7 Alfred Hoffmann et al.

Performance Comparison of Database Access over the Internet

- Java Servlets vs CGI

 T. Andrew Yang

Ralph F. Grove

 yang@grove.iup.edu

 rfgrove@computer.org
Indiana University of Pennsylvania, Computer Science Department

Stright 319, IUP, Indiana, PA 15705, USA

FAX#: (724) 357-2724

Abstract
Our recent work on database access using Java servlets (see Yang and Kim 1999) focused on the performance metering of sequential versus concurrent connection schemes between the web server and the database server. In this paper, we plan to extend the work by comparing the performance of database access between servlets and CGI scripts in the Internet environment. To guarantee a fair comparison, all the parameters in both sets of experiments are identical, except for the connectivity mechanism between the web server and the database server. The first section of this draft paper gives an introduction to the 3-Tier WWW model and its integration with Java servlets or CGI to enable database connectivity. The section is followed by a discussion of the servlets that we developed to experiment with distributed data access, and the two different types of servlet-database connection schemes (sequential vs concurrent). The findings from the earlier performance metering experiments using Java servlets are then summarized. The configuration of the performance comparison experiments using servlets and CGI are illustrated in the following section. The paper concludes with analysis of the experiments comparing the performance of servlets vs CGI.

1 Introduction

With the increasing popularity of the Internet, especially the world wide web (WWW), transparent access to information stored on multiple database servers has become a desirable feature. It is the responsibility of the web developers to design the access of data from possibly multiple database servers across the network. CGI allows a web developer to write CGI scripts to answer user requests and to access database servers. The Java Servlets API, which was introduced by JavaSoft in 1997 and included in its Java Development Kit version 1.1 and above, has been considered to be one of the most promising alternatives of server-side development to CGI.

In the past, we explored the integration of Java applets and JDBC (Java Database Connectivity) for the access of database servers on the WWW (see Yang et al 1998). When JDBC is integrated with servlets, a 3-tier client/server model is formed, with the web server integrated with servlets being the middle tier and the database servers at the back end. Our recent work on database access using Java servlets (see Yang and Kim 1999) focused on the performance metering of sequential versus concurrent connection schemes between the web server and the database server. In this paper, we plan to extend the work by comparing the performance of web-server/database-server connectivity using, respectively, servlets and CGI scripts on the Internet environment.

2 The 3-Tier Client/Server Model

A servlet is the server-side equivalent of an applet. While an applet is a piece of Java code that is transmitted from a web server to a client and then loaded by the client to answer user requests, a servlet is a piece of Java code that is loaded by the web server when triggered by a user request. The different mechanism underlying the applets and the servlets technology is illustrated in Figure 1 and Figure 2, respectively (see Appendix).

2.1
Servlets and Databases

When JDBC is used in a servlet, a three-tier application is created. The three-tier computing model is illustrated in Figure 3 (see Appendix).

The first tier of such an application could use any number of Java-enabled browsers. It uses either an applet or an HTML form for user input, and it receives and displays the result of the database query returned from the 2nd tier (the web server).

The second tier is implemented with a web server and Java servlets that encapsulate the specific logic of the application at hand. The Java servlet is able to access the database and returns an HTML page listing the data (see Hunter and Crawford 1998, Moss 1999).

The third tier consists of databases managed by a database management system. The servlets running as part of the second tier interact with this DBMS to indirectly retrieve and/or update the databases. Answer returned from the DBMS is sent to the servlet, which then forwards it to the web browser as a HTML page.

2.2
CGI and Database Connectivity

The mechanism underlying CGI (Common Gateway Interface) is similar to that of Java servlets. Being a more established method, CGI scripts have been widely used in WWW applications to provide on-line database connectivity. Perl has been used as the dominant scripting language with CGI, although other languages can also be used.

The main difference between the CGI and the Java servlets, when used as the connectivity mechanism between a web server and a database server, is how they are activated, respectively. A CGI script is activated by the web server each time a request for the CGI script arrives. In the case of Java servlets, a servlet remains alive once it is activated. We are interested in the impact of this difference between the two mechanisms, with a focus on the performance of database access and the overall throughput of the web server.

