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ABSTRACT Intrusion Detection Systems (IDSs) for Mobile Ad hoc NETworks (MANETs) are indis-

pensable since traditional intrusion prevention based techniques are not strong enough to protect MANETs.

However, the dynamic environment of MANETs makes the design and implementation of IDSs a very chal-

lenging task. In this paper, we present a non-overlapping Zone-Based Intrusion Detection System (ZBIDS)

that fits the requirement of MANETs. On the local detection part, we present a general intrusion detection

agent model and propose a Markov Chain based anomaly detection algorithm. We focus on the protec-

tion of MANET routing protocols and present the details regarding feature selection, data collection, data

preprocess, Markov Chain construction, classifier construction and parameter tuning. We demonstrate that

local detection alone cannot achieve desirable performance. Therefore, we further propose a collaboration

mechanism among ZBIDS agents and an aggregation algorithm used by gateway nodes. With alert infor-

mation from a wider area, gateway nodes’ IDS can effectively suppress many falsified alerts and provide

more diagnostic information about the occurring attacks. Security officers can have a general understanding

about the attacks using the proposed MANET Intrusion Detection Message Exchange Format (MIDMEF).

We carry out extensive simulation to evaluate the performance of ZBIDS at different mobility levels. Sim-

This paper is the extension of our conference papers [3,4].
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ulation results show that ZBIDS can achieve desirable performance and meet the security requirement of

MANETs.

I. INTRODUCTION

The unique characteristics of Mobile Ad hoc NETworks (MANETs), such as arbitrary node movement and

lack of centralized control, make them vulnerable to a wide variety of outside and inside attacks [1]. How

to provide effective security protection for MANETs has become one of the main challenges in deploying

MANET in reality. Intrusion prevention techniques, such as encryption and authentication, can deter at-

tackers from malicious behavior. But prevention based techniques alone cannot totally eliminate intrusions.

The security research in the Internet demonstrates that sooner or later a smart and determined attacker can

exploit some security holes to break into a system no matter how many intrusion prevention measures are

deployed. Therefore, intrusion detection systems (IDSs), serving as the second line of defense, are indis-

pensable for a reliable system. IDSs for MANETs can complement and integrate with existing MANET

intrusion prevention methods to provide highly survivable networks [1].

Nevertheless, it is very difficult to design a once-for-all detection model. Instead, an incremental en-

hancement strategy may be more feasible. A desirable detection model should at least include mechanisms

against known attack types. In addition, it should provide a scheme to easily add new security features in

the future. Based on this consideration, we target at a specific type of attack, routing disruption attack, as

the preliminary step toward the goal of providing comprehensive security protection.

This paper has made four contributions in the IDS research for MANETs. First, it proposes a local detec-

tion engine. Because of the distributed nature of MANETs, it is desirable that an Intrusion Detection agent

is attached to each node. Each IDS agent performs the intrusion detection task locally and independently.

It uses trusted information to monitor the node’s local activities for abnormal behavior. Regarding the lo-

cal detection engine, we present the details of feature selection, data collection, data preprocess, Markov

Chain (MC) construction, classifier construction, and performance tuning. Second, we present a framework

for the collaboration of distributed detection agents. The distributed local IDS agents without collaboration
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are likely to have high false positive rates under the dynamic MANET environment. Therefore, a suitable

framework is required to facilitate the agents’ cooperation in order to improve the performance. For such

purpose, a two-level nonoverlapping Zone-Based Intrusion Detection System (ZBIDS) is proposed to meet

the unique requirement of MANETs. With ZBIDS, the network is divided into nonoverlapping zones and

each IDS agent broadcasts the locally generated alerts inside the zone. Gateway nodes (also called interzone

nodes, which have physical connections to nodes in different zones) are responsible for the aggregation and

correlation of locally generated alerts. Third, an algorithm is proposed to utilize the attribute similarity to

aggregate locally generated alerts. With such alert aggregation, the IDS performance in terms of false posi-

tive rate and detection rate can be improved. Finally, to facilitate the interoperability of distributed detection

agents, we present an alert format - MANET Intrusion Detection Message Exchange Format (MIDMEF),

which conforms to IDMEF [20] standard.

