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Abstract 
 

Wireless sensor networks (WSN) have affected 
various military and civilian applications. Target 
tracking is one of the top applications of WSNs. 
Efficient computation and energy dissipation are 
critical requirements for a WSN when used in target 
tracking. The goals are to maximize the network’s 
lifetime while ensuring accuracy. Existing methods 
such as the LEACH-based algorithms suffer either 
complex computations or redundant data/sensor 
deployment. Those drawbacks result in inefficient 
energy use and/or computation overhead. Optimized 
Communication and Organization (OCO) is a method 
that provides self-organizing and routing capabilities. 
OCO ensures maximum accuracy, efficient energy 
dissipation, and low computation overhead. We have 
conducted simulation-based evaluations to compare 
the performance of OCO against LEACH and Direct 
Communication (DC), under various scenarios. This 
paper discusses OCO, the simulation set-up, the 
performance metrics, and the analysis of the results. 
 
 

1. Introduction 
 

Wireless sensor networks (WSNs) have significant 
impact on the efficiency of military and civilian 
applications, such as environment monitoring, target 
surveillance, industrial process observation, tactical 
systems, etc. In these scenarios, target tracking is one 
of the most important applications.  

The simplest way for target surveillance is to turn 
on the sensor modules of all nodes in the network and 
have each node communicate directly with the base. 
This is the so-called Direct Communication (DC) 
method [1]. DC, although delivering the best accuracy, 
is unrealistic in real-world applications, mainly 
because the base has only a limited number of 
channels. In addition, the node communication 
distance is limited, so the DC method is not applicable 
to a large area. Another problem of efficient target 

tracking in WSNs is the redundancy issues. Because 
nodes are typically deployed at random locations (for 
example, thrown by an airplane), it leads to 
overlapping among sensing areas of the nodes. 

Existing computer network protocols may not be 
applicable to sensor networks, because sensor nodes 
are constrained in energy supply, performance, and 
bandwidth. Existing methods attempting to alleviate 
these constraints, such as the LEACH-based 
algorithms [5], however, either suffer redundancy in 
data and sensor node deployment, or require complex 
computation in the sensor nodes. Those drawbacks 
result in energy use inefficiency and/or complex 
computation overhead. Therefore, there exists a 
demand for self-organizing and routing capabilities in 
the sensor network, in order to achieve optimized 
computation and energy dissipation, and to maximize 
the lifetime of the sensor network.  

In this paper, we present the results of simulation-
based evaluations of three algorithms for sensor 
networks. The first is the Direct Communication (DC) 
method [1]; the second is the well-known LEACH [5]; 
the third is a method we devise, OCO (Optimized 
Communication and Organization). OCO ensures not 
only maximum accuracy of target tracking, but also 
efficient energy dissipation and low computation 
overhead. In the rest of the paper, we first provide an 
overview of methods related to target tracking in the 
WSN, followed by a detailed discussion of the OCO 
method. We then discuss the simulation models and 
environment that we have built to evaluate the 
methods. The evaluation results of some of the 
scenarios are then presented. The paper concludes with 
a summary and anticipated future work. 
 

2. Related work 
 

According to a survey by Chuang [2], there exist 
three main approaches for target tracking in WSNs: 
tree-based, cluster-based, and prediction-based. Tree-
based methods organize the network into a hierarchy 
tree. Alternatively, a sensor network may be 

mailto:yang@uhcl.edu


represented as a graph, in which the sensor nodes are 
vertices and the edges are links among nodes that 
directly communicate with each other. Examples of 
tree-based methods include DCTC (Dynamic Convoy-
Tree-based Collaboration) [4] and STUN (or Scalable 
Tracking Using Networked Sensors) [3].  

In STUN each edge of the graph is assigned a cost, 
which is computed from the Euclidean distance 
between the two nodes. Construction of the tree is 
based on the costs. The leaf nodes are used for tracking 
and sending collected data to the base through 
intermediate nodes. The intermediate nodes store a 
detected object set, and send update information to the 
base when there is any change in the detected object 
set. STUN, however, has some limitations. First, the 
tree in STUN is a logical tree and does not reflect the 
physical structure of the sensor network; hence, an 
edge may consist of multiple communication hops and 
a high communication cost may be incurred.  

