INTEGRATED FILE LEVEL CRYPTOGRAPHICAL ACCESS CONTROL

By
Ryan Seifert, B.S.
THESIS
Presented to the Faculty of

The University of Houston Clear Lake

In Partial Fulfillment

of the Requirements

for the Degree

MASTER OF SCIENCE

THE UNIVERSITY OF HOUSTON CLEAR LAKE

July, 2008

Copyright 2008, Ryan Seifert
All Rights Reserved

INTEGRATED FILE LEVEL CRYPTOGRAPHICAL ACCESS CONTROL

by

Ryan Seifert

APPROVED BY

T. Andrew Yang, Ph.D., Chair

Sharon Hall, Ph.D., Committee Member

Terry Feagin, Ph.D., Committee Member

Dennis M. Casserly, Ph.D., CIH Associate Dean

Sadegh Davari, Ph.D., Dean

DEDICATIONS
I dedicate this to my parents, Ken and Debbie Seifert, who supported me both finically and emotionally though out the years. Their continued encouragement and embracement of my rather nerdy interests have allowed me to convert my hobby into a career.
ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Andrew Yang for being the thesis committee chair and assisting and guiding me though this thesis. Without his help the idea scribbled quickly on sheet of loose leaf paper would have never been realized. I would also like to thank him for prompting me to publish the design; that experience has been very exciting.

I would like to thank members of my thesis committee, Dr. Sharon Hall and Dr. Terry Feagin. Dr. Hall was the first to steer me into the depths of operating systems and low level computing. Both fields assisted greatly in creating this design. Dr. Feagin taught me the proper form of technical writing, which was thoroughly used throughout this journey.

Last but not least, I would like to thank my family and friends for sticking with me during the course. I appreciate the reminder that a broken program is not the apocalypse.

ABSTRACT

INTEGRATED FILE LEVEL CRYPTOGRAPHICAL ACCESS CONTROL

Ryan Seifert, M.S.
The University of Houston, Clear Lake, 2008

Thesis Chair: T. Andrew Yang, Ph.D.
Integrated File Level Cryptographical Access Control (IFLCAC) is a new file cryptography system which makes file security much easier for the end user to utilize. The system combines the benefits of traditional file level cryptography and file system cryptography, making it both secure and easy to use. An investigation into the current state of file cryptography is presented first, followed by the design and implementation details of Integrated File Level Cryptographical Access Control. An overview of the working system is discussed, detailing the inner workings of the new cryptography system. The new system is compared and contrasted with the existing file cryptography systems. The effectiveness of the system is analyzed via a series of experiments, measuring processing and memory overhead, file granularity, file system options, and user interactions.

TABLE OF CONTENTS

11.
Introduction

11.1.
Encryption Methods

61.2.
File Cryptographical Methods

61.2.1.
File Level Cryptography

71.2.2.
File System Cryptography

101.2.3.
Virtual Partition Cryptography

122.
Problem Definition

143.
Integrated File Level Cryptographical Access Control

143.1.
Overview

153.1.1.
File System Gateway

173.1.2.
Encryption Database

183.1.3.
User Application

193.1.4.
Administrator Application

193.1.5.
Optional Features

223.2.
Implementation Details

223.2.1.
File System Gateway

273.2.2.
Encryption Database

283.2.3.
User Application

293.2.4.
Administrator Application

333.3.
Component Interactions

354.
Experimental Setup

354.1.
Virtual Machine Settings

364.2.
Computer Hardware

364.3.
Metrics for Evaluation

374.3.1.
Processing Overhead

374.3.2.
Memory Overhead

384.3.3.
File Granularity

384.3.4.
File System Options

384.3.5.
Encryption Algorithm Updating

394.3.6.
Necessary User Interaction

395.
Experimental Results

395.1.
Processing Overhead

425.2.
Memory Overhead

445.3.
File Granularity

455.4.
File System Options

465.5.
Encryption Algorithm Updating

485.6.
Necessary User Interaction

516.
Conclusion

537.
Future Work

55REFERENCES

59GLOSSARY OF TERMS

61APPENDIX A: LISTING OF CURRENT FILE ENCRYPTION SYSTEMS

LIST OF TABLES

45Table 1 File Cryptography Granularity Levels

46Table 2 File System Options

47Table 3 Ease of Encryption Algorithm Updating

LIST OF FIGURES

3Figure 1 Symmetric Encryption

4Figure 2 Asymmetric Encryption

5Figure 3 Message Digest

15Figure 4 File System Gateway

18Figure 5 Encryption Database and Interactions with Other Components

29Figure 6 User Application Interface

30Figure 7 Administrator Application Encrypted Files Tab

31Figure 8 Administrator Application Encryption Algorithm Tab

32Figure 9 Administrator Application Users Tab

33Figure 10 Administrator Application Exception Files Tab

40Figure 11 File Read Times

41Figure 12 File Average Read Time

43Figure 13 Memory Overhead

49Figure 14 User Interactions Per File

1. Introduction
This thesis will delve into the current status of secure file level access control on a person computer, the current ideas, security issues and concerns, and each security method’s strong points and potential limitations. A new solution is provided that merges the differing systems, borrowing the strong points from each and providing a simple interface for the user. The final result is a secure file encryption process that is neither invasive to the user nor difficult to configure and operate.
Before probing into the new file level access control system, fundamental cryptographical methods and the current state of file level encryption need to be defined. A brief introduction into the different methods used in cryptography, including symmetric cryptography, asymmetric cryptography, message digests, and message authentication codes are presented. After covering the basic cryptographic methods, the thesis will delve into the current state of file encryption and identify a problem. The solution to the problem is discussed following the introduction. The implementation and experimental data of the new file level access control system are reviewed. To provide an overview of related terminology and concepts, a glossary of terms and an appendix of current encryption technology are included.
1.1. Encryption Methods

Current cryptographical systems come in two flavors, symmetric and asymmetric cryptography. Symmetric cryptography utilizes the same key to encrypt and decrypt a message. Asymmetric cryptography, on the other hand, utilizes two different keys, each of which is an inverse of the other, to encrypt and decrypt a message. Both styles of cryptographical systems play an integral part in today’s encryption status. Additionally, in order to ensure the authenticity and data integrity of a message, a message digest or message authentication code (MAC) can be computed.

As illustrated in Figure 1, symmetric cryptography is used to encrypt a plaintext message to a cipher text message and vice versa utilizing the same key for both procedures. This form of cryptography is generally faster than asymmetric cryptography, which uses different keys for encryption and decryption. Symmetric cryptography algorithms consist of many algorithms in use today, including AES (Rijndael), Blowfish, MARS, RC6, Serpent, and Twofish. Some basic operations used in symmetric key algorithms are S-boxes, Galois Field, matrix multiplication, and the XOR operation [5]. While a technical discussion of these operations is outside the scope of this document, a study on the speed of the operations is related but only as they are compared to asymmetric operations.

[image: image1.png]
Figure 1 Symmetric Encryption

Asymmetric cryptography uses key pairs, a public key and a private key in each key pair. As shown in Figure 2, the public key in the pair will encrypt the data so that only the private key can decrypt the cipher text. Alternatively, when the private key is used to encrypt the data (for example, when generating a digital signature), the corresponding public key must be used to successfully decrypt the encrypted data. As the name suggests, the public key is published for anyone to retrieve that wishes to communicate securely with the key holder, who is the only person that knows the corresponding private key. This form of cryptography uses more complex operations than symmetric key encryption, and as such it is slower. Because of the speed differential between asymmetric and symmetric cryptography, asymmetric cryptography is primarily used to agree on a symmetric key [5]. There are currently only two major asymmetric encryption algorithms, RSA and Elliptic Curve.

[image: image2.png]
Figure 2 Asymmetric Encryption

(Note: In this case, A is the one who decrypts the cipher text.)

The final piece of fundamental cryptography technology that relates to this proposal is message digests. A message digest algorithm is used to cryptographically generate a message digest (aka. checksum or hash) of the source message, and allow the receiver to authenticate the message using the checksum. As shown in Figure 3, a message digest computes a deterministic value (the checksum) for any given message, thus given the same message the same checksum will be calculated. Therefore, when the checksum calculated by the receiver is different from the checksum accompanying the message, it serves as evidence that the integrity of the message (or the checksum) has been violated.

