
IT Briefing:

Implementing Network Security Monitoring
with Open Source Tools
By Richard Bejtlick

An IT Briefing produced by

Sponsored By:SearchSecurity

Implementing Network Security Monitoring Page 3
with Open Source Tools
By Richard Bejtlick

Webcast Transcription & Design Copyright © 2003 by TechTarget, except as noted.
No part of this book may be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from TechTarget.

Implementing Network Security Monitoring with Open Source Tools
Copyright © 2003 Richard Bejtlick, reprinted by permission of author.

For inquiries and additional information, contact:
Charley Spektor
Director of Ancillary Products, TechTarget
cspektor@techtarget.com

Table of Contents
SearchSecurity

Richard Bejtlick is a principal consultant at Foundstone, where he performs incident response, digital forensics, security training and consulting
on network security monitoring. Prior to joining Foundstone in 2002, Richard served as senior engineer for Managed Network Security Operations
at Ball Aerospace and Technologies Corporation. From 1998 to 2001, Richard defended global American information assets as a captain in the
U.S. Air Force's computer emergency response team. He led the ABSI (phonetic) real-time intrusion detection mission supervising 60 civilian and
military analysts. Formally trained as a military intelligence officer, Richard holds degrees from Harvard University and the United States Air Force
Academy. He acquired his CISSP certification in 2001. His work appears in Hacking Exposed, 4th Edition, and Incident Response, 2nd Edition,
both published by Osborne-McGraw Hill. He is currently writing a book titled the Tao of Network Security Monitoring, which will be finished next
year. His homepage is www.TaoSecurity.com.

3
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

MODERATOR: Hello and welcome to our
SearchSecurity.com webcast, "Implementing
Network Security Monitoring with Open Source
Tools" with guest speaker Richard Bejtlick. My name
is Crystal Ferraro, and I am your moderator.

Are you frustrated by the operation of your
intrusion detection system? A solution exists, but it’s
not found on any vendor’s product sheet. The

answer is network security monitoring, NSM, a
collection, analysis and escalation of indications and
warnings that detect and respond to intrusions.
NSM is not an intrusion detection system, although
it relies on IDS-like products as part of an integrated
data collection and analysis suite. NSM is about
collecting a full spectrum of data types, events,
sessions, full content and statistics needed to
identify and validate intrusions.

By Richard Bejtlick

© 2003 TechTarget

Implementing Network Security Monitoring
with Open Source Tools

Figure 1

4
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Today, guest speaker Richard Bejtlick will briefly
explain NSM and introduce several specific tools
that can augment your existing detection platforms.
While Richard will mention Snort, he will place the
free version of Snort in its proper place as an engine
to generate intrusion detection event data. Richard
will discuss tools to collection session and full
content data and will describe how to use the free
BSE operating system as a monitoring platform. All
these tools can be placed next to your current
products and services.

Our guest speaker Richard Bejtlick is a principal
consultant at Foundstone, where he performs
incident response, digital forensics, security training
and consulting on network security monitoring.
Prior to joining Foundstone in 2002, Richard served
as senior engineer for Managed Network Security
Operations at Ball Aerospace and Technologies
Corporation. From 1998 to 2001, Richard defended
global American information assets as a captain in
the U.S. Air Force's computer emergency response
team. He led the ABSI (phonetic) real-time intrusion
detection mission supervising 60 civilian and
military analysts. Formally trained as a military
intelligence officer, Richard holds degrees from
Harvard University and the United States Air Force
Academy. He acquired his CISSP certification in
2001. His work appears in Hacking Exposed, 4th
Edition, and Incident Response, 2nd Edition, both
published by Osborne-McGraw Hill. He is currently
writing a book titled the Tao of Network Security
Monitoring, which will be finished next year. His
homepage is www.TaoSecurity.com.

Thank you for joining us today, Richard.

BEJTLICK: Thank you very much.

MODERATOR: In case this is your first time
participating in a SearchSecurity.com webcast, let me
give you an idea of what to expect. To begin,
Richard will give a PowerPoint presentation. Slides
will be pushed to your screen automatically. If you’d
like to make the slides bigger, click the “Enlarge
Slides” button. For additional help, click the
“Webcast Help” button. After the presentation, I will
ask Richard a few questions on today’s topics. You
can submit your own questions at any time by
clicking on the “Ask a Question” link at the lower
left corner of your screen. Richard’s answers will be
e-mailed back to you.

Now, we’re ready to turn our attention to Richard
Bejtlick and his presentation, "Implementing

Network Security Monitoring with Open Source
Tools." Take it away, Richard.

BEJTLICK: Thank you, Crystal. I’m happy to be
back. I presented on a similar topic in December of
last year; I’m happy that SearchSecurity.com decided
that I was a worthwhile speaker to bring back. If
you joined us for the webcast last year, you know
we talked mostly about theory — that is, what was
network security monitoring, what were the
different types of data that you could collect and
where did those ideas come from — things like that.

What I’d like to do today is actually get into the
details of how you go about performing network
security monitoring and the tools you should use.

Could I have the next slide, please, Crystal? We
should all be looking at a slide that says
“Introduction.” Today, I’ll first talk about a little bit
of theory, so that if you’ve never heard the term
network security monitoring (NSM), you'll have
some context for the rest of my presentation. After
that, I'll offer some recommendations for platforms
— that is, what sort of hardware and operating
systems are best suited to hold the tools that you
will use to do network security monitoring. I’ll then
talk about wiretapping. I call it wiretapping because,
well, that’s essentially what it is, in a legal sense and
a technical sense. I'll also talk about what sort of
legal considerations you might run into and ways
you can actually get packets from the wire, hubs,
taps, etc. After that, I’ll go into a section where I will
discuss the four types of NSM data that can be
collected. I'll start with full content, move to session
and event data; and conclude with statistical data.
For each case, I will give you one or more options
for an open source tool. For comparison's sake, I'll

Figure 2

also discuss some of the more popular vendor
commercial solutions that I’ve seen or used. After
going through the four tools, we’ll talk about an
open source free products called Sguil that
implements one or more NSM theories. I'll conclude
by answering some questions.