Although being related to the tree-based methods, 
cluster-based methods use an algorithm called LEACH 
(Low-Energy Adaptive Clustering Hierarchy [5]), to 
build a hierarchy tree for the network. LEACH 
consists of 2 phases. In the set-up phase, sensors may 
elect randomly among themselves a local cluster head. 
By doing so, the network may balance energy 
dissipation across the whole network. The optimal 
number of cluster heads is 5% of the total number of 
nodes [5]. After the heads are selected, they advertise 
to all sensor nodes that they are the new cluster heads. 
Once the nodes receive the advertisements, each of 
them decides to which head it would belong.  

In the steady phase, sensors sense and transmit data 
to the base through their cluster heads. After a certain 
period of time spent in the steady phase, the network 
restarts the set-up phase again. 

LEACH is more realistic than DC because it uses 
multi-hops to communicate. However, LEACH 
assumes all nodes have enough power to communicate 
directly with the base. Such an assumption is not true 
when the sensors spread across a large area. The 
cluster heads communicate directly with the base, 
possibly causing channel overload at the base station. 
Additionally, the cluster heads are randomly elected, 
so in some areas within the network there may not 
exist any cluster head. 

Prediction-based methods are built upon the tree-
based and the cluster-based methods, with added 
prediction models. The models rely on heuristics based 
on some of following assumptions [2]: (a) The moving 
objects will stay at the current speed and direction for 
the next few seconds. (b) The object’s speed and 
direction for the next few seconds can be deduced 
from the average of the object’s movement history. (c) 

Different weights can be assigned to the different 
stages based on the history. PBS (Prediction Based 
Strategies) [6] and DPR (Dual Prediction-Based 
Reporting) [7] are examples of prediction-based 
methods. 
 

3. The OCO method 
 

OCO includes 4 phases. In the position collection 
phase, the base collects positions of all reachable 
nodes in the network. In the processing phase, it 
applies image processing techniques to clean up the 
redundant nodes, detect border nodes, and find the 
shortest path from each node to the base. In the 
tracking phase, the sensor nodes all work together to 
detect and track intrusion objects. The maintenance 
phase involves re-organizing the network when, for 
example, a change in the topology of the network 
occurs, or some of the sensor nodes die (i.e., running 
out of power). 
 

Position collection phase 
When the sensor nodes are first deployed randomly 

in an area, the base starts by sending a message to its 
neighbors to gather their IDs and positions, and at the 
same time advertising its own ID as the parent ID of 
the neighbor nodes. Each of the base’s neighbor nodes, 
after sending its ID and position to its parent, marks 
itself as recognized, and then performs the same 
actions as the base by collecting IDs and positions 
from their neighbors, and advertising itself as the 
parent node, and so on. Note that, when a node gets the 
position and ID from a neighbor, it forwards the 
information to its parent. This way the message will 
eventually reach the base.  
 

Processing phase 
The processing phase consists of three steps: (a) 

Clean up redundant nodes; (b) Define the border 
nodes; (c) Find the shortest path from each node to the 
base. 

A redundant node is a node whose sensing coverage 
zone is occupied by one or more other nodes. Table 1 
is the algorithm that removes the redundant nodes. 
 

Table 1. Algorithm for Removing Redundant Nodes 
1. Build a geographic image of the network by 

assigning color value = 1 for all points that is 
covered by at least one sensor node. The rest of 
the points are assigned color value = 0.  

(Note: The sensor network area is defined by a rectangle 
of (x_min, y_min, x_max, y_max), in which x_min and 
x_max are the min and max values of x, and y_min and 
y_max the min and max values of y in the collected 
positions.) 
2. Initialize a list of nodes that are supposed to 



cover the whole network area, called Area_List. 
Assign Area_List = null. 

3. Add the base node to the Area_List. 
4. For all the nodes in the area, if a node is not 

overlapping with any node in the Area_List, 
add it to the Area_List. The purpose of this step 
is to optimize node distribution. 

5. For each point in the network area, if the point 
is not covered by any node in the Area_List, 
add the node that contains the point to the 
Area_List. 

