
SIA: Secure Information Aggregation in Sensor Networks∗

Bartosz Przydatek
Carnegie Mellon University
Pittsburgh, PA 15213, USA

bartosz@cmu.edu

Dawn Song
Carnegie Mellon University
Pittsburgh, PA 15213, USA

dawnsong@cmu.edu

Adrian Perrig
Carnegie Mellon University
Pittsburgh, PA 15213, USA

perrig@cmu.edu

ABSTRACT
Sensor networks promise viable solutions to many monitoring prob-
lems. However, the practical deployment of sensor networks faces
many challenges imposed by real-world demands. Sensor nodes
often have limited computation and communication resources and
battery power. Moreover, in many applications sensors are de-
ployed in open environments, and hence are vulnerable to physical
attacks, potentially compromising the sensor’s cryptographic keys.

One of the basic and indispensable functionalities of sensor net-
works is the ability to answer queries over the data acquired by the
sensors. The resource constraints and security issues make design-
ing mechanisms for information aggregation in large sensor net-
works particularly challenging.

In this paper, we propose a novel framework for secure informa-
tion aggregation in large sensor networks. In our framework certain
nodes in the sensor network, called aggregators, help aggregating
information requested by a query, which substantially reduces the
communication overhead. By constructing efficient random sam-
pling mechanisms and interactive proofs, we enable the user to
verify that the answer given by the aggregator is a good approxi-
mation of the true value even when the aggregator and a fraction of
the sensor nodes are corrupted. In particular, we present efficient
protocols for secure computation of the median and the average of
the measurements, for the estimation of the network size, and for
finding the minimum and maximum sensor reading. Our protocols
require only sublinear communication between the aggregator and
the user. To the best of our knowledge, this paper is the first on
secure information aggregation in sensor networks that can handle
a malicious aggregator and sensor nodes.

∗This research was supported in part by the Center for Computer
and Communications Security at Carnegie Mellon under grant
DAAD19-02-1-0389 from the Army Research Office, by NSF Al-
addin Center grants CCR-0122581 and CCR-0058982, and by gifts
from Bosch. The views and conclusions contained here are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either express or implied,
of NSF, ARO, Bosch, Carnegie Mellon University, or the U.S. Gov-
ernment or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’03, November 5–7, 2003, Los Angeles, California, USA.
Copyright 2003 ACM 1-58113-707-9/03/0011 ...$5.00.

Categories and Subject Descriptors
C.2.2 [Computer – Communication Networks]: Distributed Sys-
tems; F.2 [Analysis of Algorithms and Problem Complexity]:
Miscellaneous

General Terms
algorithms, reliability, security

Keywords
sensor networks, information aggregation, security, approximate
interactive proofs

1. INTRODUCTION
Sensor networks are becoming increasingly popular to provide

economical solutions to many challenging problems such as real-
time traffic monitoring, wildfire tracking, wildlife monitoring, or
building safety monitoring. In sensor networks, thousands of sen-
sor nodes collectively monitor an area. These large sensor networks
generate a substantial amount of data, yet the sensor nodes often
have limited resources, such as computation power, memory, stor-
age, communication, and most importantly, battery energy. The
large scale of sensor networks and the resource constraints make it
an important challenge to design and develop efficient information
processing and aggregation techniques to make effective use of the
data. Given a query, it may be unnecessary and inefficient to re-
turn all raw data collected from each sensor—instead, information
should be processed and aggregated within the network and only
processed and aggregated information is returned [13, 16]. In such
a setting, certain nodes in the sensor network, called aggregators,
collect the raw information from the sensors, process it locally, and
reply to the aggregate queries of a remote user. However, informa-
tion aggregation in sensor networks is made even more challenging
by the fact that the sensor nodes and aggregators deployed in hos-
tile environments may be compromised due to physical tampering.
Therefore, the processing and aggregation mechanisms need to be
resilient against attacks where the aggregator and a fraction of the
sensor nodes may be compromised.

Previous work in data aggregation assumes that every node is
honest [21, 10, 13, 16], with the exception of [15] (cf. Sec. 1.1). In
this paper, we address the problem of how to enable secure infor-
mation aggregation, such that the user accepts the data with high
probability if the aggregated result is within a desired bound, but
that the user detects cheating with high probability and rejects the
result if it is outside of the bound.

An attacker can perform a wide variety of attacks. For example,
once the attacker compromised the base station or the aggregators,

255

the attacker could perform a denial-of-service attack and stop re-
sponding to any queries. Since we assume that a compromised
node is under the full control of the attacker, there is nothing to
prevent the attacker from mounting such denial-of-service attacks.
However, in this paper we focus on another type of attack that we
call stealthy attack. In a stealthy attack, the attacker’s goal is to
make the user accept false aggregation results, which are signifi-
cantly different from the true results determined by the measured
values, while not being detected by the user. In particular, we want
to guarantee that if the user accepts a reported aggregation result
from the aggregators, then the reported result is “close” to the true
aggregation value with high probability; otherwise, if the reported
value is significantly different from the true value due to the misbe-
havior of the compromised aggregators and/or the sensors, the user
will detect the corruption and reject the reported aggregation result
with high probability. We stress that in the considered model the
corrupted sensors and aggregators may deviate from the protocol
in an arbitrarily malicious way, and our goal is to prevent the user
from accepting incorrect results.

More precisely, we propose the approach of aggregate-commit-
prove: in our setting, the aggregators not only perform the aggre-
gation tasks, but also prove that they perform these tasks correctly.
Specifically, to prevent the aggregators from cheating, we use cryp-
tographic techniques of commitments, and construct efficient ran-
dom sampling mechanisms and interactive proofs, which enable
the user to verify that the answer given by the aggregators is a good
approximation of the true value even when the aggregators and/or
a fraction of the sensor nodes may be corrupted.

In this paper we present the following contributions:

• We introduce the problem of secure information aggregation
in sensor networks, analyze the attack model and security
requirements.

• We propose the aggregate-commit-prove framework for de-
signing secure information aggregation protocols (Section 3).

• We put forward concrete protocols for securely computing
the median (Section 4), securely finding the minimum and
maximum values (Section 5), securely estimating (counting)
the number of distinct elements (and the network size) (Sec-
tion 6), and securely computing the average of measurements
(Section 7). Our protocols require only sublinear communi-
cation overhead between the aggregator and the user.

• We propose the approach of forward secure authentication
to ensure that even if an attacker corrupts a sensor node at
a point in time, it will not be able to change any previous
readings the sensor has recorded locally (Section 8).

1.1 Related work
Previous work in sensor network data aggregation has mainly

focused on how to aggregate information assuming every node is
honest [21, 10, 13, 16]. Hu and Evans have studied the problem of
information aggregation if one node is compromised [15], but their
protocol may be vulnerable if a parent and a child node in their
hierarchy are compromised.

Ergün et al. [12] studied the problem of approximate interactive
proofs, where a prover (the aggregator) proves to a verifier (the
home server) that the input data has some property. However, in
their model both the prover and the verifier can access the input
data, and the task of the prover is to assist the verifier, so that the
verifier doesn’t have to read the entire input. Some of their solu-
tions can be implemented directly in our model by simulating ver-
ifier’s access to the input: whenever verifier should read a part of

the input, he asks the prover to deliver the desired part. However,
in many cases the locations of the desired parts should be hidden
from the prover, hence a more expensive simulation is needed, e.g.,
using a private information retrieval protocol [7, 18].