Next slide, please. So if you didn’t participate in the
webcast last year I'll provide a quick background on
NSM, just to get everyone on the same page. I’d like
to define network security monitoring as the
collection, analysis and escalation of indications and
warnings to detect and respond to intrusions. Now,
each one of those words has a meaning. If you have
a military background, especially with signals
intelligence, some of this probably resonates with you.

NSM is not the same thing as intrusion detection —
NSM is more almost about auditing. It's about
providing the information that you need in the event
of an intrusion to quickly scope and remediate that
intrusion. The problem that I see these days with
most intrusion detection products is the vendors are
very focused on finding events. But once they give
you their best guess as to whether or not an event
has occurred, they sort of leave you with it. Most
customers are more concerned with preventing
intrusions. So we’ve got vendors who are
concentrating on finding intrusions, customers who
are concerned about preventing intrusions, but
neither really has the information you need.

Now, I feel that eventually you're going to have an
intrusion. There’s just no way you can prevent
everything. So once an intrusion occurs and it’s
detected somehow (by a client, customer, system
administrator or an end user who notices that
there’s something odd going on in the machine), you
need enough data to go back, find out what
happened and scope that incident as quickly as
possible without having to physically touch a
thousand different machines. So NSM is about
giving you the data that you need to find out what
happened. Maybe you won't detect everything. But
once you do find out something has happened, how
can you quickly go about determining the scope of
the intrusion without having to do a whole bunch of
host-based forensics?

First, let's define intrusions as policy violations.
Immediately you might think, well, most companies
or organizations these days are moving towards
having some sort of security policy. But if you don’t
have a security policy, or you don’t feel like your
security policy is really worth anything, how do you
define an intrusion? Well, you can have a policy,

either by de facto or de jure. I may be messing that
up, but the de facto policy is what you’ve got in
place regardless of whether or not you think you
have one. For example, there are two main realities
that create de facto policies. One would be having
access control, whether from an ACL and a router or
some type of ACL on a firewall. If you are doing any
type of limiting, you have made some type of
decision as to what type of security policy you have.

The second reality that most people accept, which
creates a de facto security policy, is that most people
don’t tolerate having intruders on their networks. I
have the word outsiders on the slide, because most
organizations would not tolerate it if someone was
roaming inside their networks. But this isn’t always
the case. I’ve had some clients — actually prior to
them being clients — who thought it was acceptable
to live with an intruder on the network as long as
the intruder wasn’t too destructive. Most people
prefer not to take that route, but, believe it or not, it
is an option some people take.

So NSM is not intrusion detection; it’s more about
auditing. It’s also about giving you the information
you need to quickly scope an incident and, if
possible, discover policy violations.

Could I have the next slide, please? So if you buy
into this theory of how we’re going to try to scope
and remediate intrusions, even in a SIM, you’re
probably wondering what types of operating
systems and hardware are best. I am personally a
fan of Unix. In terms of specific versions of Unix, I’m
most comfortable with the different BSD operating
systems — meaning free, open or netBSD. Linux
works as well. If you want to go with a commercial
version of Unix, people have good results with
Solaris. If you’re a Windows person, you may be

5
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 3

wondering why I don't recommend it. I consider
Windows to be the superior desktop operating
system; it presents a capable, friendly and common
environment for users. But when talking about an
OS that can be secured quickly, and offers high
performance and flexibility in terms of what you can
install or not install, I really don’t think you can beat
a Unix box.

I’ve been in emergency situations where I’ve needed
to get a dozen sensors online within hours
(typically one or two hours). I’ve been able to
quickly deploy multiple free BSD systems, securely
and without having to run any host-based type
firewall, simply offering the one or two services that
are needed to make that box work. If I had to do that
with a Windows box, again without using any type
of imaging or ghosting, it would take a long time,
and I would have to deploy some type of host-based
firewall. I think we found with the recent worms
that have been ravaging the Internet that it is almost
impossible to have a Windows box defend itself on
the Internet without applying some type of third-
party or host-based firewall. I mean, you can use
group policies and things like that natively to limit
Windows exposure, but it’s just too difficult to turn
off unnecessary services. So I tend to prefer Unix.

Plus, in the cases of the BSDs, they typically have
very good TCP/IP network stack performance.
As far as hardware goes, more is better in every
sense. I have some bare minimums listed. I say that
256 MB of RAM, 20 GB hard drive and a Pentium II
will get you pretty far. The thing to keep in mind is,
as you start putting your sensors on higher capacity
networks and you want to store more days’ worth of
data, all of those capabilities need to go up.
Obviously, if you’re going to try to write every
packet to disk on a really busy network, you’ll need
to store your traffic on 120+ GB disk. Perhaps you'll
need a rate array or something to that effect. Again,
for a very busy network, you’ll need a lot of RAM,
because you’ll want to keep those packets of
memory before they get written to disk. But if you’re
dealing with a T1 or something like that, I’ve dealt
with networks in boxes that were your garden
variety Pentium with a 10 GB hard drive.

Next slide, please. Once you’ve got your operating
system and hardware decided, the next thing is to
actually figure out how you get traffic from the wire
to that box. There are four main ways you can do
that: you can use a hub, a TAP, an inline device, or a
SPAN port on a switch.

6
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 4

7
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

The first option is a hub, which has been popular for
many years. You would deploy it as a dumb hub,
simply to repeat packets on all interfaces. The
problem with that is, if you take the nice full duplex
link that is between your router and firewall, and
perhaps between two routers or something like that,
you'll end up reducing it down to a half duplex link.
You’ll also introduce a point of failure. So if for some
reason the power fails on that hub, or the hub itself
has a problem, you’ve effectively sliced off that part
of the network. This has been a problem, believe it
or not, with hardware. If you’re trying to go this
cheap route, you pretty much get what you pay for.
I’ve had hubs in the past, and believe it or not, if
you take them off the horizontal by a little bit, they
stop passing packets —absolutely crazy. I’ve also
had problems with specific vendors, I won’t name
which ones I've had problems with; but I will offers
my own personal recommendations.

