.1 327

os_Dumper_reference
Constructs a reference to the object with the specified database
number, segment number, and offset.

os_Dumper_reference (const os_Dumper_reference&);

Constructs a reference with the same referent as the specified
reference.

os_Dumper_reference ();

Constructs a null reference, that is, a reference without a current
referent. See os_Dumper_reference::operator =() on page 327.

os_Dumper_reference::resolve()

void* resolve() const;

Returns the valid void* for which the specified reference is a
substitute.

os_Dumper_reference::operator ==()

os_boolean operator == (const os_Dumper_reference&) const;

Returns 1 if the arguments have the same referent; returns 0
otherwise.

os_Dumper_reference::operator <()

os_boolean operator < (const os_Dumper_reference&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Dumper_reference::operator >()

os_boolean operator > (const os_Dumper_reference&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows the
referent of the second, and a return value of 0 indicates that it does
not. Otherwise the results are undefined.

os_Dumper_reference::operator !=()

os_boolean operator != (const os_Dumper_reference&) const;
328 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
Returns 1 if the arguments have different referents; returns 0
otherwise.

os_Dumper_reference::operator >=()

os_boolean operator >= (const os_Dumper_reference&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument follows or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Dumper_reference::operator <=()

os_boolean operator <= (const os_Dumper_reference&) const;

If the first argument and second argument refer to elements of the
same array or one beyond the end of the array, a return value of 1
indicates that the referent of the first argument precedes or is the
same as the referent of the second, and a return value of 0
indicates that it does not. Otherwise the results are undefined.

os_Dumper_reference::operator !()

os_boolean operator ! () const;

Returns nonzero if the reference is null, that is, has no current
referent.

os_Dumper_reference::get_database()

os_database* get_database () const;

Returns the database containing the referent of this reference.

os_Dumper_reference::get_database_number()

os_unsigned_int32 get_database_number () const;

Returns the database table number of the database containing the
referent of this reference.

os_Dumper_reference::get_segment()

os_segment* get_segment () const;

Returns the segment containing the referent of this reference.
Release 5.1 329

os_Dumper_reference
os_Dumper_reference::get_segment_number()

os_unsigned_int32 get_segment_number () const;

Returns the segment number of the segment containing the
referent of this reference.

os_Dumper_reference::get_offset()

os_unsigned_int32 get_offset () const;

Returns the offset of the referent of this reference within its
segment.

os_Dumper_reference::get_string()

const char* get_string () const;

Returns the reference's value as an encoded string.

os_Dumper_reference::is_valid()

os_boolean is_valid () const;

Returns nonzero if this is completely valid; returns 0 otherwise.
330 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
os_Type_info

Instances of this class hold information about the loading of the
object form or fixup form currently being processed. It defines
members for getting the type and predump location of the object
being loaded or fixed up, as well as members for getting and
setting the postload location of the object.

os_Type_info::os_Type_info()

os_Type_info (
os_Type_loader&,
os_Loader_stream&,
os_Object_info&

);

Constructs an object to hold information about the object
currently being loaded by a specified loader. You must also pass
as constructor argument the info for the previous object load. See
Implementing operator ()() on page 309 in the section on
specializing os_Type_loader .

os_Type_info::get_original_location()

os_Dumper_reference get_original_location () const;

 Returns a reference that resolves to the predump location of the
object being loaded. See Implementing create() on page 311 in the
section on specializing os_Type_loader .

os_Type_info::get_replacing_location()

os_Dumper_reference get_replacing_location () const;

Returns a reference that resolves to the postload location of the
object being loaded. See Implementing create() on page 311 in the
section on specializing os_Type_loader .

os_Type_info::set_replacing_location()

void set_replacing_location (os_Dumper_reference location);

Records the location at which the postload object has been
created. See Implementing create() on page 311 in the section on
specializing os_Type_loader .
Release 5.1 331

os_Type_info
 os_Type_info::get_type()

const os_type& get_type () const;

Returns a reference to an os_type that represents the type of the
object being loaded. See Implementing create() on page 311 in the
section on specializing os_Type_loader .

os_Type_info::get_replacing_segment()

os_segment& get_replacing_segment () const;

Returns a reference to the postload segment of the object being
loaded.

os_Type_info::get_replacing_database()

os_database& get_replacing_database () const;

Returns a reference to the postload database of the object being
loaded.
332 ObjectStore Advanced C++ API User Guide

Chapter 8: Dump/Load Facility
os_Fixup_dumper

This class serves as base class for your customized fixup-form
dumpers. See Specializing os_Fixup_dumper on page 304. Some
of the members of your specialization might have to call functions
defined by the base class, os_Fixup_dumper . These functions are
described here.

os_Fixup_dumper::os_Fixup_dumper()

os_Fixup_dumper (
os_Dumper_stream&,
os_Dumper&,
const os_class_type&,
const os_Dumper_reference object_to_fix,
unsigned number_elements = 0

);

Constructs a fixup dumper. The constructors for your customized
fixup dumpers pass arguments to this constructor.

os_Fixup_dumper (const os_Fixup_dumper&);

Copy constructor.

os_Fixup_dumper::get_object_to_fix()

os_Dumper_reference get_object_to_fix () const;

Returns a dumper reference to the object for which this dumps a
fixup form. See Implementing dump_info() on page 304 in the
section on specializing os_Fixup_dumper .

os_Fixup_dumper::get_type()

os_type &get_type() const;

Returns a reference to an os_type that represents the type of the
object for which this is a fixup dumper. See Implementing dump_
info() on page 304 in the section on specializing os_Fixup_dumper .

os_Fixup_dumper::~os_Fixup()

virtual ~os_Fixup ();

Virtual destructor

os_Fixup_dumper::get_number_elements()

unsigned get_number_elements () const;
Release 5.1 333

os_Fixup_dumper
If this is a fixup for an array, returns the number of elements to be
fixed up. Returns 0 otherwise.
334 ObjectStore Advanced C++ API User Guide

Chapter 9
Advanced Schema
Evolution

This chapter provides information about the ObjectStore schema
evolution facility. For a basic understanding of tasks you must
perform to complete a schema evolution project, see Chapter 8,
Schema Evolution, in the ObjectStore C++ API User Guide.

The information about schema evolution is organized in the
following manner:

Phases of the Schema Evolution Process 337

Instance Initialization 338

Instance Transformation 342

Initiating Evolution with evolve() 344

Example: Changing the Value Type of a Data Member 347

Using Transformer Functions 350

Accessing Unevolved Objects 353

Example: Using Transformers 357

Example: Changing Inheritance 360

Instance Reclassification 366

Example: Reclassifying Instances 368

Illegal Pointers 373

Example: Using Illegal Pointer Handlers 378

Obsolete Index and Query Handlers 381

Task List Reporting 382

Instance Initialization Rules 384
Release 5.1 335

Schema Changes Related to Data Members 387

Adding Data Members 388

Deleting Data Members 389

Changing the Value Type of a Data Member 390

Changing the Order of Data Members 394

Summary of Data Member Changes Not Requiring Explicit
Evolution 395

Schema Changes Related to Member Functions 396

Schema Changes Related to Class Inheritance 397

Adding Base Classes 398

Removing Base Classes 400

Changing Between Virtual and Nonvirtual Inheritance 401

Class Deletion 403

Instance Reclassification 404
336 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Phases of the Schema Evolution Process

The schema evolution process has two phases:

• Schema modification: modification of the schema information
associated with the database(s) being evolved

• Instance migration: modification of any existing instances of the
modified classes

(In this chapter, the term process is used in the ordinary
nontechnical sense. The phrase schema evolution process refers to
what the evolution facility does when invoked. This is not a
system process separate from the execution of the application that
calls the evolution function.)

Instance migration itself has two phases:

• Instance initialization. See Instance Initialization on page 338.

• Instance transformation. See Instance Transformation on
page 342.
Release 5.1 337

Instance Initialization
Instance Initialization

Instance initialization modifies existing instances of modified
classes so that their representations conform to the new class
definitions. This might involve adding or deleting fields or
subobjects, changing the type of a field, or deleting entire objects.
This phase of migration also initializes any storage components
that have been added or that have changed type.

In most cases, new fields are initialized with zeros. There is one
useful exception to this, however. In the case where a field has
changed type, and the old and new types are assignment
compatible, the new field is initialized by assignment from the old
field value.

The initialization rules are discussed in Instance Initialization
Rules on page 384.

Pointers to Modified Objects and Their Subobjects

During the initialization phase, the address of an instance being
migrated generally changes. The reason for this is that migration
actually consists of making a copy of the old unmigrated instance,
and then modifying this copy. The copy and the old instance will
be in the same segment, but their offsets within the segment will
be different.

Because of this, the schema evolution facility automatically
modifies all pointers to the instance so that they point to the new
modified instance. This is done for all pointers in the databases
being evolved, including pointers contained in instances of
unmodified classes, cross-database pointers, and pointers to
subobjects of migrated instances.

Illegal Pointers

During this process of adjusting pointers to modified instances,
ObjectStore might detect various kinds of illegal pointers. For
example, it might detect a pointer to the value of a data member
that has been removed in the new schema. Since the data member
has been removed, the subobject serving as the value of that data
member is deleted as part of instance initialization. Any pointer to
such a deleted subobject is illegal, and is detected by ObjectStore.
338 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
In such a case, you can provide a special handler function to
process the illegal pointer (for example, by changing it to null or
simply reporting its presence). Each time an illegal pointer is
detected, the handler function is executed on the pointer, and then
schema evolution is resumed. If you do not provide a handler
function, an exception is signaled by default when an illegal
pointer is encountered. If you want, you can specify that illegal
pointers be ignored.

C++ References

C++ references are treated as a kind of pointer. References to
migrated instances are adjusted just as described above. Illegal
references are detected and can be handled as described.

ObjectStore References

In addition, as with pointers, ObjectStore references to migrated
instances are adjusted to refer to the new instance rather than the
old. You are given an option concerning local references. Recall
that to resolve a local reference you must specify the database
containing the referent. If you want, you can direct ObjectStore to
resolve each local reference using the database in which the
reference itself resides. If you do not use this option, local
references will not be adjusted during instance initialization (but
you can provide a transformer function so that they are adjusted
during the instance transformation phase; see Instance
Transformation on page 342).

As with pointers, you can supply handler functions for illegal
references. If you do not supply an illegal reference handler,
evolution continues uninterrupted when an illegal reference is
encountered. The reference is left unmodified and no exception is
signaled.

Illegal pointers and references, and illegal pointer and reference
handlers, are described in detail in Illegal Pointers on page 373.

Obsolete Indexes and Queries

Just as some pointers and references become obsolete after
schema evolution, so do some indexes and persistently stored
queries. For example, the selection criterion of a query or the path
of an index might refer to a removed data member. ObjectStore
Release 5.1 339

Instance Initialization
detects all such queries and indexes. In the case of an obsolete
query, ObjectStore internally marks the query so that subsequent
attempts to use it cause a run-time error.

As with illegal pointers, you can handle obsolete queries or
indexes by providing a special handler function for each. A
dropped index handler, for example, might create a new index
using a path that is legal under the new schema. If you do not
supply handlers, ObjectStore signals an exception when an
obsolete query or index is encountered.

Handlers for dropped indexes and obsolete queries are discussed
in Obsolete Index and Query Handlers on page 381.

Instance Reclassification

The schema evolution facility allows for one special form of
instance migration, which allows you to reclassify instances of a
given class as instances of a class derived from the given class.
This form of migration is special because it is not, strictly
speaking, a case of modifying instances to conform to a new class
definition. However, instance reclassification is typically
desirable when new subclasses are added to a schema. Instances
of the base class can be given a more specialized representation by
being classified as instances of one of the derived classes.

Reclassification occurs during the initialization phase. You
specify how instances of a given base class are to be reclassified by
associating a reclassification function with the base class. This
function takes an instance of the base class as its argument, and
returns the name of the instance’s new class, if it is to be
reclassified.

Reclassified instances can then be transformed during the
transformation phase, as with any migrated instances. A
reclassified instance will be transformed by the transformer
function associated with its new class, a class derived from its
original class.

Instance reclassification is discussed in Instance Reclassification
on page 366.
340 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Task List Reporting

To help you get an overall picture of the operations involved in
instance initialization for a particular evolution, the schema
evolution facility allows you to obtain a task list describing the
process. The task list consists of function definitions indicating
how the migrated instances of each modified class will be
initialized. You generate this list without actually invoking
evolution, which allows you to verify your expectations
concerning a particular schema change before migrating the data.

Task list reporting is discussed in Task List Reporting on
page 382.
Release 5.1 341

Instance Transformation
Instance Transformation

For some schema changes, the instance initialization phase is all
that is needed. But in other cases, further modification of class
instances or associated data structures is required to complete the
schema evolution. This further modification is generally
application dependent, so ObjectStore allows you to define your
own functions, transformer functions, to perform the task.

Transformer Functions

You associate exactly one transformer with each class whose
instances you want to be transformed. During the transformation
phase of instance migration, the schema evolution facility invokes
each transformer function on each instance of the function’s
associated class, including instances that are subobjects of other
objects.

Transformer functions are particularly useful when you want to
set the value of some field of a migrated instance based on the
values of some field or fields of the corresponding old instance.
For this purpose, the evolution facility provides a function that
allows you to retrieve the old instance corresponding to a given
new instance.

You can also use a transformer function to adjust local references
(see Instance Initialization Rules on page 384). A transformer
associated with a class containing an os_reference_local or os_
reference_protected_local could perform the adjustment by
retrieving the new version of each local reference’s referent, and
assigning it to the reference.

In addition, transformers are useful for updating data structures
that depend on the addresses of migrated instances. A hash table,
for example, that hashes on addresses should be rebuilt using a
transformer. Note that you do not need to rebuild a data structure
if the position of an entry in the structure does not depend on the
address of an object pointed to by the entry, but depends instead,
for example, on the value of some field of the object pointed to.
Such data structures will still be correct after the instance
initialization phase.
342 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Once the transformation phase is complete, all the old unmigrated
instances are deleted. (If the old instances of a given class are not
needed for the transformation phase, you can direct ObjectStore to
delete them during the initialization phase. See Recycling Old
Storage on page 351.)

Using transformers is discussed in Using Transformer Functions
on page 350.
Release 5.1 343

Initiating Evolution with evolve()
Initiating Evolution with evolve()

To perform schema evolution, you make and execute an
application that invokes the static member function os_schema_
evolution::evolve() . The function must be called outside the
dynamic scope of a transaction. The application must include the
header file ostore/schmevol.hh and link with the libraries
libosse.a , liboscol.a , and libos.a .

The function evolve() has two overloadings, declared as follows:

static void evolve(
const char *workdb_name,
const char *db_to_evolve

);

static void evolve(
const char *workdb_name,
const os_collection &dbs_to_evolve

);

The evolution process depends on three parameters:

• Databases to evolve

• Schema modifications

• Work database

Databases to Evolve

You specify the database or databases to be evolved as the second
argument to evolve() . If you are evolving just a single database,
you supply a char* , the pathname of the database. If you are
evolving more than one database, you supply an os_collection&
or os_Collection<char*>& , a set containing the databases’
pathnames.

If you do not specify any database to evolve (that is, if you supply
0 for the first overloading, or an empty collection for the second
overloading), err_schema_evolution is signaled.

The schema modifications are, by default, specified by the schema
of the application that calls evolve() . So the schema source file for
this executable should contain a new class definition for each class
that you want to modify.
344 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
If you want, you can specify the schema modifications with a call
to the static member function os_schema_evolution::set_evolved_
schema_db_name() before calling evolve() . This function takes a
const char* as argument, the pathname of a compilation or
application schema database (the compilation or application
schema database for some other application).

Removed Classes

You must also specify the classes that are to be removed from the
schema, that is, the classes present in the old schema but not in the
new schema. (Removing a class from a schema results in deletion
of all of its instances.) You do this with one call to the static
member function os_schema_evolution::augment_classes_to_be_
removed() for each removed class. This function is declared as
follows:

static void augment_classes_to_be_removed(
const char *name_of_class_to_be_removed

);

The calls should precede the call to evolve() .

You can also call this function once for all the classes to be
removed, if you pass an os_Collection<char*> containing the
names of all the classes to be removed. In this case you use the
overloading

static void augment_classes_to_be_removed(
const os_Collection<char*>

&names_of_classes_to_be_removed
);

Again, this call should precede the call to evolve() .

Work Database

In addition, you specify, also as an argument to evolve() , the
pathname of the work database, a database to be created by the
schema evolution facility and used internally as a scratch pad.
This database holds the intermediate results of the evolution
process, allowing it to be restartable in case of interruption (due to
network or system failure, or due to detection of an illegal pointer;
see Illegal Pointers on page 373).

When evolution is interrupted, the work database records a
consistent intermediate state of the evolution process.
Release 5.1 345

Initiating Evolution with evolve()
Subsequently calling evolve() using the same work database will
cause evolution to be resumed from the point of interruption.

After evolution successfully completes, you should delete the
work database.

Note that when you remove a class, C, you must also remove or
modify any class that mentions C in its definition. Otherwise err_
se_cannot_delete_class is signaled.

Resolution of Local References

As mentioned earlier, you are given an option regarding the
resolution, during evolution, of local ObjectStore references.
(Recall that the referent’s database must be specified for
resolution of local references.) If you call the static member
function os_schema_evolution::set_local_references_are_db_
relative() , supplying a nonzero int (true) as argument, local
references will be resolved using the database in which the
reference itself resides. Otherwise local references will not be
adjusted during the instance initialization phase (see Illegal
Pointers on page 373).
346 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Example: Changing the Value Type of a Data
Member

Consider an example that involves changing the value type of a
data member.

Suppose the schema for the database /example/partsdb starts out
with the following definition of the class part :

Existing part class
definition

class part {
public:

short part_id;
part(short id) { part_id = id; }
static os_typespec *get_os_typespec();

}

And you want to change the definition to be as follows:

New part class
definition

class part {
public:

long part_id;
part(long id) { part_id = id; }
static os_typespec *get_os_typespec();

}

Here, the value type of the data member part_id has changed from
short to long . The constructor’s argument type has also changed.
Since C++ provides a standard conversion from short to long ,
migrated instances of the class part will have their part_id fields
initialized by assignment from the value of part_id in the
corresponding old unmigrated instance.