2. PROBLEM STATEMENT: SECURE
INFORMATION AGGREGATION

2.1 Problem Setting
We consider the setting where a large number of sensors are de-

ployed in some area distant from a home server. Sensors perform
measurements and the home server would like to query statistics
of the measured values. However, sensors are usually simple, low-
powered devices which can communicate only within small range
of their location, and so they cannot report the measurements di-
rectly to the distant home server [17]. Thus, a resources-enhanced
base station is often used as an intermediary between the home
server and the sensor nodes.

We assume that certain nodes in the network would perform the
aggregation task. In the rest of the paper, we refer to the node that
performs the aggregation task the aggregator. The base station is
a natural candidate to perform the aggregation task, due to its en-
hanced computation and communication power. However, the issue
of deciding which nodes are the aggregators is out of the scope of
this paper and we simply assume that there exist some aggregators
in the network at a given time. Moreover, some sensor networks
may have multiple aggregators (For example, in TAG [21], each
non-leaf node is an aggregator). For simplicity, in most of this pa-
per, we only consider the case of a single aggregator. Nevertheless,
our techniques can be extended to multiple aggregators, as we dis-
cuss in Section 9.

2.2 Key Setup And Communication Model
We assume that each sensor has a unique identifier and shares

a separate secret cryptographic key with the home server and with
the aggregator [25]. The keys enable message authentication, and
encryption if data confidentiality is required. Note that the home
server and the aggregator do not need to store O(n) keys [25] — in-
stead each of them stores simply a master key KB and KA (for the
home server and the aggregator, respectively), and each sensor node
stores the shared keys MACKB (node ID) and MACKA(node ID),
where MAC is a secure message authentication code that is used
here as a pseudo-random function. A specific secure instantiation
of MAC is the HMAC construction by Bellare et al. [5]. Thus,
given a node ID, the home server (or the aggregator) can compute
its shared key with the sensor node by using its master key and
hence authenticate the sensor node’s message.

Since some sensors may be corrupted (cf. Section 2.3), the net-
work may become partitioned by the corrupted sensors, in which
case some uncorrupted sensors are able to communicate with each
other and/or with the aggregator only via routes through corrupted
sensors. When this happens, the corrupted sensors could always
play a denial-of-service attack and cut off the communication be-
tween two partitioned sensor networks and simply claim to one
partition that the other partition is not reachable. In such a case
an aggregator may at best be able to compute aggregated informa-
tion for one partition. Therefore, for simplicity, we assume that the
uncorrupted sensors form a connected component containing the
aggregator, meaning that the set of uncorrupted sensors can reach
each other via paths composed of only uncorrupted sensors.

We furthermore assume that the home server and base station
have a mechanism to broadcast authentic messages (e.g. queries)

256

into the network, such that each sensor node can verify the authen-
ticity of the message, for example using the TESLA broadcast au-
thentication protocol [24, 25].

2.3 Attack Model And Security Goals
We consider a setting with a polynomially bounded attacker,

which can corrupt some of the sensors as well as the aggregator.
Actions of a corrupted device are totally determined by the adver-
sary. In particular, the adversary can arbitrarily change the mea-
sured values reported by a corrupted sensor. However, we assume
that the adversary can corrupt at most a (small) fraction of all the
sensors.

An attacker can perform a wide variety of attacks. For exam-
ple, a corrupted aggregator could report some significantly biased
or fictive values (possibly totally independent of the measured val-
ues), instead of the real aggregates, and so provide the home server
with false information. Since in many applications the information
received by the home server provides a basis for critical decisions,
false information could have catastrophic implications. However,
we do not want to limit ourselves to just a few specific selected
adversarial strategies. Instead, we assume that the adversary can
misbehave in any arbitrary way, and the only limitations we put
on the adversary are its computational resources (polynomial in the
security parameter) and the fraction of nodes that it can corrupt.
In particular, we assume the Byzantine fault model [20] where a
compromised node is under the full control of the attacker.

In this setting, we focus on stealthy attacks, where the attacker’s
goal is to make the home server accept false aggregation results,
which are significantly different from the true results determined by
the measured values, while not being detected by the home server.
In this context, denial-of-service attacks such as not responding to
queries clearly indicates to the home server that something is wrong
and therefore is not a stealthy attack.

Our security goal is to prevent stealthy attacks. In particular,
we want to guarantee that if the home server accepts a reported
aggregation result from the aggregators, then the reported result is
“close” to the true aggregation value with high probability; other-
wise, if the reported value is significantly different from the true
value due to the misbehavior of the corrupted aggregators and/or
the sensors, the home server will detect the corruption and reject
the reported aggregation result with high probability.

2.4 Efficiency vs. Accuracy Tradeoff
The problems discussed in this paper have a straightforward (but

unfortunately very inefficient) solution: the aggregator forwards to
the home server all data and authentication information from each
sensor. Given all the data, the home server can verify authenticity
of each data item, and answer all the statistical queries locally.

However, we assume that the communication between the aggre-
gator and the home server is expensive, hence the trivial solution of
sending all the data is very inefficient, and our goal is to reduce
the amount of communication between the the aggregator and the
home server. On the other hand, communicating just the result of
a query is in many cases (e.g., for count, min/max, average, or me-
dian queries) very efficient, but it does not give the guarantee of
correctness. Moreover, for all the problems studied in this paper
we can show that in order to prove that the reported aggregation re-
sult is exact (with zero probability of error), we need at least linear
communication complexity (linear in the size of the network), i.e.,
we cannot do much better than sending all the data to the aggre-
gator. If we are willing to accept (a small) non-zero probability of
error, then theoretically general methods based on PCP techniques
could be applied [2, 19]. However, such methods would be very in-

efficient in practice. Hence, in order to achieve practical sublinear
communication complexity, we need to relax the accuracy require-
ments and accept approximative results.

Depending on the function f being computed by the aggrega-
tor, various notions of approximations are useful. Let f be a func-
tion of a1, . . . , an into real numbers, and let y = f(a1, . . . , an).
We say that ỹ is a multiplicative ε-approximation of y (or just ε-
approximation) if (1 − ε)y ≤ ỹ ≤ (1 + ε)y. We say that ỹ is an
additive ε-approximation of y if y − ε ≤ ỹ ≤ y + ε.

The difference between y and ỹ can be caused by various factors:

(1) Some sensors may be compromised and report wrong values
that will affect the aggregation result. If a corrupted sensor
simply reports a wrong value,1 it may be difficult to detect
the misbehavior since such a detection may require appli-
cation/semantics specific knowledge. However, depending
on the aggregation function, assuming that at most a certain
number of sensors are compromised, we can calculate the
bound on how much deviation from the correct result these
corrupted sensors can cause.

(2) In some scenarios, when the aggregator uses sampling tech-
niques to calculate the aggregation result, the sampling tech-
nique will introduce some estimation error. We can bound
the estimation error by adjusting the number of required sam-
ples.

(3) The aggregator may be compromised, and may try to cheat
by reporting wrong aggregation values. Without security
mechanisms, a corrupted aggregator can lie about the aggre-
gation result and report wrong values that are very far from
the true result.