Ideally, it would be computationally infeasible to locate two messages with identical message digest. There are currently three major message digest algorithms in the field, MD4, MD5 and SHA-1. Unfortunately all three algorithms have been proven to be insecure. The new standard SHA-2 is being implemented currently.

[image: image3.png]
Figure 3 Message Digest

Simple message digest algorithms are subject to man-in-the-middle attacks [20]. Therefore, in real-world applications, message authentication codes (MAC) are used for message authentication. Before a MAC code can be calculated, the two parties must agree on a secret key. The MAC is calculated using the secret key; this allows the recipient of the message to both verify that the message has not been modified and the origin of the message is from the correct communicator.

These three pieces of cryptography technology are utilized in virtually all cryptographical systems. Using either symmetric or asymmetric encryption allows communicators to exchange secret messages (confidentiality). Using message digests or message authentication codes, the recipient can be assured that the message has not been tampered with (data integrity) and, in the case of message authentication codes, the message was sent from the proper source (origin integrity). Ensuring confidentiality, data integrity, and origin integrity is necessary to provide a secure computing environment.
1.2. File Cryptographical Methods

File cryptography today has three major implementations, file level cryptography, file system cryptography, and virtual partition cryptography. These methods dictate at which level the cryptography is performed. While each method encrypts the file, they have very differing philosophies regarding how the file is decrypted.
1.2.1. File Level Cryptography

File level cryptography is by far the most prevalent of the three cryptography methodologies. File level cryptography is the very basic process of encrypting a single file in the file system. This method was the first cryptography method created, and while aged, is still in use today.

While the simplest of the methods, file level cryptography offers its users many strengths. File level cryptography grants the users the most control over which files get encrypted, how the files are stored, and the location the files are stored in. This allows the users to configure an efficient system, with only confidential files requiring encryption. Because it works on a file-by-file basis, every encrypted file can use a different key. If a malicious user gains one key it will only decrypt a limited number of files. Additionally because only the file is changed, file level encryption can be used with any type of file system. This is because it does not require any special data be stored with the file. An added bonus to not requiring a special file system becomes apparent when entering a networked file system. Utilizing this method the user can move the file between file systems while maintaining the encrypted state of the file.

While file level cryptography has many advantages, there are some significant disadvantages as well. Because it grants users control over when files are encrypted and decrypted, the user must manually encrypt and decrypt files. This puts an added workload on the user, requiring them to ensure the file is currently in the proper encryption state. It is because of this disadvantage that most users will reject this system.

File level cryptography, while having its drawbacks, is easily the most prevalent file encryption in the field. This is because this type of encryption is very easy to deploy and administer. Unfortunately, it is not easy to use. In summary, among the three types of implementations of file cryptography, file level cryptography is efficient, allows the most control over the encrypted files, the most secure, and the most difficult to use.

There are many file level cryptography applications in existence today. One such application is AxCrypt for windows [21]. AxCrypt allows the user to encrypt files using the AES 128 bit standard encryption algorithm. While AxCrypt provides security on any file the user selects, the application still forces the user to navigate to the file and manually encrypt or decrypt the file.
1.2.2. File System Cryptography

File system cryptography takes a very different stance on cryptography than file level cryptography. File system cryptography utilizes a special file system that encrypts all data going to the file system, and decrypts all data coming from the file system [2]. Allowing the encryption layer to reside between all communications of the file system grants the encryption algorithm a cornucopia of options for encryption methods. While less prevalent than file level encryption, this method is quickly gaining ground as computational power increases on personal computers.

File system cryptography operates directly on the data being sent to the hard drive. The ability to manipulate data at this level grants this method some interesting possibilities. File system cryptography works by encrypting layers of the file system on a per key basis. Each key will decrypt a different section of the file system. File system cryptography can implement plausible deniability, the ability to deny the existence of an encrypted file. This is done by adding ‘chaff’ layer(s) to the file system. The chaff key will decrypt only the chaff layer, presenting a false file system for that key and leaving the actual data in the underneath layer untouched. Furthermore there is no proof this underlying data exists. [18]

With all data being passed through the encryption layer before being read from or written into the file system, this forces all data on the hard drive to be encrypted. This includes non-sensitive data such as executable files. These non-sensitive files must be decrypted before the data can be used, such as in the case of executable files, processed in the native computer code. This encryption and decryption of non-sensitive data adds considerable overhead on normal computer operations. Additionally, every user has one key which will decrypt the file system for the user. If a malicious user gains access to this key all data is available to the malicious user. To avoid this situation, normal file level encryption is often performed on select sensitive files. This adds even more to the performance hit for using file system encryption. File system encryption is limited to running only on its file system; this forces a user implementing this scheme to switch file systems.

An additional benefit to using file system cryptography is file modification watching. A message digest can be computed and included in the file information stored in the file system. When a file is accessed, a digest is computed and compared with the one in the file header. If they are not equal, the file may have been modified by an outside source or by some media fault. This additional security allows the users to be able to detect unauthorized change of files.

File system cryptography is much slower than file level cryptography, but with the speeds of computers ever increasing, the performance hit has been dropping off in recent years. With the performance hit reduced, more and more users are trying file system cryptography.

PGP Whole Disk Encryption [22] is one such file system cryptography implementation. The application has the option to encrypt the entire contents of a drive connected to the computer, including the boot sector and swap files.
1.2.3. Virtual Partition Cryptography

Virtual partition cryptography attempts to find a medium between file level cryptography and file system cryptography. A virtual partition is created on the computer. All data transferred to and from the partition will be encrypted and decrypted, respectively.

Virtual partition cryptography maintains many of the strengths found in file system cryptography while avoiding the large performance hit commonly found in file system cryptography. This is because it only forces encryption of a section of the hard drive. With oversight from the user all sensitive data can be stored securely in the virtual partition, while the non-sensitive files can be stored in the non-encrypted partition. This greatly negates the performance hit, but relies on the user to alter their storage system for files. Sensitive and non-sensitive data must be stored in logically separate partitions, introducing another layer of complexity for the user. Plausible deniability can also be implemented in virtual partition encryption. This will allow the partition to be mounted in a false positive mode, meaning that the decrypted data will appear to be valid but actually be invalid [18].

Virtual partition cryptography allocates the necessary space for the partition upon configuring the encryption system. The user must know the maximum amount of necessary space to store all users’ sensitive files. Many times this information is unknown at the time of configuring, forcing the user to recreate the virtual partition periodically. Creating the virtual partition is a costly operation; the system must decrypt each layer of the existing partition and encrypt it into the new partition. Additionally, because the space is allocated upon creation and recreating is a costly operation (and tends to be avoided when possible), typically a large chunk of disk space is allocated upon creation of the partition, resulting in possible waste of hard drive space in the system.

TrueCrypt [23] is a popular open source virtual partition encryption application. It has all features of virtual partition cryptography and utilizes symmetric key algorithms such as AES, Serpent and Twofish.

Examples of the three different types of file cryptography systems are listed in Appendix A, which includes details such as the kinds of cryptographical algorithms that are supported by each specific system.

In summary, the different file encryption schemes all play an integral role in today’s file encryption status. File level cryptography fills the need to have a very secure encryption process for a few number of important files. As the number of encrypted files increases, the overhead on the user to manually encrypt/decrypt these files increases as well. File system cryptography fills the need to have virtually all the data on the disk encrypted. This method is easy to use after being configured, but the slowest of the options. Additionally file level cryptography is often used on top of file system cryptography to provide additional security for sensitive files. Finally, virtual partition cryptography fills the need to encrypt sensitive data without forcing the user to manually encrypt and decrypt the files. Unfortunately, this system is difficult to configure correctly, and does not expand well as sensitive files are added.
2. Problem Definition

From an end user’s perspective there is a void in the current state of file level cryptography. As the state currently stands, the end user can select from three options, file level cryptography, file system cryptography, and virtual partition cryptography. Each of these methods brings the before-mentioned strengths and weaknesses to the table. The best current option is to combine two schemes, file level encryption and either file system encryption or virtual partition encryption. This choice provides a good overall encryption scheme, with important data being encrypted with no user overhead, and highly sensitive documents being manually encrypted and decrypted with a separate key.

