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Abstract— Location information is an important feature of
users’ mobility profile in cellular mobile networks. In this paper,
continuing our existing work on constructing a mobility-based
anomaly detection scheme, we further address a challenging
problem - how to adaptively adjust the detection threshold of
Intrusion Detection Systems (IDSs) in the context of cellular
mobile networks. This is especially critical when we consider the
different mobility patterns demonstrated by the mobile users.
Utilizing a high order Markov model, we apply a weighted
blending scheme to compute the entropy of our Exponentially
Weighted Moving Average (EWMA) based mobility trie. This
reflection of the uncertainness of the users’ normal profile could
help us adaptively adjust the detection threshold of our anomaly
detection algorithm. Simulation results show that our proposed
adaptive mechanisms can further reduce the false positive rate
without decreasing the detection rate. Detailed analysis of the
simulation results is also provided.

I. INTRODUCTION

Cellular-based wireless networks have become very popular
as more and more users not only communicate with others
using cellular phones but also perform important and sensitive
tasks such as E-Shopping and E-Banking. On one hand, the
advance of the wireless technology makes life easier. On
the other hand, it introduces serious risks. Prevention-based
techniques, like authentication and encryption, can effectively
reduce attacks by keeping illegitimate users from entering the
system. However, mobile devices are prone to being stolen and
physically insecure due to their portability. This low physical
security can make all secrets of the device open to malicious
attackers and render prevention based approaches useless.
At this time, Intrusion Detection (ID) approaches, utilizing
different techniques to model the users’ normal behavior
and system vulnerabilities, come into place to help identify
malicious activities.

In our previous work [2], we proposed an Exponentially
Weighted Moving Average (EWMA) [6] based approach to
construct an anomaly-based Intrusion Detection System (IDS)
for Cellular Mobile Networks. We parse the normal users’
daily movement activities by applying a Markov model at
different orders, and then use the Lempel-Ziv 78 (LZ78)
[5] algorithm to construct a mobility trie to store the route
related information. The EWMA technique is applied to the
mobility trie to keep it up-to-date and accurately reflect the

user’s movement pattern. A threshold-based scheme is then
used to determine whether the mobile device is potentially
compromised or not.

One more challenging problem is how to adaptively adjust
the detection threshold of IDSs in the context of cellular
mobile networks. In reality, it is highly possible that a single
user will demonstrate different mobility behaviors. For exam-
ple, even if the user demonstrates the same mobility level,
a user will have a set of mobility patterns during weekdays,
while demonstrating a different set of mobility patterns during
weekends. Therefore, it is desirable to not only change the
normal profile adaptively, but also adjust the threshold of the
IDS automatically. An accurate threshold plays an important
role in determining the performance of the IDSs.

Intrusion detection problems for users demonstrating dif-
ferent sets of mobility patterns are not easy. It is difficult
to identify a metric, adjust the threshold appropriately and
integrate the mobility impact into the construction of IDSs.
The main contributions of this paper include proposing an
effective measurement to capture the uncertainness of the
users’ normal profile and integrating the above measurement
into cellular IDSs adaptively. To the best of our knowledge,
there is no previous work that has been contributed in this
area.

II. MOTIVATIONS

The complex cellular mobile network system could incur
software errors and design errors. This could make many
attacks possible. One example is the cell phone cloning: the
mobile phone card of an authenticate user A is cloned by some
attacker B, which enables B to use the cloned phone card to
make fraudulent telephone calls. If cell phone cloning happens,
the bills for the calls will go to the legitimate subscriber.
Also, the masquerader could fake the International Mobile
Equipment Identifier (IMEI) and the SIM (Subscriber Identity
Module) card in order to get the service illegally. Subscription
fraud could also enable the intruder to subscribe to the service
using the authentic user’s name. All these enable the necessity
of a fraud detection system that can complement existing
intrusion prevention system for cellular mobile networks. By
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comparing the different behaviors demonstrated by the authen-
tic user and the adversary, the system can detect the potential
misbehavior. In [1], Lin et al. also discussed the potential
fraudulent usage in mobile telecommunications networks.

