Today’s topic: API Security: a brief survey
· Primary source of information:
Michael Isbitski, API Security for Dummies, Salt Security Special Edition, Wiley, 2022 (a downloadable free e-book)
plus other resources.

· APIs: Application Programming Interfaces
· An Application Programming Interface (API) allows software applications to interact with each other.
An analogy: A function call can be considered as a primitive form of API
· Function provider must supply the function interface, for example, char f1 (int, int);
· Function users/callers/consumers/requesters must use or call the function by following the declared interface.
e.g., The user may call f1() via the following statements:
char result = f1 (100, -55);

· Modern web applications are built on top of APIs that enable applications and software components to form a connection (or interface) in order to interact and exchange data with each other.
Example: If application A defines an API for other applications to use, application B must use the specified API interface to communicate with application B.

· API specification: A document or standard that describes how to build or use such a connection or interface is called an API specification.
· API implementation: A computer system that meets an API specification is said to implement or expose that API.
· The term API may refer either to the specification or to the implementation.
· The term consumption refers to the API caller making a request to an API to exercise functionality, query data, or manipulate data.
Provider vs Caller/Consumer:
The provider/server provides the service as defined in the API; the consumer/client use the API to request services from the provider.

· API endpoints (https://smartbear.com/learn/performance-monitoring/api-endpoints/)
· An endpoint is one end of a communication channel.
· When an API interacts with another system, the touchpoints of this communication are considered endpoints.
· For APIs, an endpoint can include a URL of a server or service. Each endpoint is the location from which APIs can access the resources they need to carry out their function.
· APIs work using ‘requests’ and ‘responses.’ When an API requests information from a web application or web server, it will receive a response. The place that APIs send requests and where the resource lives, is called an endpoint.
The request goes form the client to the server; the response is sent back by the server to the client after having processed the request.
For example, in HTTP, the http client runs on a web browser and the http server runs on the web server.

· Most common API protocols:
· SOAP (or Simple Object Access Protocol) is a messaging protocol specification for exchanging structured information in the implementation of web services in computer networks. (https://en.wikipedia.org/wiki/SOAP)
[image: Webservice xrpc.png]
Figure 1. Requester-Provider relationship
· SOAP APIs are still seen in some internal APIs and business applications. However, SOAP API implementations are often viewed as too heavyweight (in terms of data size and computational overhead) and have largely been supplanted by REST API design.

· REST (or Representational state transfer) is a software architectural style that was created to guide the design and development of the architecture for the World Wide Web. (https://en.wikipedia.org/wiki/Representational_state_transfer)
· RESTful design helps enable client-server architecture patterns and separation of the interface from back-end services.
· One of the trickier concepts with REST is that API endpoints can look drastically different from one organization to the next depending how they’re designed and coded.
· Elements of a URL structure may represent functions or variables. HTTP methods may also be used differently than expected.

· GraphQL is a query language, but it can also be used to manipulate data.
· Facebook created GraphQL to deal with two problems. The first was to reduce excessive web API calls. The second was to deal with fetching too much or too little data that is sometimes inherent with REST API design.
· The benefits to front-end (or the client-side) performance are generating more interest in GraphQL, though REST APIs will still likely remain in the picture.

· Remote procedure call (RPC)-based protocols: JavaScript object notation (JSON)-RPC and extensible Markup Language (XML)-RPC denote the encoding format used in API requests.
· Google created gRPC remote procedure call (gRPC), which has gained in popularity for speedy microservice communication.
· Unlike REST and GraphQL though, you rarely see gRPC as the protocol of choice for browser-based front ends.

· Benefits of Designing Modern Applications with APIs:
· APIs have significantly changed the way that development teams create applications.
· Decoupling front ends and back ends: In most application designs, front-end interfaces are decoupled from back-end services and APIs, so that any individual component can be updated iteratively and more easily.

Q: What are the benefits of decoupling the front ends and the back ends in developing applications?
Ans:
(a) A well-defined API specification will enable the front ends developers and the back end developers to work together.
(b) The development of the front ends and the back end(s) can be in parallel.
(c) Any individual component can be updated iteratively and more easily, as long as the updates are still conformant to the API specification.