Unfortunately this common solution leaves the user in much the same situation as before cryptography file systems became common place. The user must still manually encrypt and decrypt the highly sensitive files on the system. This overhead necessarily incurred by the user introduces a dangerous element to the encryption scheme, the user. It is all too easy for the user to forget to encrypt the file after accessing it. Additionally the overhead will limit the total number of files deemed necessary for the additional encryption; this limit changes on a per user basis. The limit is simply the amount of overhead the user is willing to incur. In order to ensure all necessary files are secured properly, this user element in the system needs to be minimized as much as possible.

Another consideration when choosing a cryptography scheme is that file system cryptography and virtual partition cryptography (to a point) both force the type of file system used. If a different file system is selected for other reasons, it must be replaced in the system, or at the very least in the partition. While this adds some additional benefits, such as plausible deniability, it removes many options for creating an effective secure system.

A new encryption method is needed, one that gives the security and flexibility of file level encryption with the ease of use of file system encryption. To better allow portability of the new system, it should perform regardless of the selected file system. This requirement allows it to be used with existing file system and virtual partition encryption methods. Additional administrative requirements, to ensure the new method is easily expandable, would allow access to a file by both a single user, whether a ‘normal’ user or an administrator, and a group of users. Furthermore, due to the fluid nature of the security environment, the method needs to be modular enough to replace the encryption algorithms used. Finally the new method needs to be as efficient as possible while meeting the above requirements.

3. Integrated File Level Cryptographical Access Control

3.1. Overview

A user friendly, efficient, and secure file level cryptography method is needed to fill the void left in file cryptography. The new method must meet certain criteria to completely fill the void:

· The method must be secure; the method should not introduce a new weak link into a secure system.

· The method must be intuitive for the end user to operate, and simple enough for the non-computer literate users to operate and maintain.

· The method must be file system independent
; this will ensure portability among all computers in the system.

· The method must be easy to update; this will ensure the method can evolve with the changing state of security.

The design of the new file level cryptographical method consists of four main parts, the file system gateway, encryption database, user program, and administrator program. The file system gateway sits just above the file system, intercepting calls made to the file system. The encryption database stores the necessary information regarding the encrypted files. The user program provides a simple interface for the end user. The administrator program provides access to the system configuration options. All encryption and hash algorithms are stored in dynamic link libraries exporting a pre-defined set of methods. Storing the encryption and hash algorithms in this way allows for easy insertion and updating of the algorithms.

3.1.1. File System Gateway

The file system gateway is the most critical element of the new cryptography method. This element is where all data encryption and decryption take place. This element controls all communication between the upper application layers and the underlying file system. The gateway communicates exclusively with the encryption database. The database holds all the configuration options for the file system gateway element.

[image: image4]
Figure 4 File System Gateway

The gateway handles all incoming calls to the underlying file system. The gateway checks the unique name or open file pointer passed with the call. The unique name from the file is used as an index into the encryption database. The file information is fetched from the database and checked to see if any crypto graphical operations are needed to be performed on the open file. If cryptographical operations are required, the proper encryption algorithm dynamic link library is loaded. The crypto graphical operations are performed and the resulting data is sent back to the requesting application.

An important aspect of the gateway needs to be pointed out. The gateway is implemented as a layer above the file system; as such it must remain completely independent of the file system. This includes depending on any given file system’s unique file pointer information. Additionally in order to implement some special functionality relating to parsing the unique names for a given file system, an additional dynamic link library can be used. The only location for file system dependence is within this library.

The gateway calculates the encryption key based on the user’s password upon logging into the system. Additional passwords to open files encrypted with a different key must be retrieved directly from the user. This adds the requirement that the gateway resides on the client machine if accessing a distributed file system. Performing the cryptography on the user machine allows for a minimum trust relationship between the local computer and the remote file server [4], as well as removing the necessity for asymmetric key cryptography to be preformed before communication between the remote file server and the local computer [8].

The file system gateway is the most integral section of the new integrated file level cryptography method. The file system gateway will execute code for every call into the file system. This puts a large workload though this element, making it imperative that this layer is implemented as efficiently as possible
3.1.2. Encryption Database

The encryption database is used to store all information relating to the encrypted files. Furthermore it is also used to store configuration options for the other elements. The database needs to be designed and accessed efficiently, as every call to open a file queries the database.

As seen in figure 5, the encryption database consists of two major elements, the file system database and the configuration options. The file system database stores information about which files are encrypted and which algorithm was used to encrypt the file. The name and path to the file are used as the primary key into the file system level. Optional file level attributes include a message digest of the file and a link into the public key table for multiple user access. The other major element is the configuration options; this element holds information on the available dynamic link libraries, current file system in use, and other miscellaneous general options such as password rules and administrative settings.

[image: image5]
Figure 5 Encryption Database and Interactions with Other Components

The encryption database holds all necessary information to allow correct access to the file system. Unfortunately this introduces a single point of failure into the integrated file level encryption method. At worst if the database fails, the administrator program can be accessed to decrypt files manually. If communication with the encryption database is unavailable, the gateway will enter an invisible state, simply returning the data directly as it resides on the disk. This state will allow normal operations on non-encrypted files, while encrypted files will be accessed via the administrator program.
3.1.3. User Application

The user program allows the non-computer literate end user to interact with the integrated file level encryption system. The program displays paths to encrypted files, and the files modifiers, for the logged in user. The program will also allow the user to add a file to the encryption list. The user program also allows basic maintenance for the user, such as changing their password. For most users this program will be the only interface into the system.
3.1.4. Administrator Application

The administrator program allows the configuration of the system and advanced access to the database. The program also allows files to be manually encrypted and decrypted; this tool is not available in the user program. The program consists of two interfaces, the system configuration interface and the encrypted file viewer.

The system configuration interface allows the administrator to perform general configuration and maintenance to the system. Updating the list of available encryption algorithms and message digests is available though this interface. Additional options include locking files from being modified and flagging folders for encryption.

The encrypted file view creates a list of all encrypted files. Through this interface the administrator can select and manually encrypt and decrypt available files. Other modifiers can be updated on the files such as the encrypted algorithm used and which users have access to the files.

This program allows the administrator to configure the system and perform maintenance on the system. Additionally it is the only way to manually decrypt or encrypt a file. This program allows major updates to the critical components in the IFLCAC.

3.1.5. Optional Features

Integrated File Level Cryptographical Access Control is designed to be flexible and expandable; this flexibility allows the system to provide additional services over and above file level encryption. A handful of a few key features that Integrated File Level Cryptographical Access Control can provide include group access to a secure file, data integrity check on a file, and secure access to a file over a networked mapped drive.
3.1.5.1. Group Access

One of the drawbacks of using file level cryptography is the lack of group access support. It is a common scenario that a select group of users require access to a single secure file; previously this was handled by distributing a shared key among the users. Utilizing Integrated File Level Cryptographical Access Control the users can access a single secure file with different passwords.

This is accomplished by assigning each user an asymmetric key pair. This key pair can be used to communicate secure data between users, either on a shared machine or over a network. When a file is selected for secure group access, the file is encrypted utilizing a symmetric key cipher with either a key specified by the current user, or a random key. Following the file encryption, the file key is encrypted using each group member’s public key. The encrypted file key is then transmitted to that user’s database. When a group member attempts to access the file, the member is prompted for their asymmetric private key information. Upon gaining the proper asymmetric key, the file’s encryption key can be obtained from the encrypted key stored in the database. Finally the group access file can be decrypted utilizing the secret key.
3.1.5.2. Data Integrity
A common requirement on many systems is a method to ensure that a selected file is not modified unexpectedly, and if modified, the user is notified that the file was modified by an outside source. Integrated File Level Cryptographical Access Control can provide this functionality with a few simple additions.