Because the errors caused by the above three factors can be upper
bounded additively, and computing the bounds for factors (1) and
(2) is relatively straightforward, in the rest of the paper we mainly
focus on describing new techniques preventing the attacks of the
third kind (corrupted aggregator) and compute the corresponding
bounds. In particular, we propose efficient interactive proofs for
verification of the accuracy of the results reported by the aggrega-
tor.

In addition to the approximation error ε, which describes the
quality of a reported result, we also use a parameter δ, which upper
bounds the probability of not detecting a cheating aggregator (i.e.,
an aggregator reporting a result not within ε bounds). Formally,
we call such a protocol an (ε, δ)-approximation, meaning that the
protocol finds an ε-approximation with probability at least 1 − δ,
and runs in time polynomial in 1/ε and 1/(1 − δ). As long as δ is
bounded away from 1 by some constant fraction, the actual value of
δ is not essential, since by repeating a protocol O(log 1/δ) times,
we can make the probability arbitrarily small of being effectively
cheated, assuming the independence of each trial.

2.5 Notation and Conventions
In the remainder of this paper, n denotes the number of sensors,

S1, . . . , Sn, A denotes the aggregator, and B the home server. We
consider scenarios where the values measured by the sensors are
from some totally ordered set, and we denote by ai the value re-
ported by sensor Si. In fact, without loss of generality, we assume
that the values ai are integers from [m] = {1, . . . , m}.

For the complexity analysis, we assume that each element and
each hash value can be accessed in 1 step, and sending it costs 1

1However, a faulty value with a correct authentication tag, since we
assume that node compromise also results in key compromise.

257

m0 m1 m2 m3 m4 m5 m6 m7

H

v0,0 = H(v1,0 || v1,1)

v1,0 v1,1

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7

Figure 1: Merkle hash tree used to commit to a set of values.
The aggregator constructs the Merkle hash tree over the sen-
sor measurements m0, . . . , m7. To lower the size of verifica-
tion information, the aggregator first hashes the measurements
with a cryptographic hash function, e.g., v3,0 = H(m0), as-
suming that the size of the hash is smaller than the size of the
data. To construct the Merkle hash tree, each internal value of
the Merkle hash tree is derived from its two child nodes: vi,j =
H(vi+1,2j || vi+1,2j+1). The Merkle hash tree is a commitment
to all the leaf nodes, and given the authentic root node v0,0, a
verifier can authenticate any leaf value by verifying that the leaf
value is used to derive the root node. For example, to authen-
ticate the measurement m5, the aggregator sends m5 along with
v3,4, v2,3, v1,0, and m5 is authentic if the following equality holds:
v0,0 = H(v1,0 || H(H(v3,4 || H(m5)) || v2,3)).

unit of communication. Also, we assume that each computing a
hash value can be done in O(1) steps. Assuming that all measure-
ments may be different, in “real life” each element is actually at
least �log m� bits long.

Finally, we assume that the verifier knows the number of sensors
reporting the measurements (or a good estimate of this number).
This number can be given as a system parameter, or can be esti-
mated using our secure counting protocol, which we describe in
Section 6.

3. OUR GENERAL APPROACH:
AGGREGATE-COMMIT-PROVE

We propose a new approach, which we call aggregate-commit-
prove: aggregators help computing aggregation of sensor nodes’
raw data and reply to the home server with the aggregation result to-
gether with a commitment to the collection of data; the home server
and the aggregators then perform efficient interactive proofs such
that the home server will be able to verify the correctness of the
results (or detect cheating with high probability).

We show that such an approach improves both security and effi-
ciency. By letting the aggregator perform the aggregation, the raw
data does not need to be sent back to the home server but only
the aggregation result together with a (small) proof of correctness
is transfered over the expensive long-distance communication link.
By engaging with the aggregator in an interactive proof phase, the
home server will detect with high probability if the aggregator or
some sensor nodes are cheating.

More precisely, the solutions proposed in this paper consist of
three parts: computation of the result, committing to the collected

data and report back the aggregation result, and proving the cor-
rectness of the result.

• In the first part, the aggregator collects the data from sensors
and locally computes the aggregation result. As we discuss in
Section 2, each sensor shares a key with the aggregator, such
that the aggregator can verify the authenticity of each sen-
sor reading (preventing sensor impersonation, but not flawed
data from a corrupt sensor).

• In the second part, the aggregator commits to the collected
data. The commitment to the input data ensures that the ag-
gregator uses the data provided by the sensors, and that the
statement to be verified by the home server about the correct-
ness of computed results is meaningful. One efficient way
of committing to the data is a Merkle hash-tree construc-
tion [22, 23]. In this construction, all the collected data is
placed at the leaves of the tree, and the aggregator then com-
putes a binary hash tree starting from the leaf nodes: each
internal node in the hash tree is computed as the hash value
of the concatenation of the two child nodes. The root of the
tree is called the commitment of the collected data. Because
the hash function in use is collision resistant, once the ag-
gregator commits to the collected values, he cannot change
any of the collected values. Figure 1 gives an example of a
Merkle hash tree.

• In the third part, the aggregator and the home server engage
in a protocol in which the aggregator communicates the ag-
gregation result and the commitment to the server and proves
to the server that the reported results are correct using inter-
active proof protocols. The interactive proof usually contains
two steps:

1. The home server checks that the committed data is a
good representation of the true data values in the sensor
network.

2. The home server checks if the aggregator is cheating,
in the sense that the aggregation result is not (close to)
the correct result aggregated from the committed data
values.

Functions Covered in Our Framework: It follows immedi-
ately that any function approximable by naive uniform sampling
of the input values can be approximated securely in the proposed
framework, since the combination of commitments with authenti-
cation enables reliable uniform sampling. However, as we show in
the sequel, for some problems uniform sampling does not yield a
good approximation, or is still too expensive in terms of communi-
cation. In such cases we propose solutions which are significantly
better than the uniform sampling. Our techniques employ more
involved actions of the aggregator and/or sampling over specially
constructed probability spaces.

4. COMPUTING THE MEDIAN
In this section we study the problem of computing the median

of the measured values. Without loss of generality we assume that
all values ai are distinct—if they are not distinct, we can run the
protocol on the (distinct) pairs (ai, IDi), where IDi is a unique
identifier of the i-th sensor.

Note that the corrupted sensor nodes can always forge their val-
ues and hence try to deviate the aggregation result from the true
median. However, assuming that there are at most n′ corrupted

258

nodes, the corrupted nodes can cause the aggregated median to de-
viate at most n′ from the true median. If the aggregator cheats,
without security mechanism built-in, the aggregator can report ar-
bitrary value back to the home server. Therefore, in the rest of
the section, we focus on designing efficient protocols to detect the
aggregator cheating if the aggregator cheats more than a desired
bound.

As mentioned in the introduction, the problem can be trivially
solved by sending all the measurements to the home server. How-
ever, this solution is very inefficient in terms of communication
complexity. With the low-communication requirement in mind,
probably the most straightforward approach is to sample the mea-
surements and use the median of the sample as an estimate of the
true median. In the following, we first analyze this naive approach,
and then propose a more efficient solution. Note that here we as-
sume that the user knows the approximate size of the sensor net-
work. This can be achieved, for example, with a method presented
in Section 6.