For most mobile users in cellular networks, movement
patterns can be captured and modeled. For example, public
transportation drivers demonstrate a high regularity in their
daily mobility patterns. The mobility history of an authentic
user can be learned and compared to the current movement
pattern in order to identify intruders. It is obvious that there
are a certain number of users such as taxi drivers who do
not exhibit regular movement patterns. We do not expect our
detection based on mobility patterns to be accurate for all users
in all situations.

In [2], we proposed an EWMA-based anomaly detection
algorithm. Similar strategies proposed in [2] has been used in
credit card companies. For example, a customer will be called
if the abnormal usage of his/her credit card is detected, such as
the card being used at another country that is not the owners
residence and the owner frequently visits. In this paper, we
aim at providing a better optional service to end users as well
as a useful administration tool to service providers.

The approach proposed in [2] only considers the same set of
a user’s movement patterns. It is also possible that for a single
user who goes to work every weekday and vacation every
weekend, the user exhibits the different location uncertainty,
which should be measured and reflected into our anomaly
detection algorithm. This should impact the selection of the
detection threshold. That is, when the set of movement patterns
changes, the corresponding detection threshold should also
change. We need a mechanism to help us adaptively adjust the
detection threshold in order to make the IDS more practical.

Our proposed approach requires the tracking of people’s
locations. It is a location tracking service that is based on the
system tracking users locations. This will give rise to user’s
location privacy issues. Therefore, our system provides the
user an option to turn off this service. Privacy concerns must be
properly addressed before we can deploy this kind of service.
It is worth noticing that location privacy issues have attracted
much attention from the research community. Therefore, it is
promising to integrate our proposed service with other existing
location privacy protection schemes.

In a cellular mobile network, location updates and reg-
istrations usually happen when the user enters or leaves a
location area. This is true no matter whether a user is making
a phone call or not. Considering that a user demonstrates
regular movement patterns, a user will report its location at
the intersection of the routes and the perimeter of the location
area. When a user is making phone calls while traversing cells,
cell IDs are available to the system. Our proposed scheme can
utilize this feature to construct the IDSs for cellular mobility
networks. In the following, we use cell IDs as an example
feature to illustrate our adaptive algorithm.

III. BACKGROUND

A. Assumptions

We assume that there is a mobility database for each
mobile user that describes his normal activities. The mobility
database could be stored in the Home Location Register (HLR)
and cannot be hacked. We assume mobile devices can be
compromised and all secrets associated with the compromised
devices are open to attackers. In this way, we do not need to
assume tamper resistant technologies. We further assume most
users have favorite or regular itineraries. This makes us viable
to construct their normal profiles.

B. LZ-based Anomaly Detection in Cellular Mobile Networks

The general strategy is illustrated in Fig. 1.

cell string: aabbabcccabaaba
m-th Markov model

Data Compression

Feature extraction : cell list

Mobility Database: Mobility Trie

EWMA
User mobility 

activity
Normal Profile: 

EWMA_based Mobility Trie

Compute 
Distance

Generate 
Alert or not

Fig. 1. Integrating EWMA into Mobility Trie Construction.

Basically, under the assumption that the user will have his
own favorite itineraries, cell IDs traversed by each user is
extracted to reflect the user’s movement pattern. This makes
the user mobility stable and results in a small alphabet. We
apply a m-th Markov model to the extracted cell list and
construct a mobility trie from the accumulative history of the
user’s movement pattern. A trie is a multiway tree with a path
from the root to a unique node for each string represented in
the tree. It could effectively store the parsed cell string.

The more recent the activity, the more weight it should be
assigned when we construct the normal profile. Therefore, we
apply the Exponential Weighted Moving Average (EWMA)
[6] techniques to the mobility trie constructed. In this way,
activities that happened long time ago are faded away expo-
nentially. This modified mobility trie will serve as the normal
profile of the user in the recent past. It reflects the stationary
part of the users regular mobility pattern.

We then deploy a Prediction by Partial Matching (PPM)
[5] scheme to calculate the probability predicted by the con-
structed EWMA-based normal profile. A context model, a m-
th Markov model, is used to predict the next cell based on the
previous m consecutive cells. The usage of PPM could take
into consideration the trade-off between a too small m (results

667



in a poor prediction in the long run) and a too large m(results
in the zero-frequency problem [5]).