The user can select a file and a hash algorithm to enable data integrity monitoring on the file. A hash value is computed for the file and stored in the encryption database, and the file is flagged for monitoring by the system. When the user attempts to access a data integrity monitored file, a new hash value is computed from the file on disk and compared to the existing hash in the database. If the two hash values are not identical, the user is notified that the file was modified by an outside source. The hash value in the database can be updated by the user by saving a monitored file though normal means in their chosen application.
3.1.5.3. Network Mapped Files

One benefit that Integrated File Level Cryptographical Access Control grants is the secure access to files over networked mapped files. This benefit is granted due to the cryptography system residing on the local computer, rather than the remote computer. The end user needs not perform any special operations to encrypt and access the files; they interact exactly the same as local files. Secure transmission is achieved by performing all encryption and decryption of data on the local computer; this ensures that all data being transmitted over the network is in an encrypted format.
3.2. Implementation Details

A prototype implementation of Integrated File Level Cryptographical Access Control has been implemented for Windows XP. All components of Integrated File Level Cryptographical Access Control have been realized and are optional. Due to time constraints only the base requirements have been implemented.
3.2.1. File System Gateway

The file system gateway was implemented in a two part system, a windows minifilter component and a windows service component. The file system gateway required splitting into multiple components due to Windows limitations on file request interception.
3.2.1.1. Minifilter Driver

The minifilter driver component of the file system gateway is the most crucial component in the system. This component gets executed upon every file system request encountered in the system; as such the component was created to be efficient.
The minifilter driver component executes inside the Windows kernel mode. This was necessary to intercept the file system requests from all applications executing on the local computer. As currently implemented, the minifilter driver processes all file system requests regarding opening files, reading data, and writing data. The minifilter driver communicates extensively with the file system gateway windows service.
Upon a user program opening a file, the minifilter intercepts the file open request for processing. The minifilter driver mode checks the file open mode, either write, read, or both, and processes the request slightly differently if the file must be written to. The minifilter driver communicates to the file system gateway window service the full file path and name being requested. The windows service replies to the minifilter driver with the file encryption data if the file being accessed is encrypted; otherwise the service informs the minifilter driver to ignore any additional file system requests for the file. When an encrypted file is encountered, the minifilter driver attaches the encryption file data (a file ID, algorithm block size, and file open mode) to the internal file object. This file data can be retrieved in the subsequent read and write operations that can occur on the open file.
Upon encountering a file read request, the minifilter first checks for the attached encryption file data. If no encryption file data is located, the minifilter driver does no additional processing on the request. If encryption file data is encountered for the file request, the minifilter driver calculates the actual amount of data necessary to be read in order to successfully decrypt the requested data. The minifilter driver then accesses the file and reads the necessary encrypted data. The encrypted data is transmitted to the windows service, where the data is decrypted and returned to the minifilter driver. The minifilter driver attaches the data to the encryption file data and allows the file request to continue to the file system. Upon file access completion, the returned data is replaced with the decrypted data from the encryption file data. The decrypted data is then returned to the calling application.
Upon a file write request, the minifilter driver again checks for the attached encryption file data. If processing is required, the minifilter driver calculates the necessary encrypted data length and offset. The write data and calculated encrypted length and offset are transmitted to the file system gateway window service to be processed. The encrypted data is returned to the minifilter driver and attached to the file system request. The newly encrypted data is then written to the file.
3.2.1.2. Windows Service

The file system gateway windows service is tightly coupled with the minifilter driver. The window service controls and communicates with the driver, providing encryption services as well as encrypted file information. There are four requests handled for the minifilter driver, encrypted file check, encrypted write file check, encrypt data, and decrypt data.
The encrypted file check and encrypted write file check operate very similarly. The minifilter sends a request to the windows service containing the full file path being accessed. The windows service queries the database to see if the file is encrypted; and if so, retrieves the encrypted file information. Encrypted file information includes a unique ID for the file, the encryption algorithm used, the file path, and the user ID that encrypted the file. Upon locating an encrypted file request the algorithm is loaded into memory, if necessary; and the open file information is stored into an open file list. If the file request was for a write mode open, the file is copied to a temporary location. This was necessary to ensure that file data surrounding an encrypted write could be read. If the data surrounding an encrypted write is not retrieved, the encrypted information written to file could modify more data than requested. The file copy can be optimized out, as the minifilter driver can manipulate the file open modes to ensure that encrypted files have read access as well. This was not implemented due to time constraints. The encrypted file information is sent back to the minifilter driver and the file open request is allowed to complete.
The encrypt data request from the minifilter is called to encrypt data being written to the file. Before the data can be encrypted, the actual amount of data to be written and the actual offset of the data must be calculated. This is dependent on the encryption block size; for example AES has a default block size of 16 bytes After calculating the necessary information, the service may need to read the old data from the temporary file; this information ensures that the encrypted blocks do not overwrite data that was not modified by the calling application. The previous data is read into a buffer and decrypted then the data to be written to the file is then copied over the existing data, starting at the correct offset into the file. The newly modified data is summarily encrypted and written to the temporary file, this ensures the temporary file is kept in sync with the data on disk. Finally, the data is returned to the minifilter driver for writing. It is important to note that this method is not optimized; a proper implementation consisting of simply a single read and a single write optimization was not accomplished due to time constraints. While much quicker to implement, this method is also considerably slower than the optimized version.
The decrypt data request from the minifilter is called to decrypt data being read from a file. As the data coming from the minifilter contains all necessary data to be decrypted, as well as other information such as proper block size and correct offset into the file, the data is immediately sent to the decryption algorithm and returned to the minifilter.
The file system gateway service was created using C#; this allowed module reuse with the rest of the applications and a quicker development time. Unfortunately, C# has greater overhead than C/C++; it executes as interpreted language requiring additional processing and memory overhead. An additional obstacle arose when communication with the minifilter driver was required. The minifilter communication and control module was created in C, invoking functions between C# and C sustains additional overhead. While the file system gateway service is operational, it is not optimized.

3.2.2. Encryption Database

A MySQL database was utilized as the encryption database with MySQL ADO installed to allow easy communication between the C# applications and the database. The database consists of four tables, an encrypted file table, an installed encryption algorithm table, a user table, and an exception file table.
The encrypted file table stores information on all files encrypted using Integrated File Level Cryptographical Access Control. This information includes a unique file ID, the file path, the encryption algorithm used, the encryption operation, and the user who encrypted the file. The majority of queries entering the system will be utilizing the file path or the unique file ID; as such indexes were created over both of these criteria.

The installed encryption algorithm table stores information regarding the installed encryption methods. This table holds a unique encryption method ID, the file path to the module, the algorithm type, the block size of the algorithm, and the display name. Only a single index is required for this table, over the encryption method ID. This allows a fast retrieval of the encryption method information given an ID, such as from the encrypted file table. The block size information and display name are not explicitly required, but are included for convenience and a small speed improvement. Storing the block size in the database allows the file system gateway windows service to return the block size without explicitly loading the encryption method’s dynamic link library.
The user table stores basic user information, including a unique ID, the user name, a hash of the user’s password and an encrypted default password. No explicit indexes were required over the user table, as access to this table is done very infrequently.

The exception file table stores a list of files that can not be selected for encryption. This list consists primarily of the Integrated File Level Cryptographical Access Control implementation files and associated database information. The file system gateway window service stores this list in memory; as such the list should be kept fairly short. This list ensures that no database query is required for files being loaded to execute a database request.
3.2.3. User Application

The user application was created to be simple and intuitive to use. After logging into the system, the user is shown their list of encrypted files and the algorithms used to encrypt them. The user has the ability to decrypt files and remove them from the system through the use of the ‘Remove’ button. The user can add new files via the ‘New’ button and entering the required file information. Figure 6 is a snapshot of the user application interface window.
[image: image6.png]
Figure 6 User Application Interface
The user application was created using C#; it communicates with the encryption database and the file system gateway service. The file system gateway service utilizes the user application to retrieve passwords from the user. Communication with the encryption database is done via the MySQL ADO object.