4.1 Naive Approach: Median by Random
Sampling

Probably the simplest method for estimating the median using
sublinear communication complexity is random sampling: we take
a random sample of � measured values and return the median of the
sample as an approximation of the median of all the measurements.

The computational cost and communication complexity of this
approach are clearly determined by the number of samples (�) re-
quired to achieve an estimate which with high probability is equal
to some element within εn of the actual median.

THEOREM 1. The median of a uniform sample of � out of n

elements a1, . . . , an with probability at least 1 − (2/e2�ε2
) yields

an element whose position in the sorted sequence a1, . . . , an is
within εn of n/2.

Theorem 1 implies, that in order to achieve with probability close
to 1 a ε-approximation of the median it is sufficient to choose the
size of sample � = O(1/ε2). However, Bar-Yossef et al. [3] show
that Ω(1/ε2) samples are also necessary for an ε-approximation of
the median.

4.2 Our Approach for Median
The naive sampling approach presented in the previous section

makes only minimal use of the capabilities of the aggregator A—
indeed, A only forwards messages from the sensors, without doing
any processing.

In this section we consider the interactive-proof approach, in
which A is more involved in the computation process. As we shell
see, this yields significant savings in the communication complex-
ity.

As mentioned in the general framework, we require that A com-
mits the measured values using a hash-tree construction. In this
case we additionally require that the sequence of the values com-
mitted to is sorted.

In the interactive proof, B obtains an alleged median amed and
verifies its correctness by checking (using two tests) that the se-
quence committed to indeed fulfills the requirements. More pre-
cisely, first B verifies that the committed sequence is sorted and that
all the elements in the sequence are distinct. This test can be per-
formed using Sort-Check-II spot checker from [11] with sub-
sequent uniform sampling of pairs of neighboring elements (requir-
ing O(log n/ε) and O(1/ε) samples, respectively; cf. Section 7.1).
In the second test B checks that amed is (close to) the median of

committed sequence. Here B picks elements from random posi-
tions2 in the committed sequence, and checks that elements picked
from the left half of the sequence are smaller than the reported me-
dian, and elements from the right half are larger than the median.
A pseudo-code description of this median-checking test is given
below.

procedure MedianCheck(n, amed, ε):
request an/2

if an/2 �= amed then
return REJECT

for i = 1 . . . (1/ε) do
pick j ∈R {1 . . . n} \ {n/2}
request aj

if j < n/2 and aj > amed then
return REJECT

if j > n/2 and aj < amed then
return REJECT

return ACCEPT

THEOREM 2. Procedure MedianCheck(n, amed, ε) requests
1/ε elements ai, runs in time O(t · 1/ε), where t is time required
to process a single request, and satisfies:

(1) if the measurements sequence is median-separated and amed

is equal to an/2, then the result is “ACCEPT”

(2) if amed is not present in the sequence, or its position p in the
sorted sequence satisfies

|p − n/2| > εn ,

then with probability at least 1 − 1/e > 1/2 the result is
“REJECT”

Theorem 2 together with the complexity of the first test imply
that by requesting in total only O(log n/ε) elements we can check
whether the reported value is an ε-approximation of the median,
and at the same time guarantee a constant probability of detecting
a cheating aggregator. In many scenarios we have log n � 1/ε,
and in such cases the proposed procedure uses significantly fewer
samples than random sampling to guarantee the same error bound.

Clearly, using the same techniques we can compute with low
communication complexity not only the median, but also arbitrary
quantiles.

5. SECURE COMPUTATION OF MIN/MAX
The problem of finding the minimum (or the maximum) value of

the measurements is a fundamental task in monitoring applications,
and protocols for solving it are useful not only as a stand-alone
primitives but also as a subprotocol for more complex aggregates.
In this section, we describe a secure min-discovery protocol that
enables the home server to find the minimum of the values reported
by the sensors. Then in Section 6 we show an example application,
namely how we use our secure min-discovery protocol as a build-
ing block to enable random selection of a node in the network and
secure counting the number of distinct elements and estimating the
network size.

Recall that in our setting some sensors may be corrupted, and
a corrupted sensor could always report a forged value which is
2In fact, this second test can use the samples from the first test. We
describe both tests separately for better modularity.

259

smaller than the smallest true value, which in general renders the
problem of finding the minimum value meaningless. Therefore,
here we focus on the scenarios where either a corrupted sensor can-
not lie about its value, or it is not in the interest of the adversary to
report smaller values. As an example for the first case, consider
the situation3 were the input value to be used by each sensor is
a MAC of the current time interval using its key shared with the
home server, and the home server is interested in finding out which
sensor has the smallest such MAC value. Note that assuming that
the current time interval is well-defined and each sensor has a reli-
able way to determine the current time interval, a corrupted sensor
cannot manipulate its own MAC value. An example for the sec-
ond case is a scenario where the adversary tries to hide the mere
existence of small measured values.

Following the “aggregate-commit-prove” method, in the first step
each node authenticates its input value and sends it to the aggrega-
tor, which computes the minimum value and commits to the set of
values reported by the sensor nodes. Without security considera-
tions, we could then simply have the aggregator to report the com-
puted minimum value back to the home server. However, this ap-
proach is insecure because the aggregator can for example hide the
smallest value and not report it. Using the method for computing
quantiles as described in Section 4, we could ensure that the value
the aggregator reported is among the εn smallest with high proba-
bility. Below we propose a new protocol, FindMin, for finding the
minimum value, which achieves a better bound. Assuming that an
uncorrupted sensor node holds the minimum value in the commit-
ted values mentioned above, the FindMin protocol will enable the
home server to find the minimum value in the committed values
with high probability. Zhao et. al. proposed a similar tree-based
approach for computing Min/Max value although their approach
assumes nodes well behave and does not consider adverserial at-
tacks [27].

5.1 The FindMin Protocol
The protocol works by first constructing a spanning tree in the

network of sensors, such that the root of the tree holds the mini-
mum element (procedure MinRootedTree), and then checking that
the tree was constructed properly (procedure FindMin).

The construction of the tree proceeds in iterations. Assume that
each sensor Si has a value ai. Throughout the protocol Si main-
tains also a tuple of state variables (pi, vi, idi), where pi holds
the ID of the current parent of Si in the tree being constructed, vi

holds the smallest value seen so far, and idi holds the ID of the
node whose value is equal to vi (we assume that whenever there is
a tie of the values, we break the tie by considering the node ID).

Each sensor node Si initializes its state as pi := Si, vi := ai,
and idi := Si. In each iteration Si broadcasts (vi, idi) to its neigh-
bors, and upon receiving the analogous messages from the neigh-
bors, Si picks the message with the smallest value (breaking ties
using the node ID). Let (v′, id′) denote the message with the small-
est value picked by Si, and let S′ be the sender of this message. Si

updates its state by setting pi := S′, vi := v′, and idi := id′. Then
the sensors proceed to the next iteration. The construction termi-
nates after d iterations, where d is an upper bound on the diameter
of the network. A pseudo-code specification of the procedure Min-
RootedTree is given below.