· APIs are also prominent within microservices architecture (MSA) and cloud-native design patterns.
· A microservice is a service designed to do one thing and one thing only.
· The service provided by a microservice is defined as an API.
· This design pattern contrasts with monolithic design where a system or service is designed to do many things.
· Monoliths are application that are designed to do many things, which consequently can make them difficult to upgrade or maintain. They remain in existence despite how they may seem taboo and how industry focus has shifted to MSA. They may be an organization’s preferred design pattern based on pedigree or developer experience.
· A microservice brings easier-to-understand code and looser coupling between services.
· Microservices architecture (MSA) is an architecture pattern where a system is composed of many interoperating microservices.
· An MSA provides benefits like improved design flexibility, improved continuous delivery, and faster service and infrastructure startup.
· Inner microservice communications may use a protocol such as gRPC, whereas functionality may be exposed to users that are external to the microservice environment via REST or GraphQL APIs. It’s not uncommon for APIs to be mediated by API gateways.
· A characteristic and potentially a drawback: MSA brings increased operational complexity and communication cost because of the high number of distributed services that you must deploy and orchestrate.
· Organizations usually have a mixture of both monoliths and microservices.
· A famous organization that benefit from the MSA is Amazon (that is, the AWS).

· A cloud-native design is a design or architecture that exhibits cloud traits and makes use of technologies that power cloud service providers.
· Common cloud traits include web scale capacity and elasticity, where the compute you need to run an application or service is almost infinite, bound only by the available hardware in a cloud provider’s data centers that is largely abstracted from you.
· Virtualization is a way to abstract hardware from the operating system using a hypervisor. You can run many virtual machines on a given physical host.
· By packing more virtual machines on a given host, you can make better use of the hardware and ensure it doesn’t sit idle.
· Virtual machines must be lightweight and highly performant if they’re to service MSAs.
· Containerization involves packaging applications and their dependencies into containers to further increase density by abstracting the operating system from applications and services.
· Containers improve portability and environment consistency.
· Containers are often used as the unit of compute to power microservices within MSA.
· When building cloud-native applications, the entire infrastructures can be declared and operated via APIs, for example, with container platforms like Kubernetes and cloud service providers.
· Containerization and virtualization enable the organization to limit the blast radius in the event of compromised API code, container runtimes, or hypervisors.

· Types of APIs:
· External APIs: These APIs support mobilized workforces and customers accessing services from anywhere.
· Public APIs: Public APIs are a type of external API designed for consumption by users and machines across the Internet.
· Public APIs carry inherent risk because the design leans toward allowing anonymous access.

· Open APIs: These APIs appear more frequently with open banking initiatives including the financial industry. They help promote innovation in a given industry, improve levels of service integration, and provide freedom for customers to transact or access data anywhere. Authentication and delegated authorization are usually in place.

· Internal APIs: These APIs are usually deployed and operated within a restricted network environment of a data center or private cloud segment.
· Partner APIs: Organizations sometimes provide limited access to internal APIs to select external suppliers to power and expand their digital supply chains.

· Third-party APIs: These APIs, often consumed as cloud-delivered services, or software as a service (SaaS), help organizations move faster without re-creating functionality or incurring more technical debt.

· Acquired/Inherited APIs: These APIs are less of a design choice and more of a type of inheritance. Organizations inherit these APIs as a type of dependency as they acquire, integrate, and deploy commercial and open-source software packages.

	[image: API-First Design example]

Figure 2. API-First Design is useful on large-scale applications development involving many different platforms
Source: https://www.researchgate.net/figure/API-First-Design-example_fig1_335686500

· API attacks
· Because APIs are very commonly used in building modern-day software applications, and because they enable access to sensitive software functions and data, they are becoming a primary target for attackers.

· In the 2020 United States federal government data breach, “the attackers exploited software or credentials from at least three U.S. firms: Microsoft, SolarWinds, and VMware.” (https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach)
· A supply chain attack is a cyber-attack that seeks to damage an organization by targeting less-secure elements in the supply chain.
· Q: What is a software supply chain attack?