6. Nodes that are not in the Area_list after the 
“for” loops in steps 3, 4, and 5 are redundant 
nodes. 

Figure 1 illustrates the 
network before and after the 
process of cleaning up redundant 
nodes. Image (a) is the initial 
sensor network, showing 
numerous redundant nodes. 
Image (b) is the sensor network 
after redundant nodes have been 
removed. 

Nodes that are positioned 
along the border of the network 
area are called border nodes. To 
identify these nodes, we first 
apply the border detection 
algorithm (Table 2) to identify a 
list of points that traverse the 
border of the geographic image, called border points. 
Finally, find a minimum set of nodes in the Area_List 
that contain all the border points, which are the border 
nodes.  

 

Table 2. Algorithm for Finding the Border 
1. For each pixel in the image, check if the color 

value =1. 
2. If true (meaning this pixel belongs to an object), 

scan all its neighbors to see if any of them having 
the color value = 0. If true, this pixel belongs to 
the border. 

 

(Note: To optimize the border nodes, we adopt a 
border moving algorithm, which is based on Euclidean 
Distance. The image border is moved toward inside of 
the network area by a half of the sensing radius. By 
doing so, the number of border nodes will decrease 
significantly without sacrificing any major 
characteristics of the network. This change may cause 
the accuracy of object detection to decrease a little bit, 
because the objects will be recognized a little bit later. 
The delay is acceptable though, in light of the gained 
benefit of reduced number of border nodes.) 

The process of identifying the border nodes is 

illustrated in Figure 2. Diagram a represents the initial 
collection of sensor nodes in the network. Diagram b 
represents an intermediate step, where border points 
are identified. Diagram c represents the resulting 
border nodes, without displaying the rest of the nodes. 
 

     
(a)   (b)   (c) 
Figure 2. Detection of border nodes 

 

The algorithm in Table 3 finds the shortest path (the 
least hops) to the base for each node in the Area_List. 
 

Table 3. Algorithm for Finding the Shortest Path 
1. Work only with nodes in the Area_List (resulted 

from the  Removing Redundant Nodes step). 
2. Assign parent_ID = 0 for all nodes. 
3. Assign parent_ID = the base’s ID for all neighbors 

of the base and add these nodes to a list, called 
Processing list. 

  

4. For each node in the Processing list: Consider all 
its neighbors. If the neighbor having parent_ID = 
0, assign the neighbor’s parent_ID = the node’s 
ID. Add the neighbor to the processing list. 

5. Repeat step 4 until all nodes in the Area_list are 
assigned parent_ID. 

6. After the loop, each node in the Area_list has a 
parent_ID. When a node wants to send a message 
to the base, it just delivers the message to its 
parent. The message is then continually forwarded 
until it reaches the base. The algorithm ensures 
that all the messages will reach the base through a 
minimum number of hops. 

 
 

Figure 3 
illustrates the 
forming of 
routing paths, 
which are 
constructed by 
following the 
parent ID of each of the nodes until reaching the base. 
The base is represented as the root of the tree in the 
diagrams. 

After the processing phase, the base broadcasts 
messages to activate the set of border nodes. The 
border nodes have the sensor modules and the radio 
receiver modules ON (i.e., ACTIVE state). 

The redundant nodes are initially OFF (i.e., SLEEP 
state). Periodically they wake up after a predefined 
long period to receive commands from the base. If 
there is no command or the commands are not related 
to them, they again switch to OFF.  The rest of the 

 (a) before 

 
(b) after  

Figure 1. 
Removing 

redundant nodes 

   
Figure 3. Shortest path from 

nodes to the base 



nodes in the network are forwarding nodes, which 
have their sensor modules OFF but the radio receiver 
modules ON (i.e., FORWARD state). 
 

Tracking phase 
Objects are assumed to have come from the outside. 

Normally, only the border nodes are ACTIVE. When a 
border node detects an object, it periodically sends its 
position information to the base by first forwarding the 
information to its parent.  

When it comes to detecting multiple objects, there 
exist two different types of sensor nodes. Type A can 
sense distinct multiple objects [8]; Type B does not 
have this capability. Type A of sensor nodes can 
accurately track each of the objects; thus it only needs 
to activate its neighbors when a particular object is 
leaving its coverage area. Type B, on the other hand, 
can only detect whether there is any object at all within 
its coverage area. Without the capability to identify 
each individual object, type B of sensors need to 
periodically activate its neighbors, assuming one or 
more of the objects may have left its coverage area. 