Our assumption that the uncorrupted sensors form a connected
component implies that after the construction of the tree terminates
the uncorrupted sensors all have the same smallest value and they
form a tree rooted at the node that is the owner of the smallest

3This scenario will be used to estimate the network size as we will
show in Section 6.

procedure MinRootedTree(d):
/** code for sensor i **/
pi := Si /** current parent **/
vi := ai /** current minimum **/
idi := Si /** owner of current minimum **/
for i = 1 . . . d do

send (vi, idi) to all neighbors
receive (vj , idj) from neighbors
if vj < vi for some j then

pi := Sj

vi := vj

idi := idj

value. For the checking protocol, each node Si authenticates its
final state (pi, vi, idi) from the construction protocol, using the
key shared with the home server, and sends the authenticated state
to the aggregator. The aggregator A checks the consistence of the
resulting tree with the values committed to initially. If the check is
successful, A commits to the list of all the nodes and their states,
finds the root of the resulting tree and reports the root-node to the
home server. Otherwise A reports the inconsistency and terminates
the protocol. The home server then randomly picks a node in the
committed list, and then traverses the path from the picked node
to the root, using the information provided in the state. During the
traversal the home server checks the consistency of the constructed
tree, using the provided authenticated states. If all the checks are
successful, then the home server B accepts the value reported by
the aggregator as the the minimum value, otherwise B rejects.

procedure FindMin(ε):
/** code for the home server **/
request construction of a tree using MinRootedTree
if tree construction failed then

return REJECT

request number n of the nodes in the tree
for i = 1 . . . (1/ε) do

pick j ∈R {1 . . . n}
request j-th node from the tree
follow path to the root
if path is inconsistent then

return REJECT

return ACCEPT

Formally, we have the following theorem.

THEOREM 3. Assuming that no more than ε fraction of the sen-
sors are corrupted, and the minimum value in the committed val-
ues is from an uncorrupted sensor, and that all uncorrupted sen-
sors form a connected component of diameter at most d, procedure
FindMin requests O(d/ε) elements and satisfies:

(1) If all the sensors and the aggregator follow the protocol then
the home server ACCEPTs the result, which is equal to the
minimum of the values committed to initially.

(2) If the value reported by the aggregator is not equal to the
minimum of the values committed to initially, then the home
server REJECTs with probability at least 1 − ε.

Proof. (sketch) Note first that since all the sensors are initially re-
quired to commit to their values, they cannot change the values
during the protocol—any change having impact on the final result
will be detected because of the data authentication. Moreover, the

260

assumption that the uncorrupted sensors form a connected compo-
nent implies that the adversary cannot stop the propagation of the
minimum value in this component. On the other hand, if the aggre-
gator tries to cheat, the random sampling of a starting node for the
tree traversal will with probability at least 1 − ε hit the connected
component of the uncorrupted sensors, and so detect cheating.

6. COUNTING DISTINCT ELEMENTS
In this section we study the problem of counting the number µ of

distinct values in the measurements, i.e., the problem of determin-
ing the size of the set of all the measurements. Note that malicious
sensor nodes can always forge their measurements and hence influ-
ence the result of counting distinct elements. Assuming there are
at most n′ corrupted sensor nodes, then the corrupted sensor nodes
can cause the aggregation result to deviate at most n′ from the true
result. However, if the aggregator cheats, the aggregator can cheat
arbitrarily about the result. Therefore, in the rest of the section,
we focus in designing protocols where once the sensor values are
committed, how we can detect cheating from the aggregator if the
aggregator cheats more than certain bounds.

Ergün et al. [12] give a very efficient protocol for proving a lower
bound on the size of a set. While it is possible to use their solution
in our context, a direct implementation would require application
of PIR protocols [7, 18]. The reason for this requirement is the fact,
that in the protocol proposed by Ergün et al. it is essential that the
prover does not know the positions of randomly selected elements.
The application of PIR significantly increases the communication
complexity of the solution — the currently most efficient PIR pro-
tocol [18] imposes an additional factor of Ω(log4 n) per access of
a single element.

We propose two different protocols for estimating the number of
distinct elements. Our solutions are based on algorithms for space-
efficient approximation of the number of distinct elements in a data
stream [4, 14, 1], and on a novel technique for random selection
of the nodes of the network. In the following subsections we first
describe the basic tools used in our constructions, then we present
the proposed protocols, and finally we discuss their applications in
estimation of the network size.

6.1 Basic Tools

6.1.1 Space-Efficient Estimation of the Number of
Distinct Elements

In the setting of computation on data streams Flajolet and Mar-
tin [14] proposed a space-efficient technique for estimation of the
number of distinct elements in a stream. The key idea is to pick
a random hash function h : [m] → [0 . . . 1], apply it to all the
elements ai and keep the value v = minn

i=1 h(ai). Finally, the
number of distinct elements is estimated by the value µ′ = 1/v.

Alon et al. [1] have shown that in this algorithm pairwise in-
dependent hash functions are sufficient to achieve with probability
2/c an estimate µ′ satisfying µ/c ≤ µ′ ≤ cµ, for any c > 2.
Bar-Yossef et al. [4] further improved this method and presented
a (ε, δ)-approximation for µ. The basic idea for the improvement
is to maintain several (t = O(1/ε2)) elements ai on which a ran-
domly picked hash function h evaluates to the t smallest values.
This significantly improves the accuracy for the cost of increased
space complexity.

6.1.2 Random Selection of a Node
The second basic tool needed in our constructions is a method

for a selection of a node (sensor) at random. Note that even if the

home server has a list of IDs of the sensor nodes in the network, a
mere selection of a node from the list uniformly at random does not
solve the problem — the aggregator might be corrupted and deny
contact to the picked sensor by claiming that the picked node does
not respond. In such a case the home server has no way of deciding
what is faulty, the sensor or the aggregator.

We propose a new mechanism which enables the home server to
perform a random sampling in the sensor network and doesn’t suf-
fer from the above drawback. The main idea of the proposed Ran-
domSample procedure is as follows. The home server picks a ran-
dom hash function h and sends it to the aggregator. The aggregator
is then supposed to broadcast h with the sampling request. Each
sensor node then computes the hash value of its ID and the current
time interval. Then the whole network performs a MIN-discovery
protocol to discover the node with the smallest hash value. If a
corrupted sensor node happens to have the smallest hash value, it
could choose not to report its own value. However, a corrupted
sensor cannot report any fake value, since the value to be reported
by each sensor is uniquely determined by h, the ID of the sensor
and the current time interval. Moreover, if the smallest hash value
is computed by an uncorrupted sensor node, the attacker cannot
stop the uncorrupted sensor node to become the winner and be dis-
covered and reported back to the home server. Thus, because any
uncorrupted sensor node has equal probability of computing the
smallest hash value, this method enables the home server to sample
uniformly at random from the uncorrupted sensor nodes.

COROLLARY 1. Under assumptions of Theorem 3, with h de-
noting a function picked uniformly at random from a family of pair-
wise independent hash functions, the procedure RandomSample(h)
satisfies

(1) If all the sensors and the aggregator follow the protocol then
the home server ACCEPTs.

(2) If the home server ACCEPTs, then with probability at least
(1 − ε), for every honest sensor node S, the probability of
picking S as the sample is within 1/n and 1/(n(1 − ε)).

This random sampling technique has many applications. In par-
ticular, as shown below, it is very useful for counting distinct ele-
ments and computing the network size.