The next option is a TAP. TAP is an acronym
standing for test access port. This is a device you can
place between the same devices you have used
before, the router and firewall, two routers, etc. The
nice thing about TAP is that it preserves the full
duplex link between those devices. On the
downside, though, it is very expensive. It has signal

regeneration mechanisms inside, so it costs on the
order of $400 or more.

With TAP, there's also the issue of the two streams
that come out. There are two actual interfaces, and
when you take those interfaces, you need to figure
out how to recombine them on the sensor. There are
commercial products that will do this and some
TAPs that will provide you with a single stream. But
let’s say you’ve got a 100 megabit link and you put a
TAP in there — when you split the streams, you’ll
have two 100-megabit lines coming out. There's one
vendor I know of who will sell you a TAP with one
output coming out. That means that if you ever
exceed 50 megabits in either direction, you'll have
also exceeded the 100 megabit single line coming
out. So I always recommend going for a TAP that
has two streams coming out.

In terms of combining those streams, there are two
projects that will do this for you. First, there is ether
channel bonding from Linux. Second, there is a net
graph implementation for FreeBSD, which I’ve got
that outlined on my Web site.

Besides hub and TAP, a third option we have for
getting packets off the wire is using an inline

Figure 5

device. This is an opportunity to do not only do
some monitoring, but also get additional access
control. I’ll get briefly into the whole IDS, IPS field
in the questions, but with this inline device, you not
only can snip traffic, but you can perhaps control it.
Again, this introduces another point of failure, so in
some cases it may be your best bet.

Finally, we have the SPAN port, which is typically a
port on a switch. For example, I’ve got a Cisco 2950
switch sitting right next to it. I've designated one
port to copy all the traffic that is seen on other ports
I've specified. If you’ve got one of these switches
sitting around and it’s in a good location, this can be
a good solution. Keep in mind though that the
priority of the first switch is not to copy packets, it's
to move packets. So although I haven’t personally
dealt with this and haven’t heard of this happening
too often, it is possible that the switch could drop
packets if there’s too much traffic to copy.

Could I have the next slide please, Crystal? So for
those four options, I've got some recommendations
here. I’m not trying to push any one vendor’s
products, and I don’t have any ties to these vendors,
either professionally with Foundstone or on my

own. These are just products that have worked for
me in the past. On the hub side, I like Netgear. If
you can limit yourself to a hub that’s a single speed,
do that. For example, let’s say you’re monitoring a
T1 at 1.544 megabits per second. You wouldn’t need
a 100 megabit hub if you’re going to be dropping
one in line — you could use a 10 megabit hub.

A 10/100 megabit hub is really a switch. There’s got
to be something in there that handles the two
different traffic speeds. So I prefer to use a straight
10 megabit hub. That way, if you know you plugged
something into it, it’s going to negotiate to 10
megabits if you didn’t set the device to come up at
10, so everything is running at the same speed and
you won’t lose any traffic.

The second device is a TAP. I have here at home a
Finisar UTP IL/1. I’ve given the full link to the
product on the slide because they’re kind of hard to
find on the Finisar Web site. If you’re wondering
what Finisar is, it's the company that bought
Shpmiti. So Shomiti TAP is now Finisar. There are a
couple of other companies that make them, but this
is the one I’ve used and it seems to work pretty well.
For inline devices, most people tend to use

8
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 6

OpenBSD. OpenBSD has very robust, built-in
firewalling, packet filtering and packet scrubbing
features; so that’s a good option. If you’re not
familiar with OpenBSD and you’d like to learn more
about it, there’s an excellent book by a gentleman
named Michael Lucas called Absolute OpenBSD that
I’m reading right now; I hope to have my review up
on Amazon shortly. But it is a great so far. It walks
you through the installation, tells you what to do;
it's really explains how it works. Again, it's called
Absolute OpenBSD by Michael Lucas.

Finally, for SPAN port, if you’re using any of the
commercial-grade Cisco switches (basically if it’s a
19 inch 1U type box), chances are it has a SPAN port.
There are limitations on what you can do with some
of the SPAN ports in terms of directions of traffic
and things like that. But, for example, the Cisco
2950T I have is a good choice for that.

Could I have the next slide, please? The next slide is
more of a conceptual diagram than an actual
deployment diagram; it shows some of these
technologies in action. In the upper right-hand
corner, we have our NSM platform, which is
collecting traffic from three separate spots. There’s
one line that comes out the top and loops around to

the bottom. That shows how you can connect the
NSM platform to a hub. You have a couple of
workstations that are providing traffic. The port
goes out through the firewall. You also have the
NSM platform with two lines going off to the left
into a TAP. I apologize if some of these diagrams
aren’t exactly correct, like having what the Cisco
versions of what the diagrams should say, but you
get the idea.

So you have the TAP between a router and going
out to the Internet. At the bottom of the NSM
platform, we have lines going into a switch; that’s
just to depict that the switch could have a SPAN
port [audio] traffic to the NSM platform. The thing
to keep in mind with all this is that all the interfaces
on this NSM platform should listen promiscuously
without an IP address. In other words, there should
be no way for a person on any of the segments to
directly communicate with that NSM platform. If
you wanted to communicate with it remotely, I
would recommend you add another interface and
connect an administrative network to that NSM
platform. If you have the luxury to simply walk up
to it and log in, that’s the best solution. Another
option would be to have some type of
administrative server behind the firewall with a

9
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 7

serial cable going into the NSM platform. That limits
you in some cases to just looking at a terminal, but it
is a more secure option.

Again, I say this is more of a conceptual deployment
rather than an actual deployment. If you were to
think of some way to potentially compromise that
NSM platform once you’re on that box, you have
visibility to every network that is on this tiny
organization that I have created here.

One more thought: if you’ve created the firewall —
actually, if you’ve created any other devices here —
if you built a software-based router, say a Linux
based or FreeBSD based router or OpenBSD based
firewall, or even gone so far as to create your own
open source switch, you can run NSM type tools on
any of those devices and collect traffic as well.