Therefore, in a network equipped with type A  
sensors, an ACTIVE node that has lost an object will 
turn all its neighbors (forwarding nodes) to ACTIVE 
(assuming that the ‘escaping’ object will enter one of 
the neighbors’ sensing areas). (Note: We assume that the 
delay time for a sensor node to activate its neighbors is 
smaller than the sensing radius divided by the object’s 
speed.) If the neighbor detects any object, it will send 
its position to the base. And again right after it has lost 
an object, it turns all its neighbors to ACTIVE. The 
process will continue as long as an object is detected 
by the network.  

In the second case where type B sensors are used, 
an ACTIVE node will periodically turn all its 
neighbors (forwarding nodes) to ACTIVE. If the 
neighbor detects an object, it will send its position to 
the base and periodically turn its own neighbors to 
ACTIVE.  

In either case, if activated neighbors detect nothing, 
they automatically switch to the original state 
(FORWARD) after a predefined short interval. 
 

Maintenance phase 
The purpose of this phase is to reconfigure the 

network when the need for topology change arises. 
Example cases of such changes are discussed below. 

Case 1. Exhausted Nodes: When the energy level 
of a node is below a threshold, it turns all its children 
to SLEEP and sends a report to the base. When the 
base gets the report, it enters the processing phase to 
reconfigure the whole network, with dead nodes being 
removed and the network restructured. 

Case 2. Damaged Nodes: After a predefined 

interval of time, nodes require their child nodes to send 
their IDs to them. Child nodes that do not report to 
their parents are assumed to be damaged and will be 
reported to the base. Similarly, if a child node did not 
receive any asking from its parent after the predefined 
interval of time (meaning the parent may be damaged), 
it will turn to SLEEP mode and wait for further 
command from the base. 

Case 3. Re-positioned Nodes: When a node’s 
position changes (probably due to physical events, 
such as earthquakes, explosion, etc.), it will be 
considered as damaged by its parent (case 2.). After a 
node’s position is changed, it will: (a) automatically 
turns to SLEEP mode; (b) Broadcast a message 
indicating that its position needs to be updated.  

Any node that has received the broadcast will 
forward the information to the base, which then 
updates the given node’s position.  
 

4. Simulation and evaluations 
 

In evaluating the performance of OCO, two other 
methods are selected as comparisons: the Naive 
method (DC, Direct Communication) and the cluster-
based method (LEACH). The tool that is used for 
simulation is OMNET++ [9]. It is an open-source, 
component-based, modular and open-architecture 
simulation environment with strong GUI support and 
an embeddable simulation kernel. OMNET++ allows 
the builder of a simulation environment to place the 
simulated modules at any place. This capability 
enables us to simulate the random location feature of a 
sensor network, as well as build moving objects. 

 

4.1 Models and Tools 
 

The simulation models we have built to test the 
performance of the sensor network consist of three 
sub-models: a sensor-node model, a sensor-network 
model, and an intruder-object model. 

The Sensor Network Research Group at Louisiana 
State University has defined a generic sensor node 
[11]. Based on this generic design, we have built a 
simulated sensor node. The Physical Layer module of 
the sensor node represents the physical layer of a 
sensor node. It is responsible for making connections 
between the node and its neighbors, and forwarding 
messages from a higher layer to its neighbors, and vice 
versa. The MAC module represents pre-processing 
packet layers. It consists of gates and queues. When 
the queue is full, it deletes some of the oldest messages 
in the queue to make room for new messages. The 
Application module represents the application layer. 
Note that, each time after sending a message, the 
module automatically sends a DECREASE_ENERGY 



message to the energy module (through the 
coordinator) to let the module decrease the energy by 
a number of energy units.  

The Coordinator module is an interface to connect 
all modules together. It categorizes an incoming 
message in order to deliver it to the right module. The 
Sensor module represents the sensor board in a node. 
If the SENSOR_SWITCH parameter is ON (=1), the 
module consumes energy. It is automatically OFF after 
an interval of sensing nothing. The Radio module 
represents the radio board in a sensor node. If 
RADIO_SWITCH parameter is ON (=1), the module 
consumes energy. The Energy module represents 
battery in a sensor node. If the module receives a 
DECREASE_ENERGY message, it decreases the 
energy level by a number of energy units. 