3 Measuring the Performance of Servlet-DBMS Connections

Various types of connections between the servlet and the database server have been proposed. Two kinds of servlet-DBMS connections, for instance, were described in (see Hunter and Crawford 1998): one is a servlet using a pool of connection to the database, and the other is a pool of servlets simultaneously connecting to a database.

In our earlier experiments (see Yang and Kim 1999), we focused on the performance comparison of two types of servlet-DBMS connection schemes. In the sequential connection scheme, the servlet creates a connection (in the init() method) to the database server the first time the servlet is invoked. The subsequent data access queries sent to the servlet are forwarded to the DBMS via the same connection. The requests are sequentially synchronized and processed in a first-come-first-served manner.

In the concurrent connection scheme, each time the servlet is invoked it creates a new connection to the database server (in the service() method). These connections are handled as concurrent processes in the system. Presumably these concurrent processes can be executed by the system simultaneously and overlapping of execution time between these processes is possible.

Our initial hypothesis with regard to the performance of these two types of servlet-DBMS connections was that the concurrent version would outperform the sequential version. The hypothesis was based on the fact that concurrent processing of the connections would result in earlier completion of the queries, compared to the sequential processing of those queries. The results from the experiments turned out to be more interesting than what our initial hypothesis was.

3.1 Parameters of the Experiments

Figure 4 illustrates the experimental setting we have used in this project to measure the performance of servlets-database connectivity. A Microsoft Access database local to the web server represents the database component of the experimental system. To eliminate the network overhead from the performance figures, we did not include a remote database server in the experiments. For the purpose of this experiment we have taken a single table named authors, which defines 9 columns beginning with an Author ID Number as the primary key. First name, last name, phone, address, city, state, zip code and contract status fills the rest of the table. There are nine tuples in the table.

The servlets used Java’s JDBC API for database access. JDBC is the embedded SQL facility for Java (Friedrichs and Jubin 1999, Siple 1997, Yang et al 1998). It enables a Java program to maintain database connections and manipulate the data stored in the database via the connections. Figure 4 also shows the sequence of events that would occur given a user request. Each of the events is labeled with its order in the sequence.

We have designed performance-metering tools using Java and JavaScript to test the two types of servlets. The experimenter may enter into a text field in a HTML form the number of connection requests to be made from this particular client. When the 'Execute' button is pressed, a JavaScript then sends as many connection requests to the underlying servlet, which forwards the requests to the DBMS using either sequential or concurrent connection scheme.

Time-stamping was used as the measuring method. The servlet first records the system time (the start-time) before it submits the query to the DBMS. It then submits the query. When the query returns, the servlet records the system time (the completion-time) again and saves the start-time, the completion-time, and the elapsed time into a data file. Once the experiment is completed, the data files were fed into an analysis program. The program calculated the sum of the elapsed time for each of the individual queries (SOD), as well as the overall elapsed time between the start of the first query and the completion of the last query in that experiment (OET).

Table 1 (see Appendix) shows the configurations of the experiments. For each version of the servlets, four configurations of clients were used: 2, 4, 10 and 15 clients. For each configuration of clients, two different numbers of connection requests per client were used: 20 and 100 connection requests. The complete set of experiments thus contained 16 individual experiments.

Three performance figures (in ms), Sum of Difference (SOD), Overall Elapsed Time (OET), and Non-Connection-Related Time (NCRT), were employed in comparing the performance of the sequential and concurrent connection schemes. SOD is the sum of all the individual connection's elapsed time incurred in that particular experiment. OET is the elapsed time between the beginning of the first connection and the completion of the last connection in a particular experiment.

The major difference between these two types of performance figures is that SOD deals with only the time spent over the connection between the servlet and the DBMS. OET, however, includes the SOD plus the time spent by the servlets at other tasks such as memory management, time spent in waiting for clients' requests, etc. (i.e., NCRT). Each of the NCRTs is the difference between the respective OET and SOD.

3.2 Analysis of the Experiments

Table 2 (see Appendix) shows the raw data from the experiments. The differences, in terms of SODs, NCRTs, and OETs, between the compatible pairs of experiments are depicted in Figures 5, 6, and 7 respectively. Compatible pairs of experiments are those with the same number of clients and the same number of connection requests. The control parameter between a compatible pair of experiments is the type of connection.

