

MoteWorks Getting Started Guide
Revision C, December 2006
PN: 7430-0102-01

© 2005-2006 Crossbow Technology, Inc. All rights reserved.
Information in this document is subject to change without notice.

Crossbow, MoteWorks, MICA, TrueMesh and XMesh are registered trademarks of Crossbow
Technology, Inc. Other product and trade names are trademarks or registered trademarks of their
respective holders.

MoteWorks Getting Started Guide

1 Introduction...1
1.1 MoteWorks Network Landscape .. 1
1.2 Low-Power Operating System – TinyOS .. 3
1.3 Software Development Tools .. 3

2 Installation of MoteWorks ...4
2.1 What You Need for Installation... 4
2.2 Installing from the CDROM .. 5
2.3 MoteWorks Installation Structure .. 11
2.4 Uninstalling MoteWorks.. 13

3 Programming Environment Customization...14
3.1 Programmer’s Notepad 2 ... 14
3.2 Cygwin... 16
3.3 Setting Aliases ... 17
3.4 Compiling MoteWorks Applications.. 17
3.5 Programming Boards ... 17
3.6 Installing MoteWorks Applications into a Mote .. 20
3.7 Setting the Group ID and Node Address for the Mote Network 20
3.8 The MakeXbowlocal file .. 21
3.9 Radio Frequencies.. 26
3.10 Automated Build Tools .. 26
3.11 Mote Programming Tools .. 27
3.12 TinyOS Interoperability and Tree Management .. 28
3.13 Compiling Utilities... 29
3.14 XSniffer.. 30

4 Introduction to TinyOS and nesC...32
4.1 TinyOS... 32
4.2 The nesC Language ... 34

5 First Steps in nesC Programming ...36
5.1 Hardware Requirements .. 36
5.2 A simple nesC program: MyApp... 36
5.3 A Closer Look at MyApp .. 41
5.4 Generating the Component Structure Documentation ... 47

6 A Simple Sensing Application..49
6.1 Hardware Requirements .. 49
6.2 A Simple Sensing Application: MyApp .. 49

Doc. # 7430-0102-01 Rev. C Page i

 MoteWorks Getting Started Guide

6.3 A Closer Look at MyApp .. 56
6.4 XSensor Applications Supported in MoteWorks .. 59

7 XMesh enabled Sensing Application...61
7.1 Hardware Requirements .. 61
7.2 An XMesh enabled Sensing application: MyApp.. 61
7.3 A Closer Look at MyApp .. 71
7.4 XMesh Applications Supported in MoteWorks .. 73

8 XMesh Advanced Features ..74
8.1 Hardware Requirements .. 74
8.2 End-to-End Acknowledgements: MyApp from the subdirectory /lesson_5 74
8.3 A Closer Look at MyApp .. 75
8.4 Downstream Command Processing: MyApp from the subdirectory /lesson_6 76
8.5 A Closer Look at MyApp .. 79

9 Data Logging Application ..81
9.1 Hardware Requirements .. 81
9.2 Using the external flash: MyApp from the subdirectory /lesson_7 81
9.3 A Closer Look at MyApp .. 83
9.4 Conclusion ... 85

10 Appendix A: Cygwin Command Reference ..86

11 Appendix B: Accessing Crossbow CVS ...87
11.1 Generate Key with PuTTY... 87
11.2 Upload public key to CVS server... 89
11.3 Configure TortoiseCVS client and check out code .. 90

12 Appendix C: Registration and Support ...95
12.1 Support Policy.. 95
12.2 Source Code Access:.. 95
12.3 Code under Development... 95
12.4 Known Issues ... 95

Page ii Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

About This Document

The following annotations have been used to provide additional information.

 NOTE
Note provides additional information about the topic.

 EXAMPLE
Examples are given throughout the manual to help the reader understand the terminology.

 IMPORTANT
This symbol defines items that have significant meaning to the user

 WARNING
The user should pay particular attention to this symbol. It means there is a chance that physical
harm could happen to either the person or the equipment.

The following paragraph heading formatting is used in this manual:

1 Heading 1

1.1 Heading 2

1.1.1 Heading 3

This document also uses different body text fonts (listed in Table 0-1) to help you distinguish
between names of files, commands to be typed, and output coming from the computer.

Table 0-1. Font types used in this document.

Font Type Usage
Courier New Normal Sample code and screen output
Courier New Bold Commands to be typed by the user

Times New Roman Italic TinyOS files names, directory names
Franklin Medium Condensed Text labels in GUIs

Doc. # 7430-0102-01 Rev. C Page iii

MoteWorks Getting Started Guide

1 Introduction

MoteWorks™ is the end-to-end enabling platform for the creation of wireless sensor networks.
The optimized processor/radio hardware, industry-leading mesh networking software, gateway
server middleware and client monitoring and management tools support the creation of reliable,
easy-to-use wireless OEM solutions. OEMs are freed from the detailed complexities of designing
wireless hardware and software enabling them to focus on adding unique differentiation to their
applications while bringing innovative solutions to market quickly.

1.1 MoteWorks Network Landscape
A wireless network deployment is composed of the three distinct software tiers:

1. The Mote Tier, where XMesh resides, is the software that runs on the cloud of sensor
nodes forming a mesh network. The XMesh software provides the networking algorithms
required to form a reliable communication backbone that connects all the nodes within
the mesh cloud to the server. (Refer to XMesh User’s Manual)

2. The Server Tier is an always-on facility that handles translation and buffering of data
coming from the wireless network and provides the bridge between the wireless Motes
and the internet clients. XServe and XOtap are server tier applications that can run on a
PC or Stargate. (Refer to XServe User’s Manual)

3. The Client Tier provides the user visualization software and graphical interface for
managing the network. Crossbow provides free client software called MoteView, but
XMesh can be interfaced to custom client software as well. (Refer to MoteView User’s
Manual)

Figure 1-1. XMesh Landscape

The software platform provided with MoteWorks™ is optimized for low-power battery-operated

Doc. # 7430-0102-01 Rev. C Page 1

 MoteWorks Getting Started Guide

networks and provides an end-to-end solution across all tiers of wireless sensor networking
applications.

1.1.1 XMesh Mote Tier
XMesh is a full featured multi-hop, ad-hoc, mesh networking protocol developed by Crossbow
for wireless networks. An XMesh network consists of nodes (Motes) that wirelessly
communicate to each other and are capable of hopping radio messages to a base station where
they are passed to a PC or other client. The hopping effectively extends radio communication
range and reduces the power required to transmit messages. By hopping data in this way, XMesh
can provide two critical benefits: improved radio coverage and improved reliability. Two nodes
do not need to be within direct radio range of each other to communicate. A message can be
delivered to one or more nodes in-between which will route the data. Likewise, if there is a bad
radio link between two nodes, that obstacle can be overcome by rerouting around the area of bad
service. Typically the nodes run in a low power mode, spending most of their time in a sleep
state, in order to achieve multi-year battery life.

XMesh provides a TrueMesh networking service that is both self-organizing and self-healing.
XMesh can route data from nodes to a base station (upstream) or downstream to individual
nodes. It can also broadcast within a single area of coverage or arbitrarily between any two nodes
in a cluster. QOS (Quality of Service) is provided by either a best effort (link level
acknowledgement) and guaranteed delivery (end-to-end acknowledgement). Also, XMesh can be
configured into various power modes including HP (high power), LP (low power), and ELP
(extended low power).

1.1.2 XServe Server Tier
XServe serves as the primary gateway between wireless mesh networks and enterprise
applications interacting with the mesh. At its core, XServe provides services to route data to and
from the mesh network with higher level services to parse, transform and process data as it flows
between the mesh and the outside applications. Higher level services are customizable using
XML based configuration files and loadable plug-in modules.

XServe offers multiple communication inputs for applications wishing to interact with XServe or
the mesh network. Users can interact with XServe through a terminal interface applications can
access the network directly or through a powerful XML RPC command interface.

1.1.3 MoteView Client Tier
MoteView is the client user interface that enables MoteWorks™ to deliver an end-to-end solution
across all tiers of wireless sensor networks. MoteView displays the information from the network
to developers or end-users. The entire network or individual nodes can be displayed and
analyzed in graphical charting or textual format. MoteView’s playback capability allows
historical viewing of network status and sensor readings over time, and is based on the logging
information stored in XServe. MoteView’s analysis capabilities allow automatic e-mail alerts
when user-definable conditions are met. For example, if RF links are re-routed because of
changes in the environment or sensor readings exceed a specified threshold, an e-mail will alert
an operator or field technician via PDA or mobile phone. MoteView enables end-users to
optimize network layout and configuration, analyze sensor information interactively and then
take corrective action. MoteView provides an interface to remotely configure motes in the
wireless network. Each node can be individually updated with configuration parameters provided

Page 2 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

by the mote. This makes it transparent for the user of an installed wireless sensor network to
configure motes, e.g. change frequency of sensor readings, without requiring any programming
knowledge. MoteView also has built-in support for Crossbow’s entire range of sensor boards,
enabling very fast prototyping. If custom sensor boards are required for an application, these
boards can be integrated for management in MoteView as well.

1.2 Low-Power Operating System – TinyOS
MoteWorks™ includes TinyOS, the open-source operating system originally developed by
University of California, Berkeley. TinyOS has developed a broad user community with
thousands of developers, making it the standard operating system for wireless sensor networking
in the research community. It is also the most widely-deployed wireless sensor network
operating system for commercial applications. TinyOS is a component-based, event-driven
operating system designed from the ground up for low-power devices with small memory
footprint requirements.

TinyOS supports microprocessors ranging from 8-bit architectures with as little as 2 KB of RAM
to 32-bit processors with 32 MB of RAM or more. It provides a well-defined set of APIs for
application programming. These APIs provide access to the computing capabilities of the sensor
node, allowing for intelligence within the network. Using these capabilities, sensor data can be
preprocessed on the node, optimizing both network throughput and battery life by avoiding
unnecessary send and receive messages.

1.3 Software Development Tools
MoteWorks is provided with a set of software development tools for custom Mote applications,
including custom sensor board drivers, sensor signal conditioning and processing and message
handlers. MoteWorks includes an optimized cross-compiler for the target mote platform and an
advanced editor for TinyOS application development. MoteWorks automatically installs and
configures these development tools for quick set-up and rapid start of development.

Doc. # 7430-0102-01 Rev. C Page 3

 MoteWorks Getting Started Guide

2 Installation of MoteWorks

This chapter describes how to install MoteWorks on a Windows®-based PC from the CD that
comes with the product. You will learn

• Installing MoteWorks and its tools

• MoteWorks installation tree structure

• How to uninstall MoteWorks

The issues that come up during installation such as choosing an installation directory and
installing with other versions of TinyOS, nesC, and Cygwin are also covered here. Following the
installation, read Chapter 3 which covers many important programming topics, instructions for
compiling and downloading the application firmware into your Motes, and useful programming
environment customizations.

2.1 What You Need for Installation

 Crossbow’s MoteWorks CD-ROM

 A Windows-based PC
Operating System: Microsoft Windows (XP, 2000, NT)
1 GB or more of free space in destination drive
550 MB or more of space in C drive, regardless of destination drive

The MoteWorks InstallShield Wizard setup offers the following software packages:

TinyOS and MoteWorks Tools An event-driven OS for wireless sensor networks; tools for
debugging

nesC compiler An extension of C-language designed for TinyOS

Cygwin A Linux-like environment for Windows

AVR Tools A suite of software development tools for Atmel’s AVR
processors

Programmer’s notepad IDE for code compilation and debugging

XSniffer Network Monitoring Tool for the RF environment

MoteConfig GUI environment for Mote Programming and OTAP

Graphviz To view files made from make docs

PuTTY and TortoiseCVS Source access through CVS server for Enterprise Users

Page 4 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

2.2 Installing from the CDROM

 IMPORTANT
Prior to installing MoteWorks, it is strongly recommended that you shut down all the programs
running on your computer.

1. Insert MoteWorks CD into the PC’s CD-ROM drive and double-click on

MoteWorks_<version>_Setup.exe

2. The installer will check for previously

installed Cygwin and if detected will

display the message. You need to click

on Yes before you can proceed further.

3. At the Welcome to the MoteView

Setup Wizard window, click on Next>.

4. At the License Agreement page, you

should read and check on “I accept the

agreement. Click on Next>.

Doc. # 7430-0102-01 Rev. C Page 5

 MoteWorks Getting Started Guide

5. Enter the license key from the

MoteWorks CD in the Serial Number

text box and click on Next>.

6. Specify the destination directory for

the MoteWorks (default is

C:\Crossbow) and click on Next>.

Moteworks should not be installed to

C:\Program Files\Crossbow

7. In the Select MoteWorks Components

dialog, select Full installation from the

drop down (recommended) and check

all the options. If you are upgrading

the MoteWorks components over a

previous version, then you can check

only the relevant components. Click on

Next>.

Page 6 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

8. The next window will display the

selections you specified. Verify and

click on Install to begin installation

process.

9. You may get the Cygwin Setup

warning shown on the right. Click on
Yes.

10. The windows shown will appear as the

installation progresses. Wait patiently

for further instructions.

Doc. # 7430-0102-01 Rev. C Page 7

 MoteWorks Getting Started Guide

11. The next step is the installation of

Programmer’s Notepad. Click Next> on

the welcome window.

12. At the License Agreement page, you

should read and check on “I accept the

agreement” before you can proceed

further. Click on Next>. (Programmer’s

Notepad gets installed under the

default folder C:\ Crossbow\pn)

13. The Setup Wizard will then install Graphviz utility. Wait patiently for further instructions.

14. The next step is the installation of

PuTTY. Click Next> on the welcome

window.

Page 8 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

15. Specify the destination directory for

the PuTTY (default is C:\Program

Files\PuTTY) and click on Next>.

16. In the Select Additional Tasks dialog

window, make sure to check

“Associate .PPK files” and click on Next>.

17. The next window will display the

selections you specified. Verify and

click on Install to proceed further. The

installer will guide you through the rest

of the process.

Doc. # 7430-0102-01 Rev. C Page 9

 MoteWorks Getting Started Guide

18. The next step is the installation of

MoteConfig. Click Next> on the

welcome window. The installer will

guide you through the rest of the

process. (MoteConfig gets installed

under the default folder

C:\ Crossbow\MoteConfig)

19. The next step is the installation of

TortoiseCVS. The installer will guide

you through the process.

20. After the completion of the

TortoiseCVS installation, you will be

prompted to restart the computer.

Page 10 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

21. Upon successful installation, you will

see this message. Click on Finish to exit

set-up.

2.3 MoteWorks Installation Structure
All the MoteWorks components such as apps/, doc/, tools/, and tos/ directories are located under
<install dir>/cygwin/opt/MoteWorks/. In addition the Makefile is in this folder. The environment
variables for TOSROOT is set to <install dir>. Typically the default <install dir> is the C:\
Crossbow

(a) MoteWorks top level directory structure

Local disk c: or
install directory

Crossbow

cygwin

MoteConfig

PN

bin

var

usr

tmp

opt

lib

home

etc

MoteWorks

XSniffer

Local disk c: or
install directory

Crossbow

cygwin

MoteConfig

PN

bin

var

usr

tmp

opt

lib

home

etc

MoteWorks

XSniffer

Doc. # 7430-0102-01 Rev. C Page 11

 MoteWorks Getting Started Guide

(b) MoteWorks and subdirectories

(c) apps and subdirectories

(d) tools and subdirectories

(e) tos and subdirectories

Figure 2-1. MoteWorks and Subdirectory Map

MoteWorks

apps

make

doc

tools

tos

XMesh, XSensor applications and example programs

nesC Compile utilities for different processor platforms

Documents generated by make utility

Developers utilities and programs

TinyOS “operating system,” modules, and interfaces

MoteWorks

apps

make

doc

tools

tos

XMesh, XSensor applications and example programs

nesC Compile utilities for different processor platforms

Documents generated by make utility

Developers utilities and programs

TinyOS “operating system,” modules, and interfaces

apps

examples

general

tutorials

xmesh

Example applications described in XMesh manual

Basic applications such as Blink and XSniffer

Applications described in Getting Started Guide

Multi-hop apps for various sensorboards

Single-hop apps for various sensorboardsxsensor

apps

examples

general

tutorials

xmesh

Example applications described in XMesh manual

Basic applications such as Blink and XSniffer

Applications described in Getting Started Guide

Multi-hop apps for various sensorboards

Single-hop apps for various sensorboardsxsensor

tools

bin

motelist

uisp

xserve

Executables for automated tools

Lists attached USB devices

Mote UISP programming utility

XServe server tier middleware

tools

bin

motelist

uisp

xserve

Executables for automated tools

Lists attached USB devices

Mote UISP programming utility

XServe server tier middleware

tos

interfaces

lib

platform

sensorboards

system

Definitions of TinyOS component interfaces

Major “libraries” such as XMesh, TimeSync

Mote platform specific hardware drivers

Sensor and data acquisition board drivers

TinyOS “services” such as the timers, scheduler

types TinyOS data structures such as Active Messages

radio Radio specific drivers

tos

interfaces

lib

platform

sensorboards

system

Definitions of TinyOS component interfaces

Major “libraries” such as XMesh, TimeSync

Mote platform specific hardware drivers

Sensor and data acquisition board drivers

TinyOS “services” such as the timers, scheduler

types TinyOS data structures such as Active Messages

radio Radio specific drivers

Page 12 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

2.4 Uninstalling MoteWorks

To uninstall MoteWorks, you can use the Remove option for MoteWorks found under
Start>Control Panel>Add/Remove Programs. This will remove MoteWorks Tree, Programmer’s
Notepad and MoteConfig from your PC. Similarly, other installed components (viz. Graphviz,
XSniffer, PuTTY and TortoiseCVS) need to be separately removed using the Add/Remove
Programs Wizard.

