SQL Tutorial

SELECT Statement Basics

(http://www.firstsql.com/tutor1.htm)

In the subsequent text, the following 3 example tables are used:
	p Table (parts)
	s Table (suppliers)
	sp Table (suppliers & parts)

	pno
descr
color
P1
Widget
Blue
P2
Widget
Red
P3
Dongle
Green

	sno
name
city
S1
Pierre
Paris
S2
John
London
S3
Mario
Rome

	sno
pno
qty
S1
P1
NULL
S2
P1
200
S3
P1
1000
S3
P2
200

The SQL SELECT statement queries data from tables in the database. The statement begins with the SELECT keyword. The basic SELECT statement has 3 clauses:

· SELECT

· FROM

· WHERE

The SELECT clause specifies the table columns that are retrieved. The FROM clause specifies the tables accessed. The WHERE clause specifies which table rows are used. The WHERE clause is optional; if missing, all table rows are used.

For example,

SELECT name FROM s WHERE city='Rome'
This query accesses rows from the table - s. It then filters those rows where the city column contains Rome. Finally, the query retrieves the name column from each filtered row. Using the example s table, this query produces:

	name

	Mario

A detailed description of the query actions:

· The FROM clause accesses the s table. Contents:

	sno
	name
	city

	S1
	Pierre
	Paris

	S2
	John
	London

	S3
	Mario
	Rome

· The WHERE clause filters the rows of the FROM table to use those whose city column contains Rome. This chooses a single row from s:

	sno
	name
	city

	S3
	Mario
	Rome

· The SELECT clause retrieves the name column from the rows filtered by the WHERE clause:

	name

	Mario

SELECT Clause

The SELECT clause is mandatory. It specifies a list of columns to be retrieved from the tables in the FROM clause. It has the following general format:

SELECT [ALL|DISTINCT] select-list
select-list is a list of column names separated by commas. The ALL and DISTINCT specifiers are optional. DISTINCT specifies that duplicate rows are discarded. A duplicate row is when each corresponding select-list column has the same value. The default is ALL, which retains duplicate rows.

For example,

SELECT descr, color FROM p
The column names in the select list can be qualified by the appropriate table name:

SELECT p.descr, p.color FROM p
A column in the select list can be renamed by following the column name with the new name. For example:

SELECT name supplier, city location FROM s
This produces:

	supplier
	location

	Pierre
	Paris

	John
	London

	Mario
	Rome

A special select list consisting of a single '*' requests all columns in all tables in the FROM clause. For example,

SELECT * FROM sp

	sno
	pno
	qty

	S1
	P1
	NULL

	S2
	P1
	200

	S3
	P1
	1000

	S3
	P2
	200

The * delimiter will retrieve just the columns of a single table when qualified by the table name. For example:

SELECT sp.* FROM sp
This produces the same result as the previous example.

An unqualified * cannot be combined with other elements in the select list; it must be stand alone. However, a qualified * can be combined with other elements. For example,

SELECT sp.*, city

FROM sp, s

WHERE sp.sno=s.sno
	sno
	pno
	qty
	city

	S1
	P1
	NULL
	Paris

	S2
	P1
	200
	London

	S3
	P1
	1000
	Rome

	S3
	P2
	200
	Rome

Note: this is an example of a query joining 2 tables.

FROM Clause

The FROM clause always follows the SELECT clause. It lists the tables accessed by the query. For example,

SELECT * FROM s
When the From List contains multiple tables, commas separate the table names. For example,

SELECT sp.*, city

FROM sp, s

WHERE sp.sno=s.sno
When the From List has multiple tables, they must be joined together.

Correlation Names

Like columns in the select list, tables in the from list can be renamed by following the table name with the new name. For example,

SELECT supplier.name FROM s supplier
The new name is known as the correlation (or range) name for the table. Self joins require correlation names.

WHERE Clause

The WHERE clause is optional. When specified, it always follows the FROM clause. The WHERE clause filters rows from the FROM clause tables. Omitting the WHERE clause specifies that all rows are used.

Following the WHERE keyword is a logical expression, also known as a predicate.

The predicate evaluates to a SQL logical value -- true, false or unknown. The most basic predicate is a comparison:

color = 'Red'
This predicate returns:

· true -- if the color column contains the string value -- 'Red',

· false -- if the color column contains another string value (not 'Red'), or

· unknown -- if the color column contains null.

Generally, a comparison expression compares the contents of a table column to a literal, as above. A comparison expression may also compare two columns to each other. Table joins use this type of comparison.

The = (equals) comparison operator compares two values for equality. Additional comparison operators are:

· > -- greater than

· < -- less than

· >= -- greater than or equal to

· <= -- less than or equal to

· <> -- not equal to

For example,

SELECT * FROM sp WHERE qty >= 200
	sno
	pno
	qty

	S2
	P1
	200

	S3
	P1
	1000

	S3
	P2
	200

Note: In the sp table, the qty column for one of the rows contains null. The comparison - qty >= 200, evaluates to unknown for this row. In the final result of a query, rows with a WHERE clause evaluating to unknown (or false) are eliminated (filtered out).

Both operands of a comparison should be the same data type, however automatic conversions are performed between numeric, datetime and interval types. The CAST expression provides explicit type conversions.

Extended Comparisons

In addition to the basic comparisons described above, SQL supports extended comparison operators -- BETWEEN, IN, LIKE and IS NULL.

· BETWEEN Operator

The BETWEEN operator implements a range comparison, that is, it tests whether a value is between two other values. BETWEEN comparisons have the following format:

value-1 [NOT] BETWEEN value-2 AND value-3
This comparison tests if value-1 is greater than or equal to value-2 and less than or equal to value-3. It is equivalent to the following predicate:

value-1 >= value-2 AND value-1 <= value-3
Or, if NOT is included:

NOT (value-1 >= value-2 AND value-1 <= value-3)
For example,

SELECT *

FROM sp

WHERE qty BETWEEN 50 and 500
	sno
	pno
	qty

	S2
	P1
	200

	S3
	P2
	200

· IN Operator

The IN operator implements comparison to a list of values, that is, it tests whether a value matches any value in a list of values. IN comparisons have the following general format:

value-1 [NOT] IN (value-2 [, value-3] ...)
This comparison tests if value-1 matches value-2 or matches value-3, and so on. It is equivalent to the following logical predicate:

value-1 = value-2 [OR value-1 = value-3] ...
or if NOT is included:

NOT (value-1 = value-2 [OR value-1 = value-3] ...)
For example,

SELECT name FROM s WHERE city IN ('Rome','Paris')
	name

	Pierre

	Mario

· LIKE Operator

The LIKE operator implements a pattern match comparison, that is, it matches a string value against a pattern string containing wild-card characters.

The wild-card characters for LIKE are percent -- '%' and underscore -- '_'. Underscore matches any single character. Percent matches zero or more characters.

Examples,

	Match Value
	Pattern
	Result

	'abc'
	'_b_'
	True

	'ab'
	'_b_'
	False

	'abc'
	'%b%'
	True

	'ab'
	'%b%'
	True

	'abc'
	'a_'
	False

	'ab'
	'a_'
	True

	'abc'
	'a%_'
	True

	'ab'
	'a%_'
	True

LIKE comparison has the following general format:

value-1 [NOT] LIKE value-2 [ESCAPE value-3]
All values must be string (character). This comparison uses value-2 as a pattern to match value-1. The optional ESCAPE sub-clause specifies an escape character for the pattern, allowing the pattern to use '%' and '_' (and the escape character) for matching. The ESCAPE value must be a single character string. In the pattern, the ESCAPE character precedes any character to be escaped.

For example, to match a string ending with '%', use:

x LIKE '%/%' ESCAPE '/'
A more contrived example that escapes the escape character:

y LIKE '/%//%' ESCAPE '/'
... matches any string beginning with '%/'.