A. Connection-Related Time (SOD)

It was observed from the raw data that it took in average 30 ms per database connection, given the simple SELECT query we used. As shown in Figure 5, among experiments with the same connection scheme but with different number of clients, the SODs are basically proportional to the 'total number of connections'. An exception is when the number of clients is 15 and the connection scheme is concurrent (#14 and #16), where the connection time increased significantly. We had noticed from the collected data that some of the connections in the two experiments took hundreds or even thousands of ms before completion. A plausible explanation is that, due to the large number of concurrent channels between the servlet and the DBMS, the DBMS was not able to service some of the requests in a timely manner, resulting in poor overall quality of service.

Between compatible pairs of experiments, the times spent over servlet-database connection were quite compatible when the number of clients were 2, 4, or 10. When the number of clients increased to 15, their respective performance became dramatically different, due to the significant increase of overhead placed over the DBMS by the large number of concurrent connections, as indicated earlier.

B. NCRT and OET
While SOD measures the time spent by the servlet(s) over database connections, NCRT includes time spent by the servlet(s) in completing the processing of all the user requests. These times include the time incurred to the internal processing of the servlets, such as function calls, memory management, etc., as well as time spent by the servlets when waiting for the arrival of user requests. Therefore, factors such as overhead placed upon the underlying processors of the clients, the network delay, etc., would have some impact on NCRT.

As depicted in Figure 6 (see Appendix), significantly higher NCRTs were incurred to the sequential servlet while the number of clients reach 15. This phenomena, we believe, was caused by the large number of user requests (1500) that needed to be scheduled by the servlet to share the only connection to the DBMS.

When the number of clients was 15 and the number of requests per client was 100, the NCRT of the concurrent servlet (exp#16) dropped significantly. Our explanation is that other factors mentioned above (client processors, network delay, etc.) had contributed to this phenomena.

Figure 7 (see Appendix) shows the Overall Elapsed Time (OET) incurred by the two servlets. In both cases the sequential servlet outperformed the concurrent servlet.

3.3 Lessons Learned from the Earlier Experiments

An important lesson learned from our earlier experiments was that, contrary to the common belief in the superiority of concurrent processing over sequential processing, the actual performance of concurrent computing depends on various parameters in the distributed environment. Table 3 (see Appendix) summarized the pros and cons of both connection schemes.

Based on the strength and weakness of the two connection schemes, we have made the following observations:

· When the number of connection requests becomes large
, a high performance database server is desirable when the concurrent scheme is employed by the servlet.

· Similarly, at high traffic, a high performance web server is desirable if the sequential scheme is employed by the servlet.

· When the database server at the back end is not powerful enough, a sequential servlet is desirable.

4 Measuring the Performance of Servlet vs. CGI-Script DBMS Connections

The main purpose of the experiments is to compare the performance of Java servlets vs CGI scripts with regard to database access over the Internet. In addition, we re-configured the experiment parameters such that some of the findings from the earlier sets of experiments, in which only servlets were used, may be verified. A major change to the parameters of these new sets of experiments is the number of clients used. As in the earlier experiments, for each different number of clients, two kinds of requests were made: one was 20 and the other was 100 requests per client. The sequential and concurrent schemes remained part of the parameters.

4.1 Configuration of the Experiments

The configuration of the system is depicted in Figure 4, except that the connection module can be either Java servlets or CGI in the respective set of experiments. When Java servlets is used as the connection module, JRUN was used as the servlet engine. MySQL is used as the DBMS in both sets of experiments. CGI scripting is implemented using Perl 5, along with the Perl/MySQL driver module 1.2209. We use a Pentium II machine running RedHat Linux 6.0 as the server. The machine runs Apache as the web server. Figure 8. indicates the hardware and software configuration used in these experiments.

In this experiment, the earlier trials using servlets to access a database were repeated, and the trials were extended by using CGI scripts as an alternative access mechanism. In the case of Servlets, both sequential and concurrent connections were made, as described in Section 3. In the case of CGI, database access requests were submitted without synchronization at the level of the CGI scripts. Although the main interest of comparison was between Servlets and CGI, these experiments were also intended to validate the relative performance between sequential and concurrent database access given by the earlier experiments, though no direct comparison is possible since the server platform was not the same.