Example: schema
evolution application
program

The application program that invokes the evolution process might
look like this:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part1new.hh" /* the new definition */

main() {

objectstore::initialize();

os_schema_evolution::evolve(
"/example/workdb",
"/example/partsdb"

);
}

Release 5.1 347

Example: Changing the Value Type of a Data Member
Note that the header file ostore/schmevol.hh is included.

Here, the argument /example/workdb is a name for the scratch pad
database, and the argument /example/partsdb specifies the
database to be evolved.

Example: evolution
program for multiple
databases

An application that evolves several databases might look like this:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part1new.hh" /* the new definition */

main() {

objectstore::initialize();

os_collection::initialize();

os_Collection<char*> the_dbs_to_evolve;

the_dbs_to_evolve |= "/example/partsdb1";
the_dbs_to_evolve |= "/example/partsdb2";
the_dbs_to_evolve |= "/example/partsdb3";

os_schema_evolution::evolve(
"/example/workdb",
the_dbs_to_evolve

);
}

Note that both versions of the main() program include the new
definition of the modified class. The schema source file for this
executable should also contain the new definition of the class part .

Schema source file
with new definition of
part class

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>

#include "part1new.hh" /* this contains the new definition */

void dummy() {
OS_MARK_SCHEMA_TYPE(part);

}

The instance migration phase of the schema evolution process will
migrate the parts in /example/partsdb (for the first version of
main()), changing the size of the part_id field from the size of an int
to the size of a long . As mentioned, the instance migration process
will also initialize the field by assignment from the preevolution
value. This happens for all instances of the class part .
348 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Note that the constructor for the new version of the class has no
bearing on the initialization of migrated instances. The existing
instances of the modified class are initialized according to the
rules of default initialization described here. The new constructor
initializes only those instances of the class that are created after
evolution has occurred.

Using ossevol for Simple Schema Evolution

For a simple evolution like this one, one that involves no
transformers or user-defined handler functions, you can also use
the ObjectStore utility ossevol instead of an application program.
The utility takes arguments for the pathname of a work database,
the pathname of a compilation or application schema database
specifying the new schema, and the pathnames of the databases to
evolve. For example:

ossevol /example/workdb /example/ex1.comp_schema_db /example/partsdb

For information on the ossevol utility, see Schema Evolution with
ossevol in Chapter 8 of the ObjectStore C++ API User Guide.
Release 5.1 349

Using Transformer Functions
Using Transformer Functions

The instance initialization phase leaves migrated instances in a
well-defined state. But if you want to perform further application-
specific processing on these instances as part of the migration
process, you can supply transformer functions to accomplish this.

To do this, you define a transformer function for each class whose
instances are to be transformed, and you then associate the
function with the class on whose instances the function will
operate (see Associating a Transformer with a Class on page 351).

As part of the instance migration process, the ObjectStore schema
evolution facility invokes each transformer function on each
instance of its associated class. This includes each instance that is
embedded in some other object, either as the value of a data
member or as the subobject corresponding to a base class of the
object’s class.

The order of execution of transformers on embedded objects
follows the same pattern as constructors. When the transformer
for a given class is invoked, the transformers for base classes of the
given class are executed first (in declaration order), followed by
the transformers for class-valued members of the given class (in
declaration order), after which the transformer for the given class
itself is executed.

Signature of Transformer Functions

Transformers are functions with no return value and one
argument of type void* . This argument is a pointer to the object
being transformed, an instance of the new class that has already
undergone instance initialization.

Form of the call void my_transform_function(void *the_new_obj)

Transformer functions frequently perform processing that is
based on the state of the old unevolved object corresponding to
the object being operated on. The evolution facility provides a
means of accessing the old object. This is discussed in the next
section, Accessing Unevolved Objects on page 353.
350 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Associating a Transformer with a Class

With the transform function defined, you can associate the
function with a class and invoke the evolution process. The
association is made by calling the static member function os_
schema_evolution::augment_post_evol_transformers() in the
application performing evolution. The call should be made before
the call to os_schema_evolution::evolve() .

augment_post_evol_
transformers()
function

The function augment_post_evol_transformers() has the following
two overloadings:

static void
os_schema_evolution::augment_post_evol_transformers(

const os_transformer_binding&
);

static void
os_schema_evolution::augment_post_evol_transformers(

const os_Collection<os_transformer_binding*>&
);

os_transformer_
binding() function

You can construct an instance of os_transformer_binding by
supplying a class name and a function pointer as arguments to the
constructor, as in

os_transformer_binding("part", part_transform)

So a typical call to augment_post_evol_transformers() would be

os_schema_evolution::augment_post_evol_transformers (
os_transformer_binding("part", part_transform)

);

Recycling Old Storage

For classes whose instances’ old state does not need to be accessed
by any transformer, and for removed classes, you can increase
space efficiency during the evolution process by having their old
unevolved instances deleted during the instance initialization
phase, allowing their space to be used for new instances. You do
this with one call to os_schema_evolution::augment_classes_to_
be_recycled() for each class whose old instances can be deleted.

augment_classes_to_
be_recycled()
function

This function is declared as follows:

static void
os_schema_evolution::augment_classes_to_be_recycled(

const char *name_of_class_to_be_recycled
);
Release 5.1 351

Using Transformer Functions
The calls should precede the call to evolve() .

You can also call this function once for all the classes to be
recycled, if you pass an os_Collection<char*> containing the
names of all the classes to be recycled. In this case you use the
overloading

static void
os_schema_evolution::augment_classes_to_be_recycled(

const os_Collection<char*>
&names_of_classes_to_be_recycled

);

Again, this call should precede the call to os_schema_
evolution::evolve() .

Note that the old unevolved instances of each modified class are
deleted following completion of the transformation phase,
whether or not you have specified the class as one to be recycled.
352 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Accessing Unevolved Objects

Transformer functions (see Using Transformer Functions on
page 350), as well as reclassification functions (see Instance
Reclassification on page 366), often perform processing that is
based on the state of the old unevolved object corresponding to
the object being operated on. This section tells you how to access
that state.

Given a pointer, the_new_obj , to an initialized object, retrieving a
data member value for the corresponding old unevolved object
has the following steps:

1 Retrieve an os_typed_pointer_void that refers to the old object.
An os_typed_pointer_void is a special container object that
encapsulates a void* pointer to the old instance and an object
representing the instance’s type.

2 Retrieve a void* pointer to the old object.

3 Retrieve a pointer to the object representing the type of the old
object.

4 Given the type object, retrieve a pointer to the object
representing the data member whose value you want to access.

5 Given the old object and the data member object, retrieve the
old data member value.

These steps are necessary because the new schema provides the
type universe for transformer and reclassification functions. The
old class definitions are not part of a transformer’s schema, and
therefore you cannot use the usual member access notation,
.member-name , to access fields of the old instance.

Retrieving os_typed_
pointer_void and
void* pointers

You can retrieve an os_typed_pointer_void to the old unevolved
instance using the static member function os_schema_
evolution::get_unevolved_object() . To retrieve the pointer itself
you simply assign the os_typed_pointer_void to a void* variable, as
in

os_typed_pointer_void old_obj_typed_ptr =
os_schema_evolution::get_unevolved_object(a_new_obj);

void *an_old_obj = old_obj_typed_ptr;

This works because the class os_typed_pointer_void defines
operator void*() to return the pointer.
Release 5.1 353

Accessing Unevolved Objects
Retrieving the type
and the data member

You can retrieve the type with the member function os_typed_
pointer_void::get_type() .

const os_class_type &c = old_obj_typed_ptr.get_type();

You retrieve a pointer to the object representing the data member
of a specified name defined by a specified type using os_class_
type::find_member() .

Retrieving the data
member value

Finally, you retrieve the value of a specified data member for a
specified object using os_fetch() :

os_fetch(the_old_obj, *c.find_member("part_id"), the_old_val);

As mentioned earlier, the instance initialization phase of
evolution automatically modifies all pointers to instances of
modified classes so that they reference the new migrated
instances. This is true even for pointers contained in old
unmigrated instances. So if you access an old data member during
the instance transformation phase, and the value of the member is
a pointer to an instance of a class that was also modified, the value
you retrieve will point to the new migrated instance (see Example:
Changing Inheritance on page 360).

Functions used to
access unevolved
objects

Here are the declarations of the functions used to access
unevolved objects:

static os_typed_pointer_void os_schema_evolution::
get_unevolved_object(void *new_obj);

os_typed_pointer_void::operator void*() const;

const os_type &os_typed_pointer_void::get_type() const;

const os_member *os_class_type::
find_member(const char *name) const;

There is also a function for retrieving the address of the new
version of a specified unevolved object, get_evolved_object() .

os_fetch() global
function

The global function os_fetch() has an overloading for each built-in
C++ type:

void *os_fetch(
const void *p, const os_member_variable&, void *&value);

unsigned long os_fetch(
const void *p, const os_member_variable&,
unsigned long &value);

long os_fetch(
const void *p, const os_member_variable&, long &value);
354 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
unsigned int os_fetch(
const void *p, const os_member_variable&,
unsigned int &value);

int os_fetch(
const void *p, const os_member_variable&, int &value);

unsigned short os_fetch(
const void *p, const os_member_variable&,
unsigned short &value);

short os_fetch(
const void *p, const os_member_variable&, short &value);

unsigned char os_fetch(
const void *p, const os_member_variable&,
unsigned char &value);

char os_fetch(
const void *p, const os_member_variable&, char &value);

float os_fetch(
const void *p, const os_member_variable&, float &value);

double os_fetch(
const void *p, const os_member_variable&, double &value);

long double os_fetch(
const void *p, const os_member_variable&,
long double &value);

os_store() global
function

Once you have retrieved an old data member value, you can
usually just assign it to the new data member. But if the value type
of the new data member is a const or reference type, you should
use os_store() to set the new member value.

os_store(the_new_obj, c.find_member("part_id"), the_old_val);

Like os_fetch() , os_store() has an overloading for each built-in
C++ type:

void os_store(
void *p, const os_member_variable&, const void *value);

void os_store(
void *p, const os_member_variable&,
const unsigned long value);

void os_store(
void *p, const os_member_variable&, const long value);

void os_store(
void *p, const os_member_variable&,
const unsigned int value);
Release 5.1 355

Accessing Unevolved Objects
void os_store(
void *p, const os_member_variable&, const int value);

void os_store(
void *p, const os_member_variable&,
const unsigned short value);

void os_store(
 void *p, const os_member_variable&, const short value);

void os_store(
void *p, const os_member_variable&,
const unsigned char value);

void os_store(
 void *p, const os_member_variable&, const char value);

void os_store(
void *p, const os_member_variable&, const float value);

void os_store(
 void *p, const os_member_variable&, const double value);

void os_store(
void *p, const os_member_variable&,
const long double value);

os_fetch_address()
global function

You can get the address of a data member value with os_fetch_
address() , declared

void *os_fetch_address(void *p, const os_member_variable&);

os_member_
variable::get_type()
function

And you can get the value type of a data member with os_
member_variable::get_type() , declared

const os_type &os_member_variable::get_type() const;

Together with os_fetch() , these functions allow you to access not
only data members, but also data members of data member
values, and so on.

Accessing an
inherited data
member

To access an inherited data member, the following functions are
useful:

const os_base_class &os_class_type::find_base_class(
char *base_class_name) const;

void *os_fetch_address(
void *p, const os_base_class_variable&);

const os_class_type &os_base_class::get_class() const;

Header file
requirement

To use the functions described in this section, you must include
the header file <ostore/mop.hh> .
356 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Example: Using Transformers

Now consider an example that uses a transformer function.

Suppose that instead of changing the value type of the class part
(see the previous example) from short to long , you want to change
it from short to char* , so arbitrary strings can be used for part IDs:

Existing part class
definition

class part {
public:

short part_id;
part(short id) { part_id = id; }
static os_typespec *get_os_typespec();

}

New part class
definition

And you want to change the definition to be as follows:

class part {
public:

char *part_id;
part(char *id) {

int len = strlen(id) + 1;
part_id = new(

os_segment::of(this),
os_typespec::get_char(),
len

) char[len];
strcpy(part_id, id);

}
static os_typespec *get_os_typespec();

}

Since there is no standard C++ conversion from short to char* , the
new field will be initialized to (char*) (0) during the instance
initialization phase of schema evolution. But we can direct the
evolution facility to overwrite this initialization during the
transformation phase, and establish a new part_id value for a
migrated instance based on the value of part_id for the
corresponding unmigrated instance.

To do this, supply a transformer function and associate it with the
class part . As part of the instance migration process, the
ObjectStore schema evolution facility will invoke this transformer
function on each instance of the class.

part_transform()
transformer function

Here is how such a transformer function might be defined.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
Release 5.1 357

Example: Using Transformers
#include <ostore/schmevol.hh>
#include <ostore/mop.hh>

#include <stdio.h>
#include <string.h>

#include "part2new.hh"

static void part_transform(void *the_new_obj) {

/* get a typed ptr to the old obj */
os_typed_pointer_void old_obj_typed_ptr =

os_schema_evolution::get_unevolved_object(
the_new_obj);

/* get a void* ptr to the old obj; implicit operator void*() call */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
const os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old data member value */
int the_old_val;
os_fetch(the_old_obj, *c.find_member("part_id"),

the_old_val);

/* convert the old value to string form */
char conv_buf[16];
sprintf(conv_buf, "%d", the_old_val);

int len = strlen(conv_buf) + 1;
part *part_ptr = (part *)the_new_obj;
part_ptr->part_id =

new(os_segment::of(the_new_obj),
os_typespec::get_char(), len) char[len];

strcpy(part_ptr->part_id, conv_buf);

}

This function, part_transform() , sets the value of part_id in the new
instance to the string denoting the integer value of part_id in the
old unevolved instance. So, for example, if the old part_id was the
integer 1138, the transformer sets the new part_id to a pointer to
the character array 1138.

With the transform function defined, you can associate the
function with the class part and invoke the evolution process. As
mentioned above, the association is made using a function call
from within the application that invokes schema evolution.

main() function The main() function associates part_transform() with the class part
by creating an os_transformer_binding for the function and the
class, and invoking augment_post_evol_transformers() on it.
358 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Once the association between transformer and class is made,
evolution is invoked.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part2new.hh"

main() {

objectstore::initialize();

/* associate part_transform() with the class part */
os_schema_evolution::augment_post_evol_transformers(

os_transformer_binding("part", part_transform)
);

/* initiate evolution */
os_schema_evolution::evolve(

"example/workdb", "example/partsdb"
);

}

Note that if the class part has classes derived from it, the instances
of these derived classes must also be migrated, since each instance
of the derived classes has a subobject corresponding to the base
class part . The transformer part_transform() is run on these
subobjects as well.
Release 5.1 359

Example: Changing Inheritance
Example: Changing Inheritance

Here is an example that involves deleting some data members
from a class, as well as changing the class to inherit from a new
base class.

Consider a database schema that uses the classes epart , for
electrical part, and mpart , for mechanical part, and suppose these
classes both have data members for part_id and responsible_
engineer . The example below shows how to add a common base
class, part , to these two classes, and move the common data
members out of the definitions of epart and mpart and into the
definition of part .

This schema change involves redefining epart and mpart by

• Deleting the members epart::part_id , epart::responsible_
engineer , mpart::part_id , and mpart::responsible_engineer

• Making the classes inherit from the new class part , which has
members part::part_id and part::responsible_engineer.

Changing epart and
mpart to inherit from
part

Note that the schema evolution facility does not view the old
member epart::part_id as related to the new member part::part_id
(and similarly for part::responsible_engineer). It would be
undesirable for the facility to make any assumptions about the
semantic relationship between the two members based merely on
sameness of name, since this is an application-dependent matter.

Consequently, moving a data member from subtype to supertype
should be viewed as deletion of the data member from the
subtype, together with addition of a new, distinct data member to
the supertype. Similar remarks apply for moving members the
other way, from supertype to subtype.

mpart

part

part_id
resp_eng

cells boundaries

part_id
resp_eng
cells boundaries

part_id
resp_eng

epart

epart

mpart
360 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Here are the old and new class definitions:

Old epart class
definition

class epart {
public:

int part_id;
employee *responsible_engineer;
os_Collection<cell*> cells;
. . .
epart(int id, employee *eng) {

part_id = i;
responsible_engineer = eng;

}
};

Old mpart class
definition

class mpart {
public:

int part_id;
employee *responsible_engineer;
os_Collection<brep*> boundaries;
. . .
mpart(int id, employee *eng) {

part_id = i;
responsible_engineer = eng;
brep =0;

}
};

New part class
definition

class part {
public:

int part_id;
employee *responsible_engineer;
part(int id, employee *eng) {

part_id = i;
responsible_engineer = eng;

}
};

New epart class
definition

class epart : public part {
public:

os_Collection<cell*> cells;
. . .
epart(int id, employee *eng) : part(id, eng) {}

};

New mpart class
definition

class mpart : public part {
public:

os_Collection<brep*> boundaries;
. . .
mpart(int id, employee *eng) : part(id, eng) { brep =0; }

};

New schema source
file

The schema source file for this executable should contain the new
definitions of epart and mpart , as well as the definition of part .
Release 5.1 361

Example: Changing Inheritance
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>

/* these contain the new definitions */
#include "part.hh"
#include "new_epart.hh"
#include "new_mpart.hh"

static void dummy() {

OS_MARK_SCHEMA_TYPE(epart);
OS_MARK_SCHEMA_TYPE(mpart);
OS_MARK_SCHEMA_TYPE(part);
. . .

}

The instance migration phase of the schema evolution process
modifies the instances of epart and mpart by eliminating the part_
id and responsible_engineer fields from the subobject
corresponding to the derived class. It also adds to each instance a
subobject corresponding to the base class, and initializes it as if by
a constructor that initializes each member to 0.

Supplying a
transformer function
for each derived class

Suppose you want to overwrite the default initialization
performed by the schema evolution facility, and initialize
part::part_id and part::responsible_engineer for a migrated
instance based on the values of the old part_id and responsible_
engineer fields for the corresponding unmigrated instance.