The optional NOT reverses the result so that:

z NOT LIKE 'abc%'
is equivalent to:

NOT z LIKE 'abc%'
· IS NULL Operator

A database null in a table column has a special meaning -- the value of the column is not currently known (missing), however its value may be known at a later time. A database null may represent any value in the future, but the value is not available at this time. Since two null columns may eventually be assigned different values, one null can't be compared to another in the conventional way. The following syntax is illegal in SQL:

WHERE qty = NULL
A special comparison operator -- IS NULL, tests a column for null. It has the following general format:

value-1 IS [NOT] NULL
This comparison returns true if value-1 contains a null and false otherwise. The optional NOT reverses the result:

value-1 IS NOT NULL
is equivalent to:

NOT value-1 IS NULL
For example,

SELECT * FROM sp WHERE qty IS NULL
	sno
	pno
	qty

	S1
	P1
	NULL

Logical Operators

The logical operators are AND, OR, NOT. They take logical expressions as operands and produce a logical result (True, False, Unknown). In logical expressions, parentheses are used for grouping.

· AND Operator

The AND operator combines two logical operands. The operands are comparisons or logical expressions. It has the following general format:

predicate-1 AND predicate-2
AND returns:

· True -- if both operands evaluate to true

· False -- if either operand evaluates to false

· Unknown -- otherwise (one operand is true and the other is unknown or both are unknown)

The truth table for AND:

	AND
	 T
	 F
	 U

	 T
	 T
	 F
	 U

	 F
	 F
	 F
	 F

	 U
	 U
	 F
	 U

For example,

SELECT *

FROM sp

WHERE sno='S3' AND qty < 500
	sno
	pno
	qty

	S3
	P2
	200

· OR Operator

The OR operator combines two logical operands. The operands are comparisons or logical expressions. It has the following general format:

predicate-1 OR predicate-2
OR returns:

· True -- if either operand evaluates to true

· False -- if both operands evaluate to false

· Unknown -- otherwise (one operand is false and the other is unknown or both are unknown)

The truth table for OR:

	OR
	 T
	 F
	 U

	 T
	 T
	 T
	 T

	 F
	 T
	 F
	 U

	 U
	 T
	 U
	 U

For example,

SELECT *

FROM s

WHERE sno='S3' OR city = 'London'
	sno
	name
	city

	S2
	John
	London

	S3
	Mario
	Rome

AND has a higher precedence than OR, so the following expression:

a OR b AND c
is equivalent to:

a OR (b AND c)
· NOT Operator

The NOT operator inverts the result of a comparison expression or a logical expression. It has the following general format:

NOT predicate-1
The truth table for NOT:

	NOT
	

	 T
	 F

	 F
	 T

	 U
	 U

Example query:

SELECT *

FROM sp

WHERE NOT sno = 'S3'
	sno
	pno
	qty

	S1
	P1
	NULL

	S2
	P1
	200

ORDER BY Clause

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The ORDER BY clause requests sorting for the results of a query.

When the ORDER BY clause is missing, the result rows from a query have no defined order (they are unordered). The ORDER BY clause defines the ordering of rows based on columns from the SELECT clause. The ORDER BY clause has the following general format:

ORDER BY column-1 [ASC|DESC] [column-2 [ASC|DESC]] ...
column-1, column-2, ... are column names specified (or implied) in the select list. If a select column is renamed (given a new name in the select entry), the new name is used in the ORDER BY list. ASC and DESC request ascending or descending sort for a column. ASC is the default.

ORDER BY sorts rows using the ordering columns in left-to-right, major-to-minor order. The rows are sorted first on the first column name in the list. If there are any duplicate values for the first column, the duplicates are sorted on the second column (within the first column sort) in the Order By list, and so on. There is no defined inner ordering for rows that have duplicate values for all Order By columns.

Database nulls require special processing in ORDER BY. A null column sorts higher than all regular values; this is reversed for DESC.

In sorting, nulls are considered duplicates of each other for ORDER BY. Sorting on hidden information makes no sense in utilizing the results of a query. This is also why SQL only allows select list columns in ORDER BY.

For convenience when using expressions in the select list, select items can be specified by number (starting with 1). Names and numbers can be intermixed.

Example queries:

SELECT * FROM sp ORDER BY 3 DESC
	sno
	pno
	qty

	S1
	P1
	NULL

	S3
	P1
	1000

	S3
	P2
	200

	S2
	P1
	200

SELECT name, city FROM s ORDER BY name
	name
	city

	John
	London

	Mario
	Rome

	Pierre
	Paris

SELECT * FROM sp ORDER BY qty DESC, sno
	sno
	pno
	qty

	S1
	P1
	NULL

	S3
	P1
	1000

	S2
	P1
	200

	S3
	P2
	200

Expressions

In the previous subsection on basic Select statements, column values are used in the select list and where predicate. SQL allows a scalar value expression to be used instead. A SQL value expression can be a:

· Literal -- quoted string, numeric value, datetime value

· Function Call -- reference to builtin SQL function

· System Value -- current date, current user, ...

· Special Construct -- CAST, COALESCE, CASE

· Numeric or String Operator -- combining sub-expressions

Literals

A literal is a typed value that is self-defining. SQL supports 3 types of literals:

· String -- ASCII text framed by single quotes ('). Within a literal, a single quote is represented by 2 single quotes ('').

· Numeric -- numeric digits (at least 1) with an optional decimal point and exponent. The format is

[ddd][[.]ddd][E[+|-]ddd]
Numeric literals with no exponent or decimal point are typed as Integer. Those with a decimal point but no exponent are typed as Decimal. Those with an exponent are typed as Float.

· Datetime -- datetime literals begin with a keyword identifying the type, followed by a string literal:

· Date -- DATE 'yyyy-mm-dd'

· Time -- TIME 'hh:mm:ss[.fff]'

· Timestamp -- TIMESTAMP 'yyyy-mm-dd hh:mm:ss[.fff]'

· Interval -- INTERVAL [+|-] string interval-qualifier

The format of the string in the Interval literal depends on the interval qualifier. For year-month intervals, the format is: 'dd[-dd]'. For day-time intervals, the format is '[dd]dd[:dd[:dd]][.fff]'.

SQL Functions

SQL has the following builtin functions:

· SUBSTRING(exp-1 FROM exp-2 [FOR exp-3])

Extracts a substring from a string - exp-1, beginning at the integer value - exp-2, for the length of the integer value - exp-3. exp-2 is 1 relative. If FOR exp-3 is omitted, the length of the remaining string is used. Returns the substring.

· UPPER(exp-1)

Converts any lowercase characters in a string - exp-1 to uppercase. Returns the converted string.

· LOWER(exp-1)

Converts any uppercase characters in a string - exp-1 to lowercase. Returns the converted string.

· TRIM([LEADING|TRAILING|BOTH] [FROM] exp-1)
TRIM([LEADING|TRAILING|BOTH] exp-2 FROM exp-1)

Trims leading, trailing or both characters from a string - exp-1. The trim character is a space, or if exp-2 is specified, it supplies the trim character. If LEADING, TRAILING, BOTH are missing, the default is BOTH. Returns the trimmed string.

· POSITION(exp-1 IN exp-2)

Searches a string - exp-2, for a match on a substring - exp-2. Returns an integer, the 1 relative position of the match or 0 for no match.

· CHAR_LENGTH(exp-1)
CHARACTER_LENGTH(exp-1)

Returns the integer number of characters in the string - exp-1.

· OCTET_LENGTH(exp-1)

Returns the integer number of octets (8-bit bytes) needed to represent the string - exp-1.

· EXTRACT(sub-field FROM exp-1)

Returns the numeric sub-field extracted from a datetime value - exp-1. sub-field is YEAR, QUARTER, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR or TIMEZONE_MINUTE. TIMEZONE_HOUR and TIMEZONE_MINUTE extract sub-fields from the Timezone portion of exp-1. QUARTER is (MONTH-1)/4+1.

System Values

SQL System Values are reserved names used to access builtin values:

· USER -- returns a string with the current SQL authorization identifier.

· CURRENT_USER -- same as USER.

· SESSION_USER -- returns a string with the current SQL session authorization identifier.

· SYSTEM_USER -- returns a string with the current operating system user.

· CURRENT_DATE -- returns a Date value for the current system date.

· CURRENT_TIME -- returns a Time value for the current system time.

· CURRENT_TIMESTAMP -- returns a Timestamp value for the current system timestamp.

SQL Special Constructs

SQL supports a set of special expression constructs:

· CAST(exp-1 AS data-type)

Converts the value - exp-1, into the specified date-type. Returns the converted value.

· COALESCE(exp-1, exp-2 [, exp-3] ...)