 NOTE: In certain cases, depending on your system security, the MoteWorks uninstaller does
not automatically remove Cygwin and its registry files. You have to manually remove following
items to fully uninstall Cygwin:
 Cygwin shortcuts and start menu entry (Programs>Cygwin)

 Cygwin registry entries under HKEY_LOCAL_MACHINE>Software>Cygnus Solutions (run regedit)

 Everything under the Cygwin root directory. Save useful files of course; you could just
rename the cygwin root to say, cygwin-old, to be extra safe.

Doc. # 7430-0102-01 Rev. C Page 13

 MoteWorks Getting Started Guide

3 Programming Environment Customization

In this chapter, you will learn:

 Customizing Programmer’s Notepad
 Cygwin interface
 Compiling and Programming Tools
 Environment variables
 Interoperability between TinyOS 1.1.10 and MoteWorks 2.0

3.1 Programmer’s Notepad 2
MoteWorks includes a version of Programmer’s Notepad that is configured as a simple IDE for
nesC code. In the Tools menu there are “compile,” “make mica2”, and “make micaz” options. If
you installed to a non-default directory, you have to edit these tools manually to get them to
work:

1. Open Programmer’s Notepad from Start>Programs>Crossbow>PN

2. Open a nesC file within an application directory (eg. Blink.nc from
/MoteWorks/apps/general/Blink).

3. Go to menu Tools > Options

Page 14 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

4. Click on Tools on the left hand side and choose, ‘NesC-TinyOS’ from the drop-down for
Scheme. Double click each of `shell`, and Edit. This will bring up “Edit Tools Properties”
dialog box shown below.

5. If your MoteWorks Suite was installed under a directory different from default

 Change Command: to point to correct Programmer’s Notepad directory.
 Change Parameters: to point to correct MoteWorks directory.

 Repeat the above step for other Tools (eg make mica2, make micaz etc.)

6. Open a nesC file within an application directory (eg. Blink.nc), and click on Tools > make

mica2 or make micaz. You can also execute the shell commands by clicking on Tools > shell
and then typing the command in the dialog box.

Doc. # 7430-0102-01 Rev. C Page 15

 MoteWorks Getting Started Guide

7. Double click any errors in the Output window displayed in purple to warp to file and line

number.

 NOTE: You need to be in the .nc of the app file you want to compile and program before you can
execute shell commands from Programmer’s Notepad.

3.2 Cygwin

Cygwin is a Unix/Linux emulation environment for Microsoft Windows. It consists of two parts:

1. A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing substantial
Linux API functionality.

2. A collection of tools, which provide a Linux look and feel.

The Cygwin tools are ports of the popular GNU development tools for Microsoft Windows.
Cygwin is an optional user interface for compiling and downloading Mote applications in
MoteWorks. The Cygwin shell can be started by double clicking on the icon located on your
desktop. You should see a new command prompt window similar to the following.

Page 16 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

More details on Cygwin are provided in Appendix A.

3.3 Setting Aliases

Once you have successfully installed MoteWorks, it is recommended that you setup aliases to
commonly used commands and accessed directories. Aliases are to be edited at the bottom of the
filed called profile which is located in <install dir> /cygwin/etc/.

These aliases are useful for quickly changing to commonly used directories while in the Cygwin
shell. Although some the aliases appear as two lines, all are written as one line.

alias cdMoteWorks=“cd <install dir>/cygwin/opt/MoteWorks”

alias cdtools=“cd <install dir>/cygwin/opt/MoteWorks/tools”

alias cdapps=“cd <install dir>/cygwin/opt/MoteWorks/apps”

 NOTE: If the <install dir>/ is the folder Program Files, then you must enter in the text Program\
Files to correctly handle the space between the two words when changing directories in Cygwin. To go to
the root of the Cygwin directory, just type /opt instead of the complete path.

To create your own aliases, use the format shown in the examples above.

3.4 Compiling MoteWorks Applications

The syntax for compiling (building) application code in a Cygwin window is of the form:
make <platform>

The name to be used for <platform> can be found in Table 7-1.
Table 3-1. Listing of Hardware Platforms (<platform>)

Processor/Radio Platform For <platform> use

MICAz (MPR2400 series) micaz

MICA2 (MPR4x0 series) mica2

MICA2DOT (MPR5x0 series) mica2dot

3.5 Programming Boards

The MoteWorks development environment supports a variety of programming tools. The ones
that are mentioned or described in this Guide are.

Doc. # 7430-0102-01 Rev. C Page 17

 MoteWorks Getting Started Guide

1. The MIB510CA serial port programming board
2. The MIB520CA USB port programming board
3. The MIB600CA Ethernet port programming board.

Table 3-2. Listing of Mote Interface Board (“MIB”) Programming Boards (<programmer>)

MIB Board For <programmer> use

MIB510 mib510

MIB520 mib520

MIB600 eprb

The standard programming software used in MoteWorks is the Micro (the Greek letter “µ”) In-
System Programmer or UISP. This program takes various arguments according to the
programmer hardware and the particular programming action desired (erase, verify, program,
etc.). To simplify using this tool, the MoteWorks environment invokes UISP with the correct
arguments whenever you issue an install or reinstall command. You also need to specify
the type of device you are using and how to communicate with it. This is done using
environment variables.

3.5.1 MIB510/Serial Port Programmers
Append the default command line with mib510,com<x> where <x> is the serial port number
where the MIB510 is attached. Before running this command check your system for available
ports.

 EXAMPLE—Command Line Entry for MIB510

This example is for programming a MICAz from a MIB510 that is connected to a PC’s serial
port COM1.

make micaz install mib510,com1

 NOTE: If your computer does not have a DB9 serial port and are using a USB to DB9 serial port
converter, you must know what port (COM) number your computer has assigned to the USB port. Use
that COM port number when doing the above command. However, there are cases where your computer
will issue a COM port number but is not what Cygwin will communicate through. That is, by trial and error
you will have to try different numbers for the COM port.

3.5.2 MIB520 USB Programmers
MIB520 uses the FTDI FT2232C to use the USB port as a virtual COM port. Hence you need to
install FT2232C VCP drivers.

 When you plug a MIB520 into your PC for the first time, Windows detects and reports it
as a new hardware. Please select “Install from a list or specific location (Advanced)” and
browse to “MIB520 Drivers” folder of the MoteWorks CDROM. The install shield
wizard will guide you through the installation process.

Page 18 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 When the drivers are installed, you will see two serial ports added under the Control
Panel>System>Hardware>Device Manager>Port. Make a note of the assigned COM port
numbers.

 The two virtual serial ports for MIB520 are comx and com(x+1); comx is for Mote
programming and com(x+1) is for Mote communication.

Append the default command line with mib520,com<x> where <x> is the COM port number
to which the MIB520 is attached. Before running this command check and verify your PC to see
which ports are available.

 EXAMPLE—Command Line Entry for MIB520

This example is for programming a MICAz from a MIB520 that is connected to a PC’s serial
port COM7.

make micaz install mib520,com7

3.5.3 MIB600 Ethernet Programmers
You can (re)program Motes through a LAN by using the MIB600 Ethernet programming board.
As the previous sentence suggests, the MIB600 is also known as the “eprb” (Ethernet program
board).

Prior to using to using the MIB600, you either need to know or to assign an IP address to it.
(Every device connected to an IP network must have a unique IP address.) This address is used
to reference the specific unit. Every TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) connection is defined by a destination IP address and a port number.

1. Install Lantronix device installer (DeviceInstaller36.zip) from the CD ROM under
MIB600 Device Installer folder.

2. Connect the MIB600 to the network using RJ-45 Ethernet cable and plug-in the power
supply that was included in the packaging. Make sure the Power Switch SW2 is in “5V”
position.

3. Click the Start button on the Task Bar and select Start > Programs > Lantronix > Device
Installer > Device Installer. The Device Installer window will open.

4. Click on Search button and you will see a list of devices that were found with the IP
address and corresponding Hardware address.

5. Select the device that matches the hardware address of your MIB600 board (e.g., 00-20-
4A-63-47-31). Click on “Assign IP” and follow the instructions. Note down the IP
address.

6. Once you have assigned the IP address of the MIB600, the Cygwin command line to
program a Mote is

 make <platform> install eprb,<IP_Address_of_MIB600>

 EXAMPLE—Command Line Entry for MIB600

Doc. # 7430-0102-01 Rev. C Page 19

 MoteWorks Getting Started Guide

The following command is for programming a MICA2 Mote on an MIB600 assigned with IP
address 192.168.100.123.

 make mica2 install eprb,192.168.100.123

3.6 Installing MoteWorks Applications into a Mote

The programming tools also include a method of programming unique node addresses without
having to edit the source code directly. To set the node address/ID during program load, the
general syntax for installing is:

 make <platform> re|install,<n> <programmer>,<port>

where <programmer> ,<port> the name of the programmer the port ID or address or number
of the host PC to which the programmer is attached, ,<n> is an optional number (in decimal) to
set the node ID or address, and <platform> is the type of Mote processor/radio hardware
platform.

The difference between install and reinstall is explained below.

install,<n>—compiles the application for the target platform, sets the node ID/address and
programs the device (Mote).

reinstall,<n>—sets the node ID/address and downloads the pre-compiled program (into
the Mote) only and does not recompile. This option is significantly faster.

Assigning a node ID by using the “,<n>” is optional and is discussed further in the next
subsection.

3.7 Setting the Group ID and Node Address for the Mote Network

The Mote messages contain a group ID in the header, which allows multiple distinct groups of
Motes to share the same radio channel. If you want to separate multiple groups of Motes that are
on the same radio channel, you need to set the group ID to a unique 8-bit value to filter out those
messages. The default group ID is 0x7d. You can set the group ID by defining the preprocessor
symbol DEFAULT_LOCAL_GROUP in a MakeXbowlocal file which is located in /MoteWorks/apps/
directory. Section 3.8 has information about how to edit a MakeXbowlocal file. In addition, the
message header carries the destination node number, which is a 16-bit value.

IMPORTANT: Except for decimal numbers 126 (the TOS_UART_ADDR 0x007E) and
255 (the TOS_BCAST_ADDR 0xFFFF), all other values between 0 and 65535 are permissible. The
number 0 is typically reserved for the base station Mote.

Setting the node address is important when programming Motes for a sensor network (as in
Section 3.6. The node address/ID of your Mote is set when you download the application into the
Mote. The command line entry is

make <platform> re|install,<n> <programmer>,<port>

Page 20 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 EXAMPLE—MIB510: Assigning a node address/ID of 38 to a MICA2. The MIB510 is on the
PC’s COM1 serial port.

make mica2 install,38 mib510,com1

EXAMPLE— MIB520: Assigning a node address/ID of 38 to a MICA2. The Virtual COM port
of the MIB520 on the PC are COM3 and COM4.

make mica2 install,38 mib520,com3

 EXAMPLE—MIB600: Assigning a node address/ID of 38 to a MICA2. The MIB600’s IP
address is: 10.1.1.248.

make mica2 install,38 eprb,10.1.1.248

3.8 The MakeXbowlocal file

The MakeXbowlocal file provides a convenient way for users to change the local group ID,
channel (RX/TX frequency) and RF transmission power.

To use it, double-check that the Makefile in a particular application’s top-level directory has the
following line:

include ../MakeXbowlocal

By adding this line in your applications Makefile will cause the compiler to include the
MakeXbowlocal file.

 NOTE: The MoteConfig does not read and use the parameters defined in MakeXbowlocal
and hence they need to be set separately while using MoteConfig.

 EXAMPLE

Portions of the MakeXbowlocal file located under /MoteWorks/apps/

MakeXbowlocal - Local Defines related to apps in contrib/xbow directory

$Id: MakeXbowlocal,v 1.5 2006/03/29 23:45:49 mturon Exp $

Settings for the the Mote Programmer,

If you are using MIB510 and it is connected to COM1

Doc. # 7430-0102-01 Rev. C Page 21

 MoteWorks Getting Started Guide

of your PC use the following setting

For MIB600 use "eprb" setting and provide the hostname/IP address

#DEFAULT_PROGRAM=mib510

#DEFAULT_PROGRAM=mib520

#DEFAULT_PROGRAM=eprb

#MIB510=COM1

#MIB520=COM5

#EPRB=10.1.1.238

Programming Board Option

Automatically add certain command-line goals:

GOALS += basic

GOALS += group,125

GOALS += freq,903

set Mote group id

- default mote group

#DEFAULT_LOCAL_GROUP=0x7D

Group ID Selection

set radio channel (freq)

-Uncomment ONLY one line to choose the desired radio operating freq.

-Select band based on freq label tag on mote (916,433..)

(i.e. 433Mhz channel will not work for mote configured for 916Mhz)

916 MHz Band

CHANNEL_00 - 903 MHz CHANNEL_02 - 904 MHz CHANNEL_04 - 905 MHz

CHANNEL_06 - 906 MHz CHANNEL_08 - 907 MHz CHANNEL_10 - 908 MHz

CHANNEL_12 - 909 MHz CHANNEL_14 - 910 MHz CHANNEL_16 - 911 MHz

CHANNEL_18 - 912 MHz CHANNEL_20 - 913 MHz CHANNEL_22 - 914 MHz

CHANNEL_24 - 915 MHz CHANNEL_26 - 916 MHz CHANNEL_28 - 917 MHz

CHANNEL_30 - 918 MHz CHANNEL_32 - 919 MHz CHANNEL_34 - 920 MHz

CHANNEL_36 - 921 MHz CHANNEL_38 - 922 MHz CHANNEL_40 - 923 MHz

CHANNEL_42 - 924 MHz CHANNEL_44 - 925 MHz CHANNEL_46 - 926 MHz

CHANNEL_48 - 927 MHz

Page 22 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

Original Channels defined by TinyOS 1.1.0

CHANNEL_100 - 914.077 MHz CHANNEL_102 - 915_988 MHz

#---

#RADIO_CLASS = 916

#---

RF Band Selection

#RADIO_CHANNEL = 00

#RADIO_CHANNEL = 02

#RADIO_CHANNEL = 04

……

……

……

#RADIO_CHANNEL = 102

#--

RF Channel Selection

#--

868 MHz Band

CHANNEL_00 - 869 MHz CHANNEL_02 - 870 MHz

#--

#RADIO_CLASS = 868

#--

#RADIO_CHANNEL = 00

#RADIO_CHANNEL = 02

#--

#--

433 MHz Band

CHANNEL_00 - 433.113 MHz CHANNEL_02 - 433.616 MHz

CHANNEL_04 - 434.108 MHz CHANNEL_06 - 434.618 MHz

Original Channels defined by TinyOS 1.1.0

CHANNEL_100 - 433.002 MHz CHANNEL_102 - 434.845 MHz

#--

Doc. # 7430-0102-01 Rev. C Page 23

 MoteWorks Getting Started Guide

#RADIO_CLASS = 433

#--

#RADIO_CHANNEL = 00

#RADIO_CHANNEL = 02

#RADIO_CHANNEL = 04

#RADIO_CHANNEL = 06

#RADIO_CHANNEL = 100

#RADIO_CHANNEL = 102

#--

#--

315 MHz Band

CHANNEL_00 - 315 MHz

Original Channels co-efficients defined by TinyOS 1.1.0

CHANNEL_100 - 315.178 MHz

#--

#RADIO_CLASS = 315

#RADIO_CHANNEL = 00

#RADIO_CHANNEL = 100

#--

MICA2 Family Radio Power

- Radio transmit power is by a value (RTP) between 0x00 and 0xFF

- RTP = 0 for least power; =0xFF for max transmit power

#---

For Mica2 and Mica2Dot

Freq Band: Output Power(dBm) RTP

916 Mhz -20 0x02

-10 0x09

0 (1mw) 0x80

5 0xFF

433 Mhz -20 0x01

-10 0x05

0 (1mw) 0x0F

10 0xFF

RF Power Selection

Uncomment the line for the required Power Setting

Page 24 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

#RADIO_POWER=0xFF

#RADIO_POWER=0x0F

#RADIO_POWER=0x09

#RADIO_POWER=0x05

#RADIO_POWER=0x02

#RADIO_POWER=0x01

Zigbee Channel Selection

CHANNEL_11 - 2405 MHz CHANNEL_12 - 2410 MHz CHANNEL_13 - 2415 MHz

CHANNEL_14 - 2420 MHz CHANNEL_15 - 2425 MHz CHANNEL_16 - 2430 MHz

CHANNEL_17 - 2435 MHz CHANNEL_18 - 2440 MHz CHANNEL_19 - 2445 MHz

CHANNEL_20 - 2450 MHz CHANNEL_21 - 2455 MHz CHANNEL_22 - 2460 MHz

CHANNEL_23 - 2465 MHz CHANNEL_24 - 2470 MHz CHANNEL_25 - 2475 MHz

CHANNEL_26 - 2480 MHz

15, 20, 25 & 26 seem to be non-overlapping with 802.11

#RADIO_CHANNEL=11

#RADIO_CHANNEL=12

……

……

……

#RADIO_CHANNEL=24

#RADIO_CHANNEL=25

#RADIO_CHANNEL=26

MICAZ RF Power Levels

#TXPOWER_MAX TXPOWER_0DBM

#TXPOWER_0DBM 0x1F //0dBm

#TXPOWER_M1DBM 0x1B //-1dBm

#TXPOWER_M3DBM 0x17 //-3dBm

#TXPOWER_M5DBM 0x13 //-5dBm

#TXPOWER_M7DBM 0x0F //-7dBm

#TXPOWER_M10DBM 0x0B //-10dBm

Doc. # 7430-0102-01 Rev. C Page 25

 MoteWorks Getting Started Guide

#TXPOWER_M15DBM 0x07 //-15dBm

#TXPOWER_M25DBM 0x03 //-25dBm

#TXPOWER_MIN TXPOWER_M25DBM

#RADIO_POWER=TXPOWER_MAX

#RADIO_POWER=TXPOWER_M0DBM

#RADIO_POWER=TXPOWER_M3DBM

#RADIO_POWER=TXPOWER_M5DBM

#RADIO_POWER=TXPOWER_M10DBM

#RADIO_POWER=TXPOWER_M15DBM

#RADIO_POWER=TXPOWER_M25DBM

#RADIO_POWER=TXPOWER_MIN

3.9 Radio Frequencies

The radio transceivers on the MICAz, MICA2, and MICA2DOT support multiple frequencies.
Units are delivered at a pre-defined channel in 315 MHz, 433 MHz, 915 MHz, or 2.4 GHz ISM
bands. All of the coefficients for radio tuning for the MICA2 and MICA2DOT are contained in
the TinyOS file CC1000Const.h located in /MoteWorks/tos/platform/mica2/.