Could I have the next slide, please? Now, before we
go into tools that collect traffic, I need to mention
some legal issues. I have this standard “I am not a
lawyer” definition here, but something to keep in
mind is that when you do collect traffic in this
manner, especially when collecting headers and full
content, you are doing a wiretap. I don’t know if I’d

call them lowest members of the Department of
Justice, but there are people that are constantly
warning system administrators and network
administrators to be careful about the data they
collect. A lot of what we have to worry about, at
least at the federal level, is 18 U.S.C. 2511 (2)(a)(i);
this aspect of the wiretap act provides us with two
exceptions under which we can hide and use this
cover for not going to jail when we’re collecting
traffic.

The first one is the provider protection exception.
What this says is, if you are engaged in any activity
that is necessary to protect the rights and property
of that activity, then you’re covered. The best way to
implement something like this is to have a written
security policy that says: In order to protect my
company, my university or my organization, I need
to collect data of this type — full content data,
session data, event data and statistical data. That
way, if you’re ever busted by the feds for collecting
traffic, you can say, look, this is my security policy. I
need to do this to protect my organization and I
claim protection under the Provider Protection
Exception.

10
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 8

The better way, if possible, to get protection under
another exception called the Consent Exception,
meaning that the users of your site (which would
presumably include the intruders) have consented to
being monitored. If any of you have worked for the
DOD, or any government departments, you
probably remember sitting down at your Windows
terminal or your Solaris box and seeing a big banner
pop up with all these warnings about how you’re
basically signing your life away when you log in.

The same thing can be done on services that are
bannerable. Although certain services certainly
aren’t bannerable. I mean, you can’t banner an RPC
service; you can’t banner something that the user
never sees. It is possible to banner Web sites, Telnet
sessions, and things like that. This is a little more
difficult, though, for obvious reasons.

I just cannot see the Department of Justice trying to
prosecute someone who’s been hacked, first of all,
and prosecute that person because they were
collecting traffic to try to defend his or her
enterprise. I think that would cause such a backlash,
it would be almost like attacking the victim, and I
just don’t see the DOJ doing something like that.

Could I have the next slide, please? OK, at this point
we are at the slide that says "Data Collection Intro."
We’re now going to talk about the different tools we
can use to collect data in a network security
monitoring model. We’re going to talk about T3 dump
for full content data, Argus for session data, Snort for
event data, trafd or trafshow for statistical data, and
then we’ll talk about Sguil as a package that is the
closest to bringing more types of data into one box.

I know the title of the talk was implementing NSM
with open source tools, but I will also give some
commercial versions in case this is something that
you’d be interested in. Something to keep in mind,
though, is that the whole concept of NSM is not yet
widely recognized in either the open source or the
commercial world. So you’re not going to find many
products that are advertised as NSM tools. We’ve
got a lot of other three-letter acronyms out there that
are popular: IDS, ITS, SIM (Security Incident
Management), etc., so you have to find tools that
have the NSM stamp on them. But, the tools that I
show you here (and once you start thinking about
the types of data you can collect), you may find
yourself looking at a tool and say, hey, I could use
this to collect X type of data.

11
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 9

When I show you these tools and how to run them,
or perhaps do different things with them, note that
PowerPoint has a tendency to change quotes into
crazy directions. Sometimes back ticks get turned
into forward ticks and things like that. I do have
screen shots that show you how to do certain
activities, so in those cases, there will be more accuracy.

Could I have the next slide, please? So the first tool
we’ll talk about is TCPDump. TCPDump is pretty
much the de facto full content data collection tool. If
you’re thinking that TCPDump is sort of an old tool,
one that people use but there’s really not a lot of
development. It’s pretty stable. I would invite you to
go to tcpdump.org and take a look at any of the
mailing lists. I don’t subscribe to the mailing list any
more because there’s so much traffic on it. I read the
archives instead. There is a lot of development going
on in TCPDump and libpcap, the library which
TCPDump relies upon. You’ll find the same thing with
certain other tools that are seen to be either stable or
old code. So there’s a lot going on in this area.

What’s great about TCPDump, and any other tool
that just collects traffic without any filtering, is that
it offers you the greatest flexibility for analysis. What

this means is that if you simply set the tool to run
and collect traffic, you have a chance to catch that
one-in-a-million intruder who is either backed by a
foreign intelligence service or organized crime (or
something to that effect) that is using the latest and
greatest tool. A lot of the tools I'm going to talk
about here can be beaten if you know how they
work. But what I would submit to you is that if you
run full collection, and the intruder has the ability to
talk to your site, you will catch the intruder — or at
least find evidence of that intruder’s activities. Once
we start moving away from collecting full content
data and start talking about tools that aggregate,
summarize, filter or alert data, you present an
opportunity for the intruder to evade you. So, if at
all possible, you should collect full content data with
little to no filtering, so you have a chance to catch
anybody that’s out there. It may take a while; it may
be weeks or months. This was the case when I was
in the military and with certain other activities I've
done. You may not know what you’re looking at
until a lot later. But if you’ve got that data, you can
catch these guys.

What’s also nice about full content data is you can
pretty much replay it through any other tool. So if

12
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 10

you have a tool that provides you with statistical
data, you can feed that full content data through,
perhaps collected at the T3 dump, and you’ll get
your statistics. Full content data also offers you the
greatest capability for post-incident network based
forensics. If you’re simply grabbing everything and
you don’t know what to look for at the time, but
later on you say: Oh, that’s it — he’s acting on port
12345. Then you’ve got that data collected.

Here's something to keep in mind, too. People
always say encryption will kill all sorts of intrusion
detection and network security monitoring; it
depends on what you’re looking for. Sure, the
encryption will obfuscate the content, but you’ll also
see other data that perhaps could be more
important, such as where is the guy coming from,
what time did he act and what machine he was
speaking to. Then you can take other measures to
find out what’s going on.