Returns exp-1 if it is not null, otherwise returns exp-2 if it is not null, otherwise returns exp-3, and so on. Returns null if all values are null.

· CASE exp-1 { WHEN exp-2 THEN exp-3 } ... [ELSE exp-4] END
CASE { WHEN predicate-1 THEN exp-3 } ... [ELSE exp-4] END

The first form of the CASE construct compares exp-1 to exp-2 in each WHEN clause. If a match is found, CASE returns exp-3 from the corresponding THEN clause. If no matches are found, it returns exp-4 from the ELSE clause or null if the ELSE clause is omitted.

The second form of the CASE construct evaluates predicate-1 in each WHEN clause. If the predicate is true, CASE returns exp-3 from the corresponding THEN clause. If no predicates evaluate to true, it returns exp-4 from the ELSE clause or null if the ELSE clause is omitted.

Expression Operators

Expression operators combine 2 subexpressions to calculate a value. There are 2 basic types -- numeric and string.

· String Operators

There is just one string operator - ||, for string concatenation. Both operands of || must be strings. The operator concatenates the second string to the end of the first. For example,

'ab' || 'cd' ==> 'abcd'
· Numeric operators

The numeric operators are common to most languages:

· + -- addition

· - -- subtraction

· * -- multiplication

· / -- division

All numeric operators can be used on the standard numeric data types:

· Integer -- TINYINT, SMALLINT, INT, BIGINT

· Exact -- NUMERIC, DECIMAL

· Approximate -- FLOAT, DOUBLE, REAL

Automatic conversion is provided for numeric operators. If an integer type is combined with an exact type, the integer is converted to exact before the operation. If an exact (or integer) type is combined with an approximate type, it is converted to approximate before the operation.

The + and - operators can also be used as unary operators.

The numeric operators can be applied to datetime values, with some restrictions. The basic rules for datetime expressions are:

· A date, time, timestamp value can be added to an interval; result is a date, time, timestamp value.

· An interval value can be subtracted from a date, time, timestamp value; result is a date, time, timestamp value.

· An interval value can be added to or subtracted from another interval; result is an interval value.

· An interval can be multiplied by or divided by a standard numeric value; result is an interval value.

A special form can be used to subtract a date, time, timestamp value from another date, time, timestamp value to yield an interval value:

(datetime-1 - datetime-2) interval-qualifier
The interval-qualifier specifies the specific interval type for the result.

A second special form allows a ? parameter to be typed as an interval:

? interval-qualifier
In expressions, parentheses are used for grouping.

Joining Tables

The FROM clause allows more than 1 table in its list, however simply listing more than one table will very rarely produce the expected results. The rows from one table must be correlated with the rows of the others. This correlation is known as joining.

An example can best illustrate the rationale behind joins. The following query:

SELECT * FROM sp, p
Produces:

	sno
	pno
	qty
	pno
	descr
	color

	S1
	P1
	NULL
	P1
	Widget
	Blue

	S1
	P1
	NULL
	P2
	Widget
	Red

	S1
	P1
	NULL
	P3
	Dongle
	Green

	S2
	P1
	200
	P1
	Widget
	Blue

	S2
	P1
	200
	P2
	Widget
	Red

	S2
	P1
	200
	P3
	Dongle
	Green

	S3
	P1
	1000
	P1
	Widget
	Blue

	S3
	P1
	1000
	P2
	Widget
	Red

	S3
	P1
	1000
	P3
	Dongle
	Green

	S3
	P2
	200
	P1
	Widget
	Blue

	S3
	P2
	200
	P2
	Widget
	Red

	S3
	P2
	200
	P3
	Dongle
	Green

Each row in sp is arbitrarily combined with each row in p, giving 12 result rows (4 rows in sp X 3 rows in p.) This is known as a cartesian product.

A more usable query would correlate the rows from sp with rows from p, for instance matching on the common column -- pno:

SELECT *

FROM sp, p

WHERE sp.pno = p.pno
This produces:

	sno
	pno
	qty
	pno
	descr
	color

	S1
	P1
	NULL
	P1
	Widget
	Blue

	S2
	P1
	200
	P1
	Widget
	Blue

	S3
	P1
	1000
	P1
	Widget
	Blue

	S3
	P2
	200
	P2
	Widget
	Red

Rows for each part in p are combined with rows in sp for the same part by matching on part number (pno). In this query, the WHERE Clause provides the join predicate, matching pno from p with pno from sp.

The join in this example is known as an inner equi-join. equi meaning that the join predicate uses = (equals) to match the join columns. Other types of joins use different comparison operators. For example, a query might use a greater-than join.

The term inner means only rows that match are included. Rows in the first table that have no matching rows in the second table are excluded and vice versa (in the above join, the row in p with pno P3 is not included in the result.) An outer join includes unmatched rows in the result.

More than 2 tables can participate in a join. This is basically just an extension of a 2 table join. 3 tables -- a, b, c, might be joined in various ways:

· a joins b which joins c

· a joins b and the join of a and b joins c

· a joins b and a joins c

Plus several other variations. With inner joins, this structure is not explicit. It is implicit in the nature of the join predicates. With outer joins, it is explicit;

This query performs a 3 table join:

SELECT name, qty, descr, color

FROM s, sp, p

WHERE s.sno = sp.sno

AND sp.pno = p.pno
It joins s to sp and sp to p, producing:

	name
	qty
	descr
	color

	Pierre
	NULL
	Widget
	Blue

	John
	200
	Widget
	Blue

	Mario
	1000
	Widget
	Blue

	Mario
	200
	Widget
	Red

Note that the order of tables listed in the FROM clause should have no significance, nor does the order of join predicates in the WHERE clause.

Outer Joins

An inner join excludes rows from either table that don't have a matching row in the other table. An outer join provides the ability to include unmatched rows in the query results. The outer join combines the unmatched row in one of the tables with an artificial row for the other table. This artificial row has all columns set to null.

The outer join is specified in the FROM clause and has the following general format:

table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ON predicate-1
predicate-1 is a join predicate for the outer join. It can only reference columns from the joined tables. The LEFT, RIGHT or FULL specifiers give the type of join:

· LEFT -- only unmatched rows from the left side table (table-1) are retained

· RIGHT -- only unmatched rows from the right side table (table-2) are retained

· FULL -- unmatched rows from both tables (table-1 and table-2) are retained

Outer join example:

SELECT pno, descr, color, sno, qty

FROM p LEFT OUTER JOIN sp ON p.pno = sp.pno
	pno
	descr
	color
	sno
	qty

	P1
	Widget
	Blue
	S1
	NULL

	P1
	Widget
	Blue
	S2
	200

	P1
	Widget
	Blue
	S3
	1000

	P2
	Widget
	Red
	S3
	200

	P3
	Dongle
	Green
	NULL
	NULL

Self Joins

A query can join a table to itself. Self joins have a number of real world uses. For example, a self join can determine which parts have more than one supplier:

SELECT DISTINCT a.pno

FROM sp a, sp b

WHERE a.pno = b.pno

AND a.sno <> b.sno
	pno

	P1

As illustrated in the above example, self joins use correlation names to distinguish columns in the select list and where predicate. In this case, the references to the same table are renamed - a and b.

Self joins are often used in subqueries.

Subqueries

Subqueries are an identifying feature of SQL. It is called Structured Query Language because a query can nest inside another query.

There are 3 basic types of subqueries in SQL:

· Predicate Subqueries -- extended logical constructs in the WHERE (and HAVING) clause.

· Scalar Subqueries -- standalone queries that return a single value; they can be used anywhere a scalar value is used.

· Table Subqueries -- queries nested in the FROM clause.

All subqueries must be enclosed in parentheses.

Predicate Subqueries

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct. Except for EXISTS, predicate subqueries must retrieve one column (in their select list.)

· IN Subquery

The IN Subquery tests whether a scalar value matches the single query column value in any subquery result row. It has the following general format:

value-1 [NOT] IN (query-1)
Using NOT is equivalent to:

NOT value-1 IN (query-1)
For example, to list parts that have suppliers:

SELECT *

FROM p

WHERE pno IN (SELECT pno FROM sp)
	pno
	descr
	color

	P1
	Widget
	Blue

	P2
	Widget
	Red

The Self Join example in the previous subsection can be expressed with an IN Subquery:

SELECT DISTINCT pno

FROM sp a

WHERE pno IN (SELECT pno FROM sp b WHERE a.sno <> b.sno)
	pno

	P1

Note that the subquery where clause references a column in the outer query (a.sno). This is known as an outer reference. Subqueries with outer references are sometimes known as correlated subqueries.