· API attack patterns vary from what practitioners are used to within the network security and application security domains.
· Attacks may borrow from both domains, or more commonly, they’re unique to API use cases and business logic specifically.
· Attackers exploit misconfigurations in infrastructure controls, vulnerabilities in code, or some combination of the two.
· APIs may have vulnerabilities like broken authentication and authorization, lack of rate limiting, and code injection.
· Developers may lack expertise in infrastructure and security concepts, which inevitably results in gaps in API security.
· Attackers use your front-end applications to connect to your back-end APIs and to help decipher your business logic.
· Attackers also relish the fact that modern applications are highly interconnected with many first-party and third-party APIs, any one of which might be exploitable.

Check out the Heartbleed exploit in OpenSSL:
· What is a Heartbleed attack?
· How was the Heartbleed bug exploited?
[bookmark: _GoBack]

· OWASP API Top 10 Security Threats: https://owasp.org/www-project-api-security/
· API1:2019 - Broken Object-Level Authorization
APIs tend to expose endpoints that handle object identifiers, creating a wide attack surface Level Access Control issue. Object level authorization checks should be considered in every function that accesses a data source using an input from the user.
That is, data classification should have fine granularity, preferably at the object level (and not just user level).
· API2:2019 - Broken User Authentication
Authentication mechanisms are often implemented incorrectly, allowing attackers to compromise authentication tokens or to exploit implementation flaws to assume other user's identities temporarily or permanently. Compromising system's ability to identify the client/user, compromises API security overall.
· API3:2019 - Excessive Data Exposure
Looking forward to generic implementations, developers tend to expose all object properties without considering their individual sensitivity, relying on clients to perform the data filtering before displaying it to the user.
That is, the filtering should be performed at the server side, and it only sends what the client needs.
· API4:2019 - Lack of Resources and Rate Limiting
Quite often, APIs do not impose any restrictions on the size or number of resources that can be requested by the client/user. Not only can this impact the API server performance, leading to Denial of Service (DoS), but also leaves the door open to authentication flaws such as brute force.
· API5:2019 - Broken Function-Level Authorization
Complex access control policies with different hierarchies, groups, and roles, and an unclear separation between administrative and regular functions, tend to lead to authorization flaws. By exploiting these issues, attackers gain access to other users’ resources and/or administrative functions.
· API6:2019 - Mass Assignment
Binding client provided data (e.g., JSON) to data models, without proper properties filtering based on a whitelist, usually lead to Mass Assignment. Either guessing objects properties, exploring other API endpoints, reading the documentation, or providing additional object properties in request payloads, allows attackers to modify object properties they are not supposed to.
· API7:2019 - Security Misconfiguration
Security misconfiguration is commonly a result of unsecure default configurations, incomplete or ad-hoc configurations, open cloud storage, misconfigured HTTP headers, unnecessary HTTP methods, permissive Cross-Origin resource sharing (CORS), and verbose error messages containing sensitive information.
· API8:2019 - Injection
Injection flaws, such as SQL, NoSQL, Command Injection, etc., occur when untrusted data is sent to an interpreter as part of a command or query. The attacker's malicious data can trick the interpreter into executing unintended commands or accessing data without proper authorization. Example: SQL Injection attacks
· API9:2019 - Improper Asset Management
APIs tend to expose more endpoints than traditional web applications, making proper and updated documentation highly important. Proper hosts and deployed API versions inventory also play an important role to mitigate issues such as deprecated API versions and exposed debug endpoints.
· API10:2019 - Insufficient Logging and Monitoring
Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows attackers to further attack systems, maintain persistence, pivot to more systems to tamper with, extract, or destroy data. Most breach studies demonstrate the time to detect a breach is over 200 days, typically detected by external parties rather than internal processes or monitoring.