In a real sensor network, the sensors continuously 
try to detect the object. In the simulation, the sensing 
behavior is simulated by first creating connections 
between the object and the sensor nodes near it. 
ACTIVE sensor nodes whose sensing zone cover the 
object will periodically receive from the object a 
SENSOR_INFO message. 

A simulated intruder object needs only two 
modules: the ObjectApplication module on top of the 
Physical Layer module [11]. The Physical Layer 
module is similar to the Physical Layer module of the 
sensor node. However, the connections in the intruder 
object are re-created after each movement. The 
ObjectApplication module helps the object to move, by 
reading position data from a text file.  

A sensor network includes a set of sensor nodes. To 
simulate such a network, we need a module called 
manager [11] to help simulate tasks such as making 
connections among the nodes, making connections 
between the nodes and the object, and saving 
simulation results, etc. To construct the sensor 
network, the manager module starts by first reading 
data from a file, which stores network configuration 
information, including sensor node and object 
positions, tasks, and routing information, etc. It then 
makes connections among nodes, by checking the 
coverage zone of all nodes to see if any node is in the 
zone and, if yes, making connections between the node 
and the covered nodes. 

Each time an object moves, the manager module 
will consider if any node is in the object’s zone, within 
which a node can sense the object. If such a node 
exists, the manager module creates a connection 
between the object and the sensor node, so that the 
object can send the SENSOR_INFO message to the 
node. The manager module also handles the broadcast 
sent by the base, by creating connections between the 
base and all the nodes. Finally, the manager module 

controls the power switch (POWER_SWITCH 
parameter) of all nodes in the network.  
 

4.2 The Metrics 
 

There are overall four types of metrics that are 
considered when comparing the performance of the 
three selected methods:  
• Total energy consumption is the total energy that the 

network spends in a given scenario. 
• Accuracy is a percentage of the number of detected 

object positions of the given method over the 
number of detected positions of DC. The underlying 
assumption is that the DC method, due to its direct 
communication to the base, should exhibit the 
highest accuracy in detecting objects. 

• Cost per detected point is the ratio between energy 
consumption and the number of detected positions. It 
represents the average number of energy units that 
are spent for a detected position. 

• Time before the first dead node is the time when the 
first node of the network runs out of energy. This 
matrix is a significant indication of the sensor 
network’s ‘well-being’ or longevity. 

 

4.2.1 Energy consumption calculation 
 

There are three modules contributing to the energy 
consumption in a node: the radio module, the sensor 
module, and the MCU (Micro Controller Unit). 

The radio module is responsible for wireless 
communication among nodes. A typical radio module 
used in wireless devices is discussed in [5]. Our 
modeling of the radio module is based on the model in 
[5]. In a real device, the transmit module normally 
stays in sleep mode. It only wakes up when there is 
any bit that needs to be sent. The receiver module 
needs to be ON when waiting to receive messages. 

The sensor board, the MCU (CPU board, Memory 
board), and the radio board may work in one of two 
modes: In the sleep mode, the energy dissipation is 
almost zero; in the full action mode, the energy 
consumed depends on the respective operations. For 
example, in a MICA2DOT sensor node, the current 
incurred for the transmit operation in the radio module 
is 12 mA (milli-ampere), while a write operation in the 
logger memory takes 15 mA. [12]  

We use the assumptions in [5] as the basis when 
calculating the energy dissipation for our simulations, 
which are summarized below.  

(Note: J means ‘Joule’. A Joule is the unit for measuring 
quantity of energy. 1 Watt = 1 Joule/second.) 

 

• Energy consumption for modulating or 
demodulating one bit:        Eelec = 50nJ/bit 

• Energy consumption for spreading one bit to an area 



of radius r = 1 meter (i.e., πm2):          
   Єamp = 100pJ/bit/ m2 = 0.1nJ/bit/m2

• Data rate = 2,000 bits/s 
• Data package size = 2,000 bits  
• Signal package size = 64 bits (Size of advertising, 

neighbor activation, or maintenance messages) 
 

Due to limited space, detailed derivations of the 
remaining parameters for calculating energy 
consumption are omitted. Table 4 summarizes the 
operations and their respective consumed energy. 
 