· Quantified Subqueries

A quantified subquery allows several types of tests and can use the full set of comparison operators. It has the following general format:

value-1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query-1)
The comparison operator specifies how to compare value-1 to the single query column value from each subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY and SOME must match at least one row in the subquery. ALL must match all rows in the subquery.

For example, to list all parts that have suppliers:

SELECT *

FROM p

WHERE pno =ANY (SELECT pno FROM sp)
	pno
	descr
	color

	P1
	Widget
	Blue

	P2
	Widget
	Red

A self join is used to list the supplier with the highest quantity of each part (ignoring null quantities):

SELECT *

FROM sp a

WHERE qty >ALL (SELECT qty FROM sp b

 WHERE a.pno = b.pno

 AND a.sno <> b.sno

 AND qty IS NOT NULL)
	sno
	pno
	qty

	S3
	P1
	1000

	S3
	P2
	200

· EXISTS Subqueries

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a qualifying row exists. It has the following general format

EXISTS(query-1)
Any valid EXISTS subquery must contain an outer reference. It must be a correlated subquery.

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it can contain any valid select list (though * is normally used).

To list parts that have suppliers:

SELECT *

FROM p

WHERE EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)
	pno
	descr
	color

	P1
	Widget
	Blue

	P2
	Widget
	Red

Scalar Subqueries

The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one column in the select list. It must also retrieve no more than one row.

When the subquery returns a single row, the value of the single select list column becomes the value of the Scalar Subquery. When the subquery returns no rows, a database null is used as the result of the subquery. Should the subquery retreive more than one row, it is a run-time error and aborts query execution.

A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query. The following query on the sp table uses a Scalar Subquery in the select list to retrieve the supplier city associated with the supplier number (sno column in sp):

SELECT pno, qty, (SELECT city FROM s WHERE s.sno = sp.sno)

FROM sp
	pno
	qty
	city

	P1
	NULL
	Paris

	P1
	200
	London

	P1
	1000
	Rome

	P2
	200
	Rome

The next query on the sp table uses a Scalar Subquery in the where clause to match parts on the color associated with the part number (pno column in sp):

SELECT *

FROM sp

WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)
	sno
	pno
	qty

	S1
	P1
	NULL

	S2
	P1
	200

	S3
	P1
	1000

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar Subqueries are Aggregate Queries.

Table Subqueries

Table Subqueries are queries used in the FROM clause, replacing a table name. Basically, the result set of the Table Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in the from list. They can also be in outer joins.

The following two queries produce the same result:

SELECT p.*, qty

FROM p, sp

WHERE p.pno = sp.pno

AND sno = 'S3'
	pno
	descr
	color
	qty

	P1
	Widget
	Blue
	1000

	P2
	Widget
	Red
	200

SELECT p.*, qty

FROM p, (SELECT pno, qty FROM sp WHERE sno = 'S3')

WHERE p.pno = sp.pno
	pno
	descr
	color
	qty

	P1
	Widget
	Blue
	1000

	P2
	Widget
	Red
	200

Grouping Queries

A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY Clause.

A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the same values for the grouping columns are placed in distinct groups. Each group is treated as a single row in the query result.

Even though a group is treated as a single row, the underlying rows can be subject to summary operations known as Set Functions whose results can be included in the query. The optional HAVING Clause supports filtering for group rows in the same manner as the WHERE clause filters FROM rows.

For example, grouping the sp table on the pno column produces 2 groups:

	sno
	pno
	qty
	

	S1
	P1
	NULL
	'P1' Group

	S2
	P1
	200
	

	S3
	P1
	1000
	

	S3
	P2
	200
	'P2' Group

· The P1 group contains 3 sp rows with pno='P1'

· The P2 group contains a single sp row with pno='P2'

Nulls get special treatment by GROUP BY. GROUP BY considers a null as distinct from every other null. Each row that has a null in one of its grouping columns forms a separate group.

Grouping the sp table on the qty column produces 3 groups:

	sno
	pno
	qty
	

	S1
	P1
	NULL
	NULL Group

	S2
	P1
	200
	200 Group

	S3
	P2
	200
	

	S3
	P1
	1000
	1000 Group

The row where qty is null forms a separate group.

GROUP BY Clause

GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the WHERE clause is missing. A query containing a GROUP BY clause is a Grouping Query. The GROUP BY clause has the following general format:

GROUP BY column-1 [, column-2] ...
column-1 and column-2 are the grouping columns. They must be names of columns from tables in the FROM clause; they can't be expressions.

GROUP BY operates on the rows from the FROM clause as filtered by the WHERE clause. It collects the rows into groups based on common values in the grouping columns. Except nulls, rows with the same set of values for the grouping columns are placed in the same group. If any grouping column for a row contains a null, the row is given its own group.

For example,

SELECT pno

FROM sp

GROUP BY pno
	pno

	P1

	P2

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and expression involving these elements. Non-grouping columns from the underlying FROM tables cannot be referenced directly. However, non-grouping columns can be used in the select list as arguments to Set Functions. Set Functions summarize columns from the underlying rows of a group.

Set Functions

Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They summarize columns from the underlying rows of a group or aggregate.

Using the Group By example from above, grouping the sp table on the pno column:

	sno
	pno
	qty
	

	S1
	P1
	NULL
	'P1' Group

	S2
	P1
	200
	

	S3
	P1
	1000
	

	S3
	P2
	200
	'P2' Group

A Set Function can compute the total quantities for each group:

	sno
	pno
	qty
	
	qty total

	S1
	P1
	NULL
	'P1' Group
	1200

	S2
	P1
	200
	
	

	S3
	P1
	1000
	
	

	S3
	P2
	200
	'P2' Group
	200

	
	
	
	
	

Null columns are ignored in computing the summary. The Set Function -- SUM, computes the arithmetic sum of a numeric column in a set of grouped/aggregate rows. For example,

SELECT pno, SUM(qty)

FROM sp

GROUP BY pno
	pno
	

	P1
	1200

	P2
	200

Set Functions have the following general format:

set-function ([DISTINCT|ALL] column-1)
set-function is:

· COUNT -- count of rows

· SUM -- arithmetic sum of numeric column

· AVG -- arithmetic average of numeric column; should be SUM()/COUNT().

· MIN -- minimum value found in column

· MAX -- maximum value found in column

The result of the COUNT function is always integer. The result of all other Set Functions is the same data type as the argument.

The Set Functions skip columns with nulls, summarizing non-null values. COUNT counts rows with non-null values, AVG averages non-null values, and so on. COUNT returns 0 when no non-null column values are found; the other functions return null when there are no values to summarize.

A Set Function argument can be a column or a scalar expression.

The DISTINCT and ALL specifiers are optional. ALL specifies that all non-null values are summarized; it is the default. DISTINCT specifies that distinct column values are summarized; duplicate values are skipped. Note: DISTINCT has no effect on MIN and MAX results.

COUNT also has an alternate format:

COUNT(*)
... which counts the underlying rows regardless of column contents.

Set Function examples:

SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT sno)

FROM sp

GROUP BY pno
	pno
	
	
	
	

	P1
	S1
	1000
	600
	3

	P2
	S3
	200
	200
	1

SELECT sno, COUNT(*) parts

FROM sp

GROUP BY sno

	sno
	parts

	S1
	1

	S2
	1

	S3
	2

HAVING Clause

The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both cases. In Grouping Queries, it follows the GROUP BY clause. In Aggregate Queries, HAVING follows the WHERE clause or the FROM clause if the WHERE clause is missing.

The HAVING Clause has the following general format:

HAVING predicate
Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM clause. HAVING filters the grouped rows (from the GROUP BY clause) or the aggregate row (for Aggregate Queries).

predicate is a logical expression referencing grouped columns and set functions. It has the same restrictions as the select list for Grouping Queries and Aggregate Queries.

If the Having predicate evaluates to true for a grouped or aggregate row, the row is included in the query result, otherwise, the row is skipped (not included in the query result).