To do this, you supply a transformer function for each derived
class, epart and mpart .

static void epart_transform(void *the_new_obj) {

/* get a typed ptr to the old instance */
os_typed_pointer_void old_obj_typed_ptr =

os_schema_evolution::get_unevolved_object(
the_new_obj

);

/* get a void* ptr to the old obj */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old data member values */
int the_old_id_val;
os_fetch(

the_old_obj,
*c.find_member("part_id"),
362 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
the_old_id_val
);

void *the_old_resp_eng_val;
os_fetch(

the_old_obj,
*c.find_member("responsible_engineer"),
the_old_resp_eng_val

);

/* set the new data member values */
epart *epart_ptr = (epart*)the_new_obj
epart_ptr->part_id = the_old_id_val;
epart_ptr->responsible_engineer =

(employee*)the_old_resp_eng_val;
}

static void mpart_transform(void *the_new_obj) {

/* get a typed ptr to the old instance */
os_typed_pointer_void old_obj_typed_ptr =

os_schema_evolution::get_unevolved_object(
the_new_obj

);

/* get a void* ptr to the old obj */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old data member values */
int the_old_id_val;
os_fetch(

the_old_obj,
*c.find_member("part_id"),
the_old_id_val

);

void *the_old_resp_eng_val;
os_fetch(

the_old_obj,
*c.find_member("responsible_engineer"),
the_old_resp_eng_val

);

/* set the new data member values */
mpart *mpart_ptr = (mpart*)the_new_obj;
mpart_ptr->part_id = the_old_id_val;
mpart_ptr->responsible_engineer =

(employee*)the_old_resp_eng_val;

}

Release 5.1 363

Example: Changing Inheritance
Here, the transformer functions for the two classes need to do
essentially the same thing. Each function retrieves the old values
for part_id and responsible_engineer in the derived class, and sets
the new values for part::part_id and part::responsible_engineer
accordingly.

Note that, if the current evolution calls for the migration of
instances of the class employee , the value of responsible_engineer
retrieved from the old instance will be a pointer to the new
employee instance corresponding to the original data member
value. This is because pointers to migrated objects are modified
during the initialization phase to point to the new instances. This
turns out to be convenient, since we are usually interested in the
evolved version of the old data member value.

Example: associating
transformers with their
classes and invoking
evolution

Here is an application that associates the transformers with their
classes and invokes evolution.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part.hh"
#include "new_epart.hh"
#include "new_mpart.hh"

main() {
objectstore::initialize();

/* associate epart_transform() with the class epart */
os_schema_evolution::augment_post_evol_transformers(

os_user_tranformer_binding("epart", epart_transform)
);

/* associate mpart_transform() with the class mpart */
os_schema_evolution::augment_post_evol_transformers(

os_user_tranformer_binding("mpart", mpart_transform)
);

/* perform the evolution process */
os_schema_evolution::evolve(

"/example/workdb", "/example/partsdb"
);

}

For databases undergoing the evolution described in this
example, ObjectStore detects as illegal any pointers to epart s or
mpart s typed as void* . This is because, for example, before
evolution such a pointer to an epart could also be interpreted as
364 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
referring to the value of epart::part_id (since this int object starts at
the same point as the epart), while after evolution it could no
longer be interpreted as referring to that object. For more
information on illegal pointers, see Illegal Pointers on page 373.

If the example is modified to include a leftmost base class for epart
and mpart , both before and after evolution, void* pointers to epart s
and mpart s will not be illegal.
Release 5.1 365

Instance Reclassification
Instance Reclassification

As described above, the ObjectStore schema evolution facility
allows you to migrate an instance to a subclass of its original class.
This is particularly useful when new derived classes that are more
appropriate classes for existing instances of the base class are
added to a schema.

To reclassify an instance, you must define a reclassification
function and associate it with the class whose instances are to be
reclassified. As part of the instance initialization phase of schema
evolution, ObjectStore will execute the reclassification function on
each instance of the function’s associated class and reclassify the
instance according to the return value of the function.

Signature of Reclassification Functions

Reclassifiers are static functions with a return type of char* and
one argument of type os_typed_pointer_void& (see Using
Transformer Functions on page 350). This argument is a reference
to a typed pointer to the object to be reclassified, an unevolved
instance of the original class.

static char * my_reclassification_function(
os_typed_pointer_void &old_obj_typed_ptr

);

The return value, for a given instance, should be a string naming
the new class the instance is to have. If the return value is 0, the
instance will retain its current type.

As with transformers, the schema for reclassification functions is
the new schema. So to access fields of the object being reclassified,
you must use os_typed_pointer_void::get_type() , os_class_
type::find_member() , and os_fetch() . See Using Transformer
Functions on page 350 and the example in Example: Reclassifying
Instances on page 368.

Associating a Reclassifier with a Class

With the reclassification function defined, you can associate the
function with a class and invoke the evolution process. You make
the association by calling the static member function os_schema_
evolution::augment_subtype_selectors() in the application
366 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
performing evolution. The call should be made before the call to
evolve() .

augment_subtype_
selectors() function

The function augment_subtype_selectors() takes an instance of
os_evolve_subtype_fun_binding as argument. You can construct
an instance of this class by supplying a class name and a function
pointer as arguments to the constructor, as in

os_evol_subtype_fun_binding("part", part_reclassifier)

So a typical call to augment_subtype_selectors() would be

os_schema_evolution::augment_subtype_selectors (
os_evolve_subtype_fun_binding("part", part_reclassifier)

);
Release 5.1 367

Example: Reclassifying Instances
Example: Reclassifying Instances

Consider a schema containing the class part with data members
cells (a pointer to the collection of subcircuits of an electrical part)
and boundary_rep (a pointer to the geometric representation of the
boundary of a mechanical part). Suppose that the part s that have
a nonnull value for cells have 0 for boundary_rep , and the parts
that have a nonnull value for boundary_rep have 0 for cells .

In such a case, it might be desirable to modify this schema to
include two new classes derived from part , epart (for electrical
part) and mpart (for mechanical part). The data member cells can
be moved out of part and into epart , and the member boundary_
rep can be moved out of part and into mpart .

In addition to adding the subclasses to the schema, we should
migrate existing instances of part so that those with a nonnull
value for cells are reclassified as epart s, and those with a nonnull
value for boundary_rep are reclassified as mpart s.

The schema change in this example involves

• Deleting the members part::cells and part::boundary_rep

• Deriving two new classes, epart and mpart , from part

Moving data
members of part to
new subtypes

Again, note that moving a data member from supertype to
subtype should be viewed as deletion of the data member from
the supertype, together with addition of a new, distinct data
member to the subtype.

Existing part class
definition

Here is the original definition of the class part :

class part {
public:

int part_id;

mpart

part
part_id
resp_eng

cells boundary_rep
boundary_rep

part_id
resp_eng epart

part

cells
368 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
employee *responsible_engineer;
os_Collection<cell*> *cells;
brep *boundary_rep;
part(int id, employee *eng) {

part_id = i;
responsible_engineer = eng;
boundary_rep = 0;

}
};

New class definitions Here are the class definitions of the new schema:

class part {
public:

int part_id;
employee *responsible_engineer;
part(int id, employee *eng) {

part_id = i;
responsible_engineer = eng;

}
};

class epart : public part {
public:

os_Collection<cell*> *cells;
. . .
epart(int i) : part(i) { cells = 0; }

}

class mpart : public part {
public:

brep *boundary_rep;
. . .
mpart(int i) : part(i) { brep = 0; }

};

Schema source file The schema source file for this executable should contain the
definitions of epart and mpart , as well as the new definition of part .

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>

/* these contain the new definitions */
#include "new_part.hh"
#include "epart.hh"
#include "mpart.hh"

static void dummy() {
OS_MARK_SCHEMA_TYPE(epart);
OS_MARK_SCHEMA_TYPE(mpart);
OS_MARK_SCHEMA_TYPE(part);

}

Release 5.1 369

Example: Reclassifying Instances
The instance migration phase of the schema evolution process will
modify the instances of part by eliminating the cells and
boundary_rep fields. But first, you would like each part to be
reclassified according to whether it uses the cells field or the
boundary_rep field.

Reclassification
function

To do this, you define a reclassification function and associate it
with the class part . Here is the function definition:

static char *part_reclassifier(
os_typed_pointer_void &old_obj_typed_ptr

) {

/* get a void* ptr to the old obj */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old cells value */
os_Collection<cell*> *the_old_cells_val;
os_fetch(

the_old_obj,
*c.find_member("cells"),
the_old_cells_val

);

if (the_old_cells_val)
return "epart"; /* make it an epart */

/* get the old boundary_rep value */
brep *the_old_boundary_rep_val;
os_fetch(

the_old_obj,
*c.find_member("boundary_rep"),
the_old_boundary_rep_val

);

if (the_old_boundary_rep_val)
return "mpart"; /* make it an mpart */

return 0; /* leave it alone */
}

The reclassification of each part essentially amounts to
supplementing it with a subobject corresponding to the derived
class, epart or mpart . The subobject is initialized as if by a
constructor that initializes each member to 0. We can overwrite
this initialization by defining transformer functions for the
derived classes.
370 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Note that the reclassification function is associated with the
original class (the base class) of the instances it operates on, while
the transformer functions (see below) are associated with the new
classes (the derived classes) of the instances they operate on.

Transformer functions Here are the transformer functions that allow you to set the values
of cells and boundary_rep for the new instances according to their
values in the old instances.

static void epart_transform(void *the_new_obj) {

/* get a typed ptr to the old instance */
os_typed_pointer_void old_obj_typed_ptr =

os_schema_evolution::get_unevolved_object(
the_new_obj);

/* get a void* ptr to the old obj */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old data member values */
os_Collection<cells*> the_old_cells_ val;
os_fetch(the_old_obj,*c.find_member("cells"),

the_old_cells_val);

/* set the new data member value */
the_new_obj->cells = the_old_cells_val;

}

static void mpart_transform(void *the_new_obj) {

/* get a typed ptr to the old instance */
os_typed_pointer_void old_obj_typed_ptr =

os_schema_evolution::get_unevolved_object(
the_new_obj);

/* get a void* ptr to the old obj */
void *the_old_obj = old_obj_typed_ptr;

/* get the type of the old obj */
os_class_type &c = old_obj_typed_ptr.get_type();

/* get the old data member values */
brep *the_old_boundary_rep_ val;
os_fetch(

the_old_obj,
*c.find_member("boundary_rep"),
the_old_boundary_rep_val

);

/* set the new data member value */
the_new_obj->cells = the_old_boundary_rep_val;

}

Release 5.1 371

Example: Reclassifying Instances
Example application Now here is an application that associates the reclassifier and
transformers with their classes and invokes evolution:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part.hh"
#include "new_epart.hh"
#include "new_mpart.hh"

main() {

objectstore::initialize();
os_collection::initialize();

/* associate part_reclassifier() with the class part */
os_schema_evolution::augment_subtype_selectors(

os_evol_subtype_fun_binding("part", part_reclassifier)
);

/* associate epart_transform() with the class epart */
os_schema_evolution::augment_post_evol_transformers(

os_transformer_binding("epart", epart_transform)
);

/* associate mpart_transform() with the class mpart */
os_schema_evolution::augment_post_evol_transformers(

os_transformer_binding("mpart", mpart_transform)
);

/* perform the evolution process */
os_schema_evolution::evolve(

"/example/workdb",
"/example/partsdb"

);
}

372 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Illegal Pointers

During the instance initialization phase of schema evolution,
ObjectStore adjusts all pointers and references to instances of
modified classes so that they point to the new, migrated instances
of these classes. During this process, ObjectStore might detect
various kinds of illegal pointers or references. For example, it
might detect a pointer to the value of a data member that has been
removed in the new schema. By default, an exception is signaled
when an illegal pointer or reference is encountered.

Ignoring Illegal Pointers During Schema Evolution

If you want evolution to continue after detection of an illegal
pointer or reference, you can specify that illegal pointers be
ignored, by calling os_schema_evolution::set_ignore_illegal_
pointers() with a nonzero argument, before calling evolve() . This
function is declared as follows:

static void os_schema_evolution::set_ignore_illegal_pointers(
os_boolean);

Using a Handler Function for Illegal Pointers

Alternatively, you can provide a handler function associated with
one or more of the following categories of illegal pointers and
references:

• Illegal pointers and C++ references to objects

• Illegal ObjectStore local references

• ObjectStore nonlocal references

• Illegal pointers and C++ references to members

• Illegal database root values

Each time an illegal pointer or reference of the associated kind is
detected, the handler function is executed on it, and then schema
evolution is resumed. A handler function cannot modify any data
in the databases being evolved, except for the illegal pointer or
reference itself, which can be assigned a new value. The function
can, however, generate text output. For example, you can record
the location of an illegal pointer by creating a transient
ObjectStore reference to the illegal pointer, and then dumping its
text representation to a file (see os_reference::dump() in the
Release 5.1 373

Illegal Pointers
ObjectStore C++ API Reference). This text representation can be
used by a subsequent process to create another ObjectStore
reference to the same illegal pointer (see os_reference::os_
reference() in the ObjectStore C++ API Reference).

Creating a Handler Function

To associate a handler function with a category of illegal pointer
or reference:

• Define a function with the appropriate signature.

• Register the function with a call to the static member function
os_schema_evolution::set_illegal_pointer_handler() .

The signatures of the handler functions for each category are as
follows:

Illegal pointers and
C++ references to
objects

void function_name(
objectstore_exception &exc,
char *msg,
void *&the_bad_ptr

);

Illegal ObjectStore
local references

void function_name(
objectstore_exception &exc,
char *msg,
os_reference_local &the_bad_ref

);

lllegal ObjectStore
nonlocal references

void function_name(
objectstore_exception &exc,
char *msg,
os_reference &the_bad_ref

);

lllegal pointers and
C++ references to
members

void function_name(
objectstore_exception &exc,
char *msg,
os_os_canonical_ptom &the_bad_ptr

);

lllegal ObjectStore
root values

void function_name(
objectstore_exception &exc,
char *msg,
os_database_root &the_bad_root

);
374 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
The set_illegal_pointer_handler() Function

The function os_schema_evolution::set_illegal_pointer_handler()
has four overloadings corresponding to the four categories of
illegal pointers and references. Each takes one argument, a pointer
to the handler function of the appropriate signature.

Function arguments For each kind of illegal pointer handler, the exc argument is a
reference to the exception that would have been signaled had you
not provided a handler. The exception is always a child exception
of err_se_illegal_pointer. The msg argument is the error message
that would have been sent to stderr . The last argument, the_bad_
ref or the_bad_ptr , is a C++ reference to the illegal pointer or illegal
ObjectStore reference.

Identifying Illegal Pointers Passed to a Handler

To help you identify an illegal pointer passed to a handler
function, the class os_schema_evolution provides three useful
functions not yet introduced:

• os_schema_evolution::get_path_to_member()

• os_schema_evolution::path_name()

• os_schema_evolution::get_evolved_address()

get_path_to_
member() function

get_path_to_member() performed on a void* returns an instance of
os_path representing the data member whose value is pointed to
by the void* .

path_name() function path_name() performed on an os_path returns a string naming this
data member.

get_evolved_
address() function

get_evolved_address() , like get_evolved_object() , returns the
address of the new version of a specified unmigrated object. get_
evolved_address() is used here because get_evolved_object()
signals an exception when performed on an illegal pointer. (get_
unevolved_address() , like get_unevolved_object() , returns the
address of the old version of the specified migrated object.)

The os_schema_evolution class is described in Chapter 2 of the
ObjectStore C++ API Reference.

Besides the categorization we have been discussing, there is
another, orthogonal way of dividing illegal pointers and
Release 5.1 375

Illegal Pointers
references into categories. This division will help you understand
what pointers and references get counted as illegal.

Typed pointers and
references to deleted
subobjects

The instance migration process deletes subobjects of instances of
a given class when either

• The subobject is the value of a data member that has been
removed from the class.

• The subobject corresponds to a class that the given class
previously inherited from, but no longer does.

Any pointer or reference to such a deleted subobject is illegal and
can result in the exception err_se_deleted_object or err_se_deleted_
component.

void* pointers and
collocation
ambiguities

A void* pointer in an ObjectStore database has an associated set of
objects, the objects collocated at the region of memory it points to.
These are all the objects to which the pointer can be interpreted as
referring, instances of the types to which the pointer can
legitimately be cast.

For example, a void* pointer to an instance of the class epart from
the preevolution schema of Example: Changing Inheritance on
page 360 also points to the beginning of memory occupied by an
int , the value of the member epart::part_id .

If a void* pointer is associated, before evolution, with an object
with which it is not associated after evolution, the pointer is illegal
and can result in the exception err_se_ambiguous_void_pointer.

Consider again Example: Changing Inheritance on page 360.
After evolution, the void* pointer to an instance of epart now also
points to a part , as well as an int , the value of the member
part::part_id . But while before evolution the pointer could be
interpreted as referring to the value of epart::part_id , after
evolution it could no longer be interpreted as referring to this
object. Since the value of epart::part_id is no longer one of the
pointer’s associated objects, the pointer becomes illegal.
(Remember that ObjectStore makes no semantic connection
between epart::part_id and part::part_id .)

Note that void* pointers appear in every database, since the values
of database roots are typed as void* . They might be common in
some databases, since in the underlying representations of
ObjectStore collections, elements are typed as void* .
376 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Pointers and references to transient or freed memory and type-
mismatched pointers and references: these are pointers and
references that are illegal even before schema evolution, but
ObjectStore will detect them during instance initialization.
Pointers and references to transient objects, or to objects that have
been deleted, are illegal. Pointers and references with particular
types that are not actually the addresses of some objects of that
type are also illegal.
Release 5.1 377

Example: Using Illegal Pointer Handlers
Example: Using Illegal Pointer Handlers

Consider the schema change made in Example: Changing
Inheritance on page 360.

Changing epart and
mpart to inherit from
part

Changing epart and mpart to inherit from part; factoring out the
common state to the base type.

As described above, if a database undergoes this schema change,
and it contains void* pointers to epart s or mpart s, these pointers
will be detected as illegal, and should be handled with an illegal
pointer handler.

A void* pointer to (for example) an epart is illegal because it could
be interpreted, before evolution, as referring to the value of
epart::part_id , which does not exist after evolution. But if we know
this interpretation is never intended, then we can use the
following illegal pointer handler.