Table 4. Summary of WSN energy consumption 
Create/Receive a data message 
Create/Receive a signal message 

100 µJ 
3 µJ 

Send a data message (d<= 60m) 
Send a signal message (d<=60m) 

820 µJ 
26 µJ 

Send a message (d > 60m) 100 µJ + 0.1* d2

Sensor board (full operation) 66 µJ/s 
Radio board (idle/receive mode) 100 µJ/s 

 

Energy consumption calculation in DC  
In DC, the sensor boards of all the nodes are in full 

operation. The states of the various boards are 
summarized in Table 5. 

 

Table 5. Summary of states in DC 
Sensor  Active 
Radio  Sleep; wake up for transmitting only. 
MCU  Sleep; wake up for creating messages only. 

 

When a node senses an object, it transmits the 
sensing information to the base directly. Nodes do not 
need to communicate with each other, so the radio 
boards are in sleep mode. 

 

Energy Consumption calculation in LEACH 
In LEACH, the sensor boards of all the nodes are in 

full operation. When a node senses an object, it 
transmits the information to its cluster head, which 
then forwards the information directly to the base. A 
cluster head needs to receive messages from its clients, 
so the radio board of a cluster head is in the receiving 
mode. The radio boards of other nodes are in sleep 
mode.  

 

Table 6. Summary of states in LEACH 

 Head nodes Client nodes 
Wild 
nodes 

Sensor  Active Active Sleep 
Radio  Receive Sleep; wake up 

to transmit only 
Sleep 

MCU  Sleep; wake 
up to create 
messages only. 

Sleep; wake up 
to create 
messages only 

Sleep 

 

We know that one of the weaknesses of LEACH is 
that nodes do not always get invitation to join a cluster 
when, for example, there is no cluster head in their 
zone (called wild nodes). To simulate such a scenario, 
the sensor boards of all nodes that do not enroll with 
any cluster head are turned off. The states of various 
nodes in LEACH are summarized in Table 6. 

 

Energy Consumption calculation in OCO 
In OCO, there are three types of nodes: border 

nodes, forward nodes, and redundant nodes. The states 
of various nodes in OCO are summarized in Table 7. 

 

Table 7. Summary of states in OCO 

 Border nodes 
Forwarding 

nodes 
Redundant 

nodes 
Sensor  Active Sleep Sleep 
Radio  Receive Receive Sleep 
MCU 
board 

Sleep; wake up 
to create 
messages only 

Sleep; wake 
up to create 
messages only 

Sleep 

 

The radio boards of all nodes are in receiving mode 
because nodes in OCO need to exchange data. The 
sensor boards of all border nodes are in full operation. 
Forwarding nodes, however, have the sensor boards 
off. A forwarding node is turned ON when receiving a 
message from one of its neighbors. The redundant 
nodes are used as backup nodes. They initially have all 
boards in sleep mode.  

 

4.2.2 Calculation of object tracking accuracy 
According to [10], a sensor network with all nodes 

in the tracking mode (i.e., the sensor board is in full 
operation mode) is a useful base for comparison, 
because it provides the best possible quality of 
tracking. An example is the DC method. So we 
consider the total number of detected points in this 
case as 100%, and call it the standard number of 
detected points. The accuracy of each method is a 
percent ratio between the number of detected points of 
the method and the standard number of detected point. 

 

4.2.3 Cost per detected point 
Cost per detected point is a ratio between the total 

energy consumption and the total number of detected 
points of the method.  
 

4.2.4 Time before the first dead node calculation 
The manager module periodically (every 0.1s) 

checks all nodes in the network to see if any node has 
run out energy. If it finds any, the simulation time at 
that moment will be recorded as the time before the 
first dead node. 
 

4.3 The simulation environment 
 



The simulation environment is built as an area of 
640 X 540. The number of nodes in the network is 
200, 250, 300, 350, 400, 450, 500,550, 600, 650,700, 
750, 800, 850, 900, 950, and 1000, with 2J (Joule) of 
energy for each node. The sensing radius of each node 
is 30m and the communication radius is 60m.  