For example,

SELECT sno, COUNT(*) parts

FROM sp

GROUP BY sno

HAVING COUNT(*) > 1
	sno
	parts

	S3
	2

Aggregate Queries

An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query except there are no grouping columns. The underlying rows from the FROM and WHERE clauses are grouped into a single aggregate row. An Aggregate Query always returns a single row, except when the Having clause is used.

An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The Set Functions operate on the columns of the underlying rows of the single aggregate row. Except for outer references, any columns used in the select list must be arguments to Set Functions.

An aggregate query may also have a Having clause. The Having clause filters the single aggregate row. If the Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query result contains no rows.

For example,

SELECT COUNT(DISTINCT pno) number_parts, SUM(qty) total_parts

FROM sp
	number_parts
	total_parts

	2
	1400

Subqueries are often Aggregate Queries. For example, parts with suppliers:

SELECT *

FROM p

WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0
	pno
	descr
	color

	P1
	Widget
	Blue

	P2
	Widget
	Red

Parts with multiple suppliers:

SELECT *

FROM p

WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1
	pno
	descr
	color

	P1
	Widget
	Blue

Union Queries

The SQL UNION operator combines the results of two queries into a composite result. The component queries can be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The UNION operator has the following general format:

query-1 UNION [ALL] query-2
query-1 and query-2 are full query specifications. The UNION operator creates a new query result that includes rows from each component query.

By default, UNION eliminates duplicate rows in its composite results. The optional ALL specifier requests that duplicates be retained in the UNION result.

The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for grouping queries.

The select lists from the component queries must be union-compatible. They must match in degree (number of columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for each corresponding column must match. The rules for Intermediate Level SQL92 are less restrictive.

Union-Compatible Queries

For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor in order for two queries to be union-compatible. The rules are less restrictive for Intermediate Level SQL92. It supports automatic conversion within type categories. In general, the resulting data type will be the broader type. The corresponding columns need only be in the same data type category:

· Character (String) -- fixed/variable length

· Bit String -- fixed/variable length

· Exact Numeric (fixed point) -- integer/decimal

· Approximate Numeric (floating point) -- float/double

· Datetime -- sub-category must be the same,

· Date

· Time

· Timestamp

· Interval -- sub-category must be the same,

· Year-month

· Day-time

UNION Examples

SELECT * FROM sp

UNION

SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)

FROM p

WHERE pno NOT IN (SELECT pno FROM sp)
	sno
	pno
	qty

	S1
	P1
	NULL

	S2
	P1
	200

	S3
	P1
	1000

	S3
	P2
	200

	
	P3
	0

SQL Modification Statements

The SQL Modification Statements make changes to database data in tables and columns. There are 3 modification statements:

· INSERT Statement -- add rows to tables

· UPDATE Statement -- modify columns in table rows

· DELETE Statement -- remove rows from tables

INSERT Statement

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)
and,

INSERT INTO table-1 [(column-list)] (query-specification)
The first form inserts a single row into table-1 and explicitly specifies the column values for the row. The second form uses the result of query-specification to insert one or more rows into table-1. The result rows from the query are the rows added to the insert table. Note: the query cannot reference table-1.

Both forms have an optional column-list specification. Only the columns listed will be assigned values. Unlisted columns are set to null, so unlisted columns must allow nulls. The values from the VALUES Clause (first form) or the columns from the query-specification rows (second form) are assigned to the corresponding column in column-list in order.

If the optional column-list is missing, the default column list is substituted. The default column list contains all columns in table-1 in the order they were declared in CREATE TABLE, or CREATE VIEW.

VALUES Clause

The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a new row. It has the following general format:

VALUES (value-1 [, value-2] ...)
value-1 and value-2 are Literal Values or Scalar Expressions involving literals. They can also specify NULL.

The values list in the VALUES clause must match the explicit or implicit column list for INSERT in degree (number of items). They must also match the data type of corresponding column or be convertible to that data type.

INSERT Examples

INSERT INTO p (pno, color) VALUES ('P4', 'Brown')
	Before
	
	After

	pno
descr
color
P1
Widget
Blue
P2
Widget
Red
P3
Dongle
Green

	=>
	pno
descr
color
P1
Widget
Blue
P2
Widget
Red
P3
Dongle
Green
P4
NULL
Brown

INSERT INTO sp

SELECT s.sno, p.pno, 500

FROM s, p

WHERE p.color='Green' AND s.city='London'
	Before
	
	After

	sno
pno
qty
S1
P1
NULL
S2
P1
200
S3
P1
1000
S3
P2
200

	=>
	sno
pno
qty
S1
P1
NULL
S2
P1
200
S3
P1
1000
S3
P2
200
S2
P3
500

UPDATE Statement

The UPDATE statement modifies columns in selected table rows. It has the following general format:

UPDATE table-1 SET set-list [WHERE predicate]
The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The WHERE clause chooses which table rows to update. If it is missing, all rows are in table-1 are updated.

The set-list contains assignments of new values for selected columns.

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1. This prevents situations where results are dependent on the order of processing.

SET Clause

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected table rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...
column-1 and column-2 are columns in the Update table. value-1 and value-2 are expressions that can reference columns from the update table. They also can be the keyword -- NULL, to set the column to null.

Since the assignment expressions can reference columns from the current row, the expressions are evaluated first. After the values of all Set expressions have been computed, they are then assigned to the referenced columns. This avoids results dependent on the order of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20
	Before
	
	After

	sno
pno
qty
S1
P1
NULL
S2
P1
200
S3
P1
1000
S3
P2
200

	=>
	sno
pno
qty
S1
P1
NULL
S2
P1
220
S3
P1
1020
S3
P2
220

UPDATE s

SET name = 'Tony', city = 'Milan'

WHERE sno = 'S3'
	Before
	
	After

	sno
name
city
S1
Pierre
Paris
S2
John
London
S3
Mario
Rome

	=>
	sno
name
city
S1
Pierre
Paris
S2
John
London
S3
Tony
Milan

DELETE Statement

The DELETE Statement removes selected rows from a table. It has the following general format:

DELETE FROM table-1 [WHERE predicate]
The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The WHERE clause chooses which table rows to delete. If it is missing, all rows are in table-1 are removed.

The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1. This prevents situations where results are dependent on the order of processing.

DELETE Examples

DELETE FROM sp WHERE pno = 'P1'
	Before
	
	After

	sno
pno
qty
S1
P1
NULL
S2
P1
200
S3
P1
1000
S3
P2
200

	=>
	sno
pno
qty
S3
P2
200

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)
	Before
	
	After

	pno
descr
color
P1
Widget
Blue
P2
Widget
Red
P3
Dongle
Green

	=>
	pno
descr
color
P1
Widget
Blue
P2
Widget
Red

SQL-Transaction Statements

SQL-Transaction Statements control transactions in database access. This subset of SQL is also called the Data Control Language for SQL (SQL DCL).

There are 2 SQL-Transaction Statements:

· COMMIT Statement -- commit (make persistent) all changes for the current transaction

· ROLLBACK Statement -- roll back (rescind) all changes for the current transaction

Transaction Overview

A database transaction is a larger unit that frames multiple SQL statements. A transaction ensures that the action of the framed statements is atomic with respect to recovery.

A SQL Modification Statement has limited effect. A given statement can only directly modify the contents of a single table (Referential Integrity effects may cause indirect modification of other tables.) The upshot is that operations which require modification of several tables must involve multiple modification statements. A classic example is a bank operation that transfers funds from one type of account to another, requiring updates to 2 tables. Transactions provide a way to group these multiple statements in one atomic unit.

In SQL92, there is no BEGIN TRANSACTION statement. A transaction begins with the execution of a SQL-Data statement when there is no current transaction. All subsequent SQL-Data statements until COMMIT or ROLLBACK become part of the transaction. Execution of a COMMIT Statement or ROLLBACK Statement completes the current transaction. A subsequent SQL-Data statement starts a new transaction.

In terms of direct effect on the database, it is the SQL Modification Statements that are the main consideration since they change data. The total set of changes to the database by the modification statements in a transaction are treated as an atomic unit through the actions of the transaction. The set of changes either:

· Is made fully persistent in the database through the action of the COMMIT Statement, or

· Has no persistent effect whatever on the database, through:

· the action of the ROLLBACK Statement,

· abnormal termination of the client requesting the transaction, or

· abnormal termination of the transaction by the DBMS. This may be an action by the system (deadlock resolution) or by an administrative agent, or it may be an abnormal termination of the DBMS itself. In the latter case, the DBMS must roll back any active transactions during recovery.