Example: using an
illegal pointer handler

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>
#include <ostore/mop.hh>

#include <stdio.h>
#include <string.h>

#include "part5new.hh"

static void my_illegal_pointer_handler(
objectstore_exception& exc,
char* explanation,
void*& illegalp

) {

if (& exc == & err_se_ambiguous_void_pointer)
{

os_path * member_path =
os_schema_evolution::get_path_to_member(illegalp);

if (member_path)

mpart

part
part_id
resp_eng

cells boundaries

epart

part_id
resp_eng
cells boundaries

part_id
resp_eng

epart mpart
378 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
{
char * path_string = os_schema_evolution::path_name(

* member_path);
if (strcmp(path_string, "epart.supplier_id") == 0 ||

strcmp(path_string, "mpart.supplier_id") == 0)
{

/* We know that these void * pointers in the */
/* pre-evolved world should be void * pointers */
/* to parts in the post-evolved world, so we set */
/* the pointer to the evolved object */
illegalp = (void *)
os_schema_evolution::
get_evolved_address(illegalp);
return;

} /* end if */

} /* end if */

} /* end if */

/* an unanticipated illegal pointer, signal the exception */
exc.signal(explanation);

}

Using transformers with
illegal pointer handlers

For this example, we use the same transformers as Example 3.
Below is an application that associates the transformers with their
classes, registers the illegal pointer handler, and invokes
evolution.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>
#include <ostore/mop.hh>
#include <stdio.h>
#include <string.h>
#include "part5new.hh"

main(int, char * argv[]) {

/* register the illegal pointer handler */
 os_schema_evolution::set_illegal_pointer_handler(

my_illegal_pointer_handler
);

/* associate epart_transform with the class epart */
os_schema_evolution::augment_post_evol_transformers(

os_transformer_binding("epart", epart_transform)
);

/* associate mpart_transform with the class mpart */
os_schema_evolution::augment_post_evol_transformers(

os_transformer_binding("mpart", mpart_transform)
);
Release 5.1 379

Example: Using Illegal Pointer Handlers
/* perform the evolution process */
os_schema_evolution::evolve(argv[2], argv[1]);

}

380 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Obsolete Index and Query Handlers

When the selection criterion of a query or the path of an index
makes reference to a removed class or data member, or makes
incorrect type assumptions in light of a schema change, the query
or index becomes obsolete. ObjectStore detects all obsolete queries
and indexes. In the case of an obsolete query, ObjectStore
internally marks the query so that subsequent attempts to use it
result in the exception err_os_query_evaluation_error.

As with illegal pointers, you can handle obsolete queries or
indexes by providing a special handler function for each purpose.
If you do not supply handlers, ObjectStore signals an exception
when it detects an obsolete query or index.

Handling obsolete
queries or indexes

To handle obsolete queries or indexes:

• Define a function with the appropriate signature.

• Register the function with a call to the static member function
os_schema_evolution::set_obsolete_index_handler() or os_
schema_evolution::set_obsolete_query_handler() .

Form of obsolete
query handler call

The signature for an obsolete query handler is

void function_name(os_coll_query &query,
const char *query_expr)

A reference to the obsolete query is passed in, together with a
string expressing the query’s selection criterion.

Form of obsolete
index handler call

The signature for an obsolete index handler is

void function_name(os_collection &coll, const char *path_string)

A reference to the collection indexed by the obsolete index is
passed in, together with a string expressing the index’s path (key).
Release 5.1 381

Task List Reporting
Task List Reporting

Before initiating evolution for a particular schema change, you
might want to generate a task list to verify your expectations
concerning the instance initialization phase. The task list contains
a function definition for each class whose instances will be
migrated.

Form of the call Each function has a name of the form

class-name@[1]::initializer()

where class-name names the function’s associated class.

Statements for data
members and their
classes

Each function definition contains a statement or comment for each
data member of its associated class. For a member with value type
T, this statement or comment is any of

• Assignment statement

• Call toT@[1]::copy_initializer()

• Call toT@[2]::construct_initializer()

• Call to T@[1]::initializer()

• Comment indicating that the field will be initialized to zero

Assignment
statements

An assignment statement is used when the old and new value
types of the member are assignment compatible:

• T@[1]::copy_initializer() is used when the member has not been
modified by the schema change, and the new value can be
copied bit by bit from the old value.

• T@[2]::construct_initializer() is used when the value type has
been modified and the new value type is a class.

• T@[1]::initializer() is used when the member has not been
modified by the schema change, but instances of the value type
of the member will be migrated. Definitions for all these
functions appear in the task list.

A program to generate a task list is just like a program to perform
evolution, except that the static member function os_schema_
evolution::task_list() is called instead of os_schema_
evolution::evolve() .
382 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
task_list() function The function task_list() has two overloadings analogous to the two
overloadings of evolve() , declared as follows:

static void task_list(
const char *workdb_name,
const char *db_to_evolve

);

static void task_list(
const char *workdb_name,
const os_collection &dbs_to_evolve

);

Using task_list() Prior to calling task_list() , you use os_schema_evolution::set_
task_list_file_name() to specify the file to which the task list is to be
sent. This function is declared as follows:

static void set_task_list_file_name(const char *file_name);

As with evolve() , the new schema is, by default, the schema of the
application that calls task_list() , but you can specify the new
schema with os_schema_evolution::set_evolved_schema_db_
name() before calling task_list() .

Also as with evolve() , you must specify the classes that are to be
removed from the schema with os_schema_evolution::augment_
classes_to_be_removed() . The calls should precede the call to
task_list() .
Release 5.1 383

Instance Initialization Rules
Instance Initialization Rules

This section starts with a description of the various categories of
schema evolution. Following this discussion, the initialization
rules for each category are described.

Kinds of schema
modifications

The different kinds of schema modification can be divided into
three broad (not entirely disjoint) categories:

• Class creation

• Class redefinition

• Class deletion

Kinds of class
redefinitions

The kinds of class redefinition, in turn, can be divided into three
subcategories: changes relating to

• Inheritance

• Data members

• Member functions

Categories and
subcategories of
schema modification

Class Creation

Adding a class to a database’s schema never, by itself, requires the
use of the schema evolution facility. This is because a new class
cannot have any previously existing instances. Since there cannot
be any existing instances, instance migration is not necessary, and
adding the class to the database’s schema is handled
automatically when an application using the new class opens the
database.

class creation class redefinition class deletion

data member

schema change

redefinition
member function
redefinition

inheritance
redefinition
384 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Inheritance Redefinition

But, although adding a class does not by itself require using the
evolution facility, sometimes adding a class involves also
redefining another existing class. This is the case when you add a
new class as a base class of another existing class, for example. The
definition of the existing class must be changed to specify
inheritance from the new class. And the representation of
instances of the derived class must be supplemented with a
subobject corresponding to the new base class. Such schema
changes fall under the category of inheritance redefinition.

In general, inheritance redefinition includes changing a class to
inherit from a new or existing class, and changing a class so that it
no longer inherits from an existing class, or changing class
inheritance from virtual to nonvirtual or the reverse. See Instance
Reclassification on page 340.

Data Member Redefinition

Class redefinition relating to data members includes changing the
definition of a class by adding or deleting members, changing the
value type of a data member, and changing the order of data
members. (To change the name of a data member, you delete it
and then add a new one with the desired name.) See Instance
Reclassification on page 340.

Member Function Redefinition

There are only two kinds of member function-related changes that
require schema evolution: changing the definition of a class by
adding the first virtual function, and changing the definition of a
class by removing the only virtual function. These modifications
require schema evolution because they change the representation
of any instances of the modified class. Other changes related to
member functions have no effect on the layout of class instances,
and so do not require schema evolution. See Instance
Reclassification on page 340.

Class Deletion

In the case of class deletion, instance migration consists of the
deletion of existing instances of the deleted classes. Any pointers
typed as pointers to a deleted class are detected before instance
Release 5.1 385

Instance Initialization Rules
initialization, and result in an err_schema_evolution exception. Any
void* pointer to an instance of a deleted class (or pointer to a
subobject of such an instance) is detected as an illegal pointer.

As with class creation, deleting a class might at the same time
involve changing the inheritance structure of some other class.
This is the case, for example, when you delete a class that serves
as a base class of another class that is to remain in the schema. The
definition of the remaining class must be changed so that it no
longer specifies inheritance from the deleted class. And the
representation of the remaining class’s instances must have the
subobject corresponding to the base class removed. Such schema
changes fall under the category of inheritance redefinition as well
as class deletion. See Instance Reclassification on page 340.

Instance Reclassification

As mentioned earlier, the schema evolution facility provides a
special capability for reclassifying instances of a base class so that
they become instances of classes derived from the base class. This
form of instance migration is never actually required by a schema
change, but it is often desirable.

The sections that follow discuss the default initialization rules for
each of these categories (except class creation, which, as
explained, does not require the use of the evolution facility). See
Instance Reclassification on page 340.
386 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Schema Changes Related to Data Members

The sections that follow consider the different types of schema
modification related to data members:

• Adding Data Members on page 388

• Deleting Data Members on page 389

• Changing the Value Type of a Data Member on page 390

• Changing the Order of Data Members on page 394

• Summary of Data Member Changes Not Requiring Explicit
Evolution on page 395

This section is particularly concerned with describing the instance
migration phase of schema evolution for each kind of
modification.

Categories of data
member redefinition

Notice that indirect instances of a modified class are migrated just
as are direct instances. That is, if you change the definition of base
class B, then instances of class D, derived from B, will be migrated
just as are direct instances (if there are any) of B.

changing deleting

reordering

value type

adding

data member
 redefinition
Release 5.1 387

Adding Data Members
Adding Data Members

When you add a data member to a class, the schema evolution
process changes the representation of any of its instances by
adding a field to hold the value of the new member. How this field
is initialized depends on the value type of the new member.

If the value type is a built-in, nonarray type (integral type, floating
type, pointer type, reference type, enumeration type, or pointer to
member type), it is initialized with the appropriate representation
of 0. If the value type is a class, the field is initialized as if by a
constructor that initializes each member to 0.

If the value type is an array type, each element of the array is
initialized (for arrays of built-ins) with 0 or (for arrays of class
instances) as if by a constructor that initializes each member to 0
for the array’s element class. For arrays of arrays, these rules are
applied recursively. In other words, an array is initialized by
initializing each of its elements as if it were a separate data
member.

As with all modified classes, the class with the new data member
can have an associated transformer function that you supply. If
you want, this function can overwrite these default initializations,
supplying a value for the new field in whatever way meets your
needs.
388 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Deleting Data Members

When you delete a data member from a class, the schema
evolution process changes the representation of any of its
instances by removing the field that held the value of the deleted
member. Since no new storage is created by this schema change,
the issue of initialization does not arise. Note however that a
transformer function for the modified class can still access the
value of the removed member in the unevolved instance. See
Example: Changing Inheritance on page 360.

By default, pointers to members being removed result in an illegal
pointer exception during evolution. You can, however, supply an
illegal pointer handler to process the illegal pointer and resume
evolution. See Illegal Pointers on page 373.
Release 5.1 389

Changing the Value Type of a Data Member
Changing the Value Type of a Data Member

When you change the value type of a data member, the schema
evolution process changes the representation of any of its
instances by adjusting the size of the member’s associated storage
(if necessary) and reinitializing that storage. How this storage is
initialized depends on the new and old value types.

Consider first the case in which the new value type is not an array
type.

Assignment-
compatible value
types

Old and new member declarations with assignment-compatible
value types.

If the new and old types are assignment compatible, the new field
is initialized by assignment. That is, ObjectStore assigns the value
of the old data member to the storage associated with the new
member, applying any standard conversions defined by the C++
language.

For example, if you change the value type of a data member from
int to float , an old instance with the value (int)(17) for this member
will be changed to have value (float)(17.0).

In some cases schema evolution considers types assignment
compatible when C++ would not. For example, if D is derived
from B, schema evolution will assign a B* to a D* if it knows that
the B is also an instance of D.

If the new and old types are not assignment compatible, there are
two cases.

int cost; /*old member declaration */

float cost; /*new member declaration */
390 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
New value type is a
built-in

Old and new member declarations with assignment-incompatible
value types, where the new value type is a built-in.

If the new value type is a built-in, nonarray type (integral type,
floating type, pointer type, reference type, enumeration type, or
pointer to member type), it is initialized with 0.

New value type is a
class

Old and new member declarations, where the new value type is a
class.

If the new value type is a class, the field is initialized as if by a
constructor that initializes each member to 0.

If you change the value type of a data member by changing it from
a signed integer type to an unsigned integer type, or the reverse,
you do not need to perform schema evolution. This is because
such a change does not change the size of the associated field, and
does not change how (sufficiently small) positive numbers are
represented.

Now consider the case in which the new value type is an array
type.

Array values with
compatible types

Old and new member declarations with array value types whose
elements are assignment compatible.

class dollars cost; /*old member declaration */

float cost; /*new member declaration */

int cost; /*old member declaration */

class dollars cost; /*new member declaration */

int cost[10]; /*old member declaration */

float cost[10]; /*new member declaration */
Release 5.1 391

Changing the Value Type of a Data Member
If the old value type is also an array type, and if the element types
of the arrays are assignment compatible, the new field is
initialized by assignment. That is, ObjectStore assigns the value of
the ith element of the old array to the ith element of the new array,
applying any standard conversions defined by the C++ language.
This is done for all i between 0 and one less than the size of the
smaller array.

If the new array has n more elements than the old array, the
trailing n elements of the new array are initialized with 0 (if the
element type is a built-in, nonarray type) or as if by a generate
default constructor (if the element type is a class). If the old array
has n more elements than the new array, the trailing n elements of
the old array are ignored.

Array values with
incompatible types

Old and new member declarations with array value types whose
elements are not assignment compatible.

If the old value type is also an array type, but the element types
are not assignment compatible, then each element of the new array
is initialized with 0 (if the element type is a built-in, nonarray
type) or as if by a constructor that initializes each member to 0 (if
the element type is a class).

Non-array to array
type

Old and new member declarations; the old value type is a
nonarray type and the new value type is an array type.

If the old value type is not an array type, each element of the new
array is initialized with 0 (if the element type is a built-in,
nonarray type) or as if by a constructor that initializes each
member to 0 (if the element type is a class).

class dollars cost[10]; /*old member declaration */

float cost[10]; /*new member declaration */

int cost; /*old member declaration */

float cost[10]; /*new member declaration */
392 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
In general, arrays are initialized by initializing each array element
as if it were a separate data member.

For a multidimensional array, these rules apply to the first
dimension, and recursively to the other dimensions if the length
of each other dimension is not changed by evolution. If the length
of one of these other dimensions changes, every element of the
multidimensional array is initialized with 0 (if the element type is
a built-in) or as if by a constructor that initializes each member to
0 (if the element type is a class).

As with all modified classes, the class with the modified data
member can have an associated transformer function that you
supply. If you want, this function can overwrite these default
initializations, supplying a value for the new field in whatever
way meets your needs.

Bit fields are evolved according to the default signed/unsigned
rules of the implementation that built the evolution application.
This can lead to unexpected results when an evolution application
built with one default rule evolves a database originally
populated by an application built by an implementation whose
default rule differs. The unexpected results occur when the
evolution application attempts to increase the width of a bit field.
Release 5.1 393

Changing the Order of Data Members
Changing the Order of Data Members

When you change the order of the data members defined by a
class (by changing the order in which their declarations appear
within the definition of the class), the schema evolution process
changes the representation of any of its instances by reordering
the storage fields associated with the members. Since there is no
new storage created by this schema change, the issue of
initialization does not arise.
394 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Summary of Data Member Changes Not Requiring
Explicit Evolution

Note that you do not need to invoke schema evolution to make the
following kinds of data member modifications:

• Changing the value type of a data member from a signed type
to unsigned type and the reverse

• Changing the access specified for a data member (private ,
public , or protected)

• Changing the value type of a data member from a const to non-
const type and the reverse

• Adding or removing static data members
Release 5.1 395

Schema Changes Related to Member Functions
Schema Changes Related to Member Functions

As mentioned earlier, there are only two kinds of member-
function-related changes that require schema evolution: changing
the definition of a class by adding the first virtual function, and
changing the definition of a class by removing the only virtual
function. These modifications require schema evolution because
they change the representation of any instances of the modified
class. Other changes related to member functions have no effect
on the layout of class instances, and so do not require schema
evolution.
396 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Schema Changes Related to Class Inheritance

Changes relating to class inheritance include adding base classes,
removing base classes, and changing class inheritance from
virtual to nonvirtual, or the reverse. Each of these is discussed in
the following sections:

• Adding Base Classes on page 398

• Removing Base Classes on page 400

• Changing Between Virtual and Nonvirtual Inheritance on
page 401
Release 5.1 397

Adding Base Classes
Adding Base Classes

When you modify a database’s schema by adding a base class, say
B, to an existing class, say D, instances of D must be supplemented
with a B part.

Adding a base class
to an existing class

When the class D is modified to inherit from a base class, B, its
instances must be modified to include a B part.

The instance initialization phase of schema evolution will add the
B part to each instance of D, and initialize that part as if by a
constructor that initializes each member to 0.

If you provide a transformer function for D, it will be run during
the instance transformation phase.

Note that this category of schema change covers more cases than
might be suggested by the illustration above.

In particular,

• Schema evolution works just the same if B is added as a base
class to more than one existing class. Each instance of each
existing class must be supplemented with a B part.

• Indirect as well as direct instances of a class made to inherit
from a base class must be migrated (see “When changing a
class requires migrations” on page 399).

• The class that is added as a base class might or might not be
part of the old schema. In either case, no instance migration

class B

class D

class D

instance of D
instance of D

B part

D part
D part
398 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
need be performed for the base class, unless it too has evolved
(but see Instance Reclassification on page 366).

When changing a
class requires
migrations

When you change the definition of B so that it inherits from A,
instances of C (derived from B) must be migrated.

class A

class B

instance of C
instance of C

B part

A part

class C

class A

class B

class C

C part

B part

C part
Release 5.1 399

Removing Base Classes
Removing Base Classes

When you change a class, D, so that it no longer inherits from a
given class, B, each instance of D is migrated by removing the
subobject corresponding to B.

Modifying other
instances when
removing a class

When the class D is modified so that it no longer inherits from a
base class, B, its instances must be modified to remove the B part.

Pointers to the subobject being removed, if they are typed as B*
rather than D*, result in an illegal pointer exception’s being
signaled during evolution. (Pointers typed as D* are, of course,
automatically adjusted to point to the migrated instance of D.) The
same is true for pointers (so typed) to data members of the deleted
subobject.

class B

class D

instance of D
instance of D

D part

class B

class D

B part

D part
400 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Changing Between Virtual and Nonvirtual
Inheritance

Consider a class X that inherits nonvirtually from a class B. If you
change X to inherit virtually from B, instances of X must be
migrated. In particular, for each instance of X, the nonvirtual B
subobject is eliminated and a virtual (shared) B subobject is
introduced. Each instance of X will have its virtual B subobject
initialized as if by a constructor that sets each member to 0. This
applies to all instances of X, including instances that are subobjects
of other objects, either as a data member value or as a subobject
corresponding to a base class. The figure below illustrates one
such case. In general, every virtual subobject introduced by the
inheritance change is initialized as if by a constructor that sets
each field to 0.