6.2 Method I: Counting Distinct Elements by
Distributed MIN-Computation

The described approach to the estimation of the number of dis-
tinct elements in a data stream can be viewed as a process of finding
a minimum, in which the same computation is performed for each
element: compute the hash-value and save it if it is smaller than
the current minimum. This observation immediately suggests that
the algorithm for the data stream [1] can be easily implemented in
a distributed way and reduced to the problem of finding the min-
imum. First the home station picks at random a hash function h
from an appropriate family, and through the aggregator announces
h to each sensor. Each sensor locally computes the hash value of
its element, and then participates in a protocol for finding the min-
imum hash value (cf. Section 5).

If we want to improve the accuracy, we can implement the al-
gorithm from [4], by keeping t smallest hash values instead of just
the single minimum. However, this improvement comes at a cost
of higher communication complexity.

261

6.3 Method II: Proving Bounds on the Num-
ber of Distinct Elements

The above method for counting distinct elements depend on the
random selection procedure from Section 6.1.2. In some applica-
tions the traffic in the sensor network needed by this selection pro-
cedure may be too high. In this section we present alternative, more
efficient methods for estimation of the number of distinct elements.
The efficiency gain comes at the price of relaxed accuracy guaran-
tees. In particular, the presented methods yield approximations of
lower & upper bounds, instead of approximation of the actual num-
ber of distinct elements. However, in a practical setting this is not
a real disadvantage — to get an accurate estimate we require the
aggregator to prove matching lower & upper bounds.

The proposed alternative approach to the counting of distinct el-
ements is in the spirit of other protocols proposed in this paper:
“aggregate-commit-prove”. Here the aggregator first collects all
the distinct values reported by the sensors, and subsequently com-
mits to the collected values.

6.3.1 A Lower Bound on the Number of Distinct
Elements

At the beginning of the protocol for estimating a lower bound
on the number of distinct elements the aggregator A commits to
the values reported by the sensors using a hash-tree construction.
A will then run an algorithm for counting distinct elements in a
stream by Bar-Yossef et al. [4], using hash functions specified by
the home server B.

Let H = {h| h : [m] → [M]}, where M = m3, be a family
of pairwise independent hash functions [26], such that any function
h ∈ H has a short description (O(k) bits). After A commits to the
input, B computes an estimate for a lower bound on µ as follows.
B picks at random a hash function h from the family H and sends it
to A. Then A computes h(ai) for all i = 1 . . . n, and sends back to
B t elements (for appropriately chosen t), on which h evaluates to
the t smallest values. Then B checks the correctness of the received
elements and computes an estimate of µ as µ′ = tM/v, where v is
the t-th smallest value to which h maps the received elements.

Bar-Yossef et al. [4] show that with high probability µ′ is a good
approximation of the number of distinct elements. We can further
amplify the accuracy by repeating the protocol � times and estimat-
ing µ with with the median of the � resulting estimators µ′

1, . . . , µ′
�.

A pseudo-code description of the entire protocol is given below.

procedure DistinctLowerBound(n, m, ε, �):
t := �96/ε2�
M := m3

for j = 1 . . . � do
pick hj ∈R H
send description of hj to A
request t elements ai on which hj evaluates to the t smallest
values
let v be the t-th smallest such value
set µ′

j = tM/v
return µ′ = median(µ′

1, . . . , µ′
�)

Note that in the protocol B has no means to check that A has
evaluated the hash function on all the elements, and that the re-
ported elements evaluate indeed to the t smallest values. This is
a reason why the described protocol yields only a lower bound on
µ, not an estimate of µ. A malicious aggregator A can omit some
elements, or report elements which evaluate to larger values. How-

ever, such cheating results in an estimate µ′ smaller than µ, and so
µ′ will be still a valid estimate of a lower bound.

THEOREM 4. Procedure DistinctLowerBound(n, m, ε, �) re-
quests O(� · 1/ε2) elements ai and returns a value µ′ which with
probability at least 1 − (1/6)�/2 satisfies µ′ ≤ (1 + ε)µ.

6.3.2 An Upper Bound on the Number of Distinct
Elements

Consider the following sampling-based test: First A commits
to the multi-set S of all the elements, and additionally to a subset
S′ containing all distinct elements (without repetitions). A reports
µ′ = |S′| to B, and B verifies A’s claim by checking that all the
distinct elements from S are present in S′. In other words, the test
checks that µ′ is an upper bound on µ. The test works by random
sampling: the verifier B requests random element from S, and asks
A for an element with the same value present in S′.

Now, depending on an application, and in particular on the ratio
of µ′ to the total size of multi-set S, two different approaches can
be used for random sampling from S.

6.3.2.1 High Number of Distinct Elements.
In the case when the number of distinct elements is a significant

fraction of the number of all the elements, i.e., µ ≥ n/c for some
c ≥ 1, a simple sampling through the aggregator is sufficient —
pick a node at random, with uniform distribution over all nodes.

Note that this node-sampling procedure in this case is quite dif-
ferent from the one described in Section 6.1.2, and in particular is
much more efficient. A pseudo-code description of the entire pro-
tocol based on this simple sampling is given below.

procedure HighDistinctUpperBound(n, ε, �):
for i = 1 . . . � do

pick j ∈R {1 . . . n}
request aj

request an element from S′ equal to aj

if any of the requests failed then
return REJECT

return ACCEPT

THEOREM 5. Procedure HighDistinctUpperBound(n, ε, �)
requests � elements and satisfies:

(1) if S′ contains all the distinct elements from the input the re-
sult is “ACCEPT”.

(2) if µ′ < (1 − ε)µ then with probability at least 1 − e−�ε/c

the result is “REJECT”, assuming that µ ≥ n/c for some
constant c ≥ 1.

Theorem 5 implies that by taking � = c/ε we can detect cheating
with constant probability. Therefore, if with such value of � we
repeat the test O(log 1/δ) times, we get confidence at least 1 − δ.

Note that this method yields a significantly better estimate than
the approximation by sampling with a “trivial aggregator” A, which
only forwards the measurements collected from the sensors selected
by B [9, 3].

6.3.2.2 Low Number of Distinct Elements.
When the number of distinct elements is low in comparison to

the total size of S the simple sampling won’t work, because the
omitted elements not reported in S′ could be infrequent and so very
hard to find by sampling. However, a modest modification of the

262

random sampling protocol from Section 6.1.2 can fix this problem:
each node report a the hash value based on the value measured by
the node, not on its ID. This results in a distribution uniform on dis-
tinct values, not uniform on nodes. In other words, different nodes
with the same measured value will report the same hash values, and
by the properties of the hash function, each measured value will be
equally likely to be the minimum. The pseudo-code of this sam-
pling approach is given below.

procedure LowDistinctUpperBound(ε, �):
for i = 1 . . . � do

apply RandomSample on measured values
request an element from S′ equal to the sampled value
if any of the requests failed then

return REJECT

return ACCEPT

The following theorem can be proved analogously to the Theo-
rem 5.

THEOREM 6. Procedure LowDistinctUpperBound(ε, �) re-
quests � elements and satisfies:

(1) if S′ contains all the distinct elements from the input the re-
sult is “ACCEPT”.

(2) if µ′ < (1 − ε)µ then with probability at least 1 − e−�ε the
result is “REJECT”.

6.4 Estimating the Network Size
It is clear that the problem of estimating the size of the network

is a special case of counting the distinct elements. By assumption,
each sensor has a unique identifier hence the computation of the
size of the network is equivalent to counting of the number of dis-
tinct elements in the set of all sensor identifiers.