The DBMS must ensure that the effect of a transaction is not partial. All changes in a transaction must be made persistent, or no changes from the transaction must be made persistent.

Transaction Isolation

In most cases, transactions are executed under a client connection to the DBMS. Multiple client connections can initiate transactions at the same time. This is known as concurrent transactions.

In the relational model, each transaction is completely isolated from other active transactions. After initiation, a transaction can only see changes to the database made by transactions committed prior to starting the new transaction. Changes made by concurrent transactions are not seen by SQL DML query and modification statements. This is known as full isolation or Serializable transactions.

SQL92 defines Serializable for transactions. However, full serialized transactions can impact performance. For this reason, SQL92 allows additional isolation modes that reduce the isolation between concurrent transactions. SQL92 defines 3 other isolation modes, but support by existing DBMSs is often incomplete and doesn't always match the SQL92 modes. Check the documentation of your DBMS for more details.

SQL-Schema Statements in Transactions

The 3rd type of SQL Statements - SQL-Schema Statements, may participate in the transaction mechanism. SQL-Schema statements can either be:

· included in a transaction along with SQL-Data statements,

· required to be in separate transactions, or

· ignored by the transaction mechanism (can't be rolled back).

SQL92 leaves the choice up to the individual DBMS. It is implementation defined behavior.

COMMIT Statement

The COMMIT Statement terminates the current transaction and makes all changes under the transaction persistent. It commits the changes to the database. The COMMIT statement has the following general format:

COMMIT [WORK]
WORK is an optional keyword that does not change the semantics of COMMIT.

ROLLBACK Statement

The ROLLBACK Statement terminates the current transaction and rescinds all changes made under the transaction. It rolls back the changes to the database. The ROLLBACK statement has the following general format:

ROLLBACK [WORK]
WORK is an optional keyword that does not change the semantics of ROLLBACK.

SQL-Schema Statements

SQL-Schema Statements provide maintenance of catalog objects for a schema -- tables, views and privileges. This subset of SQL is also called the Data Definition Language for SQL (SQL DDL).

There are 6 SQL-Schema Statements:

· CREATE TABLE Statement -- create a new base table in the current schema

· CREATE VIEW Statement -- create a new view table in the current schema

· DROP TABLE Statement -- remove a base table from the current schema

· DROP VIEW Statement -- remove a view table from the current schema

· GRANT Statement -- grant access privileges for objects in the current schema to other users

· REVOKE Statement -- revoke previously granted access privileges for objects in the current schema from other users

Schema Overview

A relational database contains a catalog that describes the various elements in the system. The catalog divides the database into sub-databases known as schemas. Within each schema are database objects -- tables, views and privileges.

The catalog itself is a set of tables with its own schema name - definition_schema. Tables in the catalog cannot be modified directly. They are modified indirectly with SQL-Schema statements.

Tables

The database table is the root structure in the relational model and in SQL. A table (called a relation in relational) consists of rows and columns. In relational, rows are called tuples and columns are called attributes. Tables are often displayed in a flat format, with columns arrayed horizontally and rows vertically:

	
	C o l u m n s

	R
	

	o
	

	w
	

	s
	

Database tables are a logical structure with no implied physical characteristics. Primary among the various logical tables is the base table. A base table is persistent and self contained, that is, all data is part of the table itself with no information dynamically derived from other tables.

A table has a fixed set of columns. The columns in a base table are not accessed positionally but by name, which must be unique among the columns of the table. Each column has a defined data type, and the value for the column in each row must be from the defined data type or null. The columns of a table are accessed and identified by name.

A table has 0 or more rows. A row in a base table has a value or null for each column in the table. The rows in a table have no defined ordering and are not accessed positionally. A table row is accessed and identified by the values in its columns.

In SQL92, base tables can have duplicate rows (rows where each column has the same value or null). However, the relational model does not recognize tables with duplicate rows as valid base tables (relations). The relational model requires that each base table have a unique identifier, known as the Primary Key. The primary key for a table is a designated set of columns which have a unique value for each table row. For a discussion of Primary Keys, see Entity Integrity under CREATE TABLE below.

A base table is defined using the CREATE TABLE Statement. This statement places the table description in the catalog and initializes an internal entity for the actual representation of the base table.

Example base table - s:

	sno
	name
	city

	S1
	Pierre
	Paris

	S2
	John
	London

	S3
	Mario
	Rome

The s table records suppliers. It has 3 defined columns:

· sno -- supplier number, an unique identifier that is the primary key

· name -- the name of the supplier

· city -- the city where the supplier is located

At the current time, there are 3 rows.

Other types of tables in the system are derived tables. SQL-Data statements use internally derived tables in computing results. A query is in fact a derived table. For instance, the query operator - Union, combines two derived tables to produce a third one. Much of the power of SQL comes from the fact that its higher level operations are performed on tables and produce a table as their result.

Derived tables are less constrained than base tables. Column names are not required and need not be unique. Derived tables may have duplicate rows. Views are a type of derived table that are cataloged in the database.

Views

A view is a derived table registered in the catalog. A view is defined using a SQL query. The view is dynamically derived, that is, its contents are materialized for each use. Views are added to the catalog with the CREATE VIEW Statement.

Once defined in the catalog, a view can substitute for a table in SQL-Data statements. A view name can be used instead of a base table name in the FROM clause of a SELECT statement. Views can also be the subject of a modification statement with some restrictions.

A SQL Modification Statement can operate on a view if it is an updatable view. An updatable view has the following restrictions on its defining query:

· The query FROM clause can reference a single table (or view)

· The single table in the FROM clause must be:

· a base table,

· a view that is also an updatable view, or

· a nested query that is updatable, that is, it follows the rules for an updatable view query.

· The query must be a basic query, not a:

· Grouping Query,

· Aggregate Query, or

· Union Query.

· The select list cannot contain:

· the DISTINCT specifier,

· an Expression, or

· duplicate column references

Subqueries are acceptable in updatable views but cannot reference the underlying base table for the view's FROM clause.

Privileges

SQL92 defines a SQL-agent as an implementation-dependent entity that causes the execution of SQL statements. Prior to execution of SQL statements, the SQL-agent must establish an authorization identifier for database access. An authorization identifier is commonly called a user name.

A DBMS user may access database objects (tables, columns, views) as allowed by the privileges assigned to that specific authorization identifier. Access privileges may be granted by the system (automatic) or by other users.

System granted privileges include:

· All privileges on a table to the user that created the table. This includes the privilege to grant privileges on the table to other users.

· SELECT (readonly) privilege on the catalog (the tables in the schema - definition_schema). This is granted to all users.

User granted privileges cover privileges to access and modify tables and their columns. Privileges can be granted for specific SQL-Data Statements -- SELECT, INSERT, UPDATE, DELETE.

CREATE TABLE Statement

The CREATE TABLE Statement creates a new base table. It adds the table description to the catalog. A base table is a logical entity with persistence. The logical description of a base table consists of:

· Schema -- the logical database schema the table resides in

· Table Name -- a name unique among tables and views in the Schema

· Column List -- an ordered list of column declarations (name, data type)

· Constraints -- a list of constraints on the contents of the table

The CREATE TABLE Statement has the following general format:

CREATE TABLE table-name ({column-descr|constraint} [,{column-descr|constraint}]...)
table-name is the new name for the table. column-descr is a column declaration. constraint is a table constraint.

The column declaration can include optional column constraints. The declaration has the following general format:

column-name data-type [column-constraints]
column-name is the name of the column and must be unique among the columns of the table. data-type declares the type of the column. Data types are described below. column-constraints is an optional list of column constraints with no separators.

Constraints

Constraint specifications add additional restrictions on the contents of the table. They are automatically enforced by the DBMS. The column constraints are:

· NOT NULL -- specifies that the column can't be set to null. If this constraint is not specified, the column is nullable, that is, it can be set to null. Normally, primary key columns are declared as NOT NULL.

· PRIMARY KEY -- specifies that this column is the only column in the primary key. There can be only one primary key declaration in a CREATE TABLE. For primary keys with multiple columns, use the PRIMARY KEY table constraint. See Entity Integrity below for a detailed description of primary keys.