Could I have the next slide, please? So in order to
actually use TCPDump, you need to have a libpcap
installed. Libpcap is the packet capture library upon
which TCPDump drives for getting packets off the
wire. I have some instructions here. Basically, if you
go to tcpdump.org, you can download the latest and
greatest. The instructions I give work fine on a
stocked Redhead 7.3 box. I've said I’m a FreeBSD
person. But for the sake of this demonstration I did
everything on Redhead, since it’s pretty popular.

Just remember, when you’re done with installing the
PCAP, there isn't binary. It’s just a library, so once
you’re done, you’re ready to go on and do other
installations and tools.

Could I have the next slide, please? So you’ve got
libpcap installed. Now you can take a look at
TCPDump. I always recommend upgrading to the
latest version of TCPDump and other tools, as well
as the library in libpcap. There have been exploits in
tools that simply sit and collect traffic off the wire.
The most recent ones were exploits of Snort. It is
conceivable that you could have a machine that is
sitting, listening promiscuously on the wire, a
specially formatted packet passes by and it overruns
a buffer or takes some other action on your device
that’s running Snort or TCPDump, and causes that
box to launch a shell outwards towards the victim’s
machine.

Now, it would have to go out of an interface that
you would use for management. If you have a single
interface device and it has no IP address, typically
the exploit will fail. But there are vulnerabilities in

older versions of products like Snort, TCPDump and
TCPFlow that we won’t talk about today, which
have a vulnerability discovered recently. So I
recommend that you follow the instructions to
upgrade to the latest TCPDump. At the time of
writing this presentation, it was 3.7.2.

Could I have the next slide, please? So once you
have libpcap and TCPDump installed, how do you
run it? Well, there are certain switches that people
use quite often. Some of the common ones I’ve got
listed here. You specify the interface you want to
watch the traffic with using –i. If don't want
TCPDump to resolve IP address reports, you give it
a –n. If you’re running in test mode and you want to
capture a certain number of packets, you can pass a -
c with a number like 100 or 1,000, something like
that. Probably the single most important switch here
is the –s switch, which will tell you the size of the
packet to capture. If you don’t give it a size, it will
only capture 68 bytes, so it’s very important to

13
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 11

Figure 12

specify –s. You want to tell the file to write traffic
contents with a –w, and if you want to read, you can
use a –r. If you’re reading the traffic back, you can
use –tttt to show the date and time stamp. And to
see the packet contents, you can use a –X (capital X).

May I have the next slide, please? Here are a couple
of typical usage statements. We won’t go through
them, but basically we tell TCPDump to capture
some traffic, and then if you want to read it back in,
you can do so.

When reviewing raw TCPDump data, most people
prefer to use something like ethereal to take a look
at the data. I agree that this is a good idea. Unless
you’re looking through a huge amount of data … if
you’ve limited your view or you know a certain
combination of IPs or ports are of interest — then
you can use ethereal. There are things called
Berkeley Packet Filters, a syntax you can use to
modify TCPDump’s behavior either on the front end
when you’re collecting the traffic or on the backend
when you’re analyzing the traffic. So you could
tell TCPDump to look at host 10.1.1.1 and port 80,
for example.

Now, I'd like to discuss just a couple of notes on
actually collecting the traffic. I always recommend
that when you write traffic captures to disk that you
use a naming convention based on the time and date
that the capture started. Also, if you can, add in the
host name and the interface where the traffic was
collected. It’s also a good idea whenever you’re
collecting traffic to do it on a dedicated partition. I
always create a /nsm partition. If for some reason
the scripts that you use to control traffic collection
go bad, or you don’t remember to activate them for
whatever reason, if you fill up that /nsm partition,
you won’t crash the rest of the box. It’s a nasty thing
when you fill up the repartition on a Unix box.
So it’s always good to send your traffic to a
dedicated partition.

Can I have the next slide, please? What we have
here is just a sample of your TCPDump output.

Next slide, please. So if you’re thinking it's good
idea to collect all this traffic for the flexibility and
the information it provides, but you want a
commercial solution, the two that are most well-
known out there in the world are SandStorm
NetIntercept and the Niksun NetDetector. Again, let
me point out that I’m not paid by anybody; I don’t
have any of these boxes. Of the two that I’ve seen, I
tend to like the NetIntercept. I like the interface a

14
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 13

Figure 14

Figure 15

little bit better and it seems to be more oriented
towards the type of network-based forensics that I’m
advocating.

I know of major commercial entities, banks,
insurance companies, etc., that use one or more of
these boxes to grab everything that’s going in and
out of their networks, and do to that, provide that
network forensic or auditing capability.

Next slide, please. So we’ve talked about the full
content data collection. Now let’s move on to the
session data collection. The tool that I like to use is
called Argus. It’s been around since 1995 and it was
invented by a gentleman at Carnegie Mellon
University called Carter Boyd. Argus is great
because it offers you the ability to summarize traffic
— IP, TCP, UDP, ICMP traffic — in what you might
call a conversation or session format. It saves the
data in a proprietary format without storing headers
and parses it on the backend. What’s great about
this is that the format it stores it in is so compact; in
some cases, you could store months to years worth
of Argus data on a relatively small hard drive. Argus
is also great because it’s not fooled by encryption. It
sorts out these source ports, IP destination ports,
packets and bytes that were sent in either direction.
It doesn’t care what the content is. So Argus is great
because it keeps track of who talked to whom and
when. The way to beat Argus is to use some sort of
tool that's completely sessionless; Argus has a hard
time keeping track of that.

Next slide, please. If you want to install Argus, you
can download it at www.qosient.com/argus. The
version that’s listed there as being publicly available
is 2.0.5. Again, Argus is one of these tools where if
you go to the Web site, it doesn’t look like a whole
lot is going on. But if you go to the mailing list,
there’s a lot of development going on. I’ve actually
talked to Carter recently about trying to get a little
better public relations base on the Argus site so that
people will know that this great tool is undergoing
active development. Carter is incredibly responsive
to user input, and if you have any problems, he’s
very willing to help. So if you do have an interest in
Argus, I recommend you join the mailing list or
send an e-mail to Carter.