Table 4 shows the configuration of the experiments with respect to the number of clients and the number of database requests per client. Each client consisted of a desktop PC running Netscape with a unique network connection. In the case of Servlets, the multiple requests were generated through server-side execution of multiple <servlet> tags in the requested document. In the case of CGI, the multiple requests were implemented by embedding the database operations (connect(), prepare(), execute(), et al) within a loop of a CGI script. For each experiment, the same three data (SOD, OET, and NCRT) were collected or computed. Each individual experiment is assigned a unique experiment number.

4.2 Analysis of the Experiments

Table 5 shows the raw data from the experiments. The differences between the three sets of experiments are shown in Figures 9 and 10. The Y-axis values are in milliseconds for the figures.

Figure 9 shows a comparison of SOD for sequential servlet vs. concurrent servlet vs CGI access. In the case of servlets, concurrent access is slightly more expensive than sequential access. With 20 clients issuing 100 requests each, for example, the difference is 120 vs. 94 seconds, about half a minute. Though the difference varies over the experiments, concurrent access is consistently more expensive.

The comparison between servlet performance and CGI were significant. With 20 clients issuing 100 requests each, for example, the performance of CGI script was 3 or 4 times better than the servlets. CGI also outperforms servlets when the number of clients increased, in both the 20 requests per client and the 100 requests per client cases.
Figure 10 shows a comparison of NCRT. Generally, NCRT for concurrent access is slightly higher than that for sequential access. The data point for 15 clients / 20 connections appears to be an aberration, possibly caused by an unexpected and sudden server load at the time of this trial. Subsequent trials across the entire range of parameters confirmed this suspicion. In the case of NCRT, CGI also outperforms both the sequential and the concurrent servlets. The difference became more significant in the case of 100 requests per client when the number of clients increased.

References

Friedrichs, J., Jubin, H. (1999) Java Thin-Client Programming for a Network Computing Environment, Prentice Hall.

Hunter, J., Crawford, W. (1998) JAVA Servlet Programming, O’Reilly & Associates, Inc., Sebastopol, CA.

Moss, K. (1999) Java Servlets With CDROM (2nd Ed.), McGraw-Hill Book Company.

Siple, M.D. (1997) The Complete Guide to Java Database Programming, McGraw-Hill Book Company.

Yang, A., Kim, J. (1999) Performance Metering of Distributed Access Using Java Servlets, Proceedings of the ADBIS'99 Conference (Advances in Databases and Information Systems), University of Maribor, Slovenia.

Yang, A., Linn, J., Quadrato, D. (1998) Developing Integrated Web and Database Applications Using JAVA Applets and JDBC Drivers, Proceedings of the 29th ACM SIGCSE Technical Symposium, Atlanta, GA.

Appendix: Tables and Figures

	Type of

Connection
	
	2 Clients
	4 Clients
	10 Clients
	15 Clients

	Sequential
	Connection Requests per Client
	20 (#1)
	100 (#3)
	20 (#5)
	100 (#7)
	20 (#9)
	100 (#11)
	20 (#13)
	100 (#15)

	Concurrent
	Connection Requests per Client
	20 (#2)
	100 (#4)
	20 (#6)
	100 (#8)
	20 (#10)
	100 (#12)
	20 (#14)
	100 (#16)

Table 1. Parameter Settings of the Experiments.

	number of clients
	2
	4
	10
	15

	requests
	20
	100
	20
	100
	20
	100
	20
	100

	exp#
	#1
	#3
	#5
	#7
	#9
	#11
	#13
	#15

	SOD
	1,410
	6,766
	1,282
	13,522
	9,782
	47,839
	14,898
	73,706

	OET
	25,173
	112,071
	11,426
	198,806
	30,114
	202,642
	55,229
	379,015

	NCRT
	23,763
	105,305
	10,144
	185,284
	20,332
	154,803
	40,331
	305,309

	exp#
	#2
	#4
	#6
	#8
	#10
	#12
	#14
	#16

	SOD
	1,392
	6,469
	2,554
	12,704
	8,435
	51,383
	33,331
	249,978

	OET
	17,124
	114,124
	29,032
	205,165
	36,002
	367,146
	64,433
	401,768

	NCRT
	15,732
	107,655
	26,478
	192,461
	27,567
	315,763
	31,102
	151,790

Table 2. Raw data obtained from the experiments.

	sequential connection
	+ nearly uniform overhead upon the DBMS

- very high servlet overhead at high traffic

	concurrent connection
	+ comparatively lower servlet overhead at high traffic

- very high DBMS overhead at high traffic

Table 3. Summary of the trade-offs of the two connection schemes.