In the detection phase, we extract the current activity of
the mobile user and compute its probability predicted by the
EWMA-based mobility trie. When the probability is less than
a threshold Pthr (a design parameter), the current activity is
identified as anomalous. Pthr is tuned in order to get a better
tradeoff between the false positive rate and the detection rate.

IV. ADAPTIVE ANOMALY DETECTION

EWMA-based mobility trie itself facilitates the differenti-
ation between weekday and weekend routes because when
the user changes its mobility patterns, say from weekday
to weekend routes, the more recent the activities, the more
weight they should have in the normal profile. The smoothing
constant [6] in EWMA techniques plays an important role
in determining how much weight the more recent activities
should have. Basically the larger the smoothing constant is,
the more weight they should have. Therefore, intuitively, the
shorter the recent activities last, the larger the smoothing
constant should be.

The EWMA-based approach only partially addresses the
adaptation of normal profiles. In the followng, we detail our
approach of how to tune the threshold for different users and
different mobility levels.

A. Feedback-based Approach

One simple approach to adjust the threshold is to apply
the feedback principle. That is, based on the output of the
detection algorithm (for example, in terms of detection rate and
false positive rate), the system administrator can adaptively
adjust the detection threshold in order to achieve the required
performance. If the false positive rate is a more important
metric, for example, when the system has been detected
raising too many false alarms, the system administrator could
lower the detection threshold correspondingly. However, in this
approach, the decrease of the false positive rate is achieved at
the risk of a decreased detection rate.

B. Entropy-based Approach

We propose to use Shannon’s entropy measure to identify
the uncertainness of the up-to-date normal profile. Based on
this, we could adjust the detection threshold correspondingly.

1) Metric Selection: The first step we need is to identify
a metric that can effectively reflect the location uncertainty.
In our case, it is the EWMA-based mobility trie. Shannon’s
entropy measure [4] is an ideal candidate for quantifying
this uncertainty. Our previous work showed that for the non-
adaptive mechanism, given a mobility level, the more varied
the mobility pattern, the more dynamic the mobility trie. This
motivates us to use entropy as a measure to reflect the dynamic
level of the normal profile. The lower the uncertainty under
the movement pattern, the richer the movement pattern is.

Definition 1 Entropy: Suppose X is a dataset, Cx =
{Cx[1], Cx[2], . . . , Cx[m]} is a class set. Each data item of
X belongs to a class x ∈ Cx[i]. Then the entropy of X

related to this |Cx|-wise classification is defined as H(X) =∑m
i=1 −PilgPi, where Pi is the probability of x belonging to

class Cx[i].
Entropy can be interpreted as the number of bits required

to encode the classification of a data item. It measures the
uncertainty of a collection of data items. The lower the entropy,
the more uniform the class distribution. If all data items belong
to one class, then its entropy is 0, which means that no bits
needs to be transmitted because the receiver knows that there is
one class. The more varied the class distribution, the larger the
entropy. When all of the data items are equally distributed over
the m classes, its entropy is lgm. In the context of anomaly
detection, entropy is a measure of the regularity of audit data.

Definition 2 Conditional entropy: Suppose X and Y are
two datasets, Cx = {Cx[1], Cx[2], . . . , Cx[m]} and Cy =
{Cy[1], Cy[2], . . . , Cy[n]} are two class sets. Each data item
of X belongs to a class x ∈ Cx[i] and each data item of
Y belongs to a class y ∈ Cy[i]. Then given Y and Cy ,
the entropy of X related to Cx is defined as H(X|Y ) =∑m

i=1

∑n
j=1 Pij lg 1

Pi|j
, where Pij is the probability of x ∈

Cx[i] and y ∈ Cy[j], Pi|j is the probability of x ∈ Cx[i] given
y ∈ Cy[j].

Conditional entropy describes the uncertainness of X given
Y , i.e., it indicates the coefficiencies between X and Y . The
smaller the conditional entropy, the more correlated X and Y .
If X can be determined by Y , H(X|Y ) is 0. In the context of
anomaly detection, conditional entropy can be used to explore
the temporal sequential characteristics of audit data due to the
temporal nature of the system activities.

There have been some work that utilizes the entropy of the
trie, and use it to improve the performance adaptively [3].
In [3], the authors use an information-theoretic framework
and Shannon’ entropy measure as the basis to compare user
mobility models. In this way, they can track user mobility
efficiently and reduce paging costs.