The rest of the paper is organized as follows. In Section II, we illustrate the attack model. Section III

describes our assumptions in constructing ZBIDS. Section IV outlines ZBIDS and describes the internal

model of the intrusion detection agent. Section V presents a Markov Chain based anomaly detection algo-

rithm. Section VI presents ZBIDS and an aggregation algorithm. Section VII provides simulation results.

Section VIII introduces related work in wired and wireless IDS, and Section IX concludes this paper.

II. THREAT MODEL

Routing protocols are the cornerstone of MANETs since they support the basic message forwarding ser-

vice to MANET applications. Because of this, they are often the targets of various attacks. Therefore, in

this paper, we focus on the protection of MANET routing protocols. To be specific, we aimed at defending

against one of the most important active attacks: routing disruption attack.

In MANETs, it is very easy for the attacker to perform routing disruption attacks. For example, the at-

tacker can generate randomly-constructed routing control packets (e.g., falsified Routing REPly (RREP) in

Dynamic Source Routing protocol) and disseminate them into the network. Such falsified routing informa-

tion can prevent the source node from establishing a correct path and can also disrupt the routing logic in the
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whole network.

Because of the arbitrary movement of nodes, link breakages happen frequently. Therefore, it is difficult

for the attacker to target one specific victim all the time. This will lead to the phenomenon called “partial”

victims because the victim will not receive all the falsified routing control packets. The degree of partial

depends on mobility levels, mobility patterns and locations of mobiles, etc. On one hand, this phenomenon

alleviates the damage caused by an attacker to a specific victim. On the other hand, it makes intrusion

detection more difficult since it obscures the difference between real attacks and normal link breakages.

III. ASSUMPTIONS

First, we assume the local IDS agent is secure. Current technologies in resistant software/hardware [6]

make it very hard to crack the embedded secrets. Therefore, we do not need to consider the security issues

of IDS agents themselves. Actually, security of IDS agents presents another challenge for MANETs and

is beyond the scope of this paper. In the case that tamper resistant techniques are difficult to provide, the

compromised IDS agents do not intend to send error alert information. Otherwise, this kind of activeness

would make them easy to be detected. We further assume the information exchanged among IDS agents

cannot be compromised. This could guarantee the correct execution of the aggregation algorithm.

Second, in the context of intrusion detection, we assume that normal and abnormal behaviors have distinct

manifestations. Actually, in MANETs, because of their dynamic nature, it is quite often for a normal node

to send out falsified routing control packets. For example, because of mobility-induced errors, when a node

generates routing control packets reacting to some routing information request, this information may be

obsolete because of delay in message transmission. Therefore, we assume that the attacker sends out many

routing falsified routing control packets in order to effectively disrupt the routing control logic. This is a

valid assumption under intrusion detection. Moreover, it has been demonstrated that mobility could be used

to develop suitable mechanisms to enhance security [5]. Based on this, one or few routing control packets

could hardly incur severe damage to the whole system.
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Third, we assume that attackers use their own address to initiate the attack. With efficient neighbor monitor

mechanisms, the attacker could be easily identified if he changes his address dynamically.

IV. ZONE-BASED INTRUSION DETECTION SYSTEM

A. ZBIDS Framework

It is obvious that local detection alone cannot guarantee satisfactory performance because of limited se-

curity information obtained by each IDS agent. What’s more, we may experience alert flooding problems

given the distributed nature of MANETs. Therefore, a suitable framework is needed to integrate the alert

information from a wider area. Moreover, attacks are likely to generate multiple related alerts. For example,

because of the broadcast nature of radio channel, there may exist many victims suffering from same falsified

routing control packets. The triggered alerts should have high correlations correspondingly. Therefore, it is

desirable to treat them together.