	Clients:
	2
	4
	10
	15
	20

	Connections Per Client:
	20
	100
	20
	100
	20
	100
	20
	100
	20
	100

	Sequential:
	#1
	#3
	#5
	#7
	#9
	#11
	#13
	#15
	#17
	#19

	Concurrent:
	#2
	#4
	#6
	#8
	#10
	#12
	#14
	#16
	#18
	#20

	CGI
	#1c
	#3c
	#5c
	#7c
	#9c
	#11c
	#13c
	#15c
	#17c
	#19c

Table 4: Experiments Configuration

	Sequential Servlet
	#1
	#3
	#5
	#7
	#9
	#11
	#13
	#15
	#17
	#19

	SOD
	1885
	8854
	3988
	18205
	9774
	47699
	14078
	71740
	19348
	94459

	OET
	4486
	21176
	9539
	45457
	22476
	116914
	34103
	178934
	45687
	241582

	NCRT
	2601
	12322
	5551
	27252
	12702
	69215
	20025
	107194
	26339
	147123

	Concurrent Servlet
	#2
	#4
	#6
	#8
	#10
	#12
	#14
	#16
	#18
	#20

	SOD
	2249
	9663
	4601
	22407
	11925
	59673
	16955
	87863
	24515
	120499

	OET
	5800
	24707
	10377
	51419
	27094
	136861
	81362
	215367
	55570
	277005

	NCRT
	3551
	15044
	5776
	29012
	15169
	77188
	64407
	127504
	31055
	156506

	CGI
	#1
	#3
	#5
	#7
	#9
	#11
	#13
	#15
	#17
	#19

	SOD
	135
	483
	367
	1310
	2500
	5305
	2053
	5912
	5989
	29602

	OET
	1369
	23591
	4924
	22769
	6356
	25900
	24997
	47854
	32874
	65450

	NCRT
	1234
	23108
	4557
	21459
	3856
	20595
	22944
	41942
	26885
	35848

[image: image8.png]Table 5: Raw Data Collected from the Experiment

Figure 1. The Applet Mechanism.

Figure 2. The Servlet Mechanism.
[image: image9.png]
Figure 3. A Three-Tier Client/Server Model.

[image: image1.jpg]
Figure 4. The Configuration of Experiments Measuring Servlet-DBMS Connections.
[image: image2.jpg]
Figure 5. Comparison of connection time (SOD)

[image: image3.jpg]
[image: image10.png]Figure 6. Comparison of Non-Connection-Related Time (NCRT)

[image: image11.png]Figure 7. Comparison of Overall Elapsed Time (OET)

Figure 8. System Configurations

[image: image4.wmf]SOD Comparison (20 requests per client)

0

10000

20000

30000

2

4

10

15

20

clients

ms

seq.

concu.

cgi

 EMBED Excel.Chart.8 \s [image: image5.wmf]SOD Comparison (100 requests per client)

0

50000

100000

150000

2

4

10

15

20

clients

ms

seq.

concu.

cgi.

Figure 9 - Comparison of SOD

[image: image6.wmf]NCRT Comparison (20 requests per client)

0

20000

40000

60000

80000

2

4

10

15

20

clients

ms

seq.

concu.

cgi

 EMBED Excel.Chart.8 \s [image: image7.wmf]NCRT Comparison (100 requests per client)

0

50000

100000

150000

200000

2

4

10

15

20

clients

ms

seq.

concu.

cgi.