Next slide, please. Keep in mind that Argus is two
pieces: there’s a server and a client. The server piece
is the part that collects the traffic off the wire, and
the client piece is the part that you use to read the
traffic that was collected. This is not collecting
libpcap formatted data. In other words, if you use

15
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 16

Figure 17

Figure 18

Argus and you write the traffic to a file, you cannot
read it using TCPDump. You cannot read it using a
serial. Argus writes its data in its own format and
only the RA client can read that data. Now, there are
a lot of different options you can pass to RA in order
to format the data in various means — but again,
Argus is a single-purpose tool. It is trying to watch a
lot of traffic, summarize it and write what it sees
into tables.

This is something that is a little bit different from
other tools. Other tools will generate session data.
But the way they generally do it is by grabbing all of
the data and storing it to disk. And, on the backend,
in a batch mode, they park that data generally to
sessions. Argus is nice because it does it all in
memory. It doesn’t write anything to disk in terms of
headers or content or whatever. It sees traffic, it
builds tables in memory and it writes those tables to
the disk as it sees it. So I’ve got some usage here in
terms of flags to pass.

Could I have the next slide, please? On this slide I’ve
got two options of how you could use Argus. The
first is an example of using Argus in a live mode;
this is the way I do it. I simply start it up, run it
against an interface and tell it to write what it sees
into a file in the NSM partition. If you’ve already
collected traffic and you’d like to see what Argus
makes of it — say you’ve caught the traffic with
TCPDump — you can run Argus against that
TCPDump capture file and then Argus will produce
its own Argus-formatted file. So you'd have two files
— your libpcap file and your Argus file.

Could I have the next slide, please? Once you’ve
Argus to write the traffic to its proprietary format on
the hard drive, you use the RA client (and I imagine
that stands for read Argus) to take a look at that
traffic and figure out what’s going on. I’ve got the
syntax here, the different options that you can use.
The thing that’s nice about Argus is you can see as
little or as much as you want of Argus’s capabilities.
In its very, very basic mode it will simply say, I saw
a source IP, destination IP, source port, destination
port and maybe some packet counts. If you want,
though, you can tell Argus to show you the states of
the connections, meaning whether the connection
was simply a SIM, if it completed, if a three-way
handshake completed, if the session completed
gracefully, and whether the session ended with a reset.

I’ve been talking a lot in terms of TCP, but Argus
will also make its best guess as to what it sees with
UDP. So if there’s a DNS request and there’s a reply,

16
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 19

Figure 20

Figure 21

Argus will try to treat that as a session. It will also
keep track of ICNP traffic — it will make sure
certain traffic is request response. So you can almost
consider that a session. Of course, I’m starting to
blur boundaries here, but Argus is pretty amazing
once you start using it.

Could I have the next slide, please? Here’s an
example of using the RA client; I’m simply reading
in an Argus file called cap.argus. The interesting
thing about Argus is that the more you start to get
into it and you start to look at its other features, it’s
almost an art unto itself how to interpret some of
this data. For example, you could take a look at
Argus data and say, I want to see the flags that were
seen during the conversation. Well, if you seeing an
acroset, what does that mean? Well, it could mean
that someone scanned your network; they hit you
with a SIM packet. Your box replied with a Synac.
Right? Or it could mean that someone hit your box,
they hit you with a Synac, and there was nothing
else. So you have to start looking at the flags that
were set, maybe the number of packets that were
sent, and already you can see if you were collecting
full content data; you would be able to go back and
look at the raw traffic and see exactly what
happened. But because you’re moving a step up,
trying to save disk space and keep traffic statistics or
traffic data on a loaded network, you’re starting to
use Argus; you’re losing a little bit of the fidelity, but
it’s better than nothing.

Next slide, please. This slide shows you an example
of Argus output and has a couple of simple
connections, one to TCP and a couple of ICMP
packets that were sent.

Could I have the next slide, please? In terms of
commercial products, there really isn’t a whole lot of
activity in this field. I think there will be more now
that there are starting to become guidelines for
auditing network traffic. The one product that I
think really seems to understand this is called
StealthWatch, which is created by a company called
Lancope. The products I mentioned earlier,
NetIntercept and NetDetector, do offer a certain
level of session data, but they only do so by
collecting all the traffic, or as much traffic as you tell
them to collect, and then parsing it on the backend.
So keep in mind that tools like StealthWatch and
Argus will collect traffic without writing it all to
disk. They’ll keep the traffic in memory and then
summarize it.

17
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 22

Figure 23

Figure 24

Next slide, please. You can’t talk about security
monitoring or IDF without mentioning Snort, so I’ll
just quickly give you a little bit on Snort. I view
Snort as being an event detection engine. You’ve got
to augment it with third-party or do-it-yourself tools
to really create an enterprise-grade intrusion
detection system. The great thing about Snort,
though, is that it’s so transparent. You can see how it
works, read the code and signatures and make your
own signatures. You build trust in that system
because you know how it works. You can rapidly
modify it. You can add signatures. And, literally
within a minute of something new that is attacking
the whole Internet, you can go to the Snort-users
Web site and someone has posted a signature. It may
not be the best signature in the world, but you know
someone else will post another one and pretty soon
you’ve got a community consensus signature for
whatever activity is out there. So Snort is great for
that purpose.

Next slide, please. If you’ve never installed Snort,
I’ve got half a dozen instructions here on how to do
it. It's very simple. Snort is another product which
has had vulnerabilities recently. So I always
recommend downloading the latest version. As of
writing these slides, the latest version was the 2.0.1.

Could I have the next slide, please? Once you’ve run
through the instructions, test your Snort install by
doing a snort with a –V (capital V). If you get no
errors, then Snort is running. I’ve got some syntax
on the slide here for running Snort in a full alert
data mode. Keep in mind that this will simply write
the output into a file called snort/alert if you’ve
followed the instructions, and they create a file
called scan.log for alerts. This isn’t sufficient for an
enterprise, right? So you need to move on to
something else; we’ll talk about that shortly.