7. COMPUTING THE AVERAGE
In this section, we describe how to efficiently and securely com-

pute the average of sensor data. The sensor data can be sensor
measurements such as temperature reading or light intensity, or
can be information about a sensor node such as the remaining bat-
tery power or remaining storage space. Note that corrupted sen-
sors can always report forged values and hence deviate the aggre-
gation result from the true result. However, assuming that there
are at most n′ corrupted sensors and the difference between the
valid maximum measurement value and the valid minimum mea-
surement value is at most u, then the deviation caused by forged
values from the corrupted sensors will be at most un′/n where n is
the size of the sensor network. On the other hand, if the aggregator
cheats, without a good security mechanism, the aggregation result
may be arbitrarily far from the true result. Therefore, in the rest of
this section, we focus on designing protocols to ensure that if the
aggregator cheats more than a certain bound, the home server will
detect the aggregator’s cheating. Below we describe two different
protocols with different efficiency tradeoffs for this purpose.

7.1 Computing the Average by Counting Fre-
quencies

In this subsection, we describe how to compute the average by
counting frequencies of the sensor values. We first describe a spe-
cial case and then show that the special case can be generalized to
the general case.

In the special case when m � n, or more generally when the
range of the sensor values is small in comparison with the size of

the sensor network (e.g., poly-logarithmic in n), we can estimate
the average quite accurately by taking a small sample of all the
elements and returning the average of the sample. However, the
number of the samples needed to assure with constant probability a
good estimate for the average depends on the the underlying distri-
bution of the values, and in general is lower-bounded by Ω(1/ε2),
where mε is the desired additive error bound [8, 3].

As in the case of the computation of the median, the naı̈ve sam-
pling only minimally uses capabilities of the aggregator. Below we
present an alternative method for computing the average, in which
the aggregator is more involved. As we shall see, this approach,
which we call AverageByFrequency, is in some cases significantly
more efficient.

First the aggregator A collects all the (value, ID)-pairs (ai, IDi)
and commits to them. Then A computes an average ā and reports
it to B. In order to prove the correctness of ā, A sorts all the pairs
using the value as the main sorting key and the node ID as a sec-
ondary sorting key, and commits also to the sorted sequence. Then
B tests whether the two committed sequences contain the same ele-
ments by using sampling. If the test complete successfully, A sends
to B the occurrence-counts for each value 1 . . . m. A verifies the
correctness of the counts by deriving from them the positions in the
committed sorted sequence, and check the values in the committed
sorted sequence are well sorted using the method Sort-Check-
II spot checker from [11]. If also this check succeeds, B computes
the average directly from the occurrence-counts, and compares it
to ā. Summarizing, we obtain the following theorem. The Sort-
Check-II spot checker performs O(1/ε) binary searches on the
committed sequence to ensure that all but a ε fraction of the ele-
ments are sorted, which results in O(log n/ε) samples.

THEOREM 7. The procedure AverageByFrequency requests
O(log n/ε + m) elements and satisfies:

(1) If ā is equal to the average of the values a1, . . . , an, and the
aggregator follows the protocol, then B always ACCEPTs.

(2) If |ā− avg(a1, . . . , an)| > εm, then B REJECTs with prob-
ability ≥ 3/4 (for a suitable choice of constant parameters).

Note that in many scenarios we have typically log n � 1/ε —
in such cases the procedure AverageByFrequency uses significantly
fewer samples than random sampling to guarantee the same error
bound.

For the general case where m is large, we could split the range
[1, m] in intervals of exponential scale where the i-th interval is
[m/2i, m/2i−1]. And we can perform a protocol similar to the
above for each interval and achieve a lower bound and an upper
bound for the average.

7.2 Computing the Average by Counting Dis-
tinct Elements

We can reduce the problem of computing the average to the prob-
lem of determining the number of distinct elements in a set [12].
Without loss of generality, assume that the sensor values are inte-
gers. In particular, consider the set Ψ = {(i, j)|1 ≤ i ≤ n, 1 ≤
j ≤ aj} (if aj = 0 then there will no j such that (i, j) ∈ Ψ. Thus,
Ψ contains only distinct elements and the cardinality of Ψ equals to�n

i=1 ai. By using our protocol for counting the number of distinct
elements in Section 6, we could obtain a protocol to compute the
average. Note that the communication efficiency for the protocol to
compute the average is the same as the communication efficiency
for the protocol to compute the number of distinct elements.

263

8. FORWARD SECURE AUTHENTICATION
Consider the challenge of securely querying past data. For exam-

ple, an innocuous event in the past that later became interesting and
we may still want to place a query on that event. We could use the
same mechanisms we proposed in previous sections to run queries
on past data. However, we need to solve some additional security
issues to securely query past data. In particular, if a sensor is com-
promised at a certain time, the attacker should not be able to alter
the data collected in the past before the sensor was compromised.
We call this property forward secure authentication. We propose
an efficient mechanism to enable forward secure authentication.

As we described before, each sensor shares a key with the home
station. We assume that each sensor node and the home station
are loosely time synchronized and the time is divided into constant
time intervals. The length of the time interval can be minutes or
hours depending on the security requirements. To enable forward
secure authentication, each sensor updates its key shared with the
home station at the beginning of each time interval using a one-
way function and uses the updated key to compute the MAC on the
sensing data during that time interval.4 Thus, even when an attacker
compromises the sensor node in a later time interval, because of the
property of the one-way function, the attacker is unable to compute
the MAC key for the previous time interval, and hence will not be
able to alter the sensing data for previous time intervals.

A challenge of this approach is on how to efficiently store the
past data and authenticator, as well as the challenge that the verifier
either needs to compute many one-way functions for deriving the
current key of a node or that the verifier needs to store one key per
node.

Similar techniques have been used to achieve forward secure en-
cryption [6].

9. DISCUSSION: SECURE
HIERARCHICAL AGGREGATION

If the sensor network is too large, then one aggregator may not
be capable to handle the whole network. In this case, we may need
to use a hierarchical aggregator to enable the aggregation. Some
functions support hierarchical aggregation such as the Min/Max
and average computation where each aggregator can aggregate in-
formation for a subset of the nodes in the sensor network and then
the information of the aggregators can be aggregated to compute
the final result. However, some other functions such as computing
the median may not support hierarchical aggregation in the tradi-
tional way such as in [21]. However, if we allow each aggregator to
perform random sampling over the entire network, then the median
could be computed as the median of the medians computed by the
aggregators.

In the case of hierarchical aggregation, we could use our ap-
proaches to ensure the security of each step of the aggregation or
check the steps probabilistically.

We also plan to investigate other types of aggregation functions
and see how to secure them.