· Additional resources about API security incidents:
· Raymond Pompon, Reviewing Recent API Security Incidents. url: https://www.f5.com/labs/articles/threat-intelligence/reviewing-recent-api-security-incidents
· Nordic APIS, 5 Major Modern API Data Breaches (And What We Can Learn from Them). url: https://nordicapis.com/5-major-modern-api-data-breaches-and-what-we-can-learn-from-them/

· API security is the process of protecting APIs from attacks.
· API security is a key component of modern web application security.
· Organizations must regularly test APIs to identify vulnerabilities, and address these vulnerabilities using security best practices.

· A specific focus within shift-left API security practices is securing the build pipeline (i.e., the full software development life cycle), which requires that teams get security tooling plugged into continuous integration/continuous delivery (CI/CD) build pipelines and git-based developer workflows.
· Securing build pipelines requires a range of security-testing tools including dependency analyzers, static analyzers, dynamic analyzers, schema validators, fuzzers, and vulnerability scanners.
· Static application security testing (SAST) and Dynamic application security testing (DAST) can uncover weaknesses and exploitable conditions in your custom API code, by verifying the code against pre-defined SAST or DAST signatures.
· SAST can be used to analyze original source code for potential weaknesses and vulnerabilities. It’s often run when code is committed to version control or during build stages.
· DAST can be used to analyze a running/exeutable application for exploitable conditions. It’s often initiated prior to production delivery or used in production continuously because the application must be running on infrastructure.
· Limitation of SAST and DAST: Both rely on pre-defined signatures and/or well-defined patterns to work. Because business logic is unique to the organization, neither SAST nor DAST scanning can uncover business logic flaws that attackers may target and abuse.

· A form of static analysis, API schema validators scan the APIs against the defined API schema, in order to ensure the APIs are conformant to the schema, and check for vulnerabilities in the implemented APIs.
· However, ...
· Not everything needs to be defined in API schema.
· API specification formats like OAS and Swagger don’t require that you define all fields or functions in the API documentation.
· Developers commonly forget to document something fully.
· Humans are notoriously bad at documenting and especially documenting everything fully.
· API drift happens: Deviations from the original specification and what is running in production are common.
· Schema analysis can’t identify business logic flaws.
· Schema validation can only identify some exploitable conditions and misconfigurations.

· A fuzzer is a program which injects automatically semi-random data into a program/stack and detect bugs. The data-generation part is made of generators, and vulnerability identification relies on debugging tools. (https://owasp.org/www-community/Fuzzing#:~:text=A%20fuzzer%20is%20a%20program,identification%20relies%20on%20debugging%20tools.)

· Possible limitations of common security-testing tools:
· Most tools don’t go deep in testing authentication or authorization.
· Deep scanning/testing requires time, which may prohibit in-time releases of APIs.
· The tools/scanners are not designed to detect all threats and vulnerabilities.

· Git-based vs API-first: source: https://strapi.io/blog/git-based-vs-api-first-cms

	Git-based Content Management Systems (CMS)
	API-First Content Management Systems

	· Git-based CMSs are built upon the Git version control system (VCS).
· Git stores your files and their history of changes in a repository. It allows you to branch out, merge, clone, react to changes, and in general easily manage your content—especially the text element.

[image: Git-based CMS architecture]
· In a Git-based CMS, you manage your content through mentioned Git functionalities or the Git-powered editor right in your CMS.
· Then, on selected changes, the CMS processes the new or updated content and automatically builds and updates your frontend (website or app, for instance).
· That’s usually done through integration with large Git providers like GitHub or GitLab.

	· API-first CMSs work as unified pieces of software, serving content through an Application Programming Interface (API).

[image: API-first CMS architecture]

· Developers can use the API (usually REST or GraphQL) to build the required frontend or other types of integrations. Reactions to specific updates and other outputs from the CMS also need to be directly handled.
· The content storage, editor, and general management are all handled by the CMS.

· The OAuth (“oh-auth”) protocol is an open protocol that allows users to share their private resources stored on one site with another site without having to hand out their username and password.