3.2.4. Administrator Application

The administrator application is used to configure the cryptography system, install new encryption algorithms, create new users, set exception files, and upkeep encrypted files. The application can encrypt and decrypt files for any user, although the password to the file is still required, allowing the administrator a method to decrypt files in the case of a file system gateway malfunction. Figure 7 is a snapshot of the Administrator application interface window, showing three encrypted files.
[image: image7.png]
Figure 7 Administrator Application Encrypted Files Tab
The administrator application tab ‘Encrypted Files’ displays all encrypted files on the system, the encryption algorithm used to encrypt the file, and the user who added the file to be encrypted. This tab also allows the administrator to remove encrypted files and add new files for any user.
[image: image8.png]
Figure 8 Administrator Application Encryption Algorithm Tab
The administrator application’s ‘Encryption Algorithms’ tab, as illustrated in Figure 8, displays all the installed encryption algorithms for the system. This interface allows the administrator to install new encryption algorithms as well as depreciate existing encryption algorithms. Upon depreciating an algorithm, all encrypted files with that algorithm will be flagged for modification via the administrator application and the user application. The next time a user logs in, he will be prompted to modify the encryption algorithm used for files previously encrypted with the depreciated algorithm.

[image: image9.png]
Figure 9 Administrator Application Users Tab
The administrator application tab ‘Users’, as illustrated in Figure 9, allows the administrator to upkeep the users for the Integrated File Level Cryptographical Access Control system. This is the only method for adding new users to the system.
[image: image10.png]
Figure 10 Administrator Application Exception Files Tab
The administrator application ‘Exception Files’ tab, as illustrated in Figure 10, allows the administrator to add files that are restricted from encryption via the Integrated File Level Cryptographical Access Control system.
3.3. Component Interactions

Integrated File Level Cryptographical Access Control is dependent upon each component interacting correctly with the others. While some components require large amounts of interaction, such as the file system gateway minifilter driver and windows service, other components need only to communicate with the database, such as the administrator application.

The most used channel of communication is between the minifilter driver and the file system gateway windows service. This channel of communication is utilized on virtually every file open, file read, and file write. The implemented form of this communication is not ideal; the minifilter driver blocks on the windows service reply after sending a request. During testing this was shown to block not only the file request thread, but the entire minifilter. This unexpected result forces additional overhead on the system; the problem, however, could easily be designed away with a non-blocking communication system. Even with the non-ideal implementation, the communication between the two modules occurs at a good speed, a rate comparable to communication via a named pipe.

Communication between the encryption database and any other component utilizes the MySQL ADO object. This object allows an application created in a .NET language to easily perform queries and modifications to a MySQL database. All queries were created and implemented via the ADO object. Utilizing stored procedures would have granted an increase in performance for the most used queries, specifically the queries originating from the windows service, but time constraints restricted their creation.

The file system gateway windows service and the user application communicate to retrieve passwords from the operating user. This communication is implemented using .NET’s IPC object. The user application registers with the file system gateway windows service during initialization. The file system gateway service requests passwords from the user application via this communication channel.

While Integrated File Level Cryptographical Access Control was implemented successfully, the current implementation is far from optimal. A myriad of additional options and design choices could be made that would result in a substantial increase in the overall performance of the system. A cache for recently accessed files, for example, would greatly increase the speed of the system This cache would optimally reside in the minifilter driver, thus eliminating even the need to communicate the file open request for non-encrypted files.
4. Experimental Setup

In order to compare and contrast the differing methods of file encryption, four file encryption methods, including the Integrated File Level Cryptographical Access Control, were installed and executed on a test system. The test systems were created by utilizing virtual machines [24]. This method allows only the base requirements to be installed on the virtual machine for each file cryptography method.
4.1. Virtual Machine Settings

The test systems were created using VMware Server [24] and consisted of a fresh install of Windows XP upgraded to service pack 2. The virtual machine was configured to emulate the following hardware:

· 512 megabytes of memory

· 6 gigabytes of hard drive space
· An AMD Athlon 64 bit processor running at 1.84 GHz

A new image, that is a virtual machine installation, was created for each test case, including Integrated File Level Cryptographical Access Control, Truecrypt full disk encryption, Truecrypt virtual partition encryption, and Axcrypt file level encryption. Each image was loaded with only the necessary file cryptography system, the test applications, and the test data. Utilizing a virtual machine for each system allowed for minimal outside influence on the cryptography systems during execution.

4.2. Computer Hardware

Each image was executed on the same computer. This ensured that each system had access to the same amount of resources, and eliminated the need to factor different hardware configurations into the calculated data. The actual computer hardware consisted of:

· 1024 megabytes of memory

· 600 gigabytes of hard drive space

· An AMD Athlon 64 bit processor running at 1.84 GHz.

During testing all non-essential applications and services were stopped to limit the outside influences operating on the system.
4.3. Metrics for Evaluation
In order to compare and contrast the differing methods of file encryption, a number of evaluation metrics are defined. These metrics should clarify the overall file cryptography system performance with regards to both quantitative measures (such as hardware overhead) and qualitative measures (including user interactivity, administration overhead, and encryption options).
4.3.1. Processing Overhead

The amount of processing overhead generated by each system is an important factor in determining the overall system performance. If a system incurs a large amount of processing overhead, the computer system performance will be dramatically reduced. Processing overhead information can be gathered through the use of high-performance counters. High performance counters are incremented at the highest frequency available on the processor. As this value differs based on hardware, it needs to be calculated out of the equation. The amount of time a file operation required can be calculated as shown in Equation 1:
Equation 1
 X = ((Completed Time - Initial Time) / Counter Frequency) * 10^6.
The value in X is the total time required by the file operation in microseconds. This data can be gathered by executing a file operation multiple times against each file cryptography system and then obtaining their respective average. Performing the file operation multiple times ensures that enough data is collected to eliminate extreme results for the data and narrow in on the actual mean for each system.
4.3.2. Memory Overhead

The amount of memory required for each file cryptography system can be gathered though a process monitor. When each file cryptography system is loaded into memory and executed, the amount of required space in memory can be recorded.
4.3.3. File Granularity

A file cryptography system’s file granularity refers to the ability to specify a file for encryption at an arbitrary location in the file hierarchy. File cryptography systems have differing levels of file granularity, ranging from lower granularity (full driver) to medium granularity (whole folder or partition) to high granularity (single file).
4.3.4. File System Options

Some file cryptography systems require a single underlying file system in order to be utilized. This metric details the different number of file systems supported by a file cryptography system.

4.3.5. Ease of Updating the Encryption Algorithm

File cryptography systems are utilized to ensure a selected file or files be stored in a secure format. If an encryption algorithm used to secure the file is found to be weak, that algorithm needs to be removed from the file cryptography system and the necessary data needs to be converted to use a new secure encryption algorithm. This metric records the difficulty in depreciating, replacing, and installing new encryption algorithms into the file cryptography system.
4.3.6. Necessary User Interaction

The amount of user interaction for a file cryptography system is an important factor in the overall performance of a system. This metric records the different amounts of user interaction required to access a secure file.
5. Experimental Results

The analysis of the results aims to display the strengths and weaknesses of the different file cryptography methods. The results show that integrated file cryptographical access control is a usable, albeit expensive, option for file cryptography.
5.1. Processing Overhead

As shown in Figure 11, the processing overhead differs greatly between Integrated File Level Cryptographical Access Control and the existing systems. This is due to a different fundamental design as well as implementation choices made when developing the new cryptography system. The file level cryptography method, AxCrypt, was not included in this test as its user interaction requirements necessary to encrypt and decrypt the file between uses overshadowed all other file interactions.
[image: image11.emf]File Read Times

0

50

100

150

200

250

300

350

Time in Microseconds

Base Read

IFLCAC Read

File System Read

Virtual Partition Read

Figure 11 File Read Times
Figure 11 illustrates the amount of time a single file interaction required for each tested system. A single file interaction is defined as a sequence of file operations, including a file open request, a file read or write, and a file close. Figure 12 presents the average read times for 2000 file interactions. Together the data gives a clear picture as to the implemented performance of the tested systems.
[image: image12.emf]Average Read Time

4.02341

206.81861

11.22593

9.8466

0

50

100

150

200

250

Time in Microseconds

Base Read

IFLCAC Read

File System (True Crypt)

Virtual Partition (True Crypt)