Could I have the next slide, please? This slide shows
you a raw example of what text-based Snort alerts
look like.

Next slide, please. So in terms of the commercial
side, this is where the vendors have products.
There’s been a lot of attention in this area, and has
been probably for the last five years, ever since ISS
came out with the first version. Real secure, the
wheel grid, created a net range or things like that. Of
the commercial IDSes out there, if I’m touting Snort,
I’m obviously going to speak about Sourcefire.
Sourcefire is the commercial version of Snort. It
takes the Snort engine, the same one you can
download for free that everybody uses, and it

18
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 25

Figure 26

Figure 27

packages it with all of the different enterprise-grade
products you need to run Snort in hierarchical
reporting, database event management style. Again,
I don’t sell Snort and I don’t sell Sourcefire. I just
think it’s the best that’s out there. Of the commercial
IDS products that predated Sourcefire, I think the
one that was most congruent with NSM principles
was Dragon, which is now built by Enterasys.

Could I have the next slide, please? We’re almost
done winding up the tools discussion. Now let's talk
about statistical data. Statistical data is what you
normally think about when doing network
performance monitoring or health monitoring,
rather than NSM. The reason why I mention it here
is that if you don’t control the routers, or you don’t
control the firewalls in your organization, but you’d
sort of like to know what’s the level of traffic going
through those devices or near those devices, you can
collect certain types of data with products like trafd
or trafshow. For example, trafd will show you
statistics that are similar to Cisco accounting data. It
collects all this traffic in memory. So it’s like the top
talkers -- what is the most active or reports the most
active and so forth. You can then dump that to disk
periodically. If you want to see it in a real-time mode
— what’s happening right now — you can use
trafshow.

I used trafshow. A customer would call me and say
his bandwidth was terrible and would want to know
what was going on. I would log into the sensor, file
trafshow and see that there was a huge peer-to-peer
session going on. Someone was downloading the
latest version of Linux or a movie or something like
that. I like these because you can secure (inaudible)
in the sensor and look at both of them in a text
terminal.

I tried to install these onto my Redhead 7.3. Actually
I tried to install trafd, but it didn’t compile clean. If
you’re using FreeBSD, you can install both of these
products from their respective ports in user ports
net. I was able to install trafshow without a problem
on my Redhead 7.3 test box.

Could I have the next slide, please? You should be
looking at the slide that says trafd use and trafshow
use. Both of these are pretty simple to use. You
simply fire them up and let them run against a
certain interface. With trafd, it’s a game and it sits in
the background and you view the traffic using
trafstat. With trafshow, because it’s a real-time tool,
you simply run trafshow, and it will show you the
traffic it sees in real time.

19
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 28

Figure 29

Figure 30

20
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 31

Figure 32

Could I have the next slide, please? I’ve got a couple
of screen captures here. The first screen capture is
trafd. I’ve edited the traffic here and truncated the
first op tabs, so you don’t exactly know where I am
or where I may have been. But as you can see,
you’ll see a from address, a from port, a to address
and a to port with a protocol, and then packet and
byte counts.

Next slide, please. Here’s trafshow. This is the real-
time version. This is the one that will show you right
now who is the most active in terms of bytes or
packets per second and things like that.

Could I have the next slide, please? So in terms of
commercial products, I really don’t know of a whole
lot that do this type of data. Most of the commercial
products out there are for the health and welfare of
the network. Of the open source products besides
trafd and trafshow, you may want to take a look at
ntop. You can download it at ntop.org. It is a
statistics-oriented program, but it’s not exactly for
security purposes; however, take a look at it.
Lancope’s StealthWatch is another product that is
starting to show some promise in the statistics area.

Could I have the next slide, please? The final tool
we’ll talk about is Sguil. Sguil was written by
analysts, for analysts. The lead developer is a friend
of mine named Bamm Visscher. We worked together
at Ball Aerospace. The idea behind Sguil is to try to
give you all the data you need to make a decision
when you’re doing network security monitoring on
a single screen. And if it’s not there on your screen,
you only need one or two mouse clicks to get that
data. It’s a client server architecture, meaning you
typically run the server on a Unix system. You can
run the client, which is the interface to that NSM
data, on a Unix box or even on a Windows box. My
role with the Sguil product is writing all the
documentation, which is fine, obviously. But I have
written documentation on how you can access Sguil
data running on a Unix server from your favorite
Windows box, which is the way I do it. Bamm has
also set up a demo server to which you can connect.
You simply follow the instructions for setting up the
client and you can take a look at the demo server.

Could I have the next slide, please? We consider
Sguil to be very beta. It’s only in version 0.2.5 right
now. But there are complete instructions to start
from scratch on the hard disk install. Build a
Redhead 7.3 following the directions and you will
finish with a complete Sguil install. There is work
being done right now, though, to ease Sguil inflation
and have it run on other platforms.

21
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 33

Figure 34

Figure 35

22
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 36

Figure 37

Could I have the next slide, please? This is just a
screen capture showing Sguil. The nice thing about
it is that you’ve got different types of data all in the
same place. Let's say you’ve got events coming from
Snort. You’ve got those in a couple of panes, either
simply alerts or port scans. You’ve got full content
data in the form of packets that causes the alert to
fire. You’ve got that in the lower right-hand side. If
you want session data, you can query on any of the
fields — IP address, port, and so forth — and pop
up session data in another tap on the Sguil interface.
This session data is not collected by Argus. We use
the keep stat feature of the stream port-to-processor
in Snort to collect that data, but there’s no reason
why we couldn’t modify it to collect Argus data as
well. We’ve also got a chat interface, so all the
analysts who are using Sguil at the same time can
talk to each other. And, you can use Sguil to classify
events by type. Is it a reconnaissance event? Is it an
intrusion attempt? Is it denial of service? Is it a
virus? All of this gets marked into a database
they’ve built along with Sguil and you can query it
to your heart’s content.