10. CONCLUSION
It is a challenging task to securely aggregate information in large

sensor networks when the aggregators and some sensors may be
malicious. We propose the aggregate-commit-prove framework for
designing secure data aggregation protocols (Section 3). We pro-

4A one-way function f is a function that it is easy to compute f(x)
given x, but it is difficult to compute a preimage x such that f(x) =
y given y.

pose concrete protocols within this framework for securely com-
puting the median (Section 4), securely finding the minimum and
maximum values (Section 5), securely estimating (counting) the
number of distinct elements (and the network size) (Section 6), and
securely computing the average of measurements (Section 7). Our
protocols require only sublinear communication between the ag-
gregator and the user. We also propose the approach of forward
secure authentication to ensure that even if an attacker corrupts a
sensor node at a point in time, it will not be able to change any
previous readings the sensor has recorded locally. To the best of
our knowledge, our protocols are the first ones that can handle the
problem that the aggregator and/or the sensor nodes may be ma-
licious. We anticipate that our paper introduces the problem of
secure information aggregation to the community and encourages
other researchers to consider this important problem.

Acknowledgments
The authors would like to thank anonymous referees and shepherd
Philippe Bonnet for their valuable comments and feedback.

11. REFERENCES
[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space

complexity of approximating the frequency moments. In
Proc. 28th STOC, pages 20–29, 1996.

[2] László Babai, Lance Fortnow, Leonid A. Levin, and Mario
Szegedy. Checking computations in polylogarithmic time. In
Proc. 23rd ACM STOC, pages 21–32, 1991.

[3] Ziv Bar-Yossef, S. Ravi Kumar, and D. Sivakumar. Sampling
algorithms: lower bounds and applications. In Proc. 33rd
STOC, pages 266–275, 2001.

[4] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar,
and Luca Trevisan. Counting distinct elements in a data
stream. In Proc. RANDOM 2002, pages 1–10, 2002.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying
hash functions for message authentication. In Advances in
Cryptology – CRYPTO ’96, pages 1–15, 1996.

[6] Mihir Bellare and Bennet Yee. Forward security in private
key cryptography. Report 2001/035, Cryptology ePrint
Archive, 2001.

[7] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with
polylogarithmic communication. In Proc. Eurocrypt’99,
pages 402–414, 1999.

[8] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds
for sampling algorithms for estimating the average.
Information Processing Letters, 53(1):17–25, 1995.

[9] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and
Vivek Narasayya. Towards estimation error guarantees for
distinct values. In Proc. 19th PODS, pages 268–279, 2000.

[10] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and
Srinivasan Seshan. Cache-and-query for wide area sensor
databases. In SIGMOD 2003, 2003.

[11] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt
Rubinfeld, and Mahesh Viswanathan. Spot-checkers. JCSS,
60:717–751, 2000. preliminary version in Proc. STOC’98.

[12] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast
approximate PCPs. In Proc. 31st STOC, pages 41–50, 1999.

[13] Deborah Estrin, Ramesh Govindan, John Heidemann, and
Satish Kumar. Next century challenges: Scalable
coordination in sensor networks. In Proceedings of the

264

ACM/IEEE International Conference on Mobile Computing
and Networking, MobiCom 99, August 1999.

[14] P. Flajolet and G. N. Martin. Probabilistic counting. In Proc.
FOCS’83, pages 76–82, 1983.

[15] Lingxuan Hu and David Evans. Secure aggregation for
wireless networks. In Workshop on Security and Assurance
in Ad hoc Networks, January 2003.

[16] C. Intanagonwiwat, D. Estrin, R. Govindan, and
J. Heidemann. Impact of network density on data
aggregation in wireless sensor networks. In Proceedings of
International Conference on Distributed Computing Systems,
November 2001.

[17] J. M. Kahn, R. H. Katz, and K. S. Pister. Mobile networking
for smart dust. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and
Networking, MobiCom 99, Seattle, WA, August 1999.

[18] Aggelos Kiayias and Moti Yung. Secure games with
polynomial expressions. In Proc. 28th ICALP, pages
939–950, 2001.

[19] Joe Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In Proc. 24th ACM STOC,
pages 723–732, 1992.

[20] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401, July 1982.

[21] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. TAG: a Tiny AGgregation
service for ad-hoc sensor networks. In Proceedings of the
Fith Annual Symposium on Operating Systems Design and
Implementation (OSDI), December 2002.

[22] Ralph C. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 122–134, April 1980.

[23] Ralph C. Merkle. A certified digital signature. In Proc.
Crypto’89, pages 218–238, 1989.

[24] Adrian Perrig, Ran Canetti, J.D̃. Tygar, and Dawn Song. The
TESLA broadcast authentication protocol. RSA CryptoBytes,
5(Summer), 2002.

[25] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler,
and J. D. Tygar. SPINS: Security protocols for sensor
networks. Wireless Networks Journal (WINET),
8(5):521–534, September 2002.

[26] Mark N. Wegman and J. Lawrence Carter. New hash
functions and their use in authentication and set equality.
JCSS, 22:265–279, 1981.

[27] Jerry Zhao, Ramesh Govindan, and Deborah Estrin.
Computing aggregates for monitoring wireless sensor
networks. In First IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

APPENDIX

A. PROOFS
Proof. (Theorem 1) Let X� be a random variable denoting the po-
sition of the median returned by the algorithm using � samples. We
want to show that

Pr [|X� − n/2| > εn] ≤ e−2�ε2
.

First note that by symmetry we have

Pr [|X� − n/2| > εn] =

= Pr [(X� − n/2) > εn] + Pr [(n/2 − X�) > εn]

≤ 2Pr [(X� − n/2) > εn] .

Now, the event that (X�−n/2) > εn is equivalent to the event that
more than �/2 of the sampled elements have positions greater than
n/2+ εn. Let for i = 1 . . . �, Yi denote a random variable equal to
1 if the i-th sample has position greater than n/2+εn, and equal to
0 otherwise. Since we sample with uniform distribution, we have

Pr [Yi = 1] = 1/2 − ε

Pr [Yi = 0] = 1/2 + ε

Let S� =
��

i=1 Yi. Clearly, E[S�] = �/2 − �ε. By the above
argument we get

Pr [(X� − n/2) > εn] = Pr [S� > �/2]

= Pr [S� > E[S�] + �ε]

≤ e−2�ε2
,

where the last inequality follows from Hoeffding bound.

Proof. (Theorem 2) The number of requests, running time and prop-
erty (1) follow immediately. For property (2), notice that if |p −
n/2| > εn, then there are at least εn values of j, which yield
REJECT. Hence with probability at most (1− ε)1/ε ≤ 1/e the for-
loop completes without rejection, i.e., the algorithm rejects with
probability at least 1 − 1/e.

Proof. (Theorem 4) First, and consider the special case when � = 1.
Bar-Yossef et al. [4] bound the probability that the estimate µ′

1 is
significantly larger than µ:

Pr
�
µ′

1 > (1 + ε)µ
�

<
1

6
.

For � > 1, the median of � values µ′
1, . . . , µ′

� exceeds the bound
(1 + ε)µ if at least half of the estimates exceed the bound, hence

Pr [median(y1, . . . , y�) > (1 + ε)µ] <

�
1

6

�l/2

,

and the claim follows.

Proof. (Theorem 5) Claim (1) is obvious: if all distinct elements
are present in S′, the prover A will always be able to return re-
quested elements. For claim (2) notice that if µ′ < (1 − ε)µ, then
there are at least µε elements in S which detect cheating and lead
to “REJECT”. By assumption µε ≥ εn/c for some c ≥ 1, so
the probability that a single sample detects cheating is at least ε/c.
Therefore, the probability of returning “ACCEPT” after � samples is
at most (1 − ε/c)� ≤ e−�ε/c, which implies the claim.

265