Users must compile in the correct base radio frequency to prevent radio communication failure.
The best and safest way to make sure you’re compiling for the correct frequency for any Mote
platform is to edit the MakeXbowlocal file (described in Section 3.8 above).

3.10 Automated Build Tools
MoteWorks offers several automated tools to simplify the compilation process.

3.10.1 build
This command is similar to make, but filters out the compile output to highlight only error
messages and warnings.

$ build micaz
 compiling Blink to a micaz binary
 compiled Blink to build/micaz/main.exe
 1546 bytes in ROM
 99 bytes in RAM

3.10.2 Buildall
This command performs an automated build of all applications under that application folder.
 $ buildall -?

$Id: buildall,v 1.8 2006/02/11 02:11:57 mturon Exp $
Usage: buildall [OPTION]...

 --cvs Updates latest source code from cvs.
 --docs Runs nesdoc in addition to normal build.

Page 26 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 --summary Shows running summary.

3.11 Mote Programming Tools
MoteWorks also offers several automated tools to simplify the Mote programming process.

3.11.1 flash
This command flashes an image onto the Mote. The image filename must be specified in the
first argument. The Node ID and COM port arguments are optional, and default to node id 1 and
COM1. It only works with MIB510 and MIB520 programming interface boards.

$ flash
 Usage: flash [image] [nodeid] [port]

$ flash main.exe 1 /dev/ttyS0
FLASH main.exe as node 1 to /dev/ttyS0

avr-objcopy --output-target=srec build build
avr-objcopy: build: File format not recognized

set-mote-id build build-1 1

 uisp -dprog=mib510 -dpart=ATmega128 -dserial=/dev/ttyS0 --wr_fuse_h=0xd9 --wr_fu
se_e=ff --erase --upload if=build-1

3.11.2 flashall
This command flashes an image onto a test bed of Motes. It works with MIB510, MIB520, or
MIB600 interface boards.

$ flashall
Usage: flashall image_file < port_list
Description:
 Will flash [image_file] to all ports passed in [port_list] file.
 [port_list] is a text file where each line is one of:
 /dev/tty# or /dev/ttyS#, or ip ###.###.###.###
 First line will be assigned node id == 0.
 All remaining lines will be assigned node id == ###.

3.11.3 fuses
This command allows the user to read or write the fuse settings of the Mote on the programming
interface board.

$ fuses

fuses Ver:$Id: fuses,v 1.1 2005/03/01 17:24:19 jprabhu Exp $

 Usage: fuses [command] [port] [args]

 read = read fuses

 clkint = set to internal oscillator

 clkext = set to external oscillator

 jtagen = enable JTAG

 jtagdis = disable JTAG

 Command Flag

 ------- --

 clkext --wr_fuse_l=0xff

Doc. # 7430-0102-01 Rev. C Page 27

 MoteWorks Getting Started Guide

 clkint --wr_fuse_l=0xc4

 jtagdis --wr_fuse_h=0xd9

 jtagen --wr_fuse_h=0x19

 read --rd_fuses

3.11.4 motelist
This command lists MIB520 and Telos devices attached to the USB port.

3.12 TinyOS Interoperability and Tree Management
Users can interoperate between the prior versions of TinyOS (such as 1.1.10) and MoteWorks.
Several commands are provided to conveniently switch back and forth between TinyOS and
MoteWorks trees.

3.12.1 gettos
This command allows the user to see how their current TinyOS environment is configured.

$ gettos

TOSDIR=/opt/MoteWorks/tos

TOSROOT=/opt/MoteWorks

MAKERULES=/opt/MoteWorks/make/Makerules

total 1

drwx------+ 2 mturon 0 Feb 3 13:15 CVS

-rwx------+ 1 mturon 77 Feb 3 13:15 README.txt

drwx------+ 9 mturon 0 Jan 27 08:45 apps

drwxr-xr-x+ 3 mturon 0 Feb 8 12:14 doc

drwx------+ 8 mturon 0 Feb 3 15:51 make

drwx------+ 12 mturon 0 Feb 14 17:34 tools

drwx------+ 10 mturon 0 Jan 12 01:21 tos

3.12.2 settos
The user can switch to a new MoteWorks tree by changing the symbolic link. Both trees
maintain the same /opt/MoteWorks root, but the users can maintain two versions, the 2.0
Standard release and a 2.1 Enterprise developer tree for example. The first time you run this
command, it will rename your current MoteWorks tree to the specified version.
 $ settos 2.0

Warning: /opt/MoteWorks directory moved to /opt/MoteWorks.2.0
Warning: /opt/MoteWorks will be made into a symbolic link
Set TinyOS tree to: /opt/MoteWorks.2.0

$ settos 2.1
Set TinyOS tree to: /opt/MoteWorks.2.1

3.12.3 usetos
This command allows the users to switch between MoteWorks and a legacy TinyOS 1.x
environment.

 usetos - switch to MoteWorks

Page 28 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 usetos tinyos - switch to TinyOS 1.x
 usetos tinyos-2.x - switch to TinyOS 2.x

The following command shell session shows switching to a TinyOS 2.x environment, and back
into MoteWorks.

$ `usetos tinyos-2.x`

$ gettos
TOSDIR=/opt/tinyos-2.x/tos
TOSROOT=/opt/tinyos-2.x
MAKERULES=/opt/tinyos-2.x/support/make/Makerules
total 5
drwx------+ 2 mturon 0 Feb 16 23:50 CVS
-rwx------+ 1 mturon 156 Feb 16 23:49 README
drwx------+ 12 mturon 0 Feb 16 23:50 apps
drwx------+ 7 mturon 0 Feb 16 23:49 doc
-rwx------+ 1 mturon 2635 Mar 9 2005 overall-todo.txt
drwx------+ 5 mturon 0 Jan 20 12:13 support
drwx------+ 6 mturon 0 Feb 16 23:50 tools
drwx------+ 11 mturon 0 Feb 16 23:50 tos

$ `usetos`

$ gettos
TOSDIR=/opt/MoteWorks/tos
TOSROOT=/opt/MoteWorks
MAKERULES=/opt/MoteWorks/make/Makerules
lrwxrwxrwx 1 mturon 18 Feb 17 17:52 /opt/MoteWorks -> /opt/MoteWorks.2.1

3.13 Compiling Utilities
MoteWorks offers several compilation utilities.

3.13.1 make
This command allows users to compile their nesC code with several options directly from the
command line (such as XMesh power mode, group ID, radio frequency).
 make <platform>

<route,hp|lp|elp>
<group,125>

 <freq,315|433|433.5|434|434.5|903|904|926|2405|2420|2445>

3.13.2 mote-mem
This utility displays memory usage of compiled firmware by module. Usage is broken down by
Program ROM, Constants RAM, and Heap RAM.

$ mote-mem build/micaz/main.exe
Module Memory Usage: AVR binary file "build/micaz/main.exe"

 1542 bytes of Program ROM allocated
 1340 bytes of Program ROM used
 202 bytes of Program ROM wasted
usage by module:
 164 HPLPowerManagementM
 62 TOS_post
 518 TimerM
 4 __nesc_atomic_end
 8 __nesc_atomic_start
 176 __vector_15
 408 main

Doc. # 7430-0102-01 Rev. C Page 29

 MoteWorks Getting Started Guide

 4 bytes of Constants RAM allocated
 4 bytes of Constants RAM used
 0 bytes of Constants RAM wasted
usage by module:
 1 HPLPowerManagementM
 1 TOS_DATA_LENGTH
 1 TOS_PLATFORM
 1 TOS_ROUTE_PROTOCOL

 95 bytes of Heap RAM allocated
 95 bytes of Heap RAM used
 0 bytes of Heap RAM wasted
usage by module:
 4 HPLClock
 1 LedsC
 1 PotM
 64 TOSH_queue
 1 TOSH_sched_free
 1 TOSH_sched_full
 1 TOS_BASE_STATION
 22 TimerM

3.13.3 treediff
This utility displays source differences between two different applications.

3.14 XSniffer
XSniffer is a Crossbow-developed tool that allows users to monitor multi-hop communication
over XMesh. This program runs on a PC and uses a MICA2 or MICAz Mote to monitor the RF
packet traffic. The following applications are required to run XSniffer:

1. XSniffer TinyOS code: This code can be built for either a MICA2 or MICAz running on a
Crossbow MIB510 or MIB520 base station. The source code is located under

/MoteWorks/apps/general/XSniffer
2. XSniffer GUI which installs and runs on the PC. The executables are installed in C:/

Crossbow/XSniffer.

 NOTE: XSniffer is set for a group ID=0 and TOS_LOCAL_ADDRESS = 0xff00 so that it
will never return an acknowledgement for any radio packet meant for another mote.

3.14.1 Building and Starting XSniffer
In the /MoteWorks/apps/general directory, build and install the application for the correct
platform. For a MICAz and a MIB510 the command would be
 make install micaz mib510,/dev/ttyS0

 WARNING: XSniffer does not run XMesh. Do not use route,hp2 or route,lp2 variables
when building. XSniffer uses TOSH_DATA_LENGTH = 64 which should accommodate the
largest user data packets.

Open the XSniffer GUI, select the correct COM port and START. Network messages should
appear in the Log tab.

Page 30 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

3.14.2 Using XSniffer
XSniffer can be used to monitor the behavior of the mesh. It will display all radio messages
overheard within its radio range. Use XSniffer to:

 Check to see if a mote has joined the mesh. When this happens the health and data
packets will change from a broadcast address to either the base station address or the
address of another parent.

 Monitor the packet sequence numbers of individual mote radio packets.
 Monitor downstream radio communication from the base station.
 Monitor radio message retries.
 Monitor route update and time synchronization messages.

For more details on XSniffer, refer to XMesh User’s manual.

Doc. # 7430-0102-01 Rev. C Page 31

 MoteWorks Getting Started Guide

4 Introduction to TinyOS and nesC

In this chapter you will be introduced to:

 Introduction to TinyOS and programming philosophy
 Introduction to nesC language

4.1 TinyOS
TinyOS is an open-source operating system designed for wireless embedded sensor networks. It
features a component-based architecture, which enables rapid innovation and implementation
while minimizing code size as required by the severe memory constraints inherent in sensor
networks. TinyOS’s component library includes network protocols, distributed services, sensor
drivers, and data acquisition tools—all of which can be used as-is or be further refined for a
custom application. TinyOS’s event-driven execution model enables fine-grained power
management yet allows the scheduling flexibility made necessary by the unpredictable nature of
wireless communication and physical world interfaces.

TinyOS is not an operating system (“OS”) in the traditional sense; it is a programming
framework for embedded systems and set of components that enable building an application-
specific OS into each application. The reason for this is to ensure that the application code has an
extremely small memory foot print. In addition TinyOS is designed to have no file system,
supports only static memory allocation, implement a simple task model, and provide minimal
device and networking abstractions.

TinyOS has a component-based programming model (codified by the nesC language). Like other
operating systems, TinyOS organizes its software components into layers. The lower the layer
the closer it is to the hardware; the higher the component, the closer it is to the application. A
complete TinyOS application is a graph of components, each of which is an independent
computational entity.

Components have three computational concepts: 1) commands, 2) events, and 3) tasks.
Commands and events are mechanisms for inter-component communication, while tasks are used
to express intra-component concurrency. A command is typically a request to a component to
perform a service. A typical example is starting a sensor reading. By comparison, an event would
signal the completion of that service. Events may also be signaled asynchronously, for example,
due to hardware interrupts or message arrival. From a traditional OS perspective, commands are
analogous to downcalls and events to call backs. Commands and events cannot block. However,
a request for a service is split-phase in that the request for service (the command) and the
completion signal (the corresponding event) are decoupled. The command returns immediately
and the event signals completion at a later time.

Rather than performing a computation immediately, commands and event handlers may post a
task, a function executed by the TinyOS scheduler at a later time. This allows commands and
events to be responsive, returning immediately while deferring extensive computation to tasks.
While tasks may perform significant computation, their basic execution model is run-to-
completion, rather than to run indefinitely; this allows tasks to be much lighter-weight than
threads. Tasks represent internal concurrency within a component and may only access state
information within that component. The TinyOS scheduler uses a non-preemptive, first in, first
out (“FIFO”) scheduling policy.

Page 32 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

A developer composes an application by writing components and wiring them to other TinyOS
components that provide implementations of the required services. How developers write
components and wire them in nesC is discussed later in this document.

4.1.1 TinyOS Programming philosophy
The TinyOS operating system, libraries, and applications are all written in nesC, a new
structured component-based language. The nesC language is primarily intended for embedded
systems such as sensor networks. The nesC has a C-like syntax, but supports the TinyOS
concurrency model, as well as mechanisms for structuring, naming, and linking together
software components into robust network embedded systems. The principal goal is to allow
application designers to build components that can be easily composed into complete, concurrent
systems, and yet perform extensive checking at compile time.

TinyOS also defines a number of important concepts that are expressed in nesC. A brief
summary is provided here.

Table 4-1. Description of the Main TinyOS/nesC Concepts

TinyOS/nesC Concept Description

Application A TinyOS/nesC application consists of one or more components, linked (“wired”)
together to form a run-time executable

Component
Components are the basic building blocks for nesC applications. There are two types
of components: modules and configurations. A TinyOS component can provide and
use interfaces.

Module A component that implements one or more interfaces.

Configuration

A component that wires other components together, connecting interfaces used by
components to interfaces provided by others. (This is called wiring.) The idea is that a
developer can build an application as a set of modules, wiring together those modules
by providing a configuration. Furthermore, every nesC application is described by a
top-level configuration that specifies the components in the application and how they
invoke one another.

Interface

An interface is used to provide an abstract definition of the interaction of two
components. This concept is similar to Java in that an interface should not contain
code or wiring. It simply declares a set of functions that the interface’s provider must
implement—commands—and another set of functions the interfaces’ requirer must
implement—events. In this way it is different than Java interfaces which specify one
direction of call. NesC interfaces are bi-directional. For a component to call the
commands in an interface it must implement the events of that interface. A single
component may require or provide multiple interfaces and multiple instances of the
same interface. These interfaces are the only point of access to the component.

The nesC also defines a concurrency model, based on tasks and hardware event handlers, and
detects data races at compile time. When looking at the files in an application directory, you can
identify the nesC files because it uses the extension “.nc” for all source files—interfaces,
modules, and configurations.

4.1.2 Concurrency Model
TinyOS executes only one program consisting of selected system components and custom
components needed for a single application. There are two threads of execution: tasks and
hardware event handlers. Tasks are functions whose execution is deferred. Once scheduled,
they run to completion and do not preempt one another. Hardware event handlers are executed in
response to a hardware interrupt and also run to completion. Unlike a task, it may preempt the

Doc. # 7430-0102-01 Rev. C Page 33

 MoteWorks Getting Started Guide

execution of a task or other hardware event handler. Commands and events that are executed as
part of a hardware event handler must be declared with the async keyword.

Because tasks and hardware event handlers may be preempted by other asynchronous code, nesC
programs are susceptible to certain race conditions. Races are avoided either by accessing shared
data exclusively within tasks, or by having all accesses within atomic statements. The nesC
compiler reports potential data races to the programmer at compile-time. It is possible the
compiler may report a false positive. In this case a variable can be declared with the norace
keyword. The norace keyword should be used with extreme caution.

NesC programming has concepts and keywords which are similar to other languages, notably the
C programming language and to some degree Java. This chapter will introduce the underlying
concepts and the keywords used to implement those concepts

4.2 The nesC Language
The nesC (network embedded systems C) is an extension to C designed to embody the
structuring concepts and execution model of TinyOS. The basic concepts behind nesC are:

4.2.1 Separation of construction and composition
Programs are built out of components, which are assembled (“wired”) to form whole programs.
Components define two scopes, one for their specification (containing the names of their
interface instances) and one for their implementation. Components have internal concurrency in
the form of tasks. Threads of control may pass into a component through its interfaces. These
threads are rooted either in a task or a hardware interrupt.

4.2.2 Specification of component behavior in terms of set of interfaces
Interfaces may be provided or used by the component. The provided interfaces are intended to
represent the functionality that the component provides to its user, the used interfaces represent
the functionality the component needs to perform its job.

4.2.3 Interfaces are bidirectional
Interfaces specify a set of functions to be implemented by the interface’s provider (commands)
and a set to be implemented by the interface’s user (events). This allows a single interface to
represent a complex interaction between components (e.g. registration of interest in some event,
followed by a callback when that event happens). This is critical because all lengthy commands
in TinyOS (e.g. send packet) are non-blocking; their completion is signaled through an event
(send done). By specifying interfaces, a component cannot call the send command unless it
provides an implementation of the sendDone event. Typically commands call downwards, i.e.,
from application components to those closer to the hardware, while events call upwards. Certain
primitive events are bound to hardware interrupts (the nature of this binding is system-
dependent, so is not described further in this reference manual)

4.2.4 Components are statically linked to each other via their interfaces
This increases runtime efficiency, encourages robust design, and allows for better static analysis
of programs.

Page 34 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

4.2.5 Use of whole-program compilers
NesC is designed under the expectation that code will be generated by whole-program compilers.
This allows for better code generation and analysis. An example of this is nesC’s compile-time
data race detector.

4.2.6 Tasks and interrupt handlers
The concurrency model of nesC is based on run-to-completion tasks, and interrupt handlers
which may interrupt tasks and each other. The nesC compiler signals the potential data races
caused by the interrupt handlers.