Figure 12 File Average Read Time
Integrated File Level Cryptographical Access Control required substantially more time to perform a single file interaction than both file system cryptography and virtual partition cryptography. While Integrated File Level Cryptographical Access Control can not achieve the same speeds as file system or virtual partition cryptography, a sizable amount of the overhead presented here can be attributed to the inefficiency of the implementation.
The Integrated File Level Cryptographical Access Control implementation operates correctly, but optimizations and inefficient designs were utilized that account for much of the processing overhead. The major contributor to this overhead can be traced to the messaging system between the minifilter driver and the windows service. Originally the windows service spawned a new thread to process each request from the minifilter driver, but during testing it was found that the reply to the minifilter driver was being dropped unless it was sent from the same thread that received the request. This discovery left two options, a redesign and implementation of communication between the minifilter driver and the windows service, or moving the windows service to a process in a single thread. Time was an issue thus windows service was modified to execute the received requests in a single thread. In addition to the communication overhead cost, another factor is the implementations of the file read and write interception methods. The file read is actually performed twice in the minifilter driver, once to retrieve all data necessary to decrypt the requested information, and once again to complete the file read request. The latter file read can be optimized out, increasing the performance of the system. A similar situation occurs in the file write, as any data to be written must be encrypted into the proper blocks. To further optimize Integrated File Level Cryptographical Access Control a cache could be implemented inside the minifilter driver. During testing it was shown that requests open for the same files were requested in close proximity to each other. Storing a cache of recently accessed files in the minifilter driver would remove the overhead of calling the windows service and drastically increase performance.

5.2. Memory Overhead

The memory overhead between the different systems varied much more than the performance overhead. Normal file level cryptography made the best showing, with a small application that does not require being loaded in memory constantly. File system cryptography arrived in a close second, with a small service and kernel driver. Virtual partition utilized more resources than file system or file level cryptography; this is due to the additional resources required to mount the partition or container. Integrated File Level Cryptographical Access Control utilized the most memory of the systems; requiring a constantly running windows service and kernel driver. Figure 13 illustrates the amount of memory each system utilizes.
[image: image13.emf]Memory Overhead

14356

2036

3076

6840

0

2000

4000

6000

8000

10000

12000

14000

16000

Encryption Methods

Memory in k

IFLCAC

File System (True Crypt)

Virtual Partition (True Crypt)

File Level (AxCrypt)

Figure 13 Memory Overhead
While Integrated File Level Cryptographical Access Control utilized more memory than the other methods, this can almost entirely be attributed to the choice of using C# as the implementation language. While C# is a very fast language to develop in, it executes in an interpreted mode; this requires additional memory overhead because the code interpreter must also be loaded into memory. In addition to the interpreter, C#’s associated libraries are considerably larger than the corresponding C/C++ libraries. The interpreter and libraries add a considerable amount of memory overhead to C# applications.
One other interesting note in the memory overhead is related to the way the file cryptography systems must be stored in memory. Both file level and virtual partition cryptography do not need to be loaded constantly in memory; the file cryptography methods require a user to access and load them. This requirement allows the user to free more computational resources when not accessing secured files. File system cryptography and Integrated File Level Cryptographical Access Control, to a point, must reside in memory continuously. Integrated File Level Cryptographical Access Control can be unloaded from the system and the associated resources freed if the user logs out of the file cryptography system and manually stops the service.
5.3. File Granularity

The lowest file granularity of a cryptography system defines the smallest file selection for encryption method available to the system. The granularity levels are compromised of three levels, disk level, partition or container level, and file level. A disk level granularity forces the user of the encryption method to encrypt an entire disk at a time; with no options to encrypt only a section, directory, or single file on the disk. This level of granularity provides the least amount of selection to the user, as every file, and even the empty space, must be encrypted. Partition or container granularity level provides more options than a disk level granularity level. Partition or container granularity level allows the user to create a partition or container to store the encrypted files in. The entire partition or container is encrypted, including the empty space. The lowest level of granularity currently is file level. This level allows the user to select files for encryption anywhere on the computer system. This level of granularity allows the user the most flexibility.
Table 1 File Cryptography Granularity Levels

	File Cryptography System
	File Granularity Level

	File System Cryptography (True Crypt)
	Low

	Virtual Partition (True Crypt)
	Medium

	File Level Cryptography (AxCrypt)
	High

	Integrated File Level Cryptographical Access Control
	High

Table 1 shows the different granularity levels of the file cryptography systems. File system cryptography has the lowest level of file granularity among the cryptography systems. This low level of file granularity forces users utilizing this system to encrypt potentially large amounts of data that do not need to be secured. File system cryptography, however, does allow the user to store the secure files anywhere on the encrypted disk. Virtual partition cryptography provides a better file granularity level than file system cryptography in that it supports partition or container level granularity. While securing only necessary files, this granularity level forces the user to relocate files to the secured partition or container. Integrated File Level Cryptographical Access Control and file level cryptography both utilize file level granularity. This level of granularity allows the systems to only encrypt those files the user selected, and does not require relocation of the files from their current location in the file system hierarchy.
5.4. File System Options

A major difference in file cryptography systems is the reliance on a supported file system. Both file system cryptography and virtual partition cryptography, to a point, require a compatible file system. A compatible file system is required in order to ensure all the data on the file system is encrypted, including file meta data. Table 2 shows the relationships between file cryptography systems and their respective file system options.
Table 2 File System Options

	File Cryptography System
	File System Options

	File System Cryptography (True Crypt)
	Most File Systems Supported – This depends on the file system cryptography implementation

	Virtual Partition Cryptography (True Crypt)
	All File Systems – The virtual partition can reside on any file system, but there can be restrictions regarding the virtual partition or container itself.

	File Level Cryptography (AxCrypt)
	All File Systems

	Integrated File Level Cryptographical Access Control
	All File Systems

Integrated File Level Cryptographical Access Control and file level cryptography both operate above the file system layer, and as such are not dependent upon file system. This independence grants them the ability to be used in conjunction with file system cryptography or virtual partition cryptography. While file system cryptography does require a compatible file system, most modern file systems are supported.
5.5. Encryption Algorithm Updating

File cryptography is dependent upon the encryption algorithm for the file security; thus if an encryption algorithm is found to be insecure, it needs to be quickly phased out of the system and replaced with a stronger alternative. While the weak encryption algorithm is being phased out, the encrypted files are more vulnerable to being compromised. The ability to quickly deploy and modify the effected files is a useful feature in any file cryptography system. Table 3 portrays the file cryptography systems and their related encryption algorithm update difficulty.
Table 3 Ease of Encryption Algorithm Updating

	File Cryptography System
	Ease of encryption algorithm update

	File System Cryptography (True Crypt)
	Difficult – Requires complete disk modification and code update

	Virtual Partition Cryptography (True Crypt)
	Difficult – Requires partition modification and code update

	File Level Cryptography (AxCrypt)
	Difficult – Requires large amounts of user interaction

	Integrated File Level Cryptographical Access Control
	Easy to update – Requires installation of new algorithm into existing system

Integrated File Level Cryptographical Access Control allows for the quickest and easiest updating of encryption algorithms. Encryption algorithm implementations are completed in a separate module than the implementation of Integrated File Level Cryptographical Access Control; this allows for encryption algorithms to be installed into an existing system. Additionally, Integrated File Level Cryptographical Access Control allows for the depreciation of currently installed encryption methods. When a user logs onto the Integrated File Level Cryptographical Access Control system, the system automatically checks to ensure all secured files are utilizing valid encryption algorithms. If a depreciated algorithm is located, the user is prompted to select a new encryption algorithm. This ensures that files encrypted with the depreciated algorithm are modified as quickly as possible.
File level cryptography can be implemented to operate similarly to Integrated File Level Cryptographical Access Control, in that the new encryption algorithm can be easily installed into the system. The user will have to recall which files were secured with the weakened algorithm and manually navigate to those files. The user will have to decrypt the effected files and encrypt them using a secure encryption method. This unfortunately requires a large amount of user interaction.
File system cryptography and virtual partition cryptography both require the installed code base to be modified as well as all encrypted data to be converted to use the replacement algorithm. In the case of file system cryptography this could take a substantial amount of time.
5.6. Necessary User Interaction

The amount of user interaction required to access an encrypted file varies greatly between the different file cryptography methods. Limiting the amount of required user interaction promotes the use of the system to secure additional files.
[image: image14.emf]User Interactions (Per File)