Could I have the next slide, please? So slide 39 is
about commercial options for NSM vendors — I say
there aren’t any. I'm not trying to sell Sguil. This
isn’t a commercial for it, but there aren’t any
vendors who are really trying to pull all this
together into one package. If you’re looking for
books, I am working on a book called The Tao of
Network Security Monitoring, which will illustrate
these concepts. I’m also working on a book called
Real Digital Forensics, which will be a case-based
approach to forensics and will include a couple of
case studies using NSM monitoring skill sets.

In conclusion, I’d like to think that NSM is a way
that you can augment whatever work you’re doing
now. It doesn’t replace everything that you have
deployed. It doesn’t rip out your current
architecture. It gives you a couple other options that
you can add to enhance your current collection
options. The best thing to do is to pick the parts of
NSM that you like and try to deploy them — and
keep in mind that doing something is always better
than nothing. I’d like to think of security as a game
of being just good enough, and hopefully that will
give you enough data to scope intermediate
intrusions.

And with that, I’d like to turn it back over to Crystal
and take some questions.

23
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 38

Figure 39

Figure 40

Question & Answer Session

with Richard Bejtlick

MODERATOR: Great. Thank you, Richard. You can
submit your questions at any time by clicking on the
“Ask a Question” link on the lower left corner of the
screen.

That was a great presentation. We went a little long
though, so we only have time for one or two questions.

So, I’d like to ask you, what do you think about
intrusion prevention systems?

BEJTLICK: Say, you’re an intrusion detection
vendor and you go to a client’s site to talk to the
client about your product. Of course, after hearing
about all your wonderful detection capabilities, the
client will say, "that’s nice." If you can see it, I want
to stop it. Well, that’s a pretty rational explanation. I
mean, it’s nice to know that things are happening.
But it’s always better to prevent them. So I think we
have vendors who saw if they simply changed the
middle word in IDS from detection to prevention,
they could satisfy more customers and be able to
say, "Yeah, we can prevent it, we can see it." The
problem is in terms of simply a security model.
There have always been intrusion prevention
systems. There have always had firewalls. Anything
that provides access control is an intrusion
prevention system. The problem with IPSes, as I see
it, is they have all the same faults of an intrusion
detection system -- meaning if they can’t see it, they
can’t stop it, and they have more weaknesses in
terms of if they stop the wrong thing. Let’s say they
have a false positive and they fire on something they
shouldn’t have. Then, not only have they denied
traffic — not only do they have that false positive —
they now have denied traffic.

Now, I’m not going to totally shut them off, because
right now we need this -- but people don’t really do
it. All ports will have to defend themselves. There
just really is not a boundary anymore. We’re seeing
with road warriors bringing their laptops into work.
You know, they’re at home, they connect to the
Internet, they get infected by a virus and they VPN
into their organization and they start spreading a
virus. So every machine will have to defend itself. So
to the extent that there are products — things like
systrace or other products that defend the host
knowing that the host can be compromised — if
they're intrusion prevention systems, then I’m all
for them.

MODERATOR: So is IDS dead?

BEJTLICK: No, IDS is not dead. I’m referring to the
Gartner article. There’s no way that IDS is dead. The
only reason that people are having trouble with IDS
is that they are, in many cases, difficult to set up —
and you don’t get much value from them if they’re
not configured properly and if nobody looks at
them. I completely share people’s frustration with
IDS. It’s very frustrating to see an event fire and
have no idea what it is, what caused it or what to do
next. That’s the whole reason I came up with this
NSM presentation and why I’m writing a book
about it. The idea behind NSM is to ask, what do I
do next? Where did this event come from? What else
is related to it? What else has been happening? What
sort of supporting evidence do I have to make a
decision and to scope and remediate this incident?
So to the extent that we can supplement IDS with
these network security monitoring techniques, I
think we’ll all be happier.

MODERATOR: Great. Thank you for your insight,
Richard. Do you have any final comments for our
listeners?

BEJTLICK: No. Thank you very much for attending.

MODERATOR: Thank you. This concludes today’s
webcast with Richard Bejtlick. If you have any
comments on this webcast or suggestions for
future webcasts, please e-mail us at:
webcast@searchsecurity.com.

24
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools Sponsored By:

Figure 41

Before we go, I’d like to encourage you to consider
attending Information Security Magazine’s Security
Decisions conference hosted by SearchSecurity.com
in Chicago October 15th through the 17th. We have a
great lineup of speakers who will provide you with
expert insights, and attendance is free for those who
qualify. Stop by www.securityconf.com to learn
more. I hope to see you there. Thanks again to
today’s sponsor, Sprint, and to our guest speaker,
Richard Bejtlick — and thank you for joining us.
Have a great rest of the day.

25
SearchSecurity IT Briefing:
Implementing Network Security Monitoring
with Open Source Tools

Question & Answer Session with Richard Bejtlick

Sponsored By:

About TechTarget
We deliver the information IT pros need to be successful.

TechTarget publishes targeted media that address your need for information and resources. Our network of industry-specific Web
sites gives enterprise IT professionals access to experts and peers, original content and links to relevant information from across
the Internet. Our conferences give you access to vendor-neutral, expert commentary and advice on the issues and challenges you
face daily. Practical technical advice and expert insights are distributed via more than 100 specialized e-mail newsletters, and our
Webcasts allow IT pros to ask questions of technical experts in real time.

What makes us unique
TechTarget is squarely focused on the enterprise IT space. Our team of editors and network of industry experts provide the richest,
most relevant content to IT professionals. We leverage the immediacy of the Web, the networking and face-to-face opportunities of
conferences, the expert interaction of Webcasts and Web radio, the laser-targeting of e-mail newsletters and the richness and depth
of our print media to create compelling and actionable information for enterprise IT professionals. For more information, visit
www.techtarget.com.

About SearchSecurity.com
Information Security magazine is now part of TechTarget, bringing together the media leaders in the information security space.
SearchSecurity.com and Information Security Magazine provide IT security professionals with the information they need to keep their
corporate data and assets secure. SearchSecurity.com and InfoSec Magazine are the essential resources for IT security professionals.

Figure 42

	Table of Contents
	Implementing Network Security Monitoring ...
	Question & Answer Session