Figure 10 - Comparison of NCRT

Client

O/S: Windows 95

web browser: Netscape 4.x

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

Internet

Server

 O/S: Red Hat Linux 6.0

 web server: Apache 1.3.6-7 /

 servlet engine: JRun 2.3.3

 database: MySQL 3.23

 Java: JDK1.1.7

 JDBC: mm.mysql.jdbc 1.2-b

� EMBED PBrush ���

� EMBED PBrush ���

� The actual threshold would depend on the power of the database server. In our experiments, when the total number of connection requests reached 1,500, the underlying ACCESS database showed sign of deteriorated quality of service.

PAGE

6

[image: image12.wmf]Comparison of Overall Elapsed Time (at

20 requests per client)

0

20,000

40,000

60,000

80,000

2

4

10

15

number of clients

ms

sequential

concurrent

[image: image13.wmf]Comparison of Overall Elapsed Time

(at 100 requests per client)

0

200,000

400,000

600,000

2

4

10

15

number of clients

ms

sequential

concurrent

[image: image14.png]_1019712134.xls
Chart4

		2		2		2

		4		4		4

		10		10		10

		15		15		15

		20		20		20

seq.

concu.

cgi.

clients

ms

NCRT Comparison (100 requests per client)

12322

15044

23108

27252

29012

21459

69215

77188

20595

107194

127504

41942

147123

156506

35848

Sheet1

		

				Sequential Servlet		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

				SOD		1885		8854		3988		18205		9774		47699		14078		71740		19348		94459

				OET		4486		21176		9539		45457		22476		116914		34103		178934		45687		241582

				NCRT		2601		12322		5551		27252		12702		69215		20025		107194		26339		147123

				Concurrent Servlet		#2		#4		#6		#8		#10		#12		#14		#16		#18		#20

				SOD		2249		9663		4601		22407		11925		59673		16955		87863		24515		120499

				OET		5800		24707		10377		51419		27094		136861		81362		215367		55570		277005

				NCRT		3551		15044		5776		29012		15169		77188		64407		127504		31055		156506

				CGI		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

				SOD		135		483		367		1310		2500		5305		2053		5912		5989		29602

				OET		1369		23591		4924		22769		6356		25900		24997		47854		32874		65450

				NCRT		1234		23108		4557		21459		3856		20595		22944		41942		26885		35848

						2		4		10		15		20

				seq.		1885		3988		9774		14078		19348

				concu.		2249		4601		11925		16955		24515

				cgi		135		367		2500		2053		5989

				OET		2		4		10		15		20

				seq.		4486		9539		22476		34103		45687

				concu.		5800		10377		27094		81362		55570

				cgi		1369		4924		6356		24997		32874

						2		4		10		15		20

				seq.		2601		5551		12702		20025		26339

				concu.		3551		5776		15169		64407		31055

				cgi		1234		4557		3856		22944		26885

				2		4		10		15		20

		seq.		8854		18205		47699		71740		94459

		concu.		9663		22407		59673		87863		120499

		cgi.		483		1310		5305		5912		29602

				2		4		10		15		20

		seq.		21176		45457		116914		178934		241582

		concu.		24707		51419		136861		215367		277005

		cgi.		23591		22769		25900		47854		65450

				2		4		10		15		20

		seq.		12322		27252		69215		107194		147123

		concu.		15044		29012		77188		127504		156506

		cgi.		23108		21459		20595		41942		35848

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

SOD Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

NCRT Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi.

clients

ms

SOD Comparison (100 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi.

clients

ms

NCRT Comparison (100 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		

		

_1019712328.xls
Chart3

		2		2		2

		4		4		4

		10		10		10

		15		15		15

		20		20		20

seq.

concu.

cgi.

clients

ms

SOD Comparison (100 requests per client)

8854

9663

483

18205

22407

1310

47699

59673

5305

71740

87863

5912

94459

120499

29602

Sheet1

		