0

1

2

3

4

5

User Interactions

IFLCAC

File System (True Crypt)

Virtual Partition (True Crypt)

File Level (AxCrypt)

Figure 14 User Interactions Per File
As show in Figure 14, Integrated File Level Cryptographical Access Control and file system cryptography both require only one user interaction to access an encrypted file. File system cryptography requires the user to enter a password during the computer boot process. This password is used to access the encrypted file system. Integrated File Level Cryptographical Access Control requires the user to enter a password to access the secured file. This password is then used to access the file until the file is closed. One important difference not explicitly shown in the data is how the number of user interactions scales as different secured files are accessed. File system cryptography’s entire user interaction is completed after the initial password prompt during the boot process. Integrated File Level Cryptographical Access Control, on the other hand, requires a password for every file that is not encrypted with the user’s default password. Thus a worst case scenario for Integrated File Level Cryptographical Access Control is requiring user interactions for every encrypted file accessed, whereas file system cryptography will only ever request a single password. It should be noted that, when only the default password is used, Integrated File Level Cryptographical Access Control behaves similar to file system cryptography.
Virtual partition cryptography requires slightly more user interactions than file system cryptography and Integrated File Level Cryptographical Access Control. Before the secured file can be accessed, the user must mount the partition and enter the password for the partition. After mounting, the user can access all files in the encrypted partition. After all necessary interaction with the secured files has completed, the user needs to unmount the encrypted partition. A worst case scenario for virtual partition cryptography would consist of the files being accessed residing in different partitions, thus requiring multiple mounting and decrypting to occur.
File level cryptography requires the most user interaction of the current file cryptography methods. In order to access an encrypted file the user must navigate to the file and enter the password to encrypt the file; additionally after access to the file is concluded, the user must again navigate to the file and enter the password to encrypt the file. Regardless of which secure file is being accessed, these four interactions are required to ensure the file is stored securely. An additional danger of this file cryptography system is the user’s forgetting to encrypt the data after the user has completed accessing it. This is the only system that requires the user to encrypt the data post-processing.
6. Conclusion

Integrated File Level Cryptographical Access Control meets and exceeds the four main criteria for which it was designed:

· A secure file cryptography system.

· Intuitive for the ender user to operate.

· File system independence.

· Easy to update.

Integrated File Level Cryptographical Access Control creates a secure file encryption system by utilizing current symmetric and asymmetric encryption algorithms to secure files. Moreover, secured files are not stored unencrypted on disk. By encrypting and decrypting the requested data on-the-fly, the decrypted data is only present while it is being accessed by the user. Processing the file in this method ensures that even in the event of a crash the secure file remains secure on disk.
The cryptography system meets the requirement of being intuitive for the ender user to operate, by not only limiting the necessary user interactions per file but also ensuring the end user is quickly notified of data secured with a depreciated encryption algorithm. Achieving a single user interaction per file ensures that users will utilize the security system for all sensitive data. The system also ensures that secured files are not left in an unsecured state by the end user.
File system independence is achieved by Integrated File Level Cryptographical Access Control by ensuring that all file interception occurs below, or within, the kernel but above the file system layer. The file system gateway minifilter driver intercepts request above the file system layer, but still below the operating system’s file operations. Intercepting the file requests at this level ensure that all user space applications accessing the files are able to access secure data with no additional coding or compatibility issues. An additional benefit of being file system independent is that IFLCAC may be installed above file system cryptography. The two systems can operate in conjunction to provide additional security to the computer system.

Integrated File Level Cryptographical Access Control is easy to update by allowing new encryption algorithms to be installed quickly though the administrator application. In order to ensure that weak encryption algorithms can be removed from the system, the administrator application can depreciate encryption algorithms. Depreciated encryption algorithms are phased out of the cryptography system as soon as possible.
The flexible design of Integrated File Level Cryptographical Access Control allows for many additional features to be included in the cryptography system. While some features (e.g., secure remote file access) are granted automatically though the system’s design, other features can be implemented into the design to create a more complete and accessible system, such as group access to files. Because Integrated File Level Cryptographical Access Control does not store security-related information in the secured files themselves, but in an associated database, more features can be easily added to enhance the system, such as monitoring file integrity or allowing administrator access to encrypted files. The flexibility of Integrated File Level Cryptographical Access Control should allow the system to grow and evolve as needed in order to ensure file security.
A common axiom in computer security states that the most insecure component of a system is the user. Integrated File Level Cryptographical Access Control is designed to limit the necessary user interactions with the cryptography system and present the system in a way that the end user will find intuitive. The final system ended up not only being intuitive to use, but also simple to administer and quick to update. While Integrated File Level Cryptographical Access Control can not achieve the same level of performance seen in file system cryptography or virtual partition cryptography, the system overcomes the reduction in performance though creating a secure system that even the newest user can utilize.
7. Future Work

Integrated File Level Cryptographical Access Control is operational but far from being an optimized, efficient, and feature filled implementation. The experimental results clearly showed areas for improvements, most notably the performance and memory overheads. In both of these areas Integrated File Level Cryptographical Access Control performed badly, taking up more memory than the other cryptography system and introducing a large amount of performance overhead into the computer system. Fortunately much of the performance and memory overhead can be attributed to the implementation utilizing C# and inefficiencies in the file system gateway windows service. In addition to optimizing the implementation, future work can focus on adding additional features to the system.
REFERENCES
[1]
Keromytis, Wright, Raadt, and Burnside, “Cryptography as an Operating System Service: A Case Study”

ACM Transactions on Computer Systems Vol 24

New York, NY, USA

ACM Press, 2006

http://www.openbsd.org/papers/crypt-service.pdf
[2]
Ludwig and Kalfa, “File System Encryption with Integrated User Management”

ACM SIGOPS Operating Systems Review

New York, NY, USA

ACM Press, 2001

http://portal.acm.org/citation.cfm?id=506084.506092
[3]
Haney, “The use of Cryptography to Create Data File Security: With the Rijndael Cipher Block”

Journal of Computing Sciences in Colleges

Flagstaff, AZ, USA

Consortium for Computing Sciences in Colleges, 2005

http://portal.acm.org/ft_gateway.cfm?id=1089185&type=pdf
[4]
Kher and Kim, “Securing Distributed Storage: Challenges, Techniques, and Systems”

Workshop on Storage Security and Survivability

Fairfax, Virginia, USA

ACM Press, 2005

http://portal.acm.org/citation.cfm?id=1103780.1103783
[5]
Dunn, “Environment-Independent Performance Analyses of Cryptographic Algorithms”

ACM International Conference Proceedings Series

Crawley, WA, Australia

Australian Computer Society, 2003

http://portal.acm.org/citation.cfm?id=783136
[6]
Dodis, Fazio, Kiayias, and Yung “Scalable Public-Key Tracing and Revoking”

Distributed Computing

Boston, MA, USA

ACM Press 2003

http://www.springerlink.com/index/PKGWN88VVNVABNB1.pdf
[7]
Gennaro “Randomness in Cryptography”

Security & Privacy

Washington DC, USA

Crypto Corner 2006

http://www.computer.org/portal/site/security/menuitem.6f7b2414551cb84651286b108bcd45f3/index.jsp?&pName=security_level1_article&TheCat=1001&path=security/2006/v4n2&file=crypto.xml&
[8]
Naor, Shenhav, and Wool “Toward Securing Untrusted Storage without Public-Key Operations”

Workshop on Storage Security and Survivability

Fairfax, VA, USA

ACM 2005

http://portal.acm.org/citation.cfm?id=1103788
[9]
Yu Ng, Susilo, and Mu “Designated Group Credentials”

Conference on Computer and Communications Security

Taipei, Taiwan

ACM 2006

http://portal.acm.org/citation.cfm?id=1128829
[10]
Kim, Perrig, and Tsudik “Tree-Based Group Key Agreement”

ACM Transactions on Information and System Security

New York, NY, USA

ACM 2004

http://portal.acm.org/citation.cfm?id=984337
[11]
Lee, Boyd, Dawson, Kim, Yang, and Yoo “Secure Key Issuing in ID-based Cryptography”