For more details on TinyOS and nesC programming concepts, refer to the “TinyOS/nesC
Reference Manual” by Phil Levis included on the MoteWorks CD.

Doc. # 7430-0102-01 Rev. C Page 35

 MoteWorks Getting Started Guide

5 First Steps in nesC Programming

In this chapter you will learn:

 The basics of nesC and TinyOS programming
 How to use the Timer and LED components
 How to compile and download an application to a Mote

This first application is called MyApp. As the name suggests it uses one of the timers on the
ATmega128L Mote. The timer will be set to fire continuously every second and the Mote red
LED will toggle on and off to show this visually. So why go through the trouble of this program?
To help the developer unfamiliar with TinyOS, nesC & Motes gain more confidence in
embedded programming concepts before tackling more complex applications.

The steps that you’ll take to build the application will be as follows:

 Enter in all necessary code and auxiliary files
 Build (compile) and download the application
 Take a closer look at the code and auxiliary files

5.1 Hardware Requirements
This chapter requires the following hardware:

 One MICA Mote: standard editions of MICA2 (MPR4x0) or MICAz (MPR2400) or
OEM editions of MICA2 or MICAz

 One gateway / programming board: MIB510, MIB520, or MIB600 and the associated
hardware (cables, power supply) for each

 A Windows PC with MoteWorks installed

5.2 A simple nesC program: MyApp
To get started the first thing to do is to create the application folder (directory) where all your
application code and other files will be stored.

1. Change into the directory /MoteWorks/apps/tutorials/ and create a new subfolder
(subdirectory) that should have the name as your application is to be called. In this first
lesson the application will be called MyApp.

2. You have two options to create the source files. You can copy, paste, and rename the
subdirectory /lesson_1 found in the /tutorials subdirectory and avoid some typing. If you
choose to do this you can go straight to the compiling and installation step or follow these
instructions and learn along the way.

Within the MoteWorks framework a minimum of five files will be in any application’s directory:

1. Makefile (section 5.2.1)

2. Makefile.component (section 5.2.2)

3. Application’s configuration written in nesC

Page 36 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

4. Application’s module written in nesC

5. README (optional)

The Makefile and Makefile.component are created next.

5.2.1 Makefile

The first step in creating an application is to type in the Makefile. Alternatively you can copy and
paste this file from the subdirectory /lesson_1 into /MyApp (both of which are in the /tutorials
subdirectory).

To create the Makefile, enter the following text into a new document in Programmer’s Notepad:

include Makefile.component
include $(TOSROOT)/apps/MakeXbowlocal
include $(MAKERULES)

When finished save the file with File > Save As… using the following parameters:

File name Makefile

Save as type All files (“.”)

File format No change to file format

5.2.2 Makefile.component

The next step is to create the Makefile.component file. This file describes the top level
application component, MyApp and the name of the sensorboard we are going to use. The
sensorboard reference tells the compiler we want to use the pre-built nesC components for
accessing the sensor devices on that board. Each sensorboard has its own set of pre-built nesC
sensor components, also referred to as drivers.

To create the Makefile.component file, enter the following text into a new document in
Programmer’s Notepad:

COMPONENT=MyApp
SENSORBOARD=mts310

When finished save the file with File > Save As… using the following parameters:

File name Makefile.component

Save as type All files (“.”)

File format No change to file format

5.2.3 Create the Top-Level Configuration

The application’s configuration is located in the MyApp.nc file. The StdControl interface must
always be implemented as the bare minimum for an application. The StdControl interface
provides the basic functionality for the TinyOS application to be initialized, started and stopped.

Doc. # 7430-0102-01 Rev. C Page 37

 MoteWorks Getting Started Guide

To create the application’s configuration, enter the following text into a new document in
Programmer’s Notepad:

/**
 * This configuration shows how to use the Timer and LED components
**/
configuration MyApp {
}
implementation {
 components Main, MyAppM, TimerC, LedsC;

 Main.StdControl -> TimerC.StdControl;
 Main.StdControl -> MyAppM.StdControl;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];
 MyAppM.Leds -> LedsC.Leds;
}

The last two lines in the configuration wire the TimerC and LedsC components to the
application’s module. The module can then control the Timer and LED devices by calling
functions in the TimerC and LedsC components. The concept of component wiring will be fully
explained in a later chapter dedicated to NesC/ TinyOS programming concepts.
When finished save the file with File > Save As… using the following parameters:

File name MyApp.nc

Save as type All files (“.”)

File format No change to file format

 NOTE: When you do save or save as and use the “.nc” file extension, Programmers Notepad will
use the default text coloring and highlighting scheme.

5.2.4 Create the Module

The application’s module is located in the MyAppM.nc file. The module file is where the
application programming code is entered. This is where we type in programming code to start the
Timer and toggle the red LED on the Mote.

To create the application’s module, enter the following text into a new document using
Programmer’s Notepad:

/**
 * This module shows how to use the Timer and LED components
**/
module MyAppM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 }
}

Page 38 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

implementation {

 /**
 * Initialize the components.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS;
 }

 /**
 * Start things up. This just sets the rate for the clock
 * component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.start() {
 // Start a repeating timer that fires every 1000ms
 return call Timer.start(TIMER_REPEAT, 1000);
 }

 /**
 * Halt execution of the application.
 * This just disables the clock component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 /**
 * Toggle the red LED in response to the <code>Timer.fired</code>
 * event.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 event result_t Timer.fired()
 {
 call Leds.redToggle();
 return SUCCESS;
 }
}

When finished save the file with File > Save As… using the following parameters:

File name MyAppM.nc

Save as type All files (“.”)

File format No change to file format

Doc. # 7430-0102-01 Rev. C Page 39

 MoteWorks Getting Started Guide

5.2.5 Compile and Install the Code in a Mote

Now that you have edited all the application files or copied over from the /lesson_1 folder, we
can proceed with the compilation and installation steps.

 NOTE: You need to be in the .nc of the app file you want to compile and program before you can
execute shell commands from Programmer’s Notepad.

You can compile your nesC application code from Programmer’s Notepad.

To compile your application:

• Select Tools > make mica2 (or make micaz or make mica2dot)

• The “Output” section of the Programmers Notepad will print the compiling results to the
screen:

• After the compilation has completed you should see “writing TOS image” as the last line
in the Output window. If you don’t see this then you have made an error typing in one of
your files. Verify your files against the files provided for you in the /lesson_1 folder.
Copy them over from the /lesson_1 folder into your folder if you get stuck. Make sure
you have success compiling your application before proceeding.

You can also install your application to a Mote plugged into your programming board using
Programmer’s Notepad. To install your application:

• Select Tools > shell. When prompted for parameters, type in make mica2 reinstall
mib510,com1 (or make micaz reinstall or make mica2dot reinstall)

Page 40 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 NOTE: This example assumes you are using an MIB510 programming board connected to your PC
using the COM1 serial port. Please make the necessary adjustments if using a different programming
board and/or serial port.

• The “Output” section of the Programmers Notepad will print the installation results to the
screen:

• Make sure you see the “Uploading: flash” line complete without errors. You should then

see the red LED on the Mote blinking on and off every second.

Congratulations, you have just written, compiled and installed your first TinyOS embedded
application using MoteWorks!

5.3 A Closer Look at MyApp
The reason for the distinction between modules and configurations is to allow a developer to
quickly "snap together" applications using pre-build components without additional
programming. For example, a developer could provide a configuration that simply wires together
one or more pre-existing modules. The idea is for developers to provide a set of “library”
components that can be re-used in a wide range of applications.

5.3.1 Makefile and Makefile.component

What are the Makefile and Makefile.component? Why do I need to use them? The Makefile is a
file containing the dependencies (other files) your application uses during the compilation step.
Within MoteWorks all Makefiles within a particular application subdirectory (/xmesh, /xsensor,
/examples, /general, /tutorials) have the same contents. The Makefile.component is simply a

Doc. # 7430-0102-01 Rev. C Page 41

 MoteWorks Getting Started Guide

MoteWorks convention to describe the particular dependencies for a particular application. The
Makefile.component is included into the Makefile at build time.

5.3.2 Comments

Comments make your code more readable. They help explain your code to others, and can be a
reminder to yourself when you need to modify the code. nesC programming supports the
following type of comments. If you use Programmers Notepad to edit nesC code, you’ll find that
these comments are highlighted in green text.
/* text */

The compiler ignores everything from the opening /* to the closing */.
/** documentation */

This style indicates a documentation comment that is used by automatic documentation utilities
such as GraphViz. As with the first kind of comment, the compiler ignores all the text in the
comment.
// text

The compiler ignore everything from the // to the end of the line.

The green parts in the following code are comments:

configuration MyApp {
 // This configuration provides no interfaces
}

implementation {
 components Main, My App_TimerM, TimerC;

 Main.StdControl -> MyAppM.StdControl;
 Main.StdControl -> MyAppC.StdControl;
 MyApp.Timer -> TimerC.Timer[unique("Timer")];
}

5.3.3 Defining an Application’s Configuration

The nesC compiler, ncc, compiles an application when given the file containing the top-level
configuration. The Makefile in the applications directory invokes nesC with appropriate options
or dependencies on the application’s top-level configuration.

All applications require a top-level configuration file, which is typically named after the
application itself. In this case MyApp.nc is the configuration for the MyApp application and the
source file that the nesC compiler uses to generate an executable file. On the other hand
MyAppM.nc actually provides the functionality of the MyApp application. As you might guess,
MyApp.nc is used to wire the MyAppM.nc module to other components that are required by the
MyApp application.

Let’s examine the initial lines of the MyApp application. The first thing to notice is the key word
configuration (in boldface) which indicates that this is a nesC configuration (as opposed to
a nesC module)

configuration MyApp {

Page 42 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

// this module does not provide any interface
}

implementation {
 …

These lines simply state that the name of the configuration is called MyApp. A configuration is
one of two types of components defined by nesC. The general form for a configuration is shown
in the code example below.

configuration ComponentName {
 //Configuration definition block which may or may not have
 //interfaces.

}

The interfaces that are used or provided are enclosed by the braces that begin and end the
configuration definition block.

 NOTE: Since the MyApp configuration doesn’t provide or use any interfaces, there is no text (other
than perhaps a comment).

As the name suggestions a configuration is an assembly of other components that are connected
together using a symbolic syntax that defines how components are related to one another. This is
commonly called component wiring where one component is wired to another.

Let’s take a look at the lines below the configuration code block.

…
implementation {
 components Main, MyApp;

 Main.StdControl -> MyAppM.StdControl;

}

The next keyword to note is implementation. As implied the code block defined by
implementation defines the wiring of components. The “connecting points” for the wiring is
defined by a component’s interface, which will be discussed in more detail later. Following the
keyword component is a list of nesC components that are referenced by the configuration. In
this example the components are Main and MyAppM.

The line

 Main.StdControl -> MyAppM.StdControl;

wires the StdControl interface in Main to the StdControl interface in MyAppM.
MyAppM.StdControl.init() will be called by Main.StdControl.init(). The same rule
applies to the start() and stop() commands.

Concerning used interfaces, it is important to note that subcomponent initialization functions
must be explicitly called by the using component. For example, the MyAppM module uses the
interface Leds, so Leds.init() is called explicitly in MyAppM.init().

Doc. # 7430-0102-01 Rev. C Page 43

 MoteWorks Getting Started Guide

The nesC uses arrows to determine relationships between interfaces. Think of the right arrow “-
>” as “binds to”. The left side of the arrow binds an interface to an implementation on the right
side. In other words, the component that uses an interface is on the left, and the component
provides the interface is on the right.

The line

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];

is used to wire the Timer interface used by MyAppM to the Timer interface provided by TimerC.
MyAppM.Timer on the left side of the arrow is referring to the interface called Timer
(/MoteWorks/tos/interfaces/Timer.nc), while TimerC.Timer on the right side of the arrow is
referring to the implementation of Timer. Remember that the arrow always binds interfaces (on
the left) to implementations (on the right). The unique(“Timer”) statement makes certain we
are using a timer instance not used anywhere else in the application – more on that later.

nesC supports multiple implementations of the same interface. The Timer interface is such an
example. The TimerC implements multiple timers using timer id as a parameter.

Wirings can also be implied. For example,
 MyAppM.Leds -> LedsC;

is really shorthand for
 MyAppM.Leds -> LedsC.Leds;

In this example, the interface named Leds was not explicitly listed. Since no interface name is
given on the right side of the arrow, the nesC compiler by default tries to bind to the same
interface as on the left side of the arrow.

5.3.4 The component main: The scheduler

Conceptually a TinyOS application is a collection of components and a scheduler called Main.
The components typically provide some computation or function and the scheduler runs the tasks
created by those components. The code for Main is shown below.

configuration Main {
 uses interface StdControl;
}
implementation
{
 components RealMain, PotC, HPLInit;

 StdControl = RealMain.StdControl;
 RealMain.hardwareInit -> HPLInit;
 RealMain.Pot -> PotC;
}

Main is a component that is executed first in a TinyOS application. To be precise, the
Main.StdControl.init() command is the first command executed in TinyOS followed by
Main.StdControl.start(). Therefore, a TinyOS application must have the Main

Page 44 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

component in its configuration. StdControl is a common interface used to initialize and start
TinyOS components.

5.3.5 The MyAppM module

In the minimum case, an applications module looks something like this:

module ModuleName {
 provides {
 interface StdControl;
 }
}

implementation {
 command result_t StdControl.init() {
 return SUCCESS;
 }
 command result_t StdControl.start() {
 return SUCCESS;
 }
 command result_t StdControl.stop() {
 return SUCCESS;
 }
}

While this module is not very useful, we’ll use it for instructional purposes. Let’s have a look at
the StdControl interface (in /MotwWorks/tos/interfaces/StdControl.nc) before going back to
discussing the rest of the application, as it is a very common interface in nesC programming.

interface StdControl {
 command result_t init();
 command result_t start();
 command result_t stop();
}

We see that StdControl defines three commands: init(),start(), and stop(). init() is
called when a component is first initialized, and start() when it is started, that is, actually
executed for the first time. stop() is called when the component is stopped, for example, in
order to power off the device that it is controlling. init() can be called multiple times but will
never be called after either start() or stop() are called. Specifically, the valid call patterns of
StdControl are init*(start | stop)*. All three of these commands have “deep” semantics;
calling init() on a component must make it call init() on all of its subcomponents.

Now let’s look further into the module MyAppM.nc. In many nesC applications, it is common to
call a function periodically. The realization of that function is done by means of a timer. The
name for the interface for a timer is, conveniently enough Timer.

**
 * Implementation for MyApp application. This is
 * just a shell of an application that wires in the Timer
 * module.
 **/

Doc. # 7430-0102-01 Rev. C Page 45

 MoteWorks Getting Started Guide

module MyAppM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 }
}

The first part of the code states that this is a module called MyAppM and declares the interfaces
which are prefaced by the keywords provides and uses. The MyAppM module provides the
interface StdControl. This means that MyAppM must implement the StdControl
interface. As explained above, this is necessary to get the MyApp component initialized and
started.

The MyAppM module may call any command declared in the interfaces it uses and must also
implement any events declared in those same interfaces.

Timer.nc is a little more interesting than StdControl:

interface Timer {
 command result_t start(char type, uint32_t interval);
 command result_t stop();
 event result_t fired();

Here we see that Timer interface defines the start() and stop() commands, and the
fired() event. The nesC word result_t is the data type of the status value returned by the
command or event. This returned status value can have one of two values: SUCCESS or FAIL.

The start() command is used to specify the type of the timer and the interval at which the
timer will expire. The unit of the interval argument is millisecond. The valid types are
TIMER_REPEAT and TIMER_ONE_SHOT. A one-shot timer ends after the specified interval,
while a repeat timer goes on and on until it is stopped by the stop() command.

How does an application know that its timer has expired? The answer is when it receives an
event. The Timer interface provides an event:
 event result_t fired();

An event is a function that the implementation of an interface will signal when a certain event
takes place. In this case, the fired() event is signaled when the specified time interval has
passed. This is an example of a bi-directional interface: an interface not only provides
commands that can be called by users of the interface, but also signals events that call handlers
implemented by the user. You can think of an event as a callback function that the
implementation of an interface will invoke. A module that uses an interface must implement the
events that this interface uses.

Let's look at the rest of MyAppM.nc to see how this all fits together:

implementation {
 command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS;
 }

Page 46 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 command result_t StdControl.start() {
 return call Timer.start(TIMER_REPEAT, 1000) ;
 }

 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 event result_t Timer.fired()
 {
 call Leds.redToggle();
 return SUCCESS;
 }
}

This is simple enough. As we see the MyAppM module implements the StdControl.init(),
StdControl.start(), and StdControl.stop() commands, since it provides the
StdControl interface. It also implements the Timer.fired() event, which is necessary since
MyAppM must implement any event from an interface it uses.

The init() command in the implemented StdControl interface simply initializes the Leds
subcomponent with the call to Leds.init(). The start() command invokes
Timer.start() to create a repeat timer that expires every 1000 ms. stop() terminates the
timer. Each time Timer.fired() event is triggered, the Leds.redToggle() toggles the red
LED.

5.4 Generating the Component Structure Documentation

You can view a graphical representation of the component relationships within an application.
TinyOS source files include metadata within comment blocks that ncc—the nesC compiler—
uses to automatically generate html-formatted documentation.

To generate the documentation, use the following command:

make <platform> docs

The resulting documentation will have the filename generated in the file
/MoteWorks/doc/nesdoc/<platform>.docs/nesdoc/<platform>/index.html. This is the main
index to all documented applications.

The directory index takes you to an html file that looks like the diagram shown below.

Apps Components Interfaces All Files Source Tree source: apps.tutorials.lesson_1.MyApp.nc

Component: MyApp
This configuration shows how to use the Timer and LED components

Doc. # 7430-0102-01 Rev. C Page 47

 MoteWorks Getting Started Guide

Author: Crossbow Technology Inc.