2) Compute the Entropy of a Trie: When we compute
the entropy of the EWMA-based mobility trie, we apply a
weighted scheme at different orders. Specifically, based on
the order of different finite contexts of the mobility trie, we
calculate conditional entropies respectively and assign them
different weights. The larger the order, the larger the weight.
The sum of these weighted entropies is used as the measure-
ment for adjusting system detection threshold. Let’s consider
the string aaababbbbbaabccddcbaaaaaacabbbabcbdcadbdbb.
By applying LZ78 algorithm [5], we obtain a trie as illustrated
in Fig. 2.

root

a, 7 b, 5 c, 2 d, 5

b, 3a, 3 a, 2 b, 2 b, 1 c, 2 b, 2

a, 1 b, 1a, 1b, 1b, 1c, 1a, 1c, 1

Fig. 2. An Example of EWMA-based Mobility Trie.
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The maximum order m and the corresponding weight wi

are design parameters. In this example, let’s assign 2 to m.
• Order-0 Model

p(V 1)

=
7
19

lg
19
7

+
5
19

lg
19
5

+
2
19

lg
19
2

+
5
19

lg
19
5

= 1.88631.

• Order-1 Model

p(V 2|V 1)

=
7
19

[(
3
6
lg

6
3
) × 2] +

5
19

[(
2
4
lg

4
2
) × 4]

= 0.894737.

• Order-2 Model

p(V 3|V 1V 2) =
3
19

[(
1
2
lg

2
1
) × 4] + 0 = 0.315789

When the context of a specific length is not found in the
trie, we assign its conditional probability to 0. Further, we
treat 0lg0 as 0.

Generally, the larger the order, the larger the weight assigned
to it, because context models with a larger order tends to be
more accurate and should weight more in the current normal
profile. If we assign 0.1, 0.2, and 0.7 to w1, w2, and w3

respectively, the weighted entropy of the mobility trie in Fig.
2 can be calculated as:

weighted entropy

= w1 × H(V 1) + w2 × H(V 2|V 1) + w3 × H(V 3|V 1V 2)
= 0.58863.

3) Adaptive Algorithm: The proposed adaptive algorithm
is illustrated in Fig. 3. After integrating a new string s to
a EWMA-based mobility trie, we compute its entropy. If the
current entropy is larger than the previous one, we decrease the
detection threshold by ∆. Otherwise, we increase the detection
threshold by ∆. Here, ∆ is a design parameter and is related
to the mobility levels and mobility patterns.

After deciding the threshold, we can then apply it to the
test trace and decide whether it is abnormal or not [2]. When
the distance between the current trace and the EWMA-based
mobility trie is less than the threshold, the current trace is
normal. Otherwise, an alarm could be generated.

V. SIMULATION STUDY

A graph resembling the cellular mobile network is used in
our simulation study. On average, each cell is surrounded by
another six cells. Assumption is made that in reality, people
show different itinerary patterns in weekdays and weekends.
Therefore, for a mobile user, we designate five different
routes for weekday activities and three routes for weekend
activities. The probability distribution of the user taking the
weekday routes is 0.6, 0.2, 0.1, 0.05 and 0.05 respectively.

 

 Initialize mobility database := null 

LOOP 

     Based on LZ algorithm, wait for a sequence s 

  IF (The mobility trie of the mobile exists) 

    IF (a path p corresponding to s is found) 

Add s to the mobility trie 

Using EWMA to modify the frequencies of nodes 

    ELSE 

      Create new nodes, and initialize their frequencies to λ 

  ELSE 

   1) Create a mobility trie := single sequence s 

   2) Initialize the frequencies for every node in sequence  

s to λ 

  Compute the entropy e1 of the EWMA-based mobility trie 

  If (e1 > e) 

  /* e is the entropy of the previous EWMA-based mobility trie */ 

   Decrease the detection threshold by ∆ 

  Else 

   Increase the detection threshold by ∆ 

  e = e1; 

FOREVER 

Fig. 3. Adaptive EWMA-based Mechanims.