				Sequential Servlet		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

				SOD		1885		8854		3988		18205		9774		47699		14078		71740		19348		94459

				OET		4486		21176		9539		45457		22476		116914		34103		178934		45687		241582

				NCRT		2601		12322		5551		27252		12702		69215		20025		107194		26339		147123

				Concurrent Servlet		#2		#4		#6		#8		#10		#12		#14		#16		#18		#20

				SOD		2249		9663		4601		22407		11925		59673		16955		87863		24515		120499

				OET		5800		24707		10377		51419		27094		136861		81362		215367		55570		277005

				NCRT		3551		15044		5776		29012		15169		77188		64407		127504		31055		156506

				CGI		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

				SOD		135		483		367		1310		2500		5305		2053		5912		5989		29602

				OET		1369		23591		4924		22769		6356		25900		24997		47854		32874		65450

				NCRT		1234		23108		4557		21459		3856		20595		22944		41942		26885		35848

						2		4		10		15		20

				seq.		1885		3988		9774		14078		19348

				concu.		2249		4601		11925		16955		24515

				cgi		135		367		2500		2053		5989

				OET		2		4		10		15		20

				seq.		4486		9539		22476		34103		45687

				concu.		5800		10377		27094		81362		55570

				cgi		1369		4924		6356		24997		32874

						2		4		10		15		20

				seq.		2601		5551		12702		20025		26339

				concu.		3551		5776		15169		64407		31055

				cgi		1234		4557		3856		22944		26885

				2		4		10		15		20

		seq.		8854		18205		47699		71740		94459

		concu.		9663		22407		59673		87863		120499

		cgi.		483		1310		5305		5912		29602

				2		4		10		15		20

		seq.		21176		45457		116914		178934		241582

		concu.		24707		51419		136861		215367		277005

		cgi.		23591		22769		25900		47854		65450

				2		4		10		15		20

		seq.		12322		27252		69215		107194		147123

		concu.		15044		29012		77188		127504		156506

		cgi.		23108		21459		20595		41942		35848

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

SOD Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

NCRT Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi.

clients

ms

SOD Comparison (100 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		

		

_1019712338.xls
Chart1

		2		2		2

		4		4		4

		10		10		10

		15		15		15

		20		20		20

seq.

concu.

cgi

clients

ms

SOD Comparison (20 requests per client)

1885

2249

135

3988

4601

367

9774

11925

2500

14078

16955

2053

19348

24515

5989

Sheet1

		

		Sequential Servlet		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

		SOD		1885		8854		3988		18205		9774		47699		14078		71740		19348		94459

		OET		4486		21176		9539		45457		22476		116914		34103		178934		45687		241582

		NCRT		2601		12322		5551		27252		12702		69215		20025		107194		26339		147123

		Concurrent Servlet		#2		#4		#6		#8		#10		#12		#14		#16		#18		#20

		SOD		2249		9663		4601		22407		11925		59673		16955		87863		24515		120499

		OET		5800		24707		10377		51419		27094		136861		81362		215367		55570		277005

		NCRT		3551		15044		5776		29012		15169		77188		64407		127504		31055		156506

		CGI		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

		SOD		135		483		367		1310		2500		5305		2053		5912		5989		29602

		OET		1369		23591		4924		22769		6356		25900		24997		47854		32874		65450

		NCRT		1234		23108		4557		21459		3856		20595		22944		41942		26885		35848

				2		4		10		15		20

		seq.		1885		3988		9774		14078		19348

		concu.		2249		4601		11925		16955		24515

		cgi		135		367		2500		2053		5989

		OET		2		4		10		15		20

		seq.		4486		9539		22476		34103		45687

		concu.		5800		10377		27094		81362		55570

		cgi		1369		4924		6356		24997		32874

				2		4		10		15		20

		seq.		2601		5551		12702		20025		26339

		concu.		3551		5776		15169		64407		31055

		cgi		1234		4557		3856		22944		26885

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

SOD Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

NCRT Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

		

_1019712188.xls
Chart2

		2		2		2

		4		4		4

		10		10		10

		15		15		15

		20		20		20

seq.

concu.

cgi

clients

ms

NCRT Comparison (20 requests per client)

2601

3551

1234

5551

5776

4557

12702

15169

3856

20025

64407

22944

26339

31055

26885

Sheet1

		