Component Graph (text version, help)

Apps Components Interfaces All Files Source Tree

Page 48 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

6 A Simple Sensing Application

In this chapter you will learn:

• How to create a simple Mote firmware application that reads light sensor data from your
sensor board

• How to send a message containing the sensor data through the Mote serial port connected
directly to the programming board

• How to send a message containing the sensor data over the Mote radio (single-hop
network) to another Mote plugged into the programming board

• Using XServe to parse packets on a PC

• Using XSniffer to display the sensor data message on a PC.

6.1 Hardware Requirements
This chapter requires the following hardware:

• Two MICA Motes: standard editions of MICA2 (MPR4x0) or MICAz (MPR2600) or
OEM editions of MICA2 or MICAz

• One sensor or data acquisition board: MDA100, MTS300 or MTS310

• One gateway board: MIB510, MIB520, or MIB600 and the associated hardware (cables,
power supply) for each

• A Windows PC with MoteWorks installed

6.2 A Simple Sensing Application: MyApp
A simple sensing application that samples the light sensor on a sensor board, packetizes, and
sends the data back to the base station is presented here to help further familiarize you with nesC
programming and TinyOS messaging.

The following enhancements will be made to the simple Timer application presented in Chapter
5:

• Take light readings using one of the following sensors boards: MTS300/310 or MDA100

• Use the Mote serial port (UART) and radio to send sensor data to the base station

• Blink the yellow LED when the sensor is sampled

• Blink the green LED when the sensor data message is successfully sent to the base station

• Compile and debug if necessary

To get started the first thing to do is to create the application folder (directory) where all your
application code and other files will be stored.

1. Change into the directory /MoteWorks/apps/tutorials/ and create a new subfolder named
after your application. In this first lesson the application will be called MyApp.

Doc. # 7430-0102-01 Rev. C Page 49

 MoteWorks Getting Started Guide

2. Once again you have two options to create the source files. You can copy, paste, and
rename the subdirectory /lesson_2 found in the /tutorials subdirectory and avoid some
typing. If you choose to do this you can go straight to the compiling and installation step
or follow these instructions and learn along the way.

The Makefile and Makefile.component are exactly the same as the MyApp application presented
in Chapter 5 so we will move along to the configuration and module files. Just copy the Makefile
and Makefile.component files created in Chapter 5.

6.2.1 Create the Top-Level Configuration

The application’s configuration is located in the MyApp.nc file. This new configuration differs
from the MyApp.nc file in that it adds two more components that were not present in the
previous application: Photo and GenericComm. The Photo component is used to actuate the
sensorboard light sensor device. The GenericComm component is used to send messages over
the serial port and radio.

To create the application’s configuration, enter the following text into a new document in
Programmer’s Notepad:

includes sensorboardApp;

/**
 * This module shows how to use the Timer, LED, ADC and Messaging
components.
 * Sensor messages are sent to the serial port
 *
 * @author Crossbow Technology Inc.
 **/
configuration MyApp {
}
implementation {
 components Main, MyAppM, TimerC, LedsC, Photo, GenericComm as Comm;

 Main.StdControl -> TimerC.StdControl;
 Main.StdControl -> MyAppM.StdControl;
 Main.StdControl -> Comm.Control;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];
 MyAppM.Leds -> LedsC.Leds;
 MyAppM.PhotoControl -> Photo.PhotoStdControl;
 MyAppM.Light -> Photo.ExternalPhotoADC;

 MyAppM.SendMsg -> Comm.SendMsg[AM_XSXMSG];
}

When finished save the file with File > Save As… using the following parameters:

File name MyApp.nc

Save as type All files (“.”)

File format No change to file format

Page 50 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

6.2.2 Create the Module

The application’s module is located in the MyAppM.nc file. This new module differs from the
MyAppM.nc module in that it adds the functionality of sampling the light sensor when the timer
fires and then sends a sensor message through the Motes serial (UART) port when the sampling
is complete.

To create the application’s module, enter the following text into a new document in
Programmer’s Notepad:

includes sensorboardApp;

/**
 * This module shows how to use the Timer, LED, ADC and Messaging components
 * Sensor messages are sent to the serial port
 *
 * @author Crossbow Technology Inc.
 **/
module MyAppM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 interface StdControl as PhotoControl;
 interface ADC as Light;
 interface SendMsg;
 }
}
implementation {
 bool sending_packet = FALSE;
 TOS_Msg msg_buffer;
 XDataMsg *pack;

 /**
 * Initialize the component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.init() {
 call Leds.init();
 call PhotoControl.init();

 // Initialize the message packet with default values
 atomic {
 pack = (XDataMsg *)&(msg_buffer.data);
 pack->xSensorHeader.board_id = SENSOR_BOARD_ID;
 pack->xSensorHeader.packet_id = 2;
 pack->xSensorHeader.node_id = TOS_LOCAL_ADDRESS;
 pack->xSensorHeader.rsvd = 0;
 }

 return SUCCESS;
 }

 /**
 * Start things up. This just sets the rate for the clock component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.start() {
 // Start a repeating timer that fires every 1000ms

Doc. # 7430-0102-01 Rev. C Page 51

 MoteWorks Getting Started Guide

 return call Timer.start(TIMER_REPEAT, 1000);
 }

 /**
 * Halt execution of the application.
 * This just disables the clock component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 /**
 * Toggle the red LED in response to the <code>Timer.fired</code> event.
 * Start the Light sensor control and sample the data
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 event result_t Timer.fired()
 {
 call Leds.redToggle();
 call PhotoControl.start();
 call Light.getData();

 return SUCCESS;
 }

 /**
 * Stop the Light sensor control, build the message packet and send
 **/
 void task SendData()
 {
 call PhotoControl.stop();

 if (sending_packet) return;
 atomic sending_packet = TRUE;

 // send message to UART (serial) port
 if (call SendMsg.send(TOS_UART_ADDR,sizeof(XDataMsg),&msg_buffer) !=
SUCCESS)
 sending_packet = FALSE;

 return;
 }

 /**
 * Light ADC data ready
 * Toggle yellow LED to signal Light sensor data sampled
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 async event result_t Light.dataReady(uint16_t data) {
 atomic pack->xData.datap1.light = data;
 atomic pack->xData.datap1.vref = 417; // a dummy 3V reference voltage,
1252352/3000 = 417
 post SendData();
 call Leds.yellowToggle();

 return SUCCESS;
 }

 /**
 * Sensor data has been sucessfully sent over the UART (serial port)
 * Toggle green LED to signal message sent
 *

Page 52 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 * @return Always returns <code>SUCCESS</code>
 **/
 event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) {
 call Leds.greenToggle();
 atomic sending_packet = FALSE;

 return SUCCESS;
 }

When finished save the file with File > Save As… using the following parameters:

File name MyAppM.nc

Save as type All files (“.”)

File format No change to file format

6.2.3 Compile and Install the Code in a Mote

Please Refer to section 5.2.5 to compile and install this application on a Mote plugged into the
programming board.

When the application is installed and running on the Mote you should see the red, green and
yellow LED’s blinking every second. Each LED is used to indicate the progression of firing the
timer, sampling the light sensor and then sending the message back to the base station.

 NOTE: Make sure you have connected a sensorboard (MTS300, MTS310 or MDA100) to the
underside of the MIB510 programming board. This will allow the application to sample the light sensor.
The application will run if you don’t connect the sensorboard however the light value will not be valid
when we display the sensor message on the PC.

Table 6-1. Mote LED Status

LED Toggle Indication

Red 1 second timer event fired

Yellow Light sensor has been sampled

Green Sensor message has been sent back to base station

6.2.4 Parsing Message Packets on PC using XServe

The next part of the tutorial involves displaying the sensor message packet contents as they
arrive on the PC over the serial port. The tool we use for this is called XServe. XServe is an
application that installs with MoteWorks for this purpose. XServe has many other features
including automatic logging of sensor messages to a database such as PostgreSQL.

1. XServe is a program that runs within a Cygwin command prompt window. The first step
is to open a Cygwin command prompt by double clicking on the icon located on your
desktop.

Doc. # 7430-0102-01 Rev. C Page 53

 MoteWorks Getting Started Guide

2. Type xserve –device=COM1 at the command prompt and hit enter, you should see
output similar to the following when the sensor message packets arrive over the serial
port and are displayed by XServe:

 NOTE: Substitute your specific COM port for COM1 above according to your particular
hardware setup.

You may notice that the message packet contains data fields for other sensors that we are
not using with our sensing application – all set to 0. You should see a valid light value
however – this is the part of the message that our application is filling in. The reason the
other fields are present in the packet is because we are using a standard packet format that
XServe knows about.

6.2.5 Sending Sensor Data over the Radio

With a slight modification this application can be altered to send the message packet over the
Mote radio to another Mote plugged into the base station instead of directly through the serial
port (UART). The only change needed is a single line of code in the MyAppM.nc file:

From

 if (call SendMsg.send(TOS_UART_ADDR,sizeof(XDataMsg),&msg_buffer) !=
SUCCESS)

To

 if (call SendMsg.send(TOS_BCAST_ADDR,sizeof(XDataMsg),&msg_buffer) !=
SUCCESS)

The SendMsg.send command uses the first parameter to decide where the message packet
should be sent. Changing from TOS_UART_ADDR to TOS_BCAST_ADDR tells the communications
component to send the message through the radio instead of the UART. Setting this parameter to
TOS_BCAST_ADDR actually sends the message to any Mote within range, i.e. broadcast the
message. If we want to send the message specifically to the base station we can set this
parameter value to 0. The Mote plugged into the base station always has a node id of 0.

This modification is provided for you in the /lesson_3 folder.

Page 54 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

6.2.6 Using XSniffer to View Sensor Data Sent Over the Radio

MoteWorks includes a tool named XSniffer that can be used to eavesdrop on messages sent over
the Mote radios. We will use the XSniffer tool to monitor the messages sent from our modified
sensing application from section 6.2.5.

First, install the modified sensing application located in the /lesson_3 folder onto a Mote. You
can compile and install the application in a single step using Programmer’s Notepad as follows:

• Load the MyApp.nc file from /lesson_3 into Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type in make mica2 install,1
mib510,com1 (assuming MICA2 Mote)

Remove the Mote from the programming board, plug one of the sensorboards (MDA100,
MTS300 or MTS310) onto the Mote, make sure it has batteries and turn it on. You should see all
three LEDs blinking every second.

Next, install the XSniffer application onto another Mote that remains plugged into your
programming board (base station). This application is located in the
/MoteWorks/apps/general/XSniffer folder. Install this application with a node id of 2 using
Programmer’s Notepad:

• Load the TOSBase.nc file from /MoteWorks/apps/general/XSniffer into Programmer’s
Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,2
mib510,com1 (assuming MICA2 Mote and PC connected to COM1)

Now, keep the Mote you just programmed plugged into the programming board and start the
XSniffer application by double clicking on the icon located on your desktop.
Click on the “Options” tab within XSniffer and select the “General Packet Type” radio button. Go
back to the Log tab, select the COM port that is connected to the programming board and then
click on Start to begin “sniffing” the radio traffic. After a short time you should see message
packets displayed in XSniffer similar to Figure 6-1.

 NOTE: If you are in the Run mode, you need to Pause the XSniffer before you can change
any of the parameters in Options tab and then click on Continue to make the changes take effect.

Figure 6-1. XSniffer Log Screen Display

Doc. # 7430-0102-01 Rev. C Page 55

 MoteWorks Getting Started Guide

You can see from the elapsed time the messages are begin sent about 1 second apart – each time
the LEDs blink you should see a new message captured by XSniffer.

6.3 A Closer Look at MyApp
The MyApp application developed in this chapter builds on the basic MyApp application from
Chapter 5. There are two additional features incorporated into this application. First, we are
sampling the sensorboard light sensor. Second, we are building a message packet that includes
this light sensor value and sending it back to the base station either directly through the UART or
over the radio.

6.3.1 Using a Sensorboard

The first thing we need to do when building a sensing application is to specify the sensorboard
we want to use. For the MyApp application this is specified in the Makefile.component file as
follows:

SENSORBOARD=mts310

This line in the Makefile.component file tells the nesC compiler to link in all the TinyOS
components required to access the sensors on the MTS310 sensorboard. The components for the
MTS310 sensorboard are located in the /MoteWorks/tos/sensorboards/mts310 folder. There are
similar components for other sensorboards located in subfolders under
/MoteWorks/tos/sensorboards.

6.3.2 Sampling the Light Sensor

In order to sample the light sensor on the MTS310 sensorboard we need to include a component
named Photo in our configuration file. The Photo component implements the StdControl
interface for turning on and off the light sensor and the ADC interface for sampling the sensor
value through the hardware ADC port.

Here is part of the implementation section from the MyApp.nc configuration file:

implementation {
 components Main, MyAppM, TimerC, LedsC, Photo, GenericComm as Comm;

 Main.StdControl -> TimerC.StdControl;
 Main.StdControl -> MyAppM.StdControl;
 Main.StdControl -> Comm.Control;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];
 MyAppM.Leds -> LedsC.Leds;
 MyAppM.PhotoControl -> Photo.PhotoStdControl;
 MyAppM.Light -> Photo.ExternalPhotoADC;

…

You can see we are connecting the MyAppM.PhotoControl (StdControl interface) to the
Photo.PhotoStdControl (StdControl interface for the light sensor) and the MyAppM.Light
(ADC interface) to the Photo.ExternalPhotoADC (ADC interface for light sensor).

Page 56 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

We have seen the StdControl interface before, so let’s take a closer look at the ADC Interface:

interface ADC {
 async command result_t getData();
 async command result_t getContinuousData();
 async event result_t dataReady(uint16_t data);
}

The ADC interface is specified with two commands: getData and getContinuousData and
one event dataReady. Quite simply when we want to sample the current light value we call the
getData command. This will start a process of sampling the light sensor through the processor
hardware ADC interface. At some later time this process will complete and we will receive the
current light sensor value through the dataReady event.

Here are the excerpts from the MyAppM.nc module where we sample the light sensor and then
receive the callback event with the sampled value:

 event result_t Timer.fired()
 {
 call Leds.redToggle();
 call PhotoControl.start();
 call Light.getData();
…
 async event result_t Light.dataReady(uint16_t data) {
 atomic pack->xData.datap1.light = data;
 atomic pack->xData.datap1.vref = 417; // a dummy 3V reference voltage,
1252352/3000 = 417
 post SendData();
 call Leds.yellowToggle();
…

First, we can see that in the Timer.fired event function we first turn on the light sensor by
calling the start command through the StdControl interface. Next we call the getData
command through the ADC interface to start the process of sampling the current light value. At
some time in the near future when the sampling has completed we then receive a callback in the
form of a dataReady event. The dataReady event passes the 16-bit (10 significant bits) light
sensor value that we store in our message packet for sending later.

The last thing we do is to post a task to send a message containing the sensor data – this is
discussed next.

6.3.3 Sending a Message Packet

In order to send a message containing the sensor data back to the base station we need access to
the TinyOS communication component named GenericComm. GenericComm is able to send
messages through the UART port or over the radio depending on the destination node address
specified.

implementation {
 components Main, MyAppM, TimerC, LedsC, Photo, GenericComm as Comm;

 Main.StdControl -> TimerC.StdControl;
 Main.StdControl -> MyAppM.StdControl;

Doc. # 7430-0102-01 Rev. C Page 57

 MoteWorks Getting Started Guide

 Main.StdControl -> Comm.Control;
…
 MyAppM.SendMsg -> Comm.SendMsg[AM_XSXMSG];
…

If we take another look at the MyApp.nc configuration file we can see that GenericComm
(aliased as Comm) is connected through its Comm.Control (StdControl) interface and that the
MyAppM module connects to one instance of the Comm.SendMsg interface. The AM_XSXMSG
identifies the active message type. This value is used to distinguish between multiple messages
you may wish to send.

Let’s take a closer look at the SendMsg interface:

interface SendMsg
{
 command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);
 event result_t sendDone(TOS_MsgPtr msg, result_t success);
}

The SendMsg interface specifies one command named send and one event named sendDone.
When we want to send a message we simply call the send command with the correct
parameters. We receive the sendDone event after the message has been sent.

Each message that is sent using the SendMsg interface is defined by a data structure named
TOS_Msg:

typedef struct TOS_Msg
{
 /* The following fields are transmitted/received on the radio. */
 uint16_t addr;
 uint8_t type;
 uint8_t group;
 uint8_t length;
 int8_t data[TOSH_DATA_LENGTH];
}

typedef TOS_Msg *TOS_MsgPtr;

Where:

addr – the destination address
type – the active message type (AM_XSXMSG for this application)
group – group id specified during programming
length – the payload length
data – variable length payload area (sensor data)

The data region in the TOS_Msg is where we place our application specific payload. The
following excerpt is from the MyAppM.nc module that shows how we initialize the payload area
of the TOS_Msg for our specific sensor application:
 command result_t StdControl.init() {
…
 // Initialize the message packet with default values

Page 58 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 atomic {
 pack = (XDataMsg *)&(msg_buffer.data);
 pack->xSensorHeader.board_id = SENSOR_BOARD_ID;
 pack->xSensorHeader.node_id = TOS_LOCAL_ADDRESS;
 pack->xSensorHeader.rsvd = 0;
 }
…

Here are the excerpts from the MyAppM.nc module where we send the message containing the
sensor data and then receive the callback event:

 void task SendData()
 {
 call PhotoControl.stop();

 if (sending_packet) return;
 atomic sending_packet = TRUE;

// broadcast message over radio
 if (call SendMsg.send(TOS_BCAST_ADDR,sizeof(XDataMsg),&msg_buffer) !=
SUCCESS)
 sending_packet = FALSE;
…
 event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) {
 call Leds.greenToggle();
 atomic sending_packet = FALSE;
…

Notice first how the SendData task calls the stop command for the light sensor component.
This is done in order to save power when we are not using the sensor. Next you can see that if we
are currently in the process of sending a message (sending_packet == TRUE) we just return.
This means the sendDone event has yet to be called and we must wait.