· UNIQUE -- specifies that this column has a unique value or null for all rows of the table.

· REFERENCES -- specifies that this column is the only column in a foreign key. For foreign keys with multiple columns, use the FOREIGN KEY table constraint. See Referential Integrity below for a detailed description of primary keys.

· CHECK -- specifies a user defined constraint on the table. See the table constraint - CHECK, below.

The table constraints are:

· PRIMARY KEY -- specifies the set of columns that comprise the primary key. There can be only one primary key declaration in a CREATE TABLE Statement. See Entity Integrity below for a detailed description of primary keys.

· UNIQUE -- specifies that a set of columns have unique values (or nulls) for all rows in the table. The UNIQUE specifier is followed by a parenthesized list of column names, separated by commas.

· FOREIGN KEY -- specifies the set of columns in a foreign key. See Referential Integrity below for a detailed description of foreign keys.

· CHECK -- specifies a user defined constraint, known as a check condition. The CHECK specifier is followed by a predicate enclosed in parentheses. For Intermediate Level SQL92, the CHECK predicate can only reference columns from the current table row, with no subqueries. Many DBMSs support subqueries in the check predicate.

The check predicate must evaluate to true before a modification or addition of a row takes place. The check is effectively made on the contents of the table after the modification. For INSERT Statements, the predicate is evaluated as if the INSERT row were added to the table. For UPDATE Statements, the predicate is evaluated as if the row were updated. For DELETE Statements, the predicate is evaluated as if the row were deleted (Note: A check predicate is only useful for DELETE if a subquery is used.)

Data Type

This subsection describes data type specifications. The data type categories are:

· Character (String) -- fixed or variable length character strings. The character set is implementation defined but often defaults to ASCII.

· Numeric -- values representing numeric quantities. Numeric values are divided into these two broad categories:

· Exact (also known as fixed-point) -- Exact numeric values have a fixed number of digits to the left of the decimal point and a fixed number of digits to the right (the scale). The total number of digits on both sides of the decimal are the precision. A special subset of exact numeric types with a scale of 0 is called integer.

· Approximate (also known as floating-point) -- Approximate numeric values that have a fixed precision (number of digits) but a floating decimal point.

All numeric types are signed.

· Datetime -- Datetime values include calendar and clock values (Date, Time, Timestamp) and intervals. The datetime types are:

· Date -- calendar date with year, month and day

· Time -- clock time with hour, minute, second and fraction of second, plus a timezone component (adjustment in hours, minutes)

· Timestamp -- combination calendar date and clock time with year, month, day, hour, minute, second and fraction of second, plus a timezone component (adjustment in hours, minutes)

· Interval -- intervals represent time and date intervals. They are signed. An interval value can contain a subset of the interval fields, for example - hour to minute, year, day to second. Interval types are subdivided into:

· year-month intervals -- may contain years, months or combination years/months value.

· day-time intervals -- days, hours, minutes, seconds, fractions of second.

Data type declarations have the following general format:

Character (String)

CHAR [(length)]
CHARACTER [(length)]
VARCHAR (length)
CHARACTER VARYING (length)

length specifies the number of characters for fixed size strings (CHAR, CHARACTER); spaces are supplied for shorter strings. If length is missing for fixed size strings, the default length is 1. For variable size strings (VARCHAR, CHARACTER VARYING), length is the maximum size of the string. Strings exceeding length are truncated on the right.

Numeric

SMALLINT
INT
INTEGER

The integer types have default binary precision -- 15 for SMALLINT and 31 for INT, INTEGER.

NUMERIC (precision [, scale])
DECIMAL (precision [, scale])

Fixed point types have a decimal precision (total number of digits) and scale (which cannot exceed the precision). The default scale is 0. NUMERIC scales must be represented exactly. DECIMAL values can be stored internally with a larger scale (implementation defined).

FLOAT [(precision)]
REAL
DOUBLE

The floating point types have a binary precision (maximum significant binary digits). Precision values are implementation dependent for REAL and DOUBLE, although the standard states that the default precision for DOUBLE must be larger than for REAL. FLOAT also uses an implementation defined default for precision (commonly this is the same as for REAL), but the binary precision for FLOAT can be explicit.

Datetime

DATE
TIME [(scale)] [WITH TIME ZONE]
TIMESTAMP [(scale)] [WITH TIME ZONE]

TIME and TIMESTAMP allow an optional seconds fraction (scale). The default scale for TIME is 0, for TIMESTAMP 6. The optional WITH TIME ZONE specifier indicates that the timezone adjustment is stored with the value; if omitted, the current system timezone is assumed.

INTERVAL interval-qualifier

Interval Qualifier

An interval qualifier defines the specific type of an interval value. The qualifier for an interval type declares the sub-fields that comprise the interval, the precision of the highest (left-most) sub-field and the scale of the SECOND sub-field (if any).

Intervals are divided into sub-types -- year-month intervals and day-time intervals. Year-month intervals can only contain the sub-fields - year and month. Day-time intervals can contain day, hour, minute, second. The interval qualifier has the following formats:

YEAR [(precision)] [TO MONTH]

MONTH [(precision)]

{DAY|HOUR|MINUTE} [(precision)] [TO SECOND [(scale)]]

DAY [(precision)] [TO {HOUR|MINUTE}]

HOUR [(precision)] [TO MINUTE]

SECOND [(precision [, scale])]
The default precision is 2. The default scale is 6.

Entity Integrity

As mentioned earlier, the relational model requires that each base table have a Primary Key. SQL92, on the other hand, allows a table to created without a primary key. The advice here is to create all tables with primary keys.

A primary key is a constraint on the contents of a table. In relational terms, the primary key maintains Entity Integrity for the table. It constrains the table as follows,

· For a given row, the set of values for the primary key columns must be unique from all other rows in the table,

· No primary key column can contain a null, and

· A table can have only one primary key (set of primary key columns).

Note: SQL92 does not require the second restriction on nulls in the primary key. However, it is required for a relational system.

Entity Integrity (Primary Keys) is enforced by the DBMS and ensures that every row has a proper unique identifier. The contents of any column in the table with Entity Integrity can be uniquely accessed with 3 pieces of information:

· table identifier

· primary key value

· column name

This capability is crucial to a relational system. Having a clear, consistent identifier for table rows (and their columns) distinguishes relational systems from all others. It allows the establishment of relationships between tables, also crucial to relational systems. This is discussed below under Referential Integrity.

The primary key constraint in the CREATE STATEMENT has two forms. When the primary key consists of a single column, it can be declared as a column constraint, simply - PRIMARY KEY, attached to the column descriptor. For example:

sno VARCHAR(5) NOT NULL PRIMARY KEY
As a table constraint, it has the following format:

PRIMARY KEY (column-1 [, column-2] ...)
column-1 and column-2 are the names of the columns of the primary key. For example,

PRIMARY KEY (sno, pno)
The order of columns in the primary key is not significant, except as the default order for the FOREIGN KEY table constraint.

Referential Integrity

Foreign keys provide relationships between tables in the database. In relational, a foreign key in a table is a set of columns that reference the primary key of another table. For each row in the referencing table, the foreign key must match an existing primary key in the referenced table. The enforcement of this constraint is known as Referential Integrity.

Referential Integrity requires that:

· The columns of a foreign key must match in number and type the columns of the primary key in the referenced table.

· The values of the foreign key columns in each row of the referencing table must match the values of the corresponding primary key columns for a row in the referenced table.

The one exception to the second restriction is when the foreign key columns for a row contain nulls. Since primary keys should not contain nulls, a foreign key with nulls cannot match any row in the referenced table. However, a row with a foreign key of all nulls (all foreign key columns contain null) is allowed in the referencing table. It is a null reference.

Like other constraints, the referential integrity constraint restricts the contents of the referencing table, but it also may in effect restrict the contents of the referenced table. When a row in a table is referenced (through its primary key) by a foreign key in a row in another table, operations that affect its primary key columns have side-effects and may restrict the operation. Changing the primary key of or deleting a row which has referencing foreign keys would violate the referential integrity constraints on the referencing table if allowec to proceed. This is handled in two ways,

· The referenced table is restricted from making the change (and violating referential integrity in the referencing table), or

· Rows in the referencing table are modified so the referential integrity constraint is maintained.