 Intruder objects are 
supposed to move by 
traversing specific paths 
and come from outside of 
the network area. Four 
different paths were used in 
the simulations. The 
moving paths of objects are created by drawing 
images. Figure 4 shows one of the paths. A MATLAB 
program reads the images and generates appropriate 
text files of positions of the path images. 
 

5. RESULTS 
 
The Base Cases: no intruder objects 
 

In the base 
case, there is no 
intruder object. 
Two metrics, 
energy 
consumption and 
time before the 
first dead node, 
are measured. The 
results of running 
the methods in 
9,000 seconds of simulations are shown in Figures 5 
and 6. In Figure 5, when the number of nodes 
increases, the energy consumption of OCO goes to a 
constant, delivering much better result than the other 
methods. The reason is that, when the number of nodes 
increases, the size of the border in OCO decreases (less 
gaps between border nodes and straighter border line).  

 

 

Figure 6 
shows that OCO 
lasts longer than 
LEACH in all 
cases. (Note: 
Value of 1,000 
means there is no 
dead node in the 
network during 
the 9000 seconds 
of simulation.) 

 

Tracking Cases A: one intruder object 
In this case, the simulation results are divided into 

four cases. Each of the cases represents the collected 

metrics given a particular path of the moving object, 
with the moving speed being 10 points/s. In these 
scenarios, nodes in OCO only need to activate their 
neighbors when the object is leaving its coverage area. 
Due to the limited space, evaluation results of this case 
are not included. The results, however, are compatible 
with the ‘multiple objects’ cases below. 

 

Tracking Cases B: multiple intruder objects  
 

Scenarios in 
this case are 
similar to the 
‘single object’ 
case above, with 
the difference that 
multiple intruder 
objects are present 
in the 
environment.  Each of the objects traverses a different 
path, with the same speed at 30 points/s. Type B 
sensors are used in the simulations. As shown in 
Figure 7, when the number of nodes is greater than 
300, OCO consumes much less energy than the others, 
and it appears to reach a constant when the number of 
nodes is 500 or higher. At 1,000 nodes, the energy 
dissipation of OCO is about 1/4 of DC and 1/6 of 
LEACH.  (Note: The reason that the energy 
consumptions of LEACH and OCO appear to fluctuate 
at 600 and 900 is that, in these cases, the base happens 
to be far from the moving paths. As shown, even in 
those cases, OCO is more stable than the others.) 

 

Figure 8 shows 
that the accuracy 
of OCO is 
compatible to DC 
in most of the 
cases. LEACH, 
although showing 
very good results 
when the number 
of nodes is higher 
than 700, exhibits 
less stable results when the number of nodes is lower. 
 

Figure 9 shows 
the cost per 
detected object 
position. OCO’s 
cost is the lowest 
in all the cases 
when the number 
of nodes is greater 
than 300, and the 
costs appear to remain constant. The cost of LEACH 
appears to increase relative to the number of nodes. 

 
Figure 4. A sample path

 
Figure 5. Energy Consumption 

(no intruder) 

 
Figure 6. Time before the first 

dead node (no intruder)  

 
Figure 7. Energy consumption 

Figure 8. Accuracy 
comparison 

 
Figure 9. Cost per detected point 



 

As shown in 
Figure 10, the 
time before the 
first dead node 
appears to be 
“fluctuating” 
across the cases, 
mainly because 
that, depending 
on the relative 
distance b
the intruding object and the base, one of the nodes may 
run out of energy early. Still, OCO appears to last 
longer than LEACH in all cases. 

etween 

 

6. Summary and future work 
 

We have devised a method, OCO, for efficient 
target tracking in wireless sensor networks, and have 
evaluated its performance in various simulation 
scenarios against two other methods (DC and 
LEACH). Based on the evaluations, OCO appears to 
consume less energy than the other methods while 
achieving superior accuracy. The main strengths of 
OCO include its efficiency and easy maintenance, 
meaning that, when too many nodes have exhausted 
their energy, new nodes can be refilled to the tracking 
area and the OCO method will be able to dynamically 
build up a new network. 

The sensor network usually operates in hostile 
environments. Therefore it is critical to add security 
features to OCO. Part of our future work is to add 
authentications and other security features to OCO. 
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