Finally we call the SendMsg.send command passing the destination node address, in this case
TOS_BCAST_ADDR and a pointer to the actual message packet we wish to send.

Finally the SendMsg.sendDone event is called notifying us the packet has been sent. We are
now ready to start the whole process over again the next time the timer fires.

6.4 XSensor Applications Supported in MoteWorks
All of Crossbow’s sensor and data acquisition boards are supported with XSensor enabled
applications. XSensor applications are test applications for Crossbow’s sensor and data
acquisition boards. They allow the user to quickly and easily test sensor and data acquisition
boards when attached to Mote. XServe is connected to these applications through a base station
running the TOSBase application. XSensor applications send data over one hop so all test Motes
must be within RF range of the base station. The Table 6-2 below provides a summary of the
XSensor applications and their corresponding sensor boards.

Table 6-2. Sensor and data acquisition boards and the corresponding XSensor application

Sensor and Data
Acquisition Boards Application Name Location of Driver Folder

MDA100 XSensorMDA100 /MoteWorks/apps/XSensor/ XSensorMDA100

MDA300 XSensorMDA300 /MoteWorks/apps/XSensor/XSensorMDA300

Doc. # 7430-0102-01 Rev. C Page 59

 MoteWorks Getting Started Guide

MDA320 XSensorMDA320 /MoteWorks/apps/XSensor/XSensorMDA320

MDA325 XSensorMDA325 /MoteWorks/apps/XSensor/XSensorMDA325

MDA500 XSensorMDA500 /MoteWorks/apps/XSensor/XSensorMDA500

MEP410 XSensorMEP410 /MoteWorks/apps/XSensor/XSensorMEP410

MEP510 XSensorMEP510 /MoteWorks/apps/XSensor/XSensorMEP510

MTS101 XSensorMTS101 /MoteWorks/apps/XSensor/XSensorMTS101

MTS300/310 XSensorMTS300 /MoteWorks/apps/XSensor/XSensorMTS300

MTS400/420 XSensorMTS400 /MoteWorks/apps/XSensor/XSensorMTS400

MTS410 XSensorMTS410 /MoteWorks/apps/XSensor/XSensorMTS410

MTS450 XSensorMTS450 /MoteWorks/apps/XSensor/XSensorMTS450

MTS510 XSensorMTS510 /MoteWorks/apps/XSensor/XSensorMTS510

Page 60 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

7 XMesh enabled Sensing Application

In this chapter you will learn:

• How to enhance the sensing application developed in the last chapter with the XMesh
multi-hop networking service

• Using XServe to parse packets on a PC

• Using XSniffer to display the sensor data message on a PC

• Using MoteView to display the sensor data message on a PC

7.1 Hardware Requirements
This chapter requires the following hardware:

• Three MICA Motes: standard editions of MICA2 (MPR4x0) or MICAz (MPR2400) or
OEM editions of MICA2 (MPR600) or MICAz (MPR2600)

• One sensor or data acquisition board: MDA100, MTS300 or MTS310

• One gateway/programming board: MIB510, MIB520, or MIB600 and associated
accessories (cables, power supply) for each

• A Window’s PC with MoteWorks & MoteView installed

7.2 An XMesh enabled Sensing application: MyApp
A simple sensing application that samples the light sensor on a sensor board, packetizes, and
sends the data back to the base station using the XMesh multi-hop networking service is
presented here to help further familiarize you with nesC programming and TinyOS messaging.

The following enhancements will be made to the simple Sensor application presented in Chapter
6:

• Use the Mote radio to send sensor data to the base station using the XMesh multi-hop
networking service.

• Compile and debug if necessary

To get started the first thing to do is to create the application folder (directory) where all your
application code and other files will be stored.

1. Change into the directory /MoteWorks/apps/tutorials/ and create a new subfolder
(subdirectory) named after your application. In this lesson the application will be called
MyApp.

2. Once again you have two options to create the source files. You can copy, paste, and
rename the subdirectory /lesson_4 found in the /tutorials subdirectory and avoid some
typing. If you choose to do this you can go straight to the compiling and installation step.
Or you can follow these instructions and learn along the way.

Doc. # 7430-0102-01 Rev. C Page 61

 MoteWorks Getting Started Guide

7.2.1 Makefile

The first step in creating an application is to type in the Makefile. Alternatively you can copy and
paste this file from the subdirectory /lesson_4 into /MyApp (both of which are in the /tutorials
subdirectory).

To create the Makefile, enter the following text into a new document in Programmer’s Notepad:

include Makefile.component
include $(TOSROOT)/apps/MakeXbowlocal
GOALS += basic freq route
include $(MAKERULES)

When finished save the file with File > Save As… using the following parameters:

File name Makefile

Save as type All files (“.”)

File format No change to file format

7.2.2 Makefile.component

The next step is to create the Makefile.component file. This file describes the top level
application component, MyApp and the name of the sensorboard we are going to use.

To create the Makefile.component file, enter the following text into a new document in
Programmer’s Notepad:

COMPONENT=MyApp
SENSORBOARD=mts310

When finished save the file with File > Save As… using the following parameters:

File name Makefile.component

Save as type All files (“.”)

File format No change to file format

7.2.3 Create the Top-Level Configuration

The application’s configuration is located in the MyApp.nc file. This new configuration differs
from the MyApp.nc file from the subdirectory /lesson_3 in that it adds two more components
that were not present in the previous application: MULTIHOPROUTER and
GenericCommPromiscuous. The MULTIHOPROUTER component is the XMesh multi-hop
routing service. The GenericCommPromiscuous component is used by the MULTIHOPROUTER
service to provide the basic radio communications functions – it’s included here for initialization
only. You may remember the MyApp.nc file from the last chapter had a component named

Page 62 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

GenericComm. GenericCommPromiscuous is similar in functionality but provides other
features required by XMesh such as the ability to “snoop” on radio conversations.

To create the application’s configuration, enter the following text into a new document in
Programmer’s Notepad:

#include "appFeatures.h"
includes sensorboardApp;

/**
 * This configuration shows how to use the Timer, LED, ADC and XMesh
 * components.
 * Sensor messages are sent multi-hop over the RF radio
 *
**/
configuration MyApp {
}
implementation {
 components Main, GenericCommPromiscuous as Comm, MULTIHOPROUTER, MyAppM,
TimerC, LedsC, Photo;

(still using older version of the wiring – see xmesh manual)

 Main.StdControl -> TimerC.StdControl;
 Main.StdControl -> MyAppM.StdControl;
 Main.StdControl -> Comm.Control;
 Main.StdControl -> MULTIHOPROUTER.StdControl;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];
 MyAppM.Leds -> LedsC.Leds;
 MyAppM.PhotoControl -> Photo.PhotoStdControl;
 MyAppM.Light -> Photo.ExternalPhotoADC;

 MyAppM.RouteControl -> MULTIHOPROUTER;
 MyAppM.Send -> MULTIHOPROUTER.MhopSend[AM_XMULTIHOP_MSG];
 MULTIHOPROUTER.ReceiveMsg[AM_XMULTIHOP_MSG]
 ->Comm.ReceiveMsg[AM_XMULTIHOP_MSG];
}

When finished save the file with File > Save As… using the following parameters:

File name MyApp.nc

Save as type All files (“.”)

File format No change to file format

7.2.4 Create the Module

The application’s module is located in the MyApp.nc file. This new module differs from the
MyApp.nc module from the subdirectory /lesson_3 in that it sends the sensor message over the
Mote radio using the XMesh routing service.

To create the application’s module, enter the following text into a new document in
Programmer’s Notepad:

Doc. # 7430-0102-01 Rev. C Page 63

 MoteWorks Getting Started Guide

#include "appFeatures.h"
includes MultiHop;
//includes sensorboard;

/**
 * This module shows how to use the Timer, LED, ADC and XMesh
 * components.
 * Sensor messages are sent multi-hop over the RF radio
 **/
module MyAppM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 interface StdControl as PhotoControl;
 interface ADC as Light;
 interface MhopSend as Send;
 interface RouteControl;
 }
}
implementation {
 bool sending_packet = FALSE;
 TOS_Msg msg_buffer;
 XDataMsg *pack;

 /**
 * Initialize the component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.init() {
 uint16_t len;
 call Leds.init();
 call PhotoControl.init();

 // Initialize the message packet with default values
 atomic {
 pack = (XDataMsg*)call Send.getBuffer(&msg_buffer, &len);

 pack->board_id = SENSOR_BOARD_ID;
 pack->packet_id = 4;
 }

 return SUCCESS;
 }

 /**
 * Start things up. This just sets the rate for the clock component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.start() {
 // Start a repeating timer that fires every 1000ms
 return call Timer.start(TIMER_REPEAT, 1000);
 }

Page 64 Doc. # 7430-0102-01 Rev. C

njain
verify

MoteWorks Getting Started Guide

 /**
 * Halt execution of the application.
 * This just disables the clock component.
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 /**
 * Toggle the red LED in response to the <code>Timer.fired</code> event.
 * Start the Light sensor control and sample the data
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 event result_t Timer.fired()
 {
 call Leds.redToggle();
 call PhotoControl.start();
 call Light.getData();

 return SUCCESS;
 }

 /**
 * Stop the Light sensor control, build the message packet and send
 **/
 void task SendData()
 {
 call PhotoControl.stop();

 if (sending_packet) return;
 atomic sending_packet = TRUE;

 // send message to XMesh multi-hop networking layer
 pack->parent = call RouteControl.getParent();
 if (call
Send.send(BASE_STATION_ADDRESS,MODE_UPSTREAM,&msg_buffer,sizeof(XDataMsg)) !
= SUCCESS)
 sending_packet = FALSE;

 return;
 }

 /**
 * Light ADC data ready
 * Toggle yellow LED to signal Light sensor data sampled
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 async event result_t Light.dataReady(uint16_t data) {
 atomic pack->light = data;
 atomic pack->vref = 417; // a dummy 3V reference voltage, 1252352/3000 =
417
 post SendData();
 call Leds.yellowToggle();

Doc. # 7430-0102-01 Rev. C Page 65

 MoteWorks Getting Started Guide

 return SUCCESS;
 }

 /**
 * Sensor data has been sucessfully sent through XMesh
 * Toggle green LED to signal message sent
 *
 * @return Always returns <code>SUCCESS</code>
 **/
 event result_t Send.sendDone(TOS_MsgPtr msg, result_t success) {
 call Leds.greenToggle();
 atomic sending_packet = FALSE;

 return SUCCESS;
 }
}

When finished save the file with File > Save As… using the following parameters:

File name MyAppM.nc

Save as type All files (“.”)

File format No change to file format

7.2.5 Compile and Install the Code in a Mote

Before proceeding you should have all the application files typed in and saved using
Programmer’s Notepad or copied over from the /lesson_4 folder.

This application will require two Motes and one sensorboard (MDA100, MTS300 or MTS310).
One Mote will function as the sensor node with the sensorboard plugged into it and a second
Mote will function as the base station plugged into the programming board and connected to
your PC. The Mote that functions as the sensor node will need to have batteries plugged into it.
The Mote that functions as the base station does not require batteries.

Plug the Mote that will function as the sensor node into the programming board. To compile and
install the MyApp application onto the sensor node:

• Select the MyApp.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,1
mib510,com1 (assuming MICA2 Mote and PC connected to COM1)

Next, plug the Mote that will function as the base station into the programming board. This Mote
will be programmed with a special application named XMeshBase located in the
/MoteWorks/apps/xmesh/XMeshBase folder. To compile and install the XMeshBase application
onto the base station node:

• Select the XMeshBase.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,0
mib510,com1 (assuming MICA2 Mote and PC connected to COM1).

 NOTE: The Mote that functions as the base station is always programmed with node id of 0.

Page 66 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

Keep the base station Mote plugged into the programming board and turn on the sensor node
Mote – making sure the sensorboard is plugged into the sensor node Mote first. You should see
the LEDs flashing on the sensor node Mote every second. Refer to section 6.2.3 for an
explanation of the LED status.

7.2.6 Parsing Message Packets on PC using XServe

The next step is to verify that messages are being received at the base station by running the
XServe application on your PC to display the packets.

1. XServe is a program that runs within a Cygwin command prompt window. The first step
is to open a Cygwin command prompt by double clicking on the icon located on your
desktop.

2. At the command prompt type xserve –device=COM<x>, where <x> is the serial port
to which your MIB510 or MIB520 is connected, and hit enter. You should see output
similar to the following when the sensor message packets arrive over the serial port and
are displayed by XServe:

If you compare the XServe output with this application vs. the non XMesh application in
section 6.2.4 you will notice the addition of the parent field. The parent field is part of the
multi-hop networking information and it tells us that sensor node 1 is routing its packets
directly to the base station (node id 0). The base station forwards the message packets
from the sensor nodes through the serial port where they are processed by XServe.

 NOTE: The multi-hop mesh network must form before you see any packets displayed by XServe.
This may take a few minutes.

Congratulations, you have just deployed your first multi-hop sensor network!

7.2.7 Using XSniffer to View Sensor Data Sent through the Network

We will now use the XSniffer tool to monitor the messages being sent from the sensor node.
Remove the XMeshBase programmed Mote from the programming board and set aside before
continuing.

Doc. # 7430-0102-01 Rev. C Page 67

 MoteWorks Getting Started Guide

 NOTE
XSniffer currently does not support the MIB600 programming board. XSniffer tool will work
only while using XMesh–based applications in the tutorial lessons.

Install the XSniffer application onto a third Mote that you will plug into your programming board
(base station). This application is located in the /MoteWorks/apps/general/XSniffer folder.
Install this application with a node id of 2 using Programmer’s Notepad:

• Open the TosBase.nc file from /MoteWorks/apps/general/XSniffer using Programmer’s
Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,2
mib510,com1 (assuming MICA2 Mote and PC connected to COM1)

Now, keep the Mote you just programmed plugged into the programming board and start the
XSniffer application by double clicking on the icon located on your desktop.

Click on the Options tab within XSniffer and select the XMesh Packet Type radio button. Go back
to the Log tab, select the COM port that is connected to the programming board and then click on
Start to begin “sniffing” the radio traffic. After a short time you should see message packets
displayed in XSniffer similar to Figure 7-1.

Figure 7-1. XSniffer Log Screen Display

You can see from the elapsed time the messages are begin sent about 1 second apart – each time
the LEDs blink you should see a new message captured by XSniffer.

There are a couple of interesting things to note. First, look at the destination address field Addr.
The value for this field is Bcast which means the sensor node id 1 (Src column) is broadcasting
its packet to all nodes. This is the initial state of XMesh until the multi-hop network has formed
efficient routes. Second, you can see there are two types of messages being sent by the sensor
node (identified by Type field). Message type DatUp identifies a message as a data message sent
upstream from the sensor node to the base station. Message type Rte designates a route update
message. Route update messages are periodically sent by all nodes in a mesh network for the
purpose of updating each other’s routing tables.

So far we can see the messages from one sensor node. Remember we removed the XMeshBase
Mote from the programming board – without a base station Mote, XMesh cannot form the multi-

Page 68 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

hop network. Now find the XMeshBase Mote we set aside earlier, make sure it has batteries and
then turn it on.

As the messages flow into XSniffer, you should begin to see some interesting things.

Figure 7-2. XSniffer Log Screen Display

After turning on the XMeshBase Mote you will start to see Rte (route update) messages being
generated for node 0 – the base station. The sensor node Mote will see these Rte messages and
will eventually add the base station Mote as its parent. Once this happens you will see the DatUp
(data messages upstream to base) from node 1 being sent directly to the base station node 0
instead of being broadcast. The base station id 0 is denoted as Base in the Addr field.

You have just witnessed a two node multi-hop mesh network being formed using XSniffer!

7.2.8 Viewing your Sensor Network with MoteView

As valuable as the XServe and XSniffer tools are for monitoring sensor networks, we are now
going to focus on a more feature rich client application named MoteView.

The MoteView application is installed separately from MoteWorks and may be downloaded free
from the Crossbow web site. Make sure you also download the MoteView User’s Manual.

Please download and install MoteView before continuing.

We are now going to use MoteView to view our two node sensor network. Double click on the
icon located on your desktop. You should see something similar to the Figure 7-3 when
MoteView loads.

 NOTE
MoteView is only supported and can be used as monitoring tool for the tutorial lesson_4
lesson_5 and lesson_6, which use XMesh feature.

Doc. # 7430-0102-01 Rev. C Page 69

 MoteWorks Getting Started Guide

Figure 7-3. MoteView GUI Display

To view the sensor network data using MoteView perform the follow steps:

• Remove the XSniffer Mote from the programming board and plug the XMeshBase Mote
(base station) back into the programming board

• From the MoteView main menu select File > Connect > Connect to Database

• Select mts310_results in the table name drop down list and click on Apply

• From the MoteView main menu select File > Connect > Connect to
MIB510/MIB520/MIB600/Stargate.

 Set the COM port value to the correct value for your setup

 Select the XMTS310 application from the XMesh Application drop down list

 Select the Advanced tab. In Data Logging Options menu, check the box for
Spawn Separate Shell.

• Click on Start. You will see XServe start-up enabled to log sensor data to the database

After a few minutes you should see XServe logging sensor data to the database similar to Figure
7-4.

Page 70 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

Figure 7-4. XServe Log Screen Display

Now move back to the main MoteView window and you should see the sensor data from node 1
displayed in the data view similar to Figure 7-5.

Figure 7-5. MoteView GUI Displaying Sensor Data

Congratulations, you have now deployed a complete end-to-end multi-hop sensor network
solution!

7.3 A Closer Look at MyApp
Let’s examine the specific differences between the MyApp application we developed in Chapter
6 and the MyApp application we have developed in this chapter. The significant difference is the
communication service we are using to send the sensor data messages.

The MyApp application from the subdirectory /lesson_3 used the basic GenericComm
component for sending a message either directly through the UART port or over the radio –
broadcasted or to a specific node address. The MyApp application in this chapter uses the XMesh
networking service to multi-hop messages back to the base station. The XMesh service ultimately
uses the GenericComm service for sending individual messages but special routing information
is added – this is hidden from the application.