These actions are controlled by the referential integrity effects declarations, called referential triggers by SQL92. The referential integrity effect actions defined for SQL are:

· NO ACTION -- the change to the referenced (primary key) table is not performed. This is the default.

· CASCADE -- the change to the referenced table is propagated to the referencing (foreign key) table.

· SET NULL -- the foreign key columns in the referencing table are set to null.

Update and delete have separate action declarations. For CASCADE, update and delete also operate differently:

· For update (the primary key column values have been modified), the corresponding foreign key columns for referencing rows are set to the new values.

· For delete (the primary key row is deleted), the referencing rows are deleted.

A referential integrity constraint in the CREATE STATEMENT has two forms. When the foreign key consists of a single column, it can be declared as a column constraint, like:

column-descr REFERENCES references-specification
As a table constraint, it has the following format:

FOREIGN KEY (column-list) REFERENCES references-specification
column-list is the referencing table columns that comprise the foreign key. Commas separate column names in the list. Their order must match the explicit or implicit column list in the references-specification.

The references-specification has the following format:

table-2 [(referenced-columns)]

 [ON UPDATE { CASCADE | SET NULL | NO ACTION }]

 [ON DELETE { CASCADE | SET NULL | NO ACTION }]
The order of the ON UPDATE and ON DELETE clauses may be reversed. These clauses declare the effect action when the referenced primary key is updated or deleted. The default for ON UPDATE and ON DELETE is NO ACTION.

table-2 is the referenced table name (primary key table). The optional referenced-columns list the columns of the referenced primary key. Commas separate column names in the list. The default is the primary key list in declaration order.

Contrary to the relational model, SQL92 allows foreign keys to reference any set of columns declared with the UNIQUE constraint in the referenced table (even when the table has a primary key). In this case, the referenced-columns list is required.

Example table constraint for referential integrity (for the sp table):

FOREIGN KEY (sno)

REFERENCES s(sno)

ON DELETE NO ACTION

ON UPDATE CASCADE
CREATE TABLE Examples

Creating the example tables:

CREATE TABLE s

(sno VARCHAR(5) NOT NULL PRIMARY KEY,

 name VARCHAR(16),

 city VARCHAR(16)

)

CREATE TABLE p

(pno VARCHAR(5) NOT NULL PRIMARY KEY,

 descr VARCHAR(16),

 color VARCHAR(8)

)

CREATE TABLE sp

(sno VARCHAR(5) NOT NULL REFERENCES s,

 pno VARCHAR(5) NOT NULL REFERENCES p,

 qty INT,

 PRIMARY KEY (sno, pno)

)
Create for sp with a constraint that the qty column can't be negative:

CREATE TABLE sp

(sno VARCHAR(5) NOT NULL REFERENCES s,

 pno VARCHAR(5) NOT NULL REFERENCES p,

 qty INT CHECK (qty IS NULL OR qty >= 0),

 PRIMARY KEY (sno, pno)

)
CREATE VIEW Statement

The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in the catalog. The CREATE VIEW has the following general format:

CREATE VIEW view-name [(column-list)] AS query-1

 [WITH [CASCADED|LOCAL] CHECK OPTION]
view-name is the name for the new view. column-list is an optional list of names for the columns of the view, comma separated. query-1 is any SELECT statement without an ORDER BY clause. The optional WITH CHECK OPTION clause is a constraint on updatable views.

column-list must have the same number of columns as the select list in query-1. If column-list is omitted, all items in the select list of query-1 must be named. In either case, duplicate column names are not allowed for a view.

The optional WITH CHECK OPTION clause only applies to updatable views. It affects SQL INSERT and UPDATE statements. If WITH CHECK OPTION is specified, the WHERE predicate for query-1 must evaluate to true for the added row or the changed row.

The CASCADED and LOCAL specifiers apply when the underlying table for query-1 is another view. CASCADED requests that WITH CHECK OPTION apply to all underlying views (to any level.) LOCAL requests that the current WITH CHECK OPTION apply only to this view. LOCAL is the default.

CREATE VIEW Examples

Parts with suppliers:

CREATE VIEW supplied_parts AS

 SELECT *

 FROM p

 WHERE pno IN (SELECT pno FROM sp)

 WITH CHECK OPTION
Access example:

SELECT * FROM supplied_parts
	pno
	descr
	color

	P1
	Widget
	Red

	P2
	Widget
	Blue

Joined view:

CREATE VIEW part_locations (part, quantity, location) AS

 SELECT pno, qty, city

 FROM sp, s

 WHERE sp.sno = s.sno
Access examples:

SELECT * FROM part_locations
	part
	quantity
	location

	P1
	NULL
	Paris

	P1
	200
	London

	P1
	1000
	Rome

	P2
	200
	Rome

SELECT part, quantity

FROM part_locations

WHERE location = 'Rome'
	part
	quantity

	P1
	1000

	P2
	200

DROP TABLE Statement

The DROP TABLE Statement removes a previously created table and its description from the catalog. It has the following general format:

DROP TABLE table-name {CASCADE|RESTRICT}
table-name is the name of an existing base table in the current schema. The CASCADE and RESTRICT specifiers define the disposition of other objects dependent on the table. A base table may have two types of dependencies:

· A view whose query specification references the drop table.

· Another base table that references the drop table in a constraint - a CHECK constraint or REFERENCES constraint.

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an error is returned and the table isn't dropped.

CASCADE specifies that any dependencies are removed before the drop is performed:

· Views that reference the base table are dropped, and the sequence is repeated for their dependencies.

· Constraints in other tables that reference this table are dropped; the constraint is dropped but the table retained.

DROP VIEW Statement

The DROP VIEW Statement removes a previously created view and its description from the catalog. It has the following general format:

DROP VIEW view-name {CASCADE|RESTRICT}
view-name is the name of an existing view in the current schema. The CASCADE and RESTRICT specifiers define the disposition of other objects dependent on the view. A view may have two types of dependencies:

· A view whose query specification references the drop view.

· A base table that references the drop view in a constraint - a CHECK constraint.

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an error is returned and the view isn't dropped.

CASCADE specifies that any dependencies are removed before the drop is performed:

· Views that reference the drop view are dropped, and the sequence is repeated for their dependencies.

· Constraints in base tables that reference this view are dropped; the constraint is dropped but the table retained.

GRANT Statement

The GRANT Statement grants access privileges for database objects to other users. It has the following general format:

GRANT privilege-list ON [TABLE] object-list TO user-list
privilege-list is either ALL PRIVILEGES or a comma-separated list of properties: SELECT, INSERT, UPDATE, DELETE. object-list is a comma-separated list of table and view names. user-list is either PUBLIC or a comma-separated list of user names.

The GRANT statement grants each privilege in privilege-list for each object (table) in object-list to each user in user-list. In general, the access privileges apply to all columns in the table or view, but it is possible to specify a column list with the UPDATE privilege specifier:

UPDATE [(column-1 [, column-2] ...)]
If the optional column list is specified, UPDATE privileges are granted for those columns only.

The user-list may specify PUBLIC. This is a general grant, applying to all users (and future users) in the catalog.

Privileges granted are revoked with the REVOKE Statement.

The optional specificier WITH GRANT OPTION may follow user-list in the GRANT statement. WITH GRANT OPTION specifies that, in addition to access privileges, the privilege to grant those privileges to other users is granted.

GRANT Statement Examples

GRANT SELECT ON s,sp TO PUBLIC

GRANT SELECT,INSERT,UPDATE(color) ON p TO art,nan

GRANT SELECT ON supplied_parts TO sam WITH GRANT OPTION
REVOKE Statement

The REVOKE Statement revokes access privileges for database objects previously granted to other users. It has the following general format:

REVOKE privilege-list ON [TABLE] object-list FROM user-list
The REVOKE Statement revokes each privilege in privilege-list for each object (table) in object-list from each user in user-list. All privileges must have been previously granted.

The user-list may specify PUBLIC. This must apply to a previous GRANT TO PUBLIC.

REVOKE Statement Examples

REVOKE SELECT ON s,sp FROM PUBLIC

REVOKE SELECT,INSERT,UPDATE(color) ON p FROM art,nan

REVOKE SELECT ON supplied_parts FROM sam