	[image: OAuth 2.0 simplified scheme]

Figure 3. The OAuth Authentication Scheme
Source: https://www.researchgate.net/figure/API-First-Design-example_fig1_335686500

	
[image: OAuth 1.0 Flow OAuth aims to unify the experience and implementation of delegated web service authentication into a single, community-driven protocol. OAuth builds on existing protocols and best practices that have been independently implemented by various companies. An open standard, supported by large and small providers alike, promotes a consistent and trusted experience for both application developers and the users of those applications. [9] OAuth Discussion group was created in April 2007 to write the draft proposal for an open protocol. In October 2007 the OAuth Core 1.0 final draft was released. And brought to IETF for further standardization work. The OAuth Core 1.0 Revision 'A' specification has been published to address a session fixation security flaw discovered in April 2009 -[10]. The OAuth 1.0 Protocol was published as RFC 5849, as informational Request for comments in April 2010. [11]]

Figure 4. Implementation of delegated web service authentication using OAuth 2.0
Source: https://www.researchgate.net/figure/API-First-Design-example_fig1_335686500
In summary, ...
a. An API security architecture or platform is essential in ensuring API security.
· Any API security tooling you consider for your organization should be built as a platform of capabilities.
· API security strategy demands a full life cycle approach because security issues, vulnerabilities, logic flaws, and misconfigurations arise at different stages of API design, development, delivery, and operation.

b. Continuous updates and monitoring is essential.
· Establish an API inventory.
· Identify shadow and zombie APIs.

c. Incorporating data classification into API security tooling.

d. Recognizing automated attack patterns is important.
· Attackers frequently create or use custom code, python scripts, command line scripts, pre-built bots, and intercepting proxies to perpetuate and automate API attacks.
· New attack patterns emerge as attackers abuse the unique business logic that organizations build into their APIs.

e. Adapting your incident response processes for APIs is essential.

Questions:
1. What is a microservice?
2. Explain what API Security mean.
3. Explain the relationship between Application Programming Interfaces (APIs) and Cloud-native application development.
4. What are the benefits of decoupling the front ends and the back ends in developing applications?
5. ...

Acronyms:
· JSON, JavaScript Object Notation
· OWASP, Open Web Application Security Project (owasp.org)

References:
· Michael Isbitski, API Security for Dummies, Salt Security Special Edition, Wiley, 2022.
url: https://content.salt.security/api-security-for-dummies.html?utm_source=google&utm_medium=cpc&utm_campaign=sa-search-general-nam&utm_adgroup=eval-guide&gclid=CjwKCAjwrfCRBhAXEiwAnkmKmWkEIIzXXd3A4nWUpHCGJceqc8dj3fHG-kjcFR_1l_kVfw24mDaTgxoCl-gQAvD_BwE
· Danko Kovacic, API Security: The Complete Guide, online blog, February 13, 2022. url: https://brightsec.com/blog/api-security/#:~:text=API%20security%20is%20the%20process,of%20modern%20web%20application%20security
· OWASP API Security Top 10 (2019). url: https://owasp.org/www-project-api-security/
· API, Wikipedia, March 30, 2022. url: https://en.wikipedia.org/wiki/API

image1.png

image2.png

image3.png
~¥
APIs
H_/
3
A
() (")
Build Tool CDN Front-end
_ J L J/

Y

*‘
APIs
\

image4.png
o e X " Y @

Source APIs CMS API Build Tool CDN Front-end
\. J/ \. J

f_‘ L\
*‘
APIs

. J

image5.png
Resource Server

Access data E E
£ oo

I=N=]

ci

Issue authz code/
access token

Delegate
authentication
authorization

Access service

Authorization Server

Resource Owner

image6.png
8. Relurn token credentials

7. Request token oredentils using
temporary credentials and verification code

3. Redirect resource owner to
the authorize URI

M * 1. Request temporary ¥
rocentials
Client 2. Retum temporary Server
Crodeniials

6. Follow redirect to
client callback URI

4. Follow redirect to

Resource
Owner

authorize URI and authenticate

5. Verify the temporary credentials of the client,
generate verification code, and
send redirect to client callback URI