		Sequential Servlet		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

		SOD		1885		8854		3988		18205		9774		47699		14078		71740		19348		94459

		OET		4486		21176		9539		45457		22476		116914		34103		178934		45687		241582

		NCRT		2601		12322		5551		27252		12702		69215		20025		107194		26339		147123

		Concurrent Servlet		#2		#4		#6		#8		#10		#12		#14		#16		#18		#20

		SOD		2249		9663		4601		22407		11925		59673		16955		87863		24515		120499

		OET		5800		24707		10377		51419		27094		136861		81362		215367		55570		277005

		NCRT		3551		15044		5776		29012		15169		77188		64407		127504		31055		156506

		CGI		#1		#3		#5		#7		#9		#11		#13		#15		#17		#19

		SOD		135		483		367		1310		2500		5305		2053		5912		5989		29602

		OET		1369		23591		4924		22769		6356		25900		24997		47854		32874		65450

		NCRT		1234		23108		4557		21459		3856		20595		22944		41942		26885		35848

				2		4		10		15		20

		seq.		1885		3988		9774		14078		19348

		concu.		2249		4601		11925		16955		24515

		cgi		135		367		2500		2053		5989

		OET		2		4		10		15		20

		seq.		4486		9539		22476		34103		45687

		concu.		5800		10377		27094		81362		55570

		cgi		1369		4924		6356		24997		32874

				2		4		10		15		20

		seq.		2601		5551		12702		20025		26339

		concu.		3551		5776		15169		64407		31055

		cgi		1234		4557		3856		22944		26885

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

SOD Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seq.

concu.

cgi

clients

ms

NCRT Comparison (20 requests per client)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

		

_990220850.xls
Chart4

		2		2

		4		4

		10		10

		15		15

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 100 requests per client)

112071

114124

198806

205165

202642

367146

379015

401768

Sheet1

		

				Comparison of Connection Time (SOD)

				A. 20 connection requests per client

								number of clients

								2		4		10		15

				connection
scheme:		sequential		1,410		1,282		9,782		14,898

						concurrent		1,392		2,554		8,435		33,331

				B. 100 connection requests per client

								number of clients

								2		4		10		15

				connection
scheme:		sequential		6,766		13,522		47,839		73,706

						concurrent		6,469		12,704		51,383		249,978

Sheet1

		

sequential

concurrent

number of clients

ms

Comparison of Connection Time (at 20 requests per client)

Sheet2

		

sequential

concurrent

number of clients

ms

Comparison of Connection Time (at 100 requests per client)

Sheet3

		Comparison of Connection Time (OET)

		A. 20 connection requests per client

						number of clients

						2		4		10		15

		connection
schemes:		sequential		25,173		11,426		30,114		55,229

				concurrent		17,124		29,032		36,002		64,433

		B. 100 connection requests per client

						number of clients

						2		4		10		15

		connection
schemes:		sequential		112,071		198,806		202,642		379,015

				concurrent		114,124		205,165		367,146		401,768

Sheet3

		

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 100 requests per client)

		

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 20 requests per client)

		

_990299739

_990299478

_990220792.xls
Chart3

		2		2

		4		4

		10		10

		15		15

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 20 requests per client)

25173

17124

11426

29032

30114

36002

55229

64433

Sheet1

		

				Comparison of Connection Time (SOD)

				A. 20 connection requests per client

								number of clients

								2		4		10		15

				connection
scheme:		sequential		1,410		1,282		9,782		14,898

						concurrent		1,392		2,554		8,435		33,331

				B. 100 connection requests per client

								number of clients

								2		4		10		15

				connection
scheme:		sequential		6,766		13,522		47,839		73,706

						concurrent		6,469		12,704		51,383		249,978

Sheet1

		

sequential

concurrent

number of clients

ms

Comparison of Connection Time (at 20 requests per client)

Sheet2

		

sequential

concurrent

number of clients

ms

Comparison of Connection Time (at 100 requests per client)

Sheet3

		Comparison of Connection Time (OET)

		A. 20 connection requests per client

						number of clients

						2		4		10		15

		connection
schemes:		sequential		25,173		11,426		30,114		55,229

				concurrent		17,124		29,032		36,002		64,433

		B. 100 connection requests per client

						number of clients

						2		4		10		15

		connection
schemes:		sequential		112,071		198,806		202,642		379,015

				concurrent		114,124		205,165		367,146		401,768

Sheet3

		

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 100 requests per client)

		

sequential

concurrent

number of clients

ms

Comparison of Overall Elapsed Time (at 20 requests per client)

		