Virtual inheritance

When you change both X and Y to inherit virtually from B,
instances of Z (derived from both X and Y) are migrated so that
they have only a single B part.

Similarly, if inheritance is changed from virtual to nonvirtual,
every nonvirtual subobject introduced by the change is initialized
as if by a constructor that sets each field to 0. So if X has a virtual
base class, B, changing X to inherit nonvirtually from B eliminates

instance of Z

B part
virtual B part

X part

B part

Y part

Z part
instance of Z

Y part

X part

Z part

class X

class Bclass B

class Z

class B

class Y

class Z

class Yclass X
Release 5.1 401

Changing Between Virtual and Nonvirtual Inheritance
a virtual B subobject from each instance of X and introduces a
nonvirtual B subobject that is initialized as if by a constructor that
sets each member to 0.

Nonvirtual inheritance

When you change either X or Y to inherit nonvirtually from B,
instances of Z (derived from both X and Y) are migrated so that
they have two B parts.

instance of Z

B part
virtual B part

X part

B part

Y part

Z part
instance of Z

Y part

X part

Z part

class X

class Bclass B

class Z

class B

class Y

class Z

class Yclass X
402 ObjectStore Advanced C++ API User Guide

Chapter 9: Advanced Schema Evolution
Class Deletion

Deletion of a class using the schema evolution facility results in
deletion of all its instances during the instance initialization
phase. Pointers and references to objects so deleted provoke err_
se_deleted_object.
Release 5.1 403

Instance Reclassification
Instance Reclassification

When an instance is reclassified, it acquires at least one new
subobject during instance initialization. Each new subobject is
initialized as if by a constructor that initializes each field to 0.

Note that an instance of a base class can be reclassified as an
instance of any class derived from the base class, not just classes
directly derived from it.

Effect of instance
reclassification

When you reclassify an instance of A so that it becomes an
instance of C, it acquires two additional subobjects.

instance of A

instance of A

A part

class A

class B

B part

C part

class C

A part
404 ObjectStore Advanced C++ API User Guide

Chapter 10
Database Utility API

The information about the database utility APIs is organized in
the following manner:

Database Utility API Overview 406

Managing Servers 407

Managing Clients 416

Managing Cache Managers 417

Managing Databases 420

Managing Schemas 429

Exceptions Summary 430
Release 5.1 405

Database Utility API Overview
Database Utility API Overview

The database utility API provides C++ functions corresponding
to the utilities documented in Chapter 4, Utilities, in ObjectStore
Management. You can use them as a basis for your own database
utilities and tools.

The os_dbutil class All the functions in this facility are members of the class os_dbutil .
See os_dbutil in Chapter 2 of the ObjectStore C++ API Reference for
a complete description of the os_dbutil class.

Initializing the
database utility API

Call the following function before using any other members of os_
dbutil :

static void os_dbutil::initialize() ;

You only need to call this function once in each application.
406 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Managing Servers

Getting Rawfs Disk Space Information with disk_free()

static void disk_free(
const char *hostname,
os_free_blocks *blocks

) ;

Function arguments Gets disk space usage in the rawfs managed by the Server on the
machine named hostname . blocks points to an instance of os_free_
blocks allocated by the caller, using the zero-argument
constructor. The class os_free_blocks has the following public
data members:

disk_free() sets the values of these data members for the instance
of os_free_blocks pointed to by the argument blocks .

The os_free_blocks constructor sets struct_version to the value of
os_free_blocks_version in the dbutil.hh file included by your
application. If this version is different from that used by the
library, err_misc is signaled. The constructor initializes all other
members to 0.

See also • os_dbutil::disk_free() in Chapter 2 of ObjectStore C++ API
Reference

• osdf: Displaying Rawfs Disk Space Information in Chapter 4 of
ObjectStore Management

Getting Server Information with svr_stat()

static void svr_stat(
const char *server_host,
os_unsigned_int32 request_bits
os_svr_stat *svrstat_data

) ;

Function arguments The db_util::svr_stat() function gets statistics for a Server’s clients
on server_host .

os_unsigned_int32 struct_version;

os_unsigned_int32 free_blocks;

os_unsigned_int32 file_system_size;

os_unsigned_int32 used_blocks;
Release 5.1 407

Managing Servers
See also • os_dbutil::svr_stat() in Chapter 2 of ObjectStore C++ API
Reference

• ossvrstat: Displaying Server and Client Information in Chapter
4 of ObjectStore Management

• ossvrmtr: Displaying Server Resource Information in Chapter
4 of ObjectStore Management

Enumerators for
request_bits

The request_bits argument specifies what information is desired.
Supply this argument by forming the bit-wise disjunction of zero
or more of the following enumerators:

• os_svr_stat::get_svr_usage

• os_svr_stat::get_svr_meter_samples

• os_svr_stat::get_svr_parameters

• os_svr_stat::get_client_info_self

• os_svr_stat::get_client_info_others

For each enumerator that is specified, the corresponding
information is retrieved.

For each of the classes described below, the constructor sets
struct_version to the value of os_free_blocks_version in the
dbutil.hh file included by your application. If this version is
different from that used by the library, err_misc is signaled. The
constructor initializes all other members to 0.

Public data members
in os_svr_stat

The svr_stat_data argument points to an instance of os_svr_stat
allocated by the caller, using the zero-argument constructor. This
structure has the following public data members:os_dbutil::os_

os_db_util::os_svr_stat() allocates instances of these as required.

os_unsigned_int32 struct_version;

os_svr_stat_svr_header header;

os_svr_stat_svr_parameters* svr_parameters;

os_svr_stat_svr_rusage* svr_rusage;

os_svr_stat_svr_meters* svr_meter_samples;

os_unsigned_int32 n_meter_samples;

os_svr_stat_client_info* client_info_self;

os_svr_stat_client_info* client_info_others;

os_unsigned_int32 n_clients;
408 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
They are automatically cleaned up when the os_svr_stat instance
(as provided by the caller) is deleted.

Public data members
in os_svr_stat_svr_
header

The os_svr_stat_svr_header data member (a member of os_svr_
stat) has the following public data members:

Public data members
in os_svr_stat_svr_
parameters

The os_svr_stat_svr_parameters data member (a member of os_
svr_stat) has the following public data members:

os_unsigned_int32 struct_version;

char* os_release_name;

os_unsigned_int32 server_major_version;

os_unsigned_int32 server_minor_version;

char* compilation;

os_unsigned_int32 struct_version;

char* parameter_file;

os_boolean allow_shared_mem_usage;

os_int32* authentication_list;

os_unsigned_int32 n_authentications;

os_int32 RAWFS_db_expiration_time;

os_int32 deadlock_strategy;

os_unsigned_int32 direct_to_segment_threshold;

char* log_path;

os_unsigned_int32 current_log_size_sectors;

os_unsigned_int32 initial_log_data_sectors;

os_unsigned_int32 growth_log_data_sectors;

os_unsigned_int32 log_buffer_sectors;

os_unsigned_int32 initial_log_record_sectors;

os_unsigned_int32 growth_log_record_sectors;

os_unsigned_int32 max_data_propagation_threshold;

os_unsigned_int32 max_propagation_sectors;

os_unsigned_int32 max_msg_buffer_sectors;

os_unsigned_int32 max_msg_buffers;

os_unsigned_int32 sleep_time_between_2p_
outcomes;

os_unsigned_int32 sleep_time_between_propagates;

os_unsigned_int32 write_buffer_sectors;

os_unsigned_int32 tcp_recv_buffer_size;
Release 5.1 409

Managing Servers
Public data members
in os_svr_stat_svr_
rusage

The os_svr_stat_svr_rusage data member (a member of os_svr_
stat) has the following public data members:

Public data members
in os_svr_stat_svr_
meters

The os_svr_stat_svr_meters data member (a member of os_svr_
stat) has the following public data members:

os_unsigned_int32 tcp_send_buffer_size;

os_boolean allow_nfs_locks;

os_boolean allow_remote_database_access;

os_unsigned_int32 max_two_phase_delay;

os_unsigned_int32 max_aio_threads;

os_unsigned_int32 cache_mgr_ping_time;

os_unsigned_int32 max_memory_usage;

os_unsigned_int32 max_connect_memory_usage;

os_unsigned_int32 remote_db_grow_reserve;

os_boolean allow_estale_to_corrupt-DBs;

os_int32 restricted_file_db_access_only;

os_unsigned_int32 failover_heartbeat_time;

os_unsigned_
int32

struct_version;

os_timesecs ru_utime; /* user time used */

os_timesecs ru_stime; /* system time used */

os_int32 ru_maxrss; /* max resident set size */

os_int32 ru_ixrss; /* shared mem size */

os_int32 ru_idrss; /* unshared data size */

os_int32 ru_isrss; /* unshared stack size */

os_int32 ru_minflt; /* page reclaims */

os_int32 ru_majflt; /* page faults */

os_int32 ru_nswap; /* swaps */

os_int32 ru_inblock; /* block input ops */

os_int32 ru_msgsnd; /* messages sent */

os_int32 ru_msgrcv; /* messages received */

os_int32 ru_nsignals; /* signals received */

os_int32 ru_nvcsw;
/* voluntary context switches */

os_int32 ru_nivcsw;
/* involuntary context switches */

os_unsigned_int32 struct_version;
410 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Public data members
in os_svr_stat_client_
info

The os_svr_stat_client_info data member (a member of os_svr_
stat) has the following public data members:

os_boolean valid;

os_unsigned_int32 n_minutes;

os_unsigned_int32 n_receive_msgs;

os_unsigned_int32 n_callback_msgs;

os_unsigned_int32 n_callback_sectors_requested;

os_unsigned_int32 n_callback_sectors_succeeded;

os_unsigned_int32 n_sectors_read;

os_unsigned_int32 n_sectors_written;

os_unsigned_int32 n_commit;

os_unsigned_int32 n_phase_2_commit;

os_unsigned_int32 n_readonly_commit;

os_unsigned_int32 n_abort;

os_unsigned_int32 n_phase_2_abort;

os_unsigned_int32 n_deadlocks;

os_unsigned_int32 n_readonly_commit;

os_unsigned_int32 n_abort;

os_unsigned_int32 n_phase_2_abort;

os_unsigned_int32 n_deadlocks

os_unsigned_int32 n_msg_buffer_waits;

os_unsigned_int32 n_log_records;

os_unsigned_int32 n_log_seg_switches;

os_unsigned_int32 n_flush_log_data_writes;

os_unsigned_int32 n_flush_log_record_writes;

os_unsigned_int32 n_log_data_writes;

os_unsigned_int32 n_log_record_writes;

os_unsigned_int32 n_sectors_propagated;

os_unsigned_int32 n_sectors_direct;

os_unsigned_int32 n_do_some_propagation;

os_unsigned_int32 struct_version;

os_svr_stat_client_process* process;

os_svr_stat_client_state* state;

os_svr_stat_client_meters* meters;
Release 5.1 411

Managing Servers
os_db_util::os_svr_stat() allocates instances of these as required.
They are automatically cleaned up when the os_svr_stat instance
(as provided by the caller) is deleted.

Public data members
in os_svr_stat_client_
process

The os_svr_stat_client_process data member (a member of os_
svr_stat_client_info) has the following public data members:

Public data members
in os_svr_stat_client_
state

The os_svr_stat_client_state data member (a member of os_svr_
stat_client_info) has the following public data members:

os_client_lock_type enum os_client_lock_type {
OSSVRSTAT_CLIENT_LOCK_TO_MAX_BLOCKS,
OSSVRSTAT_CLIENT_LOCK_TO_NBLOCKS,

};

os_client_state_type enum os_client_state_type {
OSSVRSTAT_CLIENT_WAITING_MESSAGE,
OSSVRSTAT_CLIENT_EXECUTING_MESSAGE,
OSSVRSTAT_CLIENT_WAITING_RANGE_READ_LOCK,
OSSVRSTAT_CLIENT_WAITING_RANGE_WRITE_LOCK,

os_unsigned_int32 struct_version;

char* host_name;

os_unsigned_int32 process_id;

char* client_name;

os_unsigned_int32 client_id;

os_unsigned_int32 struct_version;

os_client_state_type client_state;

char* message_name;

os_boolean txn_in_progress;

os_unsigned_int32 txn_priority;

os_unsigned_int32 txn_duration;

os_unsigned_int32 txn_work;

os_client_lock_type lock_state;

os_unsigned_int32 db_id;

char* db_pathname;

os_unsigned_int32 locked_seg_id;

os_unsigned_int32 locking_start_sector;

os_unsigned_int32 locking_for_n_sectors;

os_unsigned_int32 n_conflicts;

os_svr_stat_client_
process*

lock_conflicts;
412 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
OSSVRSTAT_CLIENT_WAITING_SEGMENT_WRITE_LOCK,
OSSVRSTAT_CLIENT_DEAD,
OSSVRSTAT_CLIENT_WAITING_SEGMENT_READ_LOCK,
OSSVRSTAT_CLIENT_WAITING_DB_READ_LOCK,
OSSVRSTAT_CLIENT_WAITING_DB_WRITE_LOCK,

};

Data in locking_start_sector and locking_for_n_sectors is valid
only when lock_state is OSSVRSTAT_CLIENT_STATE_WAITING_
RANGE_READ_LOCK or OSSVRSTAT_CLIENT_STATE_WAITING_
RANGE_WRITE_LOCK .

Public data members
in os_svr_stat_client_
meters

The os_svr_stat_client_meters data member (a member of os_svr_
stat_client_info) has the following public data members:

Determining Sector Size with get_sector_size()

static os_unsigned_int32 get_sector_size() ;

Return values Returns 512, the size of a sector in bytes. Certain ObjectStore
utilities report some of their results in numbers of sectors, and
some Server parameters are specified in sectors

See also • os_dbutil::get_sector_size() in Chapter 2 of ObjectStore C++ API
Reference

• Chapter 2, Server Parameters, of ObjectStore Management

os_unsigned_int32 struct_version;

os_unsigned_int32 n_receive_msgs;

os_unsigned_int32 n_callback_msgs;

os_unsigned_int32 n_callback_sectors_requested;

os_unsigned_int32 n_callback_sectors_succeeded;

os_unsigned_int32 n_sectors_read;

os_unsigned_int32 n_sectors_written;

os_unsigned_int32 n_deadlocks;

os_unsigned_int32 n_lock_timeouts;

os_unsigned_int32 n_commit;

os_unsigned_int32 n_phase_2_commit;

os_unsigned_int32 n_readonly_commit;

os_unsigned_int32 n_abort;

os_unsigned_int32 n_phase_2_abort;
Release 5.1 413

Managing Servers
Killing a Client Thread on a Server with svr_client_kill()

static os_boolean svr_client_kill(
const char *server_host,
os_int32 client_pid,
const char *client_name,
const char *client_hostname,
os_boolean all,
os_int32 &status

) ;

Function arguments Kills one or all clients of the specified Server. server_host is the
name of the machine running the Server.

client_pid is the process ID of the client to kill. client_name is the
name of the client to kill. client_hostname is the name of the
machine running the client to kill.

If all is 1, the other arguments except server_host are ignored, and
all clients on the specified Server are killed.

status is set to –2 if a client was killed, 0 if no clients matched the
specifications, 2 if multiple clients matched the specification. Any
other value means that access was denied.

Return values Returns 0 for failure and nonzero for success.

See also • os_dbutil::svr_client_kill() in Chapter 2 of ObjectStore C++ API
Reference

• ossvrclntkill: Disconnecting a Client Thread on a Server in
Chapter 4 of ObjectStore Management

Determining Whether a Server Is Running with svr_ping()

static char *svr_ping(
const char *server_host,
os_svr_ping_state &state

) ;

Function arguments Determines whether an ObjectStore Server is running on the
machine named server_host . The referent of state is set to one of
the following global enumerators:

• os_svr_ping_is_alive

• os_svr_ping_not_reachable

• os_svr_ping_no_such_host
414 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Return values Returns a pointer to the status message string used by the utility
ossvrping .

See also • os_dbutil::svr_ping() in Chapter 2 of ObjectStore C++ API
Reference

• ossvrping: Determining If a Server Is Running in Chapter 4 of
ObjectStore Management

Shutting Down the Server with svr_shutdown()

static os_boolean svr_shutdown(
const char *server_host

) ;

Return values Shuts down the Server on the machine named server_host .
Returns nonzero for success, 0 otherwise. On some operating
systems, you must have special privileges to use this function.

See also • os_dbutil::svr_shutdown() in Chapter 2 of ObjectStore C++ API
Reference

• ossvrshtd: Shutting Down the Server in Chapter 4 of ObjectStore
Management

Moving Data Out of the Server Transaction Log with svr_checkpoint()

static os_boolean svr_checkpoint(
const char *hostname

) ;

Return values Makes the specified Server take a checkpoint asynchronously.
Returns nonzero when successful, 0 or an exception on failure.

See also • os_dbutil::svr_checkpoint() in Chapter 2 of ObjectStore C++ API
Reference

• ossvrchkpt: Moving Data Out of the Server Transaction Log in
Chapter 4 of ObjectStore Management
Release 5.1 415

Managing Clients
Managing Clients

Setting a Client Name with set_client_name()

static void set_client_name (const char *name) ;

Sets the client name string for message printing.

See also • os_dbutil::set_client_name() in Chapter 2 of ObjectStore C++
API Reference

Getting a Client Name with get_client_name()

static char const* get_client_name();

Return values Returns the pointer last passed to set_client_name() . If there was
no prior call to set_client_name() , 0 is returned. This function does
not allocate any memory.

See also • os_dbutil::get_client_name() in Chapter 2 of ObjectStore C++
API Reference

Closing a Server Connection with close_server_connection()

static void close_server_connection(const char *hostname);

Closes the connection the application has to the ObjectStore
Server running on the machine named hostname .

See also • os_dbutil::close_server_connection() in Chapter 2 of ObjectStore
C++ API Reference

Closing All Server Connections with close_all_server_connections()

static void close_all_server_connections();

Closes all connections the application has to ObjectStore Servers.

