
Average case analysis of binary search 

 
1. A rudimentary (and incorrect) analysis of the average case 

Given a sorted array of N elements, it is tempting to say that in average each element would 
takes (1+logN)/2 to be found successfully. However, this formula does not take into account the 
fact that each element in the array requires different number of iterations in the binary search 
before it is found. 

Take the following array of 15 elements (Figure 1) as an example: 

Index  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Values  5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 

Figure 1. A sorted array of 15 integers 

As shown in the binarySearch( ) method definition (see 
http://users.cis.fiu.edu/~weiss/dsj4/code/BinarySearch.java), in each iteration the value of mid is 
updated ( mid = ( low + high ) / 2 ) . The element at position 7, for example, always takes a 
single iteration to be found. On the other hand, data at position 14 takes 4 iterations in the binary 
search before being found. Figure 2 shows a binary tree that illustrates the four cases of 
successful binary search, each of which takes a different number of iterations. For example, 
elements at positions 1, 5, 9, and 13 each takes three iterations before being found, while 
elements at positions 3 and 11 each takes only two iterations to be found. 

 
Figure 2. A binary tree showing the number of iterations for each element in an array of 15 

to be found via binary search 
 

 
 

0,7,14 

0,3,6 8,11,14 

0,1,2 4,5,6 8,9,10 12,13,14 

2,2,2 4,4,4 6,6,6 8,8,8 10,10,10 14,14,14 12,12,12 

Iteration 1   

Iteration 2   

Iteration 3   

Iteration 4   0,0,0 

low high 

mid 

 

http://users.cis.fiu.edu/~weiss/dsj4/code/BinarySearch.java�


Table 1 summarizes the array elements and the respective number of iterations for them to be 
found. The rightmost column shows the percentage of elements for each case. For instance, 
about 50% (8 out of 15) of the nodes take 4 iterations in the binary search before being found. 
 

Number of iterations Array elements Percentage of nodes 
1 A[7] ~6.25% 
2 A[3], A[11] ~12.5% 
3 A[1], A[5], A[9], A[13] ~25% 
4 A[0], A[2], A[4], A[6], A[8], A[10], A[12], 

A[14] 
~ 50% 

Table 1. Array elements are divided into four cases, each with different number of 
iterations. 

 

2. The correct analysis 
 

To simplify the calculation, let N be equal to 2k – 1 (i.e., k ~= logN). The correct formula to 
calculate the average number of iterations for successful find is shown below. 
 

∑ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑖) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑖)𝑙𝑜𝑔𝑁
𝑖=1  / N 

 

= ∑ 𝑖 ∗ 𝑙𝑜𝑔𝑁
𝑖=1

𝑁
2𝑖

 / N 
 

= (1* 𝑁
2𝑙𝑜𝑔𝑁

 + … + (logN-1)* 𝑁
22

 + logN*𝑁
2
) / N  <Sequence 1> 

 
Take the array of 15 elements as an example, the average cost is shown below: 

 

∑ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑖) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑖)4
𝑖=1  / 15 

 

= (4*8 + 3*4 + 2*2 + 1*1) / 15 
 

~= 3.26 (or ~logN) 
 
 

3. The conclusion 
 

The average cost of a successful search is about the same as the worst case where an item is not 
found in the array, both being roughly equal to logN. 

 

So, the average and the worst case cost of binary search, in big-O notation, is O(logN). 
 
 

  



Exercises: 
1. Take an array of 31 elements. Generate a binary tree and a summary table similar to those 

in Figure 2 and Table 1. 
2. Calculate the average cost of successful binary search in a sorted array of 31 elements. 
3. Given an array of N elements, prove that calculation of Sequence 1 shown above is 

indeed O(logN). 
 
Programming projects: 

 