To summarize:

GenericComm – single hop, point-to-point communication service

XMesh – multi-hop mesh networking service

Let’s take a closer look at the MyApp.nc configuration file:

configuration MyApp {
}
implementation {
 components Main, GenericCommPromiscuous as Comm, MULTIHOPROUTER, MyAppM,
TimerC, LedsC, Photo;

 Main.StdControl -> TimerC.StdControl;

Doc. # 7430-0102-01 Rev. C Page 71

 MoteWorks Getting Started Guide

 Main.StdControl -> MyAppM.StdControl;
 Main.StdControl -> Comm.Control;
 Main.StdControl -> MULTIHOPROUTER.StdControl;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];
 MyAppM.Leds -> LedsC.Leds;
 MyAppM.PhotoControl -> Photo.PhotoStdControl;
 MyAppM.Light -> Photo.ExternalPhotoADC;

 MyAppM.RouteControl -> MULTIHOPROUTER;
 MyAppM.Send -> MULTIHOPROUTER.MhopSend[AM_XMULTIHOP_MSG];
 MULTIHOPROUTER.ReceiveMsg[AM_XMULTIHOP_MSG] -
>Comm.ReceiveMsg[AM_XMULTIHOP_MSG];
}

The first thing you notice is that we have added a component named MULTIHOPROUTER. This is
the actual component that implements XMesh. The other difference is that the GenericComm
component has been replaced by GenericCommPromiscuous. GenericCommPromiscuous
adds special radio “snooping” capabilities required by XMesh.

The other thing that looks different is the component wiring. You can see the MyAppM is now
using the MhopSend interface instead of the SendMsg interface. XMesh implements the
MhopSend interface which looks a little bit different:

interface MhopSend {
 command result_t send(uint16_t dest, uint8_t mode, TOS_MsgPtr msg,
 uint16_t length);
 command void* getBuffer(TOS_MsgPtr msg, uint16_t* length);
 event result_t sendDone(TOS_MsgPtr msg, result_t success);
}

Specifically the send command adds a mode parameter. This parameter specifies the XMesh
communication transport mode. In this example we use the MODE_UPSTREAM transport which
sends a message in the direction of the base station.

Let’s now take a look at the specific differences in the MyAppM.nc module for sending sensor
data messages:

 command result_t StdControl.init() {
 uint16_t len;
 call Leds.init();
 call PhotoControl.init();

 // Initialize the message packet with default values
 atomic {
 pack = (XDataMsg*)call Send.getBuffer(&msg_buffer, &len);

 pack->board_id = SENSOR_BOARD_ID;
 pack->packet_id = 4;
 }
…

The first change we see is a different message packet being initialized in the StdControl.init
function. We call the XMesh Send.getBuffer command which returns a pointer to the payload
area in the msg_buffer. We then initialize the standard MTS310 packet with the default values.

Page 72 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

 void task SendData()
 {
…
 // send message to XMesh multi-hop networking layer
 pack->parent = call RouteControl.getParent();
 if (call Send.send(BASE_STATION_ADDRESS,
 MODE_UPSTREAM,
 &msg_buffer,
 sizeof(XDataMsg)) != SUCCESS)
…

The next difference we see is that the packet must include the current routing parent; this is
obtained by making a call to the XMesh RouteControl.getParent command.

We then send the message using the Send.send command specifying the base station as the
destination and the transport mode as MODE_UPSTREAM.

 event result_t Send.sendDone(TOS_MsgPtr msg, result_t success) {
 call Leds.greenToggle();
 atomic sending_packet = FALSE;
…

Finally similar to the MyApp application in Chapter 6 we receive the Send.sendDone event that
notifies that the message has been sent.

7.4 XMesh Applications Supported in MoteWorks
All of Crossbow’s sensor and data acquisition boards are supported with XMesh enabled
applications. XServe is connected to these applications through a base station running the
XMeshBase application. The Table 7-1 below provides a summary of the XMesh applications and
the corresponding sensor boards.

Table 7-1. Sensor and data acquisition boards and the corresponding XMesh application

Sensor and Data
Acquisition Boards Application Name Location of Driver Folder

MDA100CA XMDA100 MoteWorks/apps/XMesh/XMDA100

MDA100CB XMDA100CB MoteWorks/apps/XMesh/XMDA100CB

MDA300 XMDA300 MoteWorks/apps/XMesh/XMDA300

MDA320 XMDA320 MoteWorks/apps/XMesh/XMDA320

MDA325 XMDA325 MoteWorks/apps/XMesh/XMDA325

MDA500 XMDA500 MoteWorks/apps/XMesh/XMDA500

MEP410 XMEP410 MoteWorks/apps/XMesh/XMEP410

MEP510 XMEP510 MoteWorks/apps/XMesh/XMEP510

MSP410 XMSP410 MoteWorks/apps/XMesh/XMSP410

MTS101 XMTS101 MoteWorks/apps/XMesh/XMTS101

MTS300CA/310CA XMTS310 MoteWorks/apps/XMesh/XMTS310

MTS300CB/310CB XMTS310CB MoteWorks/apps/XMesh/XMTS310CB

MTS410 XMTS410 MoteWorks/apps/XMesh/XMTS410

MTS400/420 XMTS420 MoteWorks/apps/XMesh/XMTS420

MTS450 XMTS450 MoteWorks/apps/XMesh/XMTS450

MTS4510 XMTS510 MoteWorks/apps/XMesh/XMTS510

Doc. # 7430-0102-01 Rev. C Page 73

 MoteWorks Getting Started Guide

8 XMesh Advanced Features

In this chapter you will learn:

• How to use some advanced features of the XMesh multi-hop networking service

o How to use the XMesh end-to-end acknowledgment message transport service

o How to send downstream commands from the base station to individual Motes

8.1 Hardware Requirements
This chapter requires the following hardware:

• Two MICA Motes: standard editions of MICA2 (MPR4x0) or MICAz (MPR2400) or
OEM editions of MICA2 (MPR600) or MICAz (MPR2600)

• One gateway board: MIB510, MIB520, or MIB600 and the associated hardware (cables,
power supply) for each

• A Windows PC with MoteWorks installed

8.2 End-to-End Acknowledgements: MyApp from the subdirectory /lesson_5
In this section we will look at an example application, MyApp from the subdirectory /lesson_5
that shows how to use the XMesh end-to-end acknowledgement message transport service.

The following enhancements have been made to the XMesh application presented in Chapter 7:

• Code modified to use the MOTE_UPSTREAM_ACK transport mode to request an
acknowledgement back from the base station

• Yellow LED toggles when an acknowledgement message is received back from the base
station

There is a class of sensor network applications that requires a 100% reliable delivery of
messages to the base station. XMesh implements a special networking transport service that
sends acknowledgement messages back to the originating node when the sensor messages arrive
at the base station. It is then a simple task of resending the sensor message from the originating
node if the acknowledgement is not received back within a certain time.

8.2.1 Compile and Install the Code in a Mote

The MyApp application is located in the /MoteWorks/apps/tutorial/lesson_5 folder. This
application will be installed on two motes. One Mote will function as the sensor node and the
other will function as the base station. The sample application is installed on both Motes due to
the use of the MODE_UPSTREAM_ACK transport mode used. This is a different transport mode
than the one used by the XMeshBase application used earlier.

Plug the Mote that will function as the sensor node into the programming board. To compile and
install the MyApp application onto the sensor node:

Page 74 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

• Select the MyApp.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,1
mib510,com1 (assuming MICA2 Mote assigned with Node ID 1 and PC connected to
COM1)

 NOTE: A sensorboard is not required to be plugged into the sensor node Mote.

Next, plug the Mote that will function as the base station into the programming board. This Mote
will be programmed with the same XMeshBase application as follows:

• Select the XMeshBase.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 reinstall,0
mib510,com1 (assuming MICA2 Mote and PC connected to COM1)

Leave the base station Mote plugged into the programming board.

Make sure you have batteries plugged into the sensor node Mote – the one programmed with id 1
and then turn it on. You should see the red and green LEDs flashing until the mesh network is
formed. Once the sensor node has joined the network with the base station (a couple minutes or
sooner) you should see the yellow LED flash on the sensor node.

The flashing yellow LED on the sensor node indicates that an acknowledgement message has
been received from the base station!

You can also run XServe (see section 7.2.6) or MoteView to display the incoming packets on the
PC.

8.3 A Closer Look at MyApp
The MyApp application in this chapter has very minimal changes when compared to the MyApp
application developed in Chapter 7.

First, let’s look at the MyApp.nc configuration file:

…
 MyAppM.RouteControl -> MULTIHOPROUTER;
 MyAppM.Send -> MULTIHOPROUTER.MhopSend[AM_XMULTIHOP_MSG];
 MyAppM.ReceiveAck -> MULTIHOPROUTER.ReceiveAck[AM_XMULTIHOP_MSG];

 MULTIHOPROUTER.ReceiveMsg[AM_XMULTIHOP_MSG] -
>Comm.ReceiveMsg[AM_XMULTIHOP_MSG];
…

The only change to the configuration file is the addition of the ReceiveAck interface wiring.
The ReceiveAck interface is required to implement an event callback function that will be
generated by XMesh when the acknowledgment message has arrived from the base station.

Let’s now look at the MyAppM.nc module file:

 void task SendData() {
…
 if (call Send.send(BASE_STATION_ADDRESS,
 MODE_UPSTREAM_ACK,
 &msg_buffer,

Doc. # 7430-0102-01 Rev. C Page 75

 MoteWorks Getting Started Guide

 sizeof(XDataMsg)) != SUCCESS)
…
 event TOS_MsgPtr ReceiveAck.receive(TOS_MsgPtr pMsg, void* payload,
 uint16_t payloadLen) {
 call Leds.yellowToggle();
…

The first change is the transport mode of MODE_UPSTREAM_ACK. This tells XMesh to send an
acknowledgement message back to the message originator when the message is received at the
base station.

The second change is the addition of the ReceiveAck.receive event function. This is the
event called by XMesh when the acknowledgement message has arrived from the base station for
the most recently sent message. The yellow LED is toggled upon receiving this acknowledgment
message.

8.3.1 Enhancements for Reliable Message Delivery

This example application shows the basic mechanism for using the XMesh
MODE_UPSTREAM_ACK message transport. For a robust real world application it is also necessary
to implement a message re-send strategy for cases where the acknowledgment message is not
received due to a network problem. The easiest way to do this is to use another timer set to fire
after the maximum acknowledgement waiting period – determined by the developer. If the
acknowledgement is received before the timer fires you just stop the timer. Otherwise the timer
fires indicating you should resend the message. You also want to have a maximum number of
message retries before giving up.

 NOTE: It is important to remember the MODE_UPSTREAM_ACK transport mode does not guarantee
message delivery – this is the responsibility of the application developer.

8.4 Downstream Command Processing: MyApp from the subdirectory /lesson_6
In this section we will look at an example application named MyApp from the subdirectory
/lesson_6 that shows how to implement command processing in Motes. We will also show how
to send commands to individual Motes using the MoteWorks XServeterm application.

The following enhancements have been made to the XMesh application presented in Chapter 7.

• Code modified to use the XCommand component to intercept and process downstream
commands

8.4.1 Compile and Install the Code in a Mote

The MyApp application is located in the /MoteWorks/apps/tutorial/lesson_6 folder. This
application will require two Motes. One Mote will function as the sensor node and a second
Mote will function as the base station plugged into the programming board and connected to
your PC. The Mote that functions as the sensor node will need to have batteries plugged into it.
The Mote that functions as the base station does not require batteries.

Page 76 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

Plug the Mote that will function as the sensor node into the programming board. To compile and
install the MyApp application onto the sensor node:

• Select the MyApp.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,1
mib510,com1 (assuming MICA2 Mote and PC connected to COM1)

Next, plug the Mote that will function as the base station into the programming board. This Mote
will be programmed with a special application named XMeshBase located in the
/MoteWorks/apps/xmesh/XMeshBase folder. To compile and install the XMeshBase application
onto the base station node:

• Select the XMeshBase.nc file in Programmer’s Notepad

• Select Tools > shell. When prompted for parameters, type make mica2 install,0
mib510,com1 (assuming MICA2 Mote and PC connected to COM1).

Keep the base station Mote plugged into the programming board and turn on the sensor node
Mote.

8.4.2 Sending Commands to a Mote using XServeterm

MoteWorks includes a utility named XServeterm that provides a terminal interface for a running
instance of XServe. XServeterm provides many commands for monitoring and configuring your
sensor network. We are going to use it to send commands to our sensor node to demonstrate the
downstream command capabilities of XMesh.

The next step involves running XServe and XServeterm on your PC.

1. XServe is a program that runs within a Cygwin command prompt window. The first step
is to open a Cygwin command prompt by double clicking on the icon located on your
desktop.

2. Type xserve –device=COM1 at the command prompt and hit enter.

3. Open another Cygwin command prompt window and then type xserveterm –group
125 you should see output similar to Figure 8-1.

Figure 8-1. XServeterm Console Output

Doc. # 7430-0102-01 Rev. C Page 77

 MoteWorks Getting Started Guide

The first command we will try is the get_config command. The get_config command
returns the current configuration parameters for a Mote – similar to the ping command.

Let’s check the current configuration of the base station Mote. From the XServeterm window
type in get_config 0 and hit enter, you should see output similar to Figure 8-2.

Figure 8-2. XServeterm get_config Command Output

Now try the same get_config command for node 1 – the sensor node. Type in get_config 1
and hit enter. If you get a time-out error, node 1 has not yet joined the network. You must get a
valid response from node 1 before continuing.

Now that you have communication with node 1, you can try issuing some other commands.

The next command is named set_rate and it’s used to change the Mote sensor sampling rate.
The current sampling rate for our sensor node is 1000 msec. Lets change the sampling rate to
5000 ms – type in set_rate 1 5000 and hit enter. The command parameters are the node id
followed by the sampling rate in msec. You should see output similar to Figure 8-3.

Figure 8-3. XServeterm set_rate Command Output

Page 78 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

You should now notice that the LEDs on node 1 are blinking much slower than before – every
5000 ms. This means the light sensor is now being sampled and reported every 5 seconds instead
of the original 1 second.

The other command that we can try is to control the state of the LEDs. The LEDs are controlled
using the actuate command as follows:
actuate <destination address> <device> <state>
 device ids states
 ---------- ------
 green led 0 off 0
 yellow led 1 on 1
 red led 2 toggle 2
 all leds 3
 sounder 4
 relay1 5
 relay2 6
 relay3 7

Toggle the yellow LED on node 1 by typing actuate 1 1 2.

8.5 A Closer Look at MyApp
The MyApp application from the subdirectory /lesson_6 is also based on the MyApp application
developed in Chapter 7. Minimal changes are required for implementing command processing.

Let’s look at the changes for the MyApp.nc configuration file:
configuration MyApp {
}
implementation {
 components Main, GenericCommPromiscuous as Comm, MULTIHOPROUTER, MyAppM,
TimerC, LedsC, Photo, XCommandC;
…
 MyAppM.RouteControl -> MULTIHOPROUTER;
 MyAppM.Send -> MULTIHOPROUTER.MhopSend[AM_XMULTIHOP_MSG];
 MyAppM.XCommand -> XCommandC;
 MULTIHOPROUTER.ReceiveMsg[AM_XMULTIHOP_MSG] -
>Comm.ReceiveMsg[AM_XMULTIHOP_MSG];
…

The first change you will notice is the addition of the XCommandC component. This is the
component that provides the basic functionality for processing downstream commands.

Next you will notice that XCommandC is wired to MyAppM module through the XCommand
interface.

Here is the definition for the XCommand interface:
interface XCommand {
 event result_t received(XCommandOp *op);
}

The XCommand interface provides one single event named received which must be
implemented in your application module – in this case MyAppM.nc. The received event is
signaled when a command arrives for the node.

Here are the changes made to the MyAppM.nc module file:

Doc. # 7430-0102-01 Rev. C Page 79

 MoteWorks Getting Started Guide

 event result_t XCommand.received(XCommandOp *opcode) {
 uint16_t timer = 0;

 switch (opcode->cmd) {
 case XCOMMAND_SET_RATE:
 // Change the data collection rate.
 timer = opcode->param.newrate;
 call Timer.stop();
 call Timer.start(TIMER_REPEAT,timer);
 break;
…

The only required change is to implement the XCommand.received event function. Handling
the LED actuation is handled implicitly by XCommand. For this application set_rate
command is the only other command implemented locally.

Page 80 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

9 Data Logging Application

In this chapter you will learn:

• How to write and read data from external flash on a Mote.

9.1 Hardware Requirements
This chapter requires the following hardware:

• One MICA Motes: standard editions of MICA2 (MPR4x0) or MICAz (MPR2400) or
OEM editions of MICA2 (MPR600) or MICAz (MPR2600)

• One gateway board: MIB510, MIB520, or MIB600 and the associated hardware (cables,
power supply) for each

• A Windows PC with MoteWorks installed

9.2 Using the external flash: MyApp from the subdirectory /lesson_7
In this section we will look at an example application, MyApp from the subdirectory /lesson_7
that shows how to write to and read from the mote’s external flash.

The following enhancements have been made to the MyApp application presented in Chapter 6:

• Code modified to use the ByteEEPROM component to request memory allocation in the
external flash, write to and read from this allocated memory.

• Green LED toggles when data read from external flash is sent to the base station through
the UART.

There are some sensor network applications that require data logging to the external flash. The
component ByteEEPROM enables memory allocation to the application and read/write
operations at the external flash. In the MyApp application we log certain number of light sensor
readings in the external flash. When a new reading is reported by the sensor, it replaces the
stalest reading in the external flash. Once the new reading is written to the external flash, the
entire logged data is read back from the flash, inserted into a data packet and sent to the PC over
the UART.