See also • os_dbutil::close_all_server_connections() in Chapter 2 of
ObjectStore C++ API Reference
416 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Managing Cache Managers

Getting Cache Manager Status with cmgr_stat()

static void cmgr_stat(
const char *hostname,
os_int32 cm_version_number,
os_cmgr_stat *cmstat_data

) ;

Function arguments Gets information for the Cache Manager on the machine with the
specified hostname . The argument cm_version_number must
match the Cache Manager’s version number.

See also • os_dbutil::cmgr_stat() in Chapter 2 of ObjectStore C++ API
Reference

• oscmstat: Displaying Cache Manager Status in Chapter 4 of
ObjectStore Management

Public data members
in os_cmgr_stat

The cmstat_data argument points to an instance of os_cmgr_stat
allocated by the caller, using the no-argument constructor. os_
cmgr_stat has the following public data members:

os_unsigned_int32 struct_version;

os_unsigned_int32 major_version;

os_unsigned_int32 minor_version;

os_unsigned_int32 pid;

char* executable_name

char* host_name;

os_unixtime_t start_time;

os_int32 soft_limit;

os_int32 hard_limit;

os_int32 free_allocated;

os_int32 used_allocated;

os_int32 n_clients;

os_cmgr_stat_client* per_client; /* array */

os_int32 n_servers;

os_cmgr_stat_svr* per_server; /* array */

os_int32 n_cache_file_usage;

os_cmgr_stat_file_
usage*

cache_file_usage; /* array */
Release 5.1 417

Managing Cache Managers
The constructor sets struct_version to the value of os_free_blocks_
version in the dbutil.hh file included by your application. If this
version is different from that used by the library, err_misc is
signaled. The constructor initializes all other members to 0.

Public data members
in os_cmgr_stat_client

The os_cmgr_stat_client data member (a member of os_cmgr_
stat) has the following public data members:

Public data members
in os_cmgr_stat_svr

The os_cmgr_stat_svr data member (a member of os_cmgr_stat)
has the following public data members:

Public data members
in os_cmgr_stat_file_
usage

The os_cmgr_stat_file_usage data member (a member of os_
cmgr_stat) has the following public data members:

Deleting Unused Cache and commseg Files with cmgr_remove_file()

static char *cmgr_remove_file(
const char *hostname,
os_int32 cm_version_number

) ;

os_int32 n_commseg_file_usage;

os_cmgr_stat_file_
usage*

commseg_file_usage; /* array */

char* cback_queue;

char* extra;

os_unsigned_int32 struct_version;

os_int32 pid;

os_unsigned_int32 euid;

char* name;

os_int32 major_version;

os_int32 minor_version;

os_int32 commseg;

os_unsigned_int32 struct_version;

char* host_name;

os_int32 client_pid;

char* status_str;

os_unsigned_int32 struct_version;

char* file_name;

os_unsigned_int32 file_length;

os_boolean is_free;
418 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Function arguments Makes the Cache Manager on the machine with the specified
hostname delete all the cache and commseg files that are not in use
by any client. The argument cm_version_number must match the
Cache Manager’s version number.

Return values This function returns a pointer to the result message string.

See also • os_dbutil::cmgr_remove_file() in Chapter 2 of ObjectStore C++
API Reference

• oscmrf: Deleting Cache and Commseg Files in Chapter 4 of
ObjectStore Management

Shutting Down the Cache Manager with cmgr_shutdown()

static char *cmgr_shutdown(
const char *hostname,
os_int32 cm_version_number

) ;

Function arguments Shuts down the Cache Manager running on the machine with the
specified hostname . The argument cm_version_number must
match the Cache Manager’s version number.

Return values Returns a pointer to the result message string.

See also • os_dbutil::cmgr_shutdown() in Chapter 2 of ObjectStore C++
API Reference

• oscmshtd: Shutting Down the Cache Manager in Chapter 4 of
ObjectStore Management
Release 5.1 419

Managing Databases
Managing Databases

Changing Database Group Names with chgrp()

static void chgrp(
const char *pathname,
const char *gname

) ;

Changes the primary group of the rawfs directory or database
whose name is pathname . gname is the name of the new group.

See also • os_dbutil::chgrp() in Chapter 2 of ObjectStore C++ API Reference

• oschgrp: Changing Database Group Names in Chapter 4 of
ObjectStore Management

Changing Database Owner with chown()

static void chown(
const char *pathname,
const char *uname

) ;

Function arguments Changes the owner of the rawfs directory or database whose
name is pathname . uname is the user name of the new owner.

See also • os_dbutil::chown() in Chapter 2 of ObjectStore C++ API
Reference

• oschown: Changing Database Owners in Chapter 4 of
ObjectStore Management

Changing Database Permissions with chmod()

static void chmod(
const char *pathname,
const os_unsigned_int32 mode

) ;

Function arguments Changes the protections on the rawfs database or directory whose
name pathname . mode specifies the new protections.

See also • os_dbutil::chmod() in Chapter 2 of ObjectStore C++ API
Reference

• oschmod: Changing Database Permissions in Chapter 4 of
ObjectStore Management
420 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Changing a Rawfs Hosts with rehost_link()

static void rehost_link(
const char *pathname,
const char *new_host

) ;

Function arguments Changes the host to which a rawfs link points. pathname must
specify a symbolic link, otherwise err_not_a_link is signaled. new_
host specifies the new Server host.

See also • os_dbutil::rehost_link() in Chapter 2 of ObjectStore C++ API
Reference

Changing All Rawfs Hosts with rehost_all_links()

static void rehost_all_links(
const char *server_host,
const char *old_host,
const char *new_host

) ;

Function arguments Changes the hosts of specified rawfs links. server_host specifies
the host containing the links to be changed. All links pointing to
old_host are changed to point to new_host . On some operating
systems, you must have special privileges to use this function.

See also • os_dbutil::rehost_all_links() in Chapter 2 of ObjectStore C++
API Reference

• oschhost: Changing Rawfs Link Hosts in Chapter 4 of
ObjectStore Management

Copying Databases with copy_database()

static os_boolean copy_database(
const char *src_database_name,
const char *dest_database_name

) ;

Function arguments Copies the database named src_database_name and names the
copy dest_database_name . If there is already a database named
dest_database_name , it is silently overwritten.

Return values Returns 0 for success, 1 if per-segment access control information
has been changed during copy (which can happen when copying
a rawfs database to a file database, since file databases do not have
separate segment-level protections). This function can be called
either within or outside a transaction.
Release 5.1 421

Managing Databases
See also • os_dbutil::copy_database() in Chapter 2 of ObjectStore C++ API
Reference

• oscp: Copying Databases in Chapter 4 of ObjectStore
Management

Expanding File Names with expand_global()

static char **expand_global(
char const *glob_path,
os_unsigned_int32 &n_entries

) ;

Function arguments
and return values

Returns an array of pointers to rawfs pathnames matching glob_
path by expanding glob_path ’s wildcards (*, ?, {} , and []). n_
entries is set to refer to the number of pathnames returned. It is the
caller’s responsibility to delete the array and pathnames when no
longer needed.

See also • os_dbutil::expand_global() in Chapter 2 of ObjectStore C++ API
Reference

• osglob: Expanding File Names in Chapter 4 of ObjectStore
Management

Creating Rawfs Directories with mkdir()

static void mkdir(
const char *path,
const os_unsigned_int32 mode,
os_boolean create_missing_dirs = 0

) ;

Function arguments Makes a rawfs directory whose pathname is path . The new
directory’s protections is specified by mode. If create_missing_
dirs is nonzero, creates the missing intermediate directories.

Return values Signals err_directory_not_found if create_missing_dirs is 0 and there
are missing intermediate directories. Signals err_directory_exists if
there is already a directory with the specified path. Signals err_
database_exists if there is already a database with the specified
path.

See also • os_dbutil::mkdir() in Chapter 2 of ObjectStore C++ API Reference

• osmkdir: Creating a Rawfs Directory in Chapter 4 of ObjectStore
Management
422 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Setting Links in the Rawfs with make_link()

static void make_link(
const char *target_name,
const char *link_name

) ;

Function arguments Makes a rawfs soft link. target_name is the path pointed to by the
link. link_name is the pathname of the link.

Return values Signals err_database_exists or err_directory_exists if link_name
already points to an existing database or directory.

A rawfs can have symbolic links pointing within itself or to
another Server’s rawfs. The Server follows symbolic links within
its rawfs for all os_dbutil members that pass pathname
arguments, unless specified otherwise by a function’s description;
only os_dbutil::stat() can override this behavior. All members
passing pathname arguments also follow cross-server links on the
application side, unless specified otherwise by a function’s
description.

To access a particular database or directory, a client can follow as
many as 15 cross-Server links. For example, a client traverses a
link to Server Q. Server Q sends the client to Server P. Server P
sends the client to another Server or even back to Server Q. Each
connection to a Server counts as one link. It does not matter
whether or not the Server was previously connected to in the link
chain. When the client reaches the sixteenth link, ObjectStore
displays the error message err_too_many_cross_svr_links.

To access a particular database or directory in its rawfs, the Server
can traverse as many as 10 (same-Server) links. When the Server
reaches the eleventh link, ObjectStore displays the error message
err_too_many_links.

In a chain of links, a client can return to a Server that it contacted
earlier in the chain. In this situation, the Server's count of links
within its rawfs begins with one. It does not continue the count
from where it left off during the previous connection. Each time a
link sends the client to a Server, the Server can follow as many as
ten links within its rawfs.

These limits allow ObjectStore to catch circular links. For example,
A is a link to B, and B is either directly or indirectly a link to A.
Release 5.1 423

Managing Databases
A rawfs symbolic link always has the ownership and the
permissions of the parent directory.

See also • os_dbutil::make_link() in Chapter 2 of ObjectStore C++ API
Reference

• osln: Creating Links in the Rawfs in Chapter 4 of ObjectStore
Management

• rehost_link and rehost_all_links in oschhost: Changing Rawfs
Link Hosts in Chapter 4 of ObjectStore Management

• osln: Creating Links in the Rawfs in Chapter 4 of ObjectStore
Management

Removing Databases and Rawfs Links with remove()

static void remove(char const *path) ;

Return values Removes the database or rawfs link with the specified name. If
path names a link, the link is removed but the target of the link is
not. If path names a directory, it is not removed. Signals err_not_a_
database if path exists in a rawfs but is not a database. Signals err_
file_not_db if the path designates an operating system file, but does
not appear to be an ObjectStore database. Signals err_file_error
when a problem is reported by the Server host’s file system.
Signals err_file_not_local if the file is not local to this Server.

See also • os_dbutil::remove() in Chapter 2 of ObjectStore C++ API
Reference

• osrm: Removing Databases and Rawfs Links in Chapter 4 of
ObjectStore Management

Removing Rawfs Directories with rmdir()

static void rmdir(const char *path) ;

Return values Removes the rawfs directory with the specified pathname. Signals
err_directory_not_empty if the directory still contains databases.
Signals err_not_a_directory if the argument does not specify a
directory path.

See also • os_dbutil::rmdir() in Chapter 2 of ObjectStore C++ API Reference

• osrmdir: Removing a Rawfs Directory in Chapter 4 of
ObjectStore Management
424 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Moving Directories and Databases with rename()

static void rename(
const char *source,
const char *target

) ;

Function arguments Renames the rawfs database or directory. source is the old name
and target is the new name.

Return values Signals err_cross_server_rename if source and target are on
different Servers. Signals err_invalid_rename if the operation makes
a directory its own descendent. Signals err_database_exists if a
database named target already exists. Signals err_directory_exists if
a directory named target already exists.

See also • os_dbutil::rename() in Chapter 2 of ObjectStore C++ API
Reference

• osmv: Moving Directories and Databases in Chapter 4 of
ObjectStore Management

Testing a Pathname for Specified Conditions with stat()

static os_rawfs_entry *stat(
const char *path,

const os_boolean b_chase_links = 1
) ;

Function arguments Gets information about a rawfs pathname. If b_chase_links is false
and the path is a link, the server does not follow it. The server still
follows intrarawfs links for the intermediate parts of the path.

Return values Returns a pointer to an os_rawfs_entry to be destroyed by the
caller, or 0 on error.

See also • os_dbutil::stat() in Chapter 2 of ObjectStore C++ API Reference

• ostest: Testing a Pathname for Specified Conditions in Chapter
4 of ObjectStore Management

• osls: Displaying Directory Content in Chapter 4 of ObjectStore
Management

Listing Directory Contents with list_directory()

static os_rawfs_entry **list_directory(
const char *path,
os_unsigned_int32 &n_entries

) ;
Release 5.1 425

Managing Databases
Function arguments Lists the contents of the rawfs directory named path .

Return values Returns an array of pointers to os_rawfs_entry objects. n_entries is
set to the number of elements in the returned array. If path does
not specify the location of a directory, err_not_a_directory is
signaled. It is the caller’s responsibility to delete the array and os_
rawfs_entry objects when no longer needed.

See also • os_dbutil::list_directory() in Chapter 2 of ObjectStore C++ API
Reference

• osls: Displaying Directory Content in Chapter 4 of ObjectStore
Management

Find Database Size with ossize()

static os_int32 ossize(
const char *pathname,
const os_size_options *options

) ;

Function arguments Prints to standard output the size of the database whose name is
pathname . options points to an instance of os_size_options
allocated by the caller using the zero-argument constructor. os_
size_options has the following public data members (each
member corresponds to an option for the utility ossize):

The constructor sets struct_version to the value of os_size_
options_version in the dbutil.hh file included by your application.

os_unsigned_int32 struct_version;

os_boolean flag_all; /* -a */

os_boolean flag_segments; /* -c */

os_boolean flag_total_database; /* -C */

os_boolean flag_free_block_map; /* -f */

os_unsigned_int32 one_segment_number; /* -n */

os_boolean flag_every_object; /* -o */

char flag_summary_order; /* -s ‘s’=space ‘n’=number
‘t’=typename */

os_boolean flag_upgrade_rw; /* -u */

const char* workspace_name; /* -w */

os_boolean flag_list_workspaces; /* -W */

os_boolean flag_internal_segments; /* -0 */

os_boolean flag_access_control; /* -A */
426 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
If this version is different from that used by the library, err_misc is
signaled. The constructor initializes all other members to 0.

Returns 0 for success, –1 for failure.

If OS__DBUTIL_NO_MVCC is set, this function opens the database
for read only, rather than for multiversion concurrency control
(the default).

See also • os_dbutil::ossize() in Chapter 2 of ObjectStore C++ API
Reference

• ossize: Displaying Database Size in Chapter 4 of ObjectStore
Management

Verifying Pointers and References with osverifydb()

static os_unsigned_int32 osverifydb(
const char *dbname,
os_verify_db_options* opt= 0

) ;

Function arguments Verifies that all pointers and references in the database named
dbname . opt point to an instance of os_verify_db_options allocated
by the caller using the zero-argument constructor. os_verify_db_
options has the following public data members:

os_boolean verify_segment_zero ;
/* verify the schema segment */

os_boolean verify_collections ;
/* check all top-level collections */

os_boolean verify_pointer_verbose;
/* print pointers as they are verified */

os_boolean verify_object_verbose ;
/* print objects as they are verified */

os_boolean verify_references ;
/* check all OS references */

os_int32 segment_error_limit ;
/* maximum errors per segment */

os_boolean print_tag_on_errors ;
/* print out the tag value on error */

const char* explicit_workspace
/* The workspace name if one was explicitly specified. */

const void* track_object_ptr ;
/* Track object identified by pointer */
Release 5.1 427

Managing Databases
const char* track_object_ref_string;
/* Track the object identified by the reference string. */

enum {
default_action,
ask_action,
null_action,

} illegal_pointer_action ;

You must have called os_collection::initialize() and os_
mop::initialize() prior to calling this function.

If OS__DBUTIL_NO_MVCC is set, this function opens the database
for read only, rather than multiversion concurrency control (the
default).

Return values Returns 0 for success, 1 for failure.

See also • os_dbutil::osverifydb() in Chapter 2 of ObjectStore C++ API
Reference

• osverifydb: Verifying Pointers and References in a Database in
Chapter 4 of ObjectStore Management
428 ObjectStore Advanced C++ API User Guide

Chapter 10: Database Utility API
Managing Schemas

Comparing Schemas with compare_schemas()

static os_boolean compare_schemas(
const os_database* db1,
const os_database* db2,
os_boolean verbose = 1

) ;

Function arguments
and return values

Compares the schemas of db1 and db2 . Returns 1 if the schemas
are incompatible, 0 otherwise. Each database can contain an
application schema, a compilation schema, or a database schema.
If the database contains a database schema, it can be local or
remote.

If verbose is nonzero, the function issues a message to the default
output describing any incompatibility.

See also • os_dbutil::compare_schemas() in Chapter 2 of ObjectStore C++
API Reference

• osscheq: Comparing Schemas in Chapter 4 of ObjectStore
Management

Setting the Application Schema with set_application_schema_path()

static char *set_application_schema_path(
const char *executable_pathname,
const char *database_pathname

) ;

Function arguments Finds or sets an executable’s application schema database.
executable_pathname specifies the executable. database_
pathname is either the new schema’s pathname or 0.

Return values If database_pathname is 0, the function returns new storage
containing the current pathname. If database_pathname is
nonzero, the function returns 0.