2

7

8

6

5

1

4

9

10

IDS IDS

IDS

IDS

IDS

IDS

IDS

IDS

IDS

3

IDS

����

1

9 8 7

6

2

5 4

3

IDS

11

Alert Concentration Point

Alert Concentration Point

 

Fig. 1. The Zone-Based Intrusion Detection System (ZBIDS) for MANETs.

Based on the above considerations, we adopt a nonoverlapping zone based framework. The whole network

is divided into nonoverlapping zones. The formation and maintenance of zones are beyond the focus of this

paper. We assume the existence of such a framework. This could be done easily based on techniques like

geographic partitioning[8]. As illustrated in Fig. 1, there are two categories of nodes in ZBIDS: intrazone

nodes and gateway nodes (also called interzone nodes). If one node has a physical connection to a node in a
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different zone, this node is called a gateway node, for example, node 4, 7, 8 in Fig. 1. Otherwise, it is called

an intrazone node.

Only gateway nodes can generate alarms. They collect the local alerts broadcast from the intrazone nodes

and perform aggregation and correlation tasks to suppress many falsified alerts. There may exist more

than one gateway node in a single zone, all of which perform the alert aggregation task simultaneously. In

this way, we can avoid the single point of failure. Note that in this paper, alerts and alarms have different

meaning. Alerts indicate possible attacks and are generated by local IDS agents, while alarms indicate the

final detection decision and can be generated only by gateway nodes.

B. Internal Model of IDS Agent

Data Collection
Module

Data Collection
Module

Detection Engine Detection Engine

Local Aggregation
and Correlation

(LACE)

Global
Aggregation and

Correlation
(GACE)

Intrusion
Response

IDS Agent

Detection results coming from IDS agents of
neighboring gateway nodes and the
intrazone nodes in the same zone

Detection results sent to IDS agents of
neighboring gateway nodes

Audit Data
 

Fig. 2. Diagram of an IDS Agent.

Fig. 2 illustrates the internal diagram of an IDS agent. In the IDS agent, the data collection module

collects security related information from nodes within wireless communication range and preprocesses the

information to the input format of detection engines. Different local detection techniques can be deployed in

detection engines and each of them could detect a class of attacks. We do not expect that a single technique

could detect all possible intrusions. Instead, the deployed detection techniques should cooperate with each

other to improve the overall performance. The functionality of Local Aggregation and Correlation Engine

(LACE) is to locally aggregate and correlate the detection results of detection engines. Global Aggregation
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and Correlation Engine (GACE) in gateway nodes is to aggregate and correlate the detection results from

local nodes in order to make final decisions. They can also cooperate with neighboring gateway nodes to

further exchange information. For an intrazone node, its GACE is to locally broadcast the alert information

inside the zone. After an attack is identified, based on different attack types, the Intrusion Response Module

(IRM) could take corresponding measures, such as identifying the intruders, reinitiating the communication

channels, and excluding the compromised nodes from the networks.

V. ANOMALY DETECTION IN MANETS

A. Feature Selection

We need to select effective features in order to construct good IDS models. Features are security related

measures which could be used to reflect subject activities. In this paper, because we focus on the protection

of MANET routing protocols, we need to select features which can reflect MANET routing activities. Due

to the unique characteristics of MANETs, each node acts as a router and each node maintains a routing table

in order to relay messages for other nodes. For a realistic application, the users’ mobility pattern often has

some regularity. For example, each user may have a destination in mind and follows his favorite routes.

Therefore, the routing table of each user may follow a regular change pattern. The legitimate changes of

routing caches are reliable and can be locally collected. Therefore, like in [1], we define the normal updates

of node’s routing table as the normal profile.

For each feature, we further measure the relative entropy [11] between training data and test data (de-

noted as REtest henceforth) and the relative entropy between training data and intrusion data (denoted