The probability distribution of weekend routes is 0.5, 0.3, and
0.2 respectively. Five mobility levels are considered to study
the performance of the adaptive mechanisms. Specifically, we
set the mobile speed to 20, 30, 40, 50, and 60 miles/hour
respectively. Call durations are the same for all calls and
exponentially distributed with mean value of 3 minutes. Given
fixed call duration, the higher the mobility level, the more the
cells traversed.

We apply a blended Markov model with m set to 2. w0,
w1, and w2 are set to 0.1, 0.2, and 0.7 respectively. These
values are used to calculate both the probability of the current
activity and the entropy of the EWMA-based mobility trie.

A. Performance Metrics

• False Alarm Rate: It is measured over normal itineraries.
Suppose m normal itineraries are measured, and n of
them are identified as abnormal, false alarm rate is
defined as n/m.

• Detection Rate: It is measured over abnormal itineraries.
Suppose m abnormal itineraries are measured, and n of
them are detected, detection rate is defined as n/m.

B. Simulation Results

For the false alarm rate of the non-adaptive mechanism, we
apply the detection threshold constructed using weekday data
and apply them to weekend data. Note that the normal profiles
of weekday data are adapted to those of weekend because of
the usage of EWMA techniques. For the false alarm rate of the
adaptive mechanism, we use the algorithm illustrated in Fig.
3 to adaptively adjust the threshold. We measure the detection
rate using the same methodology.
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Fig. 4. False Alarm Rate at Different Mobility Levels.

1) False Alarm Rate: Simulation results of the false alarm
rate are illustrated in Fig. 4. For both mechanisms, the false
alarm rate decreases with the increase of the mobility. For a
normal user who has traversed more cells with regular move-
ment patterns, his itinerary will demonstrate more resemblance
to his regular activities that is recorded in the mobility trie.
Therefore, the probability normalized by the itinerary length
is relatively stable. In the way, the false positives are reduced.

At the same mobility level, the false alarm rate of the
adaptive mechanism is lower than that of the non-adaptive
mechanism. Adaptive mechanisms take into consideration the
changes of the user’s mobility patterns and can adjust the
detection threshold correspondingly. The online IDS can thus
adapt itself to the environment better. False positives, which
are the main concerns when we deploy any intrusion detection
systems, can be reduced correspondingly.
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Fig. 5. Detection Rate at Different Mobility Levels.

2) Detection rate: Simulation results of the detection rate
are illustrated Fig. 5. For both mechanisms, the detection rate
increases with the increase of the mobility. With the increase of
the mobility level, each user tends to have more cells traveled.
Therefore, for a masquerader, his itinerary tends to deviate
significantly from the normal profile. In this way, the detection
rate is improved with the increase of mobility.

Detection rates with and without adaptive mechanisms do

not show much difference. When the attacker demonstrates a
significantly different route compared to normal profiles, the
adaptive mechanism will not enable the abnormal changes
to have a high probability predicted by the EWMA-based
mobility trie. The same is true for non-adaptive mechanism.
Therefore, for an abnormal route change, it will have a
low probability under both the adaptive and non-adaptive
mechanism. In this way, the detection rate cannot be improved.

To summarize, the main benefit of our adaptive mechanisms
is to lower the false positive rate, while keeping roughly the
same performance in terms of the detection rate.

VI. RELATED WORK

Two important intrusion detection techniques exist: misuse
detection and anomaly detection. [7] presents a good taxonomy
of existing technologies. Many research efforts have been
devoted to different detection techniques. Most of them take
into consideration domain specific knowledge.

Relatively few research efforts have been devoted to intru-
sion detection research of wireless networks. In [8], Samfat
et al. proposed IDAMN (Intrusion Detection Architecture for
Mobile Networks) that includes two algorithms to model the
behavior of users in terms of both telephony activity and
migration patterns. Buschkes et al. [9] presented a new model
based on the Bayes decision rule and applied this rule to
mobile user profiles.

VII. CONCLUSIONS AND FUTURE WORK

We investigate using entropy as a metric to integrate the
adaptive threshold into the construction of mobility-based
IDSs. Based on entropy, we can adaptively adjust the detection
threshold. Simulation results demonstrated that our adaptive
mechanisms can lower the false positive rate, while keeping
roughly the same performance in terms of the detection rate.

We plan to further investigate better approaches to lower
false positive rate. More features such as call activities will be
accommodated into the system to make it suitable to all users.
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