See also • os_dbutil::set_application_schema_path() in Chapter 2 of
ObjectStore C++ API Reference

• ossetasp: Patching Executable with Application Schema
Pathname in Chapter 4 of ObjectStore Management
Release 5.1 429

Exceptions Summary
Exceptions Summary

err_file_pathname: A rawfs pathname was expected.

err_misc: An unexpected 0 argument or an invalid pathname was
passed; version mismatch of an in/out structure argument.

err_rpc: RPC error.

err_too_many_cross_svr_links: Excessively long cross-server link
chain. The maximum depth of a cross-server link chain is
currently 15.

err_no_rawfs: There is no database file system (rawfs) on this
Server.

err_read_only_file_system: The file database is stored in a read-only
file system.

err_no_credentials: Access is not permitted; no credentials were
presented.

err_server_not_superuser: The Server is not running as the
superuser.

err_link_not_found: Intrarawfs link was not found.

err_too_many_links: Too many levels of intrarawfs links.

err_rawfs_not_upgraded: The rawfs is from an old release.

err_permission_denied: Permission to access this database was
denied.

err_invalid_pathname: The rawfs pathname is not valid.

err_directory_not_found: The directory was not found.

err_database_not_found: The rawfs database was not found.

err_link_not_found: The rawfs link was not found.
430 ObjectStore Advanced C++ API User Guide

Release 5.1
Index
A
add_index()

os_collection , defined by 140
allow_duplicates

os_collection , defined by 96
allow_nulls

os_collection , defined by 96
application schemas

setting with set_application_schema_
path() 429

applications
multithreaded 55

associative access
defined 126

attributes, of MOP class 189
augment_classes_to_be_recycled()

os_schema_evolution , defined by 351
augment_classes_to_be_removed()

os_schema_evolution , defined by 345
augment_post_evol_transformers()

os_schema_evolution , defined by 351,
359

augment_subtype_selectors()
os_schema_evolution , defined by 366,

372
automatic retries 35

B
be_an_array

os_collection , defined by 96
break_link()

os_backptr , defined by 152, 156
B-tree

as ordered index 144

C
cache files

deleting unused with cmgr_remove_
file() 418

Cache Manager
getting status with cmgr_stat() 417
shutting down with cmgr_

shutdown() 419
change_behavior()

os_Collection , defined by 98
change_rep()

os_collection , defined by 101
checkpoint()

os_transaction , defined by 44
checkpoint/refresh for transactions 43
chgrp()

changing database group names 420
chmod()

changing database permissions 420
chown()
431

C

changing database owner 420
class, system-supplied

os_pvar 2
client name

getting with get_client_name() 416
setting with set_client_name() 416

client thread
killing with svr_client_kill() 414

clients
multithreaded 50

close_all_server_connections()
closing all Server connections 416
os_dbutil , defined by 416

close_server_connection()
closing Server connection 416
os_dbutil , defined by 416

clustering
and locking 32

cmgr_remove_file()
deleting unused cache and commseg

files 418
cmgr_shutdown()

shutting down Cache Manager 419
cmgr_stat()

getting Cache Manager status 417
collections

changing associated representation
policy 101

changing behavior 98
consolidating duplicates 91
defined 63
index 140
index-only 109
loading phase 95
range 77
recursive queries in 82
representation 100

collocation ambiguities 376
commseg files

deleting unused with cmgr_remove_
file() 418

compact()
objectstore , defined by 175

compact.hh header file 178
compaction

need for 174
compactor

compact.hh header file 178
limitations 181
utility 183

compare_schemas()
comparing schemas 429

concurrency control
multiversion 37

constructor
implementing for os_Fixup_dumper 306
implementing for os_Type_fixup_

info 316
implementing for os_Type_info 308

copy_classes()
os_mop , defined by 199

copy_database()
copying databases 421

create function for MOP class 190
create()

implementing for os_Type_loader 311
os_coll_query , defined by 136
os_index_path , defined by 65

create_exists()
os_coll_query , defined by 136

create_pick()
os_coll_query , defined by 136

creating object clusters 7
cursors

restricted 80
customization

when required for dumping and
loading 287

customizing collection representation 100
customizing loads 294
432 ObjectStore Advanced C++ API User Guide

Index
D
data

implementing for os_Type_info 307
data transfer 8
databases

changing group names with chgrp() 420
changing owner with chown() 420
changing permissions with chmod() 420
copying with copy_database() 421
finding size with ossize() 426
moving with rename() 425
removing links with remove() 424

deadlock
and retries 35
victim 35

destroy()
os_coll_query , defined by 137
os_index_path , defined by 65

dictionaries
lookup 80, 88

directories
creating rawfs directories with

mkdir() 422
listing rawfs directory contents with list_

directory() 425
moving with rename() 425
removing rawfs directories with

rmdir() 424
discriminant functions 28
disk_free()

getting rawfs disk space information 407
dont_maintain_size

os_dictionary , defined by 97
drop_index()

os_collection , defined by 142
dump/load facility

creation stages 289
customization 287
dumped ASCII 285
fixup-dump mode 290
object-dump mode 290

ostore/dumpload 288
plan mode 290

dump_info()
implementing for os_Fixup_dumper 304

dumped ASCII
dump/load facility 285

duplicate()
implementing for os_Fixup_dumper 306

dynamic transactions
scoping 53

dynamic type creation 187

E
err_coll_duplicates exception 99
err_coll_empty exception 86, 88
err_coll_illegal_arg exception 101
err_coll_illegal_cursor exception 86
err_coll_not_singleton exception 86
err_coll_not_supported exception 86, 87
err_coll_null_cursor exception 86
err_coll_nulls exception 99
err_coll_out_of_range exception 86
err_deadlock exception 36
err_illegal_arg exception 99
err_mop_illegal_cast exception 210
err_no_such_index exception 142
err_opened_read_only exception 38
err_reference_not_found exception 23
err_schema_evolution exception 344
err_se_illegal_pointer exception

child exception of 375
evolve()

os_schema_evolution , defined by 202,
347

exists()
os_Collection , defined by 131

expand_global()
expanding file names 422
Release 5.1 433

F

F
fetch policy

granularity of data transfer 8
file names

expanding with expand_global() 422
find_base_class()

os_class_type , defined by 356
find_member()

os_class_type , defined by 354, 358
find_type()

os_mop , defined by 200
fixup form 294
fixup()

implementing for os_Type_fixup_
loader 321

implementing for os_Type_loader 314
fixup_data

implementing for os_Type_fixup_
info 316

fixup-dumper class 292

G
get function for MOP class 190
get()

implementing for os_Type_fixup_
loader 322

implementing for os_Type_loader 315
get_class()

os_base_class , defined by 356
get_client_name()

getting client name 416
get_evolved_address()

os_schema_evolution , defined by 375
get_for_update()

os_database_schema , defined by 202
get_kind()

os_type , defined by 207
get_path_to_member()

os_schema_evolution , defined by 375,
378

get_sector_size()
determining sector size 413

get_transient_schema()
os_mop , defined by 202

get_type()
os_member_variable , defined by 356
os_typed_pointer_void , defined by 354,

358
get_unevolved_object()

os_schema_evolution , defined by 353,
358, 370

global mutex
thread safety 51

global transactions
See transactions

globally scoped transactions 53

H
has_index()

os_collection , defined by 142
hash functions

iteration order 92
header files

compaction 178

I
illegal ObjectStore reference handlers 339
illegal ObjectStore references 339
illegal pointer handlers 339, 373, 378
illegal pointers

detecting 338
in schema evolution 373

index maintenance
and member functions 72, 158
pointer-valued members 152

index paths 65
indexes

adding 140
key 140
optimizing queries 140
434 ObjectStore Advanced C++ API User Guide

Index
ordered 144
and performance 141
removing 142
testing for presence of 142
unordered 144

install()
os_database_schema , defined by 202

instance
defining and registering for os_

Planning_action 298
defining and registering for os_Type_

fixup_loader 322
defining and registering for os_Type_

loader 315
instance initialization 338
instance migration 337
instance reclassification 340, 366, 368, 386
instance transformation 342, 350, 357
is_open_mvcc()

os_database , defined by 39
iteration

controlling order 92

L
lexical transactions

and local scoping 53
list_directory()

listing directory contents 425
load

customizing 294
load()

implementing for os_Type_fixup_
loader 319

implementing for os_Type_loader 310
locally scoped transactions 53
lock_segment_read 32
lock_segment_write 32
locking

granularity 32
reducing wait time 32
and transaction length 32

logging
redo 41
undo 41

M
macro arguments

entering correctly 153
macro, system-supplied

os_index() 153
os_indexable_body() 153
os_indexable_member() 152
OS_INITIALIZE_CHAINED_LIST_

REP() 102
OS_INSTANTIATE_CHAINED_LIST_

REP() 102
OS_MARK_CHAINED_LIST_REP() 102

maintain_cursors
os_collection , defined by 75, 82, 96

maintain_key_order
os_Dictionary , defined by 97

make_link()
os_backptr , defined by 152, 156
setting links in the rawfs 423

mapaside
thread safety 51

Max Data Propagation Per Propagate Server
parameter 42

Max Data Propagation Threshold Server
parameter 42

max_retries
os_transaction , defined by 35

memcpy()
use with persistent references 12

metaobject protocol
defined 187

metatypes
defined 187
hierarchy 204

mkdir()
creating rawfs directories 422

MOP
Release 5.1 435

N

See metaobject protocol
multithreaded applications

models for 55
multithreaded clients 50
multiversion concurrency control

implementation 39
and multiple databases 38
and serializability 38
snapshots 37
and the transaction log 39

MVCC
See multiversion concurrency control

N
nested transactions 34

O
object clusters

creating 7
object form 294
object-dumper class 292
objects

unspecified 193
objectstore , the class

compact() 175
release_persistent_addresses() 26
retain_persistent_addresses() 26

obsolete index handlers 340, 381
obsolete indexes 339, 381
obsolete queries 339, 381
obsolete query handlers 340, 381
only()

os_Collection , defined by 86
open_mvcc()

os_database , defined by 38
operator ()()

implementing for os_Dumper_
specialization 299

implementing for os_Planning_action
using deep approach 297

using shallow approach 296
implementing for os_Type_fixup_

loader 318
implementing for os_Type_loader 309

operator void*()
os_typed_pointer_void, defined by 353

operators
type-safe conversion 209

optimizing transactions 53
ordered

os_index_path , defined by 144
os_backptr 69
os_backptr , the class 150

break_link() 152, 156
make_link() 152, 156

os_base_class , the class
get_class() 356

os_bound_query , the class 138
os_chained_list , the class 102
os_class_type , the class

find_base_class() 356
find_member() 354, 358

os_coll_query , the class
create() 136
create_exists() 136
create_pick() 136
destroy() 137

os_coll_range , the class 77
os_Collection , the class

change_behavior() 98
exists() 131
only() 86
query() 127
query_pick() 130
retrieve() 86
retrieve_first() 86
retrieve_last() 87

os_collection , the class
add_index() 140
allow_duplicates 96
allow_nulls 96
436 ObjectStore Advanced C++ API User Guide

Index
be_an_array 96
change_rep() 101
drop_index() 142
has_index() 142
maintain_cursors 75, 82, 96
pick_from_empty_returns_null 86, 88, 96,

97
size_estimate() 110
size_is_maintained() 110
update_size() 110
verify 99

os_cursor , the class
safe 75, 83

os_database , the class
is_open_mvcc() 39
open_mvcc() 38

os_database_schema , the class
get_for_update() 202
install() 202

os_Database_table
find_reference() 326
get() 324
insert() 324
is_ignored() 326

os_dbutil , the class
close_all_server_connections() 416
close_server_connection() 416
svr_ping() 414

os_Dictionary , the class
maintain_key_order 97
signal_dup_keys 97

os_dictionary , the class
dont_maintain_size 97

os_Dumper_reference
get_database() 329
get_database_number() 329
get_offset() 330
get_segment() 329
get_segment_number() 330
is_valid() 330
operator 329
operator !() 329

operator !=() 328
operator =() 327
operator ==() 328
operator >() 328
operator >=() 329
operator void*() 327
os_Dumper_reference() 327
resolve() 328

os_Dumper_specialization
specialization 299

os_dyn_bag , the class 105
os_dyn_hash , the class 107
os_fetch() 354, 358
os_fetch_address() 356
os_fetch_page fetch policy 8

when to use 9
os_fetch_segment fetch policy 8

when to use 9
os_fetch_stream fetch policy 8

when to use 9
os_Fixup_dumper

~os_Fixup() 333
get_number_elements() 333
get_object_to_fix() 333
get_type() 333
os_Fixup_dumper() 333

specialization 304
os_free_blocks , the class

managing servers 407
os_index() , the macro 153
os_index_key() , the macro 92
os_index_path , the class 65

create() 65
destroy() 65
ordered 144

os_indexable_body() , the macro 153
os_indexable_member() , the macro 152
OS_INITIALIZE_CHAINED_LIST_REP() , the

macro 102
OS_INSTANTIATE_CHAINED_LIST_REP() ,

the macro 102
os_ixonly , the class 109
Release 5.1 437

P

os_ixonly_bc , the class 109
os_keyword_arg , the class 138
os_keyword_arg_list , the class 138
OS_MARK_CHAINED_LIST_REP() , the

macro 102
OS_MARK_QUERY_FUNCTION() , the

macro 69
os_member_variable , the class

get_type() 356
os_mop , the class

copy_classes() 199
find_type() 200
get_transient_schema() 202

os_ordered_ptr_hash , the class 112
os_Planning_action

specialization 295
os_ptr_bag , the class 116
os_pvar , the class 2
os_query_function() , the macro 69
os_query_function_body() , the macro 69
os_Reference_protected , the class 23
os_Reference_protected_local , the class 23
os_schema_evolution , the class

augment_classes_to_be_recycled() 351
augment_classes_to_be_removed() 345
augment_post_evol_transformers() 351,

359
augment_subtype_selectors() 366, 372
evolve() 202, 347
get_evolved_address() 375
get_path_to_member() 375, 378
get_unevolved_object() 353, 358, 370
path_name() 375, 379
set_illegal_pointer_handler() 373, 375,

379
set_local_references_are_db_

relative() 346
set_obsolete_index_handler() 381
set_obsolete_query_handler() 381
set_task_list_file_name() 383
task_list() 382

os_store() 355
os_transaction , the class

checkpoint() 44
max_retries 35

os_transformer_binding , the class
example 359

os_type , the class
get_kind() 207

os_Type_fixup_info
specialization 316

os_Type_fixup_loader
specialization 318

os_Type_info
get_original_location() 331
get_replacing_database() 332
get_replacing_location() 331
get_replacing_segment() 332
get_type() 332
os_Type_info() 331
set_replacing_location() 331

specialization 307
os_Type_loader

specialization 309
os_typed_pointer_void , the class

get_type() 354, 358
operator void*() 353

os_vdyn_bag , the class 118
oscompact utility 183
ossize()

finding database size 426
<ostore/compact.hh> header file 178
<ostore/mop.hh> header file 356
osverifydb()

verifying pointers and references 427

P
path expressions 65
path string 65
path_name()

os_schema_evolution , defined by 375,
379
438 ObjectStore Advanced C++ API User Guide

Index
paths 65
persistence

across transaction boundary 26
persistent delete 33
persistent new 33
pick_from_empty_returns_null

os_collection , defined by 86, 88, 96, 97
planner classes 291
pointers

validity across transaction boundary 26
verifying with osverifydb() 427

propagation
Max Data Propagation Per Propagate

Server parameter 42
Max Data Propagation Threshold Server

parameter 42
Propagation Sleep Time Server

parameter 42
transaction log 41

Propagation Sleep Time Server
parameter 42

protected references
overhead 23

pvars 2

Q
queries

bound 138
existential 131
nested 132
nested existential 134
performance with index 141
preanalyzed 136
purpose 126
range 145
range, ordered index 144
single-element 130

query optimization
adding index 140
defined 126

query string 128

query()
os_Collection , defined by 127

query_pick()
os_Collection , defined by 130

R
random access 9
range queries 145
rank functions

possible values returned 92
rawfs

changing all rawfs hosts with rehost_all_
links() 421

changing host with rehost_link() 421
removing links with remove() 424
setting links with make_link() 423
testing pathname with stat() 425

rawfs disk space
getting information with disk_free() 407

reclassification functions 340, 366
recycling 343
references

overhead of protected 23
to migrated instances 339
verifying with osverifydb() 427

referent type parameter 12, 15
rehost_all_links()

changing all rawfs hosts 421
rehost_link()

changing rawfs host 421
release_persistent_addresses()

objectstore , defined by 26
remove()

removing database or rawfs links 424
rename()

moving directories and databases 425
retain_persistent_addresses()

objectstore , defined by 26
retries, transactions 35
retrieve()

os_Collection , defined by 86
Release 5.1 439

S

retrieve_first()
os_Collection , defined by 86

retrieve_last()
os_Collection , defined by 87

rmdir()
removing rawfs directories 424

root object 294

S
safe

os_cursor , defined by 75, 83
schema access, programmatic

const 191
initiating read access 191
initiating type creation 191, 199
MOP 187
pointers compared to references 193
type-safe conversion operators

os_member 228
os_member_variable 231
os_pointer_type 241
os_type 209

schema evolution
accessing unevolved objects 353
assignment compatibility 347
categories of 384
class creation 384
class deletion 385, 403
collocation ambiguities 376
data member redefinition

adding data members 388
changes not requiring evolution 395
changing name 385
changing order 394
changing value type 390
deleting data members 389

deleted subobjects 376
detecting illegal pointers 338
illegal ObjectStore reference 339
illegal ObjectStore reference handler 339
illegal pointer handler 339, 373, 378

illegal pointers
collocation ambiguities 376

inheritance redefinition
adding base classes 398
removing base classes 400
schema changes that represent 385
virtual and nonvirtual 401

initiating 344, 347
instance initialization 338, 384
instance migration 337
instance reclassification 340, 366, 368,

386, 404
instance transformation 342, 350, 357
member function redefinition 385, 396
moving data members from base type to

derived type 368
obsolete index 339, 381
obsolete index handler 340, 381
obsolete query 339, 381
obsolete query handler 340, 381
phases of 337
reclassification function 340, 366
recycling 343
schema modification 337
subobjects deleted 376
task lists 341, 382
transformer functions 342, 350, 357
using MOP 202

schema modification 337
schemas

See also schema access
See also transient schemas
comparing with compare_schemas() 429
consistency requirements 193
installation

using MOP 202
modification 337

sector size
determining with get_sector_size() 413

sequential access 9
serializability 38
Server parameters
440 ObjectStore Advanced C++ API User Guide

Index
Max Data Propagation Per Propagate 42
Max Data Propagation Threshold 42
Propagation Sleep Time 42