Australasian Information Security Workshop

Dunedin, New Zealand

Australian Computer Society, 2004

http://islab.iecs.fcu.edu.tw/GroupMeeting/PowerPoint/20041015_1.pdf
[12]
Hoepman and Jacobs “Increased Security though Open Source”

New York, NY, USA

ACM 2007

http://portal.acm.org/citation.cfm?id=1188921
[13]
Lee and Winslett “Safety and Consistency in Policy-Based Authorization Systems”

Communications of the ACM

Urbana, IL, USA

ACM
2006

http://dais.cs.uiuc.edu/pubs/adamlee/consistency_ccs.pdf
[14]
Harrington and Jensen “Cryptographic Access Control in a Distributed File System”

Symposium on Access Control Models and Technologies

Dublin 2, Ireland

ACM 2003

https://www.cs.tcd.ie/publications/tech-reports/reports.03/TCD-CS-2003-28.pdf
[15]
Raimondo, Gennar, and Krawczyk “Deniable Authentication and Key Exchange”

Conference on Computer and Communications Security

Alexandria, Virginia, USA

ACM
2006

http://portal.acm.org/ft_gateway.cfm?id=1180454&type=pdf&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618

[16]
Cryptography

22 July 2004

Wikipedia: The Free Encyclopedia.

April 18, 2007
http://en.wikipedia.org/wiki/Cryptography

[17]
Bellare and Boldyreva “The Security of Chaffing and Winnowing”

Advances in Cryptology

San Diego, California, USA

Springer-Verlag 2000

http://www-cse.ucsd.edu/users/mihir/papers/cw.pdf

[18]
FreeOTFE Documentation and Code

June 29, 2007

FreeOTFE

August 8, 2007

http://www.freeotfe.org

[19]
Graham “A (Very) Brief Introduction to Cryptography”

Queensland Country, England

Graham Information Security & Management Systems, 2000

[20]
“Digital Signatures”

Seattle Washington, USA

University of Washington 2007

http://www.washington.edu/computing/security/digitalsig.html
[21]
AxCrypt

2007

Axantum Software AB

October 31, 2007

http://www.axantum.com/AxCrypt/

[22]
PGP Whole Disk Encryption

2007

PGP Corporation

October 31, 2007

http://www.pgp.com/products/wholediskencryption/

[23]
TrueCrypt

October 28, 2007

TrueCrypt Foundation

October 31, 2007

http://www.truecrypt.org/

[24]
VMWare

2007

VMWare, Inc

October 31, 2007

http://www.vmware.com/
GLOSSARY OF TERMS

· Symmetric Key Encryption: Encryption that uses the same key for encryption and decryption.

· Asymmetric Key Encryption: (Public key encryption) Encryption that utilizes two keys for encryption, one key to encrypt and one key to decrypt.

· AES: Advanced Encryption Standard the symmetric key block cipher standardized by the United States government. Currently implements Rijndael.

· Rijndael: The current standard in symmetric key encryption. For more information see the homepage:

http://www.iaik.tu-graz.ac.at/research/krypto/AES/
· Blowfish: Symmetric key block cipher. For more information see the homepage:

http://www.schneier.com/blowfish.html
· MARS: IBM’s submission to the AES process. Symmetric key block cipher. For more information see the homepage:

http://domino.research.ibm.com/comm/research_projects.nsf/pages/security.mars.html
· RC6: RSA’s submission to the AES process. Symmetric key block cipher derived from RC5. For more information see the homepage:

http://www.rsa.com/rsalabs/node.asp?id=2512
· Serpent: Symmetric key block cipher, finished second in the AES process. For more information see the homepage:

http://www.cl.cam.ac.uk/~rja14/serpent.html
· Twofish: Symmetric key block cipher. For more information see the homepage:

http://www.schneier.com/twofish.html
· S-Boxes: Substation box used in many encryption algorithms.

· Galois Field: A field that contains a finite number of elements. Used in many encryption algorithms.

· XOR operation: Bitwise data operation. Used in many encryption algorithms.

· Plaintext: An unencrypted message.

· Cipher text: The encrypted form of a message.

· Public-Key: The public section of an asymmetric key pair.

· Private-Key: The private section of an asymmetric key pair.

· RSA: Asymmetric key algorithm. Currently in widespread use.

· Elliptic Curve: Asymmetric key algorithm. Not currently in widespread use but gaining acceptance.

· Message Digest: Algorithm to compute a hash sum of a message. This sum can be used for data integrity and sender authentication.

· MD4: Short lived message digest algorithm developed by Rivest. Found to be insecure in 1991.

· MD5: Message digest standardized for use over the internet. Weaknesses found in 1996 and 2004. For more information see the RFC:

http://tools.ietf.org/html/rfc1321
· SHA-1: FIPS approved algorithm for computing a message digest. Found to be insecure in 2004.

· SHA-2: FIPS approved algorithm for computing a message digest.

· Escrow Key: The encryption key for a message is held in escrow by a third party.

· File System: A method for storing and retrieving computer files on a data storage device.

· Plausible Deniability: The ability to deny the existence of an encrypted file.

· Chaff layer: Layer of fake data used in Plausible Deniability.

· Virtual Partition: A section of a storage device is mounted as an additional storage device.

· File System Independence: Not reliant on any given file system. Note: This does not imply platform independence.

· Dynamic Link Library: A module of code that can be loaded and executed during runtime.

APPENDIX A: LISTING OF CURRENT FILE ENCRYPTION SYSTEMS

File Level Encryption
	Name
	Open Source
	Operating System
	Encryption Algorithms
	URL

	Chaos Mash
	No
	Windows
	Many, dating back 45 years
	http://www.elgorithms.com/downloads/chaosmash.php

	AxCrypt
	Yes
	Windows
	AES - 128
	http://www.axantum.com/AxCrypt/

	Cypherix
	No
	Windows
	Blowfish
	http://www.cypherix.com/

	Primasoft Strong File Encryption
	No
	Windows
	AES, Twofish, RSA
	http://www.primasoft.com/encryption_software/encryption_software_overview.htm

	SecuKeeper
	No
	Windows
	AES - 256
	http://www.secukeeper.com/

File System Encryption

	Name
	Open Source
	Operating System
	Encryption Algorithms
	URL

	Secure File System
	Yes
	Windows, Mac
	Proprietary algorithms
	http://www.cs.auckland.ac.nz/~pgut001/sfs/

	PGP Whole Disk Encryption
	No
	Windows, Mac
	AES - 256
	http://www.pgp.com/products/wholediskencryption/

	SafeBit Disk Encryption
	No
	Windows
	AES - 256
	http://www.safebit.net/

	SecurStar
	No
	Windows
	AES, Blowfish, Tea 16, Tea 32, DES
	http://www.securstar.com/home.php

	Guardian Edge
	No
	Windows
	AES - 256
	http://www.guardianedge.com/

Virtual Partition Encryption

	Name
	Open Source
	Operating System
	Encryption Algorithms
	URL

	Truecrypt
	Yes
	Windows, Linux
	AES-256, Serpent, Twofish
	http://www.truecrypt.org/

	PGP Whole Disk Encryption
	No
	Windows, Mac
	AES - 256
	http://www.pgp.com/products/wholediskencryption/

	SafeBit Disk Encryption
	No
	Windows
	AES – 256
	http://www.safebit.net/

	FreeOTFE
	Yes
	Windows, Mac
	AES, Blowfish, Twofish, etc
	http://www.freeotfe.org

Application B

Application A

Storage Disk

Operating System

File System Layer

File System Gateway

File System Gateway

File System Layer

Operating System

Storage Disk

Application A

Application B

Encryption Database

Administrator Interface

User Interface

� Figure 1 is a picture courtesy of Griffith University. [19]

� Figure 2 is a picture courtesy of Griffith University. [19]

� Figure 3 is a picture courtesy of Griffith University. [19]

� Being file-system independent allows something to be implemented without regard to the file system, e.g., the program does not care if it is running on FAT16, FAT32, NTFS, etc. This is very different than platform independence. The design of the system can be implemented on any system, but because the system is somewhat integrated with the operating system, platform independence is virtually an impossibility.