9.2.1 Compile and Install the Code in a Mote
The MyApp application is located in the /MoteWorks/apps/tutorial/lesson_7 folder. This
application will be installed on to a single Mote that will run the application and also function as
the base station. We therefore install the application on the Mote with node id as 0.

Plug the Mote into the programming board. To compile and install the MyApp application onto
the sensor node:

• Select the MyApp.nc file in Programmer’s Notepad

Doc. # 7430-0102-01 Rev. C Page 81

 MoteWorks Getting Started Guide

• Select Tools > shell. When prompted for parameters, type make mica2 install,0
mib510,com1 (assuming MICA2 Mote and PC connected to COM1). Node id is
assigned to be 0 since it sends data packets directly over the UART.

 NOTE: A sensorboard is may be plugged into the programming board if mib510 is used.

Leave the Mote plugged into the programming board.

The flashing green LED on the mote indicates that a data packet has been sent to the UART.

You can now run XServe to display the incoming packets on the PC.

9.2.2 Receiving data on the XServe

We now run XServe on the PC to view the contents of the data packets.

1. The first step is to open a Cygwin command prompt by double clicking on the
icon located on your desktop.

2. Type xserve –device=COM1 at the command prompt and hit enter, you should
see output similar to the following when the data packets filled using the external
flash arrive over the serial port and are displayed by XServe:

Figure 9-1. XServe Output for MyApp in lesson 7

 NOTE: Please note that this application cannot be used together with XOtap since both share the
external flash memory.

Page 82 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

9.3 A Closer Look at MyApp
The MyApp application in this chapter has the following changes when compared to the MyApp
application developed in Chapter 6.

First, let’s look at the MyApp.nc configuration file:

…
 Main.StdControl -> ByteEEPROM;

 MyAppM.AllocationReq -> ByteEEPROM.AllocationReq[BYTE_EEPROM_ID];
 MyAppM.ReadData->ByteEEPROM.ReadData[BYTE_EEPROM_ID];
 MyAppM.WriteData->ByteEEPROM.WriteData[BYTE_EEPROM_ID];

…

The change to the configuration file is the addition of the ByteEEPROM component wiring. The
ByteEEPROM component is required to request memory in the external flash and carry out read
write operations on the allocated memory in the external flash.

The interface AllocationReq requests a byte section of the flash. This request must be made at
the time ByteEEPROM is initialized. The interface ReadData reads a line from the EEPROM
where each line is 16 bytes. The interface WriteData writes a line to the EEPROM where each
line is 16 bytes.

Let’s now look at the MyAppM.nc module file:

 module MyAppM {
 …

 uses {
 …

 interface AllocationReq;
 interface WriteData;
 interface ReadData;
 }
}

command result_t StdControl.init() {
…
 call AllocationReq.request(PhotoLogCount*sizeof(uint16_t));
…

 event result_t AllocationReq.requestProcessed(result_t success) {
 // Allocation must succeed
 if (success){
 ready = TRUE;
 }
 return SUCCESS;
 }

event result_t Timer.fired()
 {
 if(ready)

Doc. # 7430-0102-01 Rev. C Page 83

 MoteWorks Getting Started Guide

 {
 call PhotoControl.start();
 call Light.getData();

 }
…

async event result_t Light.dataReady(uint16_t data) {
 atomic pack->xData.datap1.light[0] = data;
 lightData[0]=data;
 if(call ReadData.read(0,(uint8_t*)(&lightData[1]),(PhotoLogCount-
1)*2)==FAIL)
 {
 call Leds.redToggle();
 }
…

 event result_t ReadData.readDone(uint8_t *buffer, uint32_t
numBytesRead, result_t success)
 {

 call Leds.greenToggle();
 if(numBytesRead==((PhotoLogCount-1)*2))
 {
 memcpy((uint8_t*)(pack->Data.datap1.light)+2,
 (uint8_t*)(&lightData[1]),(PhotoLogCount-1)*2);
 call WriteData.write(0,(uint8_t*)(&lightData[0]),
 PhotoLogCount*2);
 }
 return SUCCESS;
 }

event result_t WriteData.writeDone(uint8_t *data, uint32_t
numBytesWrite, result_t success)
 {

 post SendData();
 return SUCCESS;

 }

All the changes are related to using the interfaces AllocationReq, ReadData and WriteData of
ByteEEPROM component.

The first interface used is AllocationReq.request(PhotoLogCount*sizeof(uint16_t))
during the StdControl initialization. This is used to request memory allocation in the external
flash where the size of memory is specified with the request command. The value of
PhotoLogCount is defined in the file SensorboardApp.h. In this example value of
PhotoLogCount is 8. We thus store 8 light sensor readings each of size 2 bytes in the external
flash.

Once the allocation request is processed, the event AllocationReq.requestProcessed
(result_t success) is signaled. If the outcome of the event is a SUCCESS, then the ready flag

Page 84 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

is set as true. The purpose of the ready flag is to start sampling of the light sensor. If the state of
ready flag is true, when the periodic timer fires then the light sensor is sampled.

When the event Light.dataReady(uint16_t data) is signaled; the data packet is filled in with
the new reading. Then the ReadData interface is used to read the data from the flash where the
address of the memory buffer to be read and the size of data to be read is specified in the
arguments of the command ReadData.read(). As a result of this command the event
ReadData.readDone(int8_t *buffer, uint32_t numBytesRead, result_t success) is
signaled. The green LED toggles to denote that ReadData.readDone() event has been signaled.
In this event, the last seven readings read from the external flash are copied to the data packet.
Therefore the data packet consists of the last seven readings and the eighth reading is the latest
reading from the light sensor. The WriteData interface is then used to write these eighth
readings to the external flash using command WriteData.write(). As a result of the command
WriteData.write(), the event WriteData.writeDone(uint8_t *data, uint32_t
numBytesWrite, result_t success) is signaled which returns the data and number of bytes
written and whether write command was successfully executed.

Hence, the data is logged in a circular buffer, such that the stalest reading is pushed out of the
buffer, each time a new reading is generated by the light sensor. When this event is signaled we
post the task sendData() to send the data packet consisting of the latest eighth light readings
through the UART.

When the event SendMsg.sendDone() is signaled then green LED toggles to indicate that data
was sent successfully.

9.4 Conclusion
This example application shows the basic mechanism for using the interfaces of ByteEEPROM
component to access the mote’s external flash message transport. For a real world application it
is necessary to know how to use the Mote’s external flash for data logging. The Mote’s internal
flash is not sufficient to fulfill the data logging requirements of real world application. User may
want to log several readings of sensor data as illustrated in the example application described in
this chapter. User may also require logging of data related to mote health, application specific
data structures or Mote configuration parameters. But accessing external flash consumes Mote’s
battery power hence this operation should be used with discretion.

Doc. # 7430-0102-01 Rev. C Page 85

 MoteWorks Getting Started Guide

10 Appendix A: Cygwin Command Reference

Cygwin is a Unix/Linux emulation environment for Microsoft Windows. The Cygwin tools are
ports of the popular GNU development tools for Microsoft Windows. Cygwin is a means to
providing a stable, mature, useful, and usable, command-line environment on Microsoft
Windows platforms. It is an optional user interface for compiling and downloading Mote
applications in MoteWorks.

Some useful Cygwin commands are listed in Table 10-1 below.
Table 10-1. Some Useful Cygwin Commands

Description Cygwin Command
Move up a directory ../

Move up two directories ../../

Go to a sub-directory called “mydirectory” cd mydirectory

List all files and directories ls

Where is the executable? which <executable>

Show all environment variables set

Add a environment variable export MYHOME=c:/mydev/apps

Show an environment variable echo $MYHOME

Remove an environment variable unset MYHOME

Compile for MICA2 make mica2

Compile and install for MICA2 make mica2 install

Compile and install for MICA2 with node ID=0 make mica2 install,0

Install a pre-compiled app into MICA2 make mica2 reinstall

generate HTML format component structure diagrams make mica2 docs

Page 86 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

11 Appendix B: Accessing Crossbow CVS

MoteWorks Enterprise Edition subscribers can access the http://cvs.xbow.com server to get
updates to the stable release source code. Instructions on how to connect to cvs.xbow.com using
either Cygwin or WinCVS clients are available online when logged in as a valid CVS user.

11.1 Generate Key with PuTTY
1. Open PuTTYgen from Start>Programs>PuTTY>PuTTYgen.
2. Select SSH-2 DSA.

3. Click on Generate.

4. Move around mouse on black area to generate randomness.

Doc. # 7430-0102-01 Rev. C Page 87

http://cvs.xbow.com/

 MoteWorks Getting Started Guide

5. Enter passphrase and confirm.

6. Click Save public key as key.pub.

7. Click Save private key as key.ppk.

8. Close PuTTYgen.

9. Open Pageant from Start>Programs>PuTTY>Pageant.

10. Double-click on Pageant icon on lower right task bar (Computer with Hat)

11. Click on Add Key

12. Browse to and select key.ppk private key that was generated in Step 7.

Page 88 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

13. Enter your passphrase from
Step 5 and click on OK.

14. Verify that the key is added
and click on Close.

11.2 Upload public key to CVS server
The next step is to transfer your public key to the CVS server.

1. Open a browser and go to http://cvs.xbow.com/

2. Click on Login.

3. Enter your MoteWorks User name and password (different from Key Passphrase).

 NOTE: You should contact the Crossbow Support team to obtain login and password for CVS
access. Refer to Appendix C for details.

Doc. # 7430-0102-01 Rev. C Page 89

http://cvs.xbow.com/

 MoteWorks Getting Started Guide

4. At the CVS Server – User Portal page, click on Upload an SSH Key.

5. Click on Browse and point to the public key file “key.pub” generated in Step 7 of Section
11.1.

6. Click on Upload Key.

7. If the upload is successful, you should see “Operation Succeeded”.

11.3 Configure TortoiseCVS client and check out code
Next, we will configure the TortoiseCVS client application to access the remote CVS repository.

1. Open a Windows File explorer.

2. Go to the MoteWorks directory that you want to update and initiate a pop-up menu with a
right-click of the mouse.

Page 90 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

3. Select CVS Checkout.

4. Fill in CVSROOT, server,
module:
a. Protocol: Secure shell

(:ext:)
b. Server = cvs.xbow.com
c. Repository folder =

/XBOW_CVS
d. User name = Your user

name
e. Module = MoteWorks
Click on OK.

Doc. # 7430-0102-01 Rev. C Page 91

 MoteWorks Getting Started Guide

5. You can now right click in the
MoteWorks tree and use
TortoiseCVS commands:
• update
• commit
• diff (only appears for files

that have been modified)

 NOTE: Make sure you have Pageant running on your before performing a CVS update.

 IMPORTANT: If your PC is to host both the server and client layer functions, then

running the PostgreSQL database service is required to use MoteView. However, if you are
accessing a server or Stargate that is running XServe/PostgreSQL, then you don’t need to run the
service on your PC.

 IMPORTANT: If you installed MoteWorks Standard and then updated to an Enterprise
tree from CVS, your tools may not work fully. “Make install” may not work for example.

This is because the permissions on two directories are not preserved in CVS. To correct this,
you may run the following commands in Cygwin window:

 chmod +x /opt/MoteWorks/tools/bin/*

 chmod +x /opt/MoteWorks/make/scripts/*

11.3.1 Checking out multiple code branches from CVS
The CVS access allows MoteWorks Enterprise users to download the code not only from
released and supported tree, but also from development/unreleased and unsupported tree. To do
this, follow these steps:

1. Open a Windows File explorer.

2. Go to the MoteWorks directory that you want to update and initiate a pop-up menu with a
right-click of the mouse.

Page 92 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

3. Select CVS > Update Special...
The window shown on the
right-hand side would appear.
Check on Get
tag/branch/revision and click on
Update List.

4. From the dropdown box,
select the branch you want to
download and click on OK.

Doc. # 7430-0102-01 Rev. C Page 93

 MoteWorks Getting Started Guide

 IMPORTANT: Although you see multiple tree and branches in the dropdown, the only
ones that might be of relevance to you are listed below.

1. MoteWorks_2_x_y_RELASE – Released and Supported tree

2. MoteWorks_2_x_RELEASE_BRANCH – Most up-to-date but unreleased tree.

3. HEAD – Stable, Unreleased and Unsupported Development Tree

If you want to work with a stable, released and supported tree, we strongly recommend that you
choose Option 1 above with the latest revision of y.

Page 94 Doc. # 7430-0102-01 Rev. C

MoteWorks Getting Started Guide

12 Appendix C: Registration and Support

12.1 Support Policy
Your MoteWorks license is provided with 1 year of free support. Please go to
http://www.xbow.com/Support/MoteWorksSupport.aspx to register for your support login and
password. Your license key is required for support registration.

For the Standard edition, the support registration will give you access to all updates, patches, and
documentation releases during the support period. In addition, you may submit your support
requests at http://www.xbow.com/Support/Waskaquestion.aspx once you have registered.

For the Enterprise edition, the support registration will give you access to all updates, patches,
and documentation releases during the support period. In addition, you may submit your support
requests at http://www.xbow.com/Support/Waskaquestion.aspx or call the phone number
provided on your welcome letter once you have registered. Enterprise level support requests are
guaranteed a response within 1 full business day.

A copy of the Support Policy in its entirety is located on the MoteWorks CD.

12.2 Source Code Access:
Your Enterprise license includes access to our source code via CVS server. Once you have
registered for support you will receive an email with your CVS login and password. This login
is separate from your support login and password.

12.3 Code under Development
We are pleased to provide you with access to our development tree via the CVS server login.
We hope that you will appreciate the opportunity to view our developers’ work in process.
Please understand that this code is not included in the support coverage, and that features you
encounter in the development tree may never be included in the released version of the software.

12.4 Known Issues
Please read the README.txt file that is included on your CD for a list of known issues in the
software.

Doc. # 7430-0102-01 Rev. C Page 95

http://www.xbow.com/Support/MoteWorksSupport.aspx
http://www.xbow.com/Support/Waskaquestion.aspx
http://www.xbow.com/Support/Waskaquestion.aspx

Crossbow Technology, Inc.
4145 N. First Street
San Jose, CA 95134
Phone: 408.965.3300
Fax: 408.324.4840
Email: info@xbow.com

	Introduction
	MoteWorks Network Landscape
	XMesh Mote Tier
	XServe Server Tier
	MoteView Client Tier

	Low-Power Operating System – TinyOS
	Software Development Tools

	Installation of MoteWorks
	What You Need for Installation
	Installing from the CDROM
	MoteWorks Installation Structure
	Uninstalling MoteWorks

	Programming Environment Customization
	Programmer’s Notepad 2
	Cygwin
	Setting Aliases
	Compiling MoteWorks Applications
	Programming Boards
	MIB510/Serial Port Programmers
	MIB520 USB Programmers
	MIB600 Ethernet Programmers

	Installing MoteWorks Applications into a Mote
	Setting the Group ID and Node Address for the Mote Network
	The MakeXbowlocal file
	Radio Frequencies
	Automated Build Tools
	build
	Buildall

	Mote Programming Tools
	flash
	flashall
	fuses
	motelist

	TinyOS Interoperability and Tree Management
	gettos
	settos
	usetos

	Compiling Utilities
	make
	mote-mem
	treediff

	XSniffer
	Building and Starting XSniffer
	Using XSniffer

	Introduction to TinyOS and nesC
	TinyOS
	TinyOS Programming philosophy
	Concurrency Model

	The nesC Language
	Separation of construction and composition
	Specification of component behavior in terms of set of inter
	Interfaces are bidirectional
	Components are statically linked to each other via their int
	Use of whole-program compilers
	Tasks and interrupt handlers

	First Steps in nesC Programming
	Hardware Requirements
	A simple nesC program: MyApp
	Makefile
	Makefile.component
	Create the Top-Level Configuration
	Create the Module
	Compile and Install the Code in a Mote

	A Closer Look at MyApp
	Makefile and Makefile.component
	Comments
	Defining an Application’s Configuration
	The component main: The scheduler
	The MyAppM module

	Generating the Component Structure Documentation

	A Simple Sensing Application
	Hardware Requirements
	A Simple Sensing Application: MyApp
	Create the Top-Level Configuration
	Create the Module
	Compile and Install the Code in a Mote
	Parsing Message Packets on PC using XServe
	Sending Sensor Data over the Radio
	Using XSniffer to View Sensor Data Sent Over the Radio

	A Closer Look at MyApp
	Using a Sensorboard
	Sampling the Light Sensor
	Sending a Message Packet

	XSensor Applications Supported in MoteWorks

	XMesh enabled Sensing Application
	Hardware Requirements
	An XMesh enabled Sensing application: MyApp
	Makefile
	Makefile.component
	Create the Top-Level Configuration
	Create the Module
	Compile and Install the Code in a Mote
	Parsing Message Packets on PC using XServe
	Using XSniffer to View Sensor Data Sent through the Network
	Viewing your Sensor Network with MoteView

	A Closer Look at MyApp
	XMesh Applications Supported in MoteWorks

	XMesh Advanced Features
	Hardware Requirements
	End-to-End Acknowledgements: MyApp from the subdirectory /le
	Compile and Install the Code in a Mote

	A Closer Look at MyApp
	Enhancements for Reliable Message Delivery

	Downstream Command Processing: MyApp from the subdirectory /
	Compile and Install the Code in a Mote
	Sending Commands to a Mote using XServeterm

	A Closer Look at MyApp

	Data Logging Application
	Hardware Requirements
	Using the external flash: MyApp from the subdirectory /lesso
	Compile and Install the Code in a Mote
	Receiving data on the XServe

	A Closer Look at MyApp
	Conclusion

	Appendix A: Cygwin Command Reference
	Appendix B: Accessing Crossbow CVS
	Generate Key with PuTTY
	Upload public key to CVS server
	Configure TortoiseCVS client and check out code
	Checking out multiple code branches from CVS

	Appendix C: Registration and Support
	Support Policy
	Source Code Access:
	Code under Development
	Known Issues