Servers
closing a connection with close_server_

connection() 416
closing all connections with close_all_

server_connections() 416
determining whether a Server is running

with svr_ping() 414
getting information with svr_stat() 407
shutting down with svr_shutdown() 415

set function for MOP class 190
set_application_schema_path()

setting application schema 429
set_client_name()

setting client name 416
set_illegal_pointer_handler()

os_schema_evolution , defined by 373,
375, 379

set_local_references_are_db_relative()
os_schema_evolution , defined by 346

set_lock_whole_segment()
os_segment , defined by 32

set_obsolete_index_handler()
os_schema_evolution , defined by 381

set_obsolete_query_handler()
os_schema_evolution , defined by 381

set_task_list_file_name()
os_schema_evolution , defined by 383

signal_dup_keys
os_Dictionary , defined by 97

size_estimate()
os_collection , defined by 110

size_is_maintained()
os_collection , defined by 110

stat()
testing pathname 425

svr_checkpoint()
moving data out of transaction log 415

svr_client_kill()

killing a client thread 414
svr_ping()

determining whether a Server is
running 414

os_dbutil , defined by 414
svr_shutdown()

shutting down the Server 415
svr_stat()

getting Server information 407

T
task lists 341, 382
task_list()

os_schema_evolution , defined by 382
thread safety

mutex lock 50
using mapaside 51

threads
optimizing transactions 53

traffic optimization 8
transaction log

moving data out of with svr_
checkpoint() 415

transactions
See also checkpoint/refresh
automatic retries of 35
committing and continuing with os_

transaction
checkpoint() 43

and deadlock 35
globally scoped 53
locally scoped 53
multiple threads 50
multiversion concurrency control 37
nested 34
priorities 35
restriction 53

transformer functions 342, 350, 357
transient schemas

modifying database schema 199
updating database schema 191
Release 5.1 441

U

type creation, dynamic 187
type_dumper

defining and registering an instance
of 302

U
undo record 41
update_size()

os_collection , defined by 110

V
verify

os_collection , defined by 99
victim, deadlock 35
442 ObjectStore Advanced C++ API User Guide

	Advanced C++ A�P�I User Guide
	ObjectStore Advanced C++ A�P�I User Guide
	Preface
	Advanced Persistence
	ObjectStore Pvars
	Using Pvars to Maintain Pointer Validity
	Additional Type Safety
	Pvar Example
	Initialization Functions

	Creating Object Clusters
	Setting Data Fetch Policies
	os_fetch_segment Policy
	os_fetch_page Policy
	os_fetch_stream Policy
	When the Fetch Quantum Is Too Large

	Using ObjectStore References
	Automatic Database Open
	Using memcpy() with Persistent os_references and R...
	Resolution by Relative Pathname
	Referring Across Transactions

	Generating One Reference from Another
	Using Nonparameterized References
	References and Relative Pathnames
	ObjectStore Lightweight References
	Local References
	Using Transient References with os_Reference_trans...
	Reducing Relocation Overhead

	ObjectStore Protected References
	Summary of ObjectStore Reference Types
	Retaining Pointer Validity Across Transactions
	Discriminant Functions

	Chapter 2
	Advanced Transactions
	Reducing Wait Time for Locks
	Clustering
	Locking Granularity
	Transaction Length
	Multiversion Concurrency Control (MVCC)
	abort_only Locking Rules
	Lock Timeouts

	Nested Transactions
	Deadlock
	Deadlock Victim
	Automatic Retries Within Lexical Transactions
	Consequences of Automatic Deadlock Abort
	Deadlocks in Dynamic Transactions

	Multiversion Concurrency Control (MVCC)
	No Waiting for Locks
	Snapshots
	Accessing Multiple Databases in a Transaction
	Serializability
	The MVCC API
	MVCC and the Transaction Log

	Logging and Propagation
	Transaction Logging
	Propagation

	Checkpoint: Committing and Continuing a Transactio...
	Advantages of a Checkpoint
	Calling the os_transaction::checkpoint() Function

	Transaction Locking Examples
	Simple Waiting Scenario
	Simple Deadlock Scenario
	MVCC and the Simple Waiting Scenario
	MVCC and the Simple Deadlock Scenario
	MVCC Conflict Scenario

	Threads
	ObjectStore Thread Safety
	Single-Thread Access
	Use of Global Mutex
	Mapaside Technique

	Transactions
	Optimizing Transactions in Threaded Environments

	Multiple-Threaded Application Models
	One Multithreaded Process
	Separate Read/Write Multithreaded Processes

	Selecting the Right Application Design

	Chapter 4
	Advanced Collections
	Advanced Collections Overview
	Using Paths in Navigation
	Paths

	Creating Paths
	Simple Paths
	Multiple Member Paths
	Rank and Hash Functions

	Paths and Member Functions
	Restrictions
	Prerequisites
	The os_query_function() Macro
	The os_query_function_returning_ref() Macro
	The os_query_function_body() Macro
	The OS_MARK_QUERY_FUNCTION() Macro
	The os_query_function_body_returning_ref() Macro
	Path String Syntax Extension
	Index Maintenance

	Controlling Traversal Order
	Rank-Function-Based Traversal
	Address Order Traversal
	Path-Based Traversal

	Using Ranges in Navigation
	Ranges

	Specifying Collection Ranges
	Ranges with Only One Bound
	Ranges with Both an Upper and Lower Bound

	Restricting the Elements Visited in a Traversal
	Dictionaries
	Duplicates

	Performing Collection Updates During Traversal
	Update-Insensitive Cursors
	Safe Cursors
	Ordered, Safe Traversal

	Retrieving Uniquely Specified Collection Elements
	Ordered Collections

	Selecting Individual Collection Elements with pick...
	Dictionaries
	Picking an Arbitrary Element

	Consolidating Duplicates with operator =()
	Supplying Rank and Hash Functions
	The os_index_key() Macro
	Rank Functions
	Hash Functions
	Example Use of Rank and Hash Functions

	Specifying Expected Size
	Customizing Collection Behavior
	Behavior Enumerators for Collection Subtypes
	Behavior Enumerators for Dictionaries
	Required and Forbidden Behaviors
	Changing Collection Behavior with change_behavior(...

	Customizing Collection Representation
	Representation Classes
	Creating Collection Representation Objects
	Changing Collection Representation with change_rep...

	os_chained_list
	Controlling the Number of Pointers
	Pool Allocation of Blocks
	Mutation Checks
	mutate_when_full Behavior

	os_dyn_bag
	Time Complexity
	Space Overhead

	os_dyn_hash
	Time Complexity
	Space Overhead

	os_ixonly and os_ixonly_bc
	os_ixonly_bc
	Time Complexity

	os_ordered_ptr_hash
	Time Complexity
	Space Overhead and Clustering

	os_packed_list
	Time Complexity
	Space Overhead and Clustering

	os_ptr_bag
	Time Complexity
	Space Overhead and Clustering

	os_vdyn_bag
	Time Complexity
	Space Overhead

	os_vdyn_hash
	Time Complexity
	Space Overhead

	Summary of Representation Types
	Time Complexity Summary
	Space Overhead Summary

	Chapter 5
	Queries and Indexes
	Queries and Indexes Overview
	Performing Queries with query()
	Example Query
	Query Arguments
	Queries Compared to Collection Traversals

	Single-Element Queries with query_pick()
	Example query_pick()

	Existential Queries with exists()
	Example exists()

	Query Functions and Nested Queries
	Example Nested Query

	Nested Existential Queries
	Example Nested Existential Query

	Preanalyzed Queries
	Creating Query Objects with the os_coll_query Clas...
	Destroying Query Objects with destroy()
	Function Calls in Query Strings
	Creating Bound Queries
	Executing Bound Queries

	Indexes and Query Optimization
	Adding an Index to a Collection with add_index()
	Index Maintenance
	Pointer-Valued Members and char* Keys
	Indexes and Performance
	Dropping Indexes from a Collection with drop_index...
	Testing for the Presence of an Index with has_inde...
	Indexes and Complex Paths

	Index Options
	The os_index_path::ordered Enumerator
	Index Option Enumerators

	Performing or Enabling Index Maintenance
	Paths as Indexes

	Declaring an os_backptr Member
	Inheritance of the os_backptr

	Enabling Automatic Index Maintenance
	The os_indexable_member() Macro
	The os_indexable_body() Macro
	The os_index() macro
	Avoid White Space in Macro Arguments
	The Actual Value/Apparent Value Distinction
	char* and char() Members
	Restriction on Updates

	User-Controlled Index Maintenance with an os_ back...
	Making and Breaking Links on Indexable Data Member...
	Making and Breaking Links to Indexed Member Functi...

	User-Controlled Index Maintenance Without an os_ba...
	Rank and Hash Function Requirements
	Example: Member Function Calls in Query and Path S...
	Rectangle Header File — rectangle.hh
	Schema Source File — schema.cc
	Main Program File — rectangle.cc

	Compaction
	Compaction Overview
	Compaction API — objectstore::compact()
	Cross-Database Pointers and References
	Compaction Example
	Null Termination
	Compaction and Transactions
	Measuring Unused Space with os_segment::unused_spa...
	Header File for Compaction

	Compaction Example
	Compactor Limitations
	Restrictions on Compaction Use

	File Systems and Compaction
	File Databases
	Rawfs Databases

	Compaction Utility

	Metaobject Protocol
	Metaobject Protocol (MOP) Overview
	MOP Header Files
	Attributes of MOP Classes
	Schema Read Access Compared to Schema Write Access...
	Schema Read Access
	Schema Write Access

	Schema Consistency Requirements
	Retrieving an Object Representing the Type of a Gi...
	The type_at() Function
	The type_containing() Function

	Retrieving Objects Representing Classes in a Schem...
	The Transient Schema
	Initializing the Transient Schema with initialize(...
	Copying into the Transient Schema with copy_classe...
	Looking Up a Class in the Transient Schema with fi...

	Schema Installation and Evolution Using MOP
	The Metatype Hierarchy
	The Class os_type
	Create Functions
	The kind Attribute
	Retrieving the kind_string Attribute
	Retrieving the string Attribute
	Determining an os_type’s Type and Status
	Type-Safe Conversion Operators

	The Class os_integral_type
	Create Functions
	Determining a Signed Type with is_signed()

	The Class os_real_type
	Create Functions

	The Class os_class_type
	Create Functions
	The name Attribute
	The class_kind Attribute
	The members Attribute
	os_base_class Objects
	The declares_get_os_typespec_function Function
	The set_declares_get_os_typespec_function Function...
	The defines_virtual_functions Attribute
	The introduces_virtual_functions Attribute
	The is_forward_definition Attribute
	The is_persistent Attribute
	Finding the Nonvirtual Base Class with find_base_c...
	Finding Base Classes from Which this Inherits with...
	Finding Classes from Which this Indirectly Inherit...
	Finding the Name of this with find_member()
	Finding a Containing Object with get_most_derived_...

	The Class os_base_class
	Create Functions
	The class Attribute
	The access Attribute
	The is_virtual Attribute

	The Class os_member
	Create Functions
	The access Attribute
	The kind Attribute
	The defining_class Attribute
	Type-Safe Conversion Operators

	The Class os_member_variable
	Create Function
	The name Attribute
	The type Attribute
	The storage_class Attribute
	The is_field Attribute
	The is_static Attribute
	The is_persistent Attribute
	Type-Safe Conversion Operators

	The Class os_relationship_member_variable
	Create Function
	The related_class Attribute
	The related_member Attribute

	The Class os_field_member_variable
	Create Functions
	The size Attribute

	The Class os_access_modifier
	Create Function
	The base_member Attribute

	The Class os_enum_type
	Create Function
	The name Attribute
	The enumerators Attribute

	The Class os_enumerator_literal
	Create Function
	The name Attribute

	The Class os_void_type
	Create Function

	The Class os_pointer_type
	Create Function
	The target_type Attribute
	Type-Safe Conversion Operators

	The Class os_reference_type
	Create Function
	The target_type Attribute

	The Class os_pointer_to_member_type
	Create Function
	The target_type Attribute
	The target_class Attribute

	The Class os_indirect_type
	The Class os_named_indirect_type
	Create Function
	The target_type Attribute
	The name Attribute

	The Class os_anonymous_indirect_type
	Create Function
	The target_type Attribute
	The is_const Attribute
	The is_volatile Attribute

	The Class os_array_type
	Create Function
	The number_of_elements Attribute
	The element_type Attribute

	Fetch and Store Functions
	The os_fetch() Functions
	The os_store() Functions

	Type Instantiation
	Example: Schema Read Access
	The Top-Level print() Function
	Recursive Execution of print()
	The print_a_pointer() function
	Other Data Handling Routines

	Example: Dynamic Type Creation
	Overview of the gen_schema() Example
	The gen_schema() Function
	Supporting Functions for the gen_schema() Applicat...
	Call Graph of Non-ObjectStore Functions for gen_sc...
	The gen_schema.cc Source File
	The Driver Definition

	Dump/Load Facility
	When Is Customization Required?
	Customizing Dumps
	Creation Stages
	Dumper Actions
	Supplying Customized Type-Specific Actions

	Customizing Loads
	Specializing os_Planning_action
	Implementing operator ()()
	Defining and Registering the Instance

	Customizing Formatting by Specializing os_ Dumper_...
	Implementing operator ()()
	Implementing should_use_default_constructor()
	Implementing get_specialization_name()
	Defining and Registering the Dumper Instance

	Specializing os_Fixup_dumper
	Implementing dump_info()
	Implementing duplicate()
	Implementing the Constructor

	Specializing os_Type_info
	Implementing data
	Implementing the Constructor

	Specializing os_Type_loader
	Implementing operator ()()
	Implementing load()
	Implementing create()
	Implementing fixup()
	Implementing get()
	Defining and Registering the Instance

	Specializing os_Type_fixup_info
	Implementing fixup_data
	Implementing the Constructor

	Specializing os_Type_fixup_loader
	Implementing operator ()()
	Implementing load()
	Implementing fixup()
	Implementing get()
	Registering the Fixup Loader

	os_Database_table
	os_Database_table::get()
	os_Database_table::insert()
	os_Database_table::find_reference()
	os_Database_table::is_ignored()

	os_Dumper_reference
	os_Dumper_reference::operator void*()
	os_Dumper_reference::operator =()
	os_Dumper_reference::os_Dumper_reference()
	os_Dumper_reference::resolve()
	os_Dumper_reference::operator ==()
	os_Dumper_reference::operator <()
	os_Dumper_reference::operator >()
	os_Dumper_reference::operator !=()
	os_Dumper_reference::operator >=()
	os_Dumper_reference::operator <=()
	os_Dumper_reference::operator !()
	os_Dumper_reference::get_database()
	os_Dumper_reference::get_database_number()
	os_Dumper_reference::get_segment()
	os_Dumper_reference::get_segment_number()
	os_Dumper_reference::get_offset()
	os_Dumper_reference::get_string()
	os_Dumper_reference::is_valid()

	os_Type_info
	os_Type_info::os_Type_info()
	os_Type_info::get_original_location()
	os_Type_info::get_replacing_location()
	os_Type_info::set_replacing_location()
	os_Type_info::get_type()
	os_Type_info::get_replacing_segment()
	os_Type_info::get_replacing_database()

	os_Fixup_dumper
	os_Fixup_dumper::os_Fixup_dumper()
	os_Fixup_dumper::get_object_to_fix()
	os_Fixup_dumper::get_type()
	os_Fixup_dumper::~os_Fixup()
	os_Fixup_dumper::get_number_elements()

	Chapter 9
	Advanced Schema Evolution
	Phases of the Schema Evolution Process
	Instance Initialization
	Pointers to Modified Objects and Their Subobjects
	Illegal Pointers
	C++ References
	ObjectStore References
	Obsolete Indexes and Queries
	Instance Reclassification
	Task List Reporting

	Instance Transformation
	Transformer Functions

	Initiating Evolution with evolve()
	Databases to Evolve
	Removed Classes
	Work Database
	Resolution of Local References

	Example: Changing the Value Type of a Data Member
	Using ossevol for Simple Schema Evolution

	Using Transformer Functions
	Signature of Transformer Functions
	Associating a Transformer with a Class
	Recycling Old Storage

	Accessing Unevolved Objects
	Example: Using Transformers
	Example: Changing Inheritance
	Instance Reclassification
	Signature of Reclassification Functions
	Associating a Reclassifier with a Class

	Example: Reclassifying Instances
	Illegal Pointers
	Ignoring Illegal Pointers During Schema Evolution
	Using a Handler Function for Illegal Pointers
	Creating a Handler Function
	The set_illegal_pointer_handler() Function
	Identifying Illegal Pointers Passed to a Handler

	Example: Using Illegal Pointer Handlers
	Obsolete Index and Query Handlers
	Task List Reporting
	Instance Initialization Rules
	Class Creation
	Inheritance Redefinition
	Data Member Redefinition
	Member Function Redefinition
	Class Deletion
	Instance Reclassification

	Schema Changes Related to Data Members
	Adding Data Members
	Deleting Data Members
	Changing the Value Type of a Data Member
	Changing the Order of Data Members
	Summary of Data Member Changes Not Requiring Expli...
	Schema Changes Related to Member Functions
	Schema Changes Related to Class Inheritance
	Adding Base Classes
	Removing Base Classes
	Changing Between Virtual and Nonvirtual Inheritanc...
	Class Deletion
	Instance Reclassification

	Chapter 10
	Database Utility A�P�I
	Database Utility API Overview
	Managing Servers
	Getting Rawfs Disk Space Information with disk_fre...
	Getting Server Information with svr_stat()
	Determining Sector Size with get_sector_size()
	Killing a Client Thread on a Server with svr_clien...
	Determining Whether a Server Is Running with svr_p...
	Shutting Down the Server with svr_shutdown()
	Moving Data Out of the Server Transaction Log with...

	Managing Clients
	Setting a Client Name with set_client_name()
	Getting a Client Name with get_client_name()
	Closing a Server Connection with close_server_conn...
	Closing All Server Connections with close_all_serv...

	Managing Cache Managers
	Getting Cache Manager Status with cmgr_stat()
	Deleting Unused Cache and commseg Files with cmgr_...
	Shutting Down the Cache Manager with cmgr_shutdown...

	Managing Databases
	Changing Database Group Names with chgrp()
	Changing Database Owner with chown()
	Changing Database Permissions with chmod()
	Changing a Rawfs Hosts with rehost_link()
	Changing All Rawfs Hosts with rehost_all_links()
	Copying Databases with copy_database()
	Expanding File Names with expand_global()
	Creating Rawfs Directories with mkdir()
	Setting Links in the Rawfs with make_link()
	Removing Databases and Rawfs Links with remove()
	Removing Rawfs Directories with rmdir()
	Moving Directories and Databases with rename()
	Testing a Pathname for Specified Conditions with s...
	Listing Directory Contents with list_directory()
	Find Database Size with ossize()
	Verifying Pointers and References with osverifydb(...

	Managing Schemas
	Comparing Schemas with compare_schemas()
	Setting the Application Schema with set_applicatio...

	Exceptions Summary

	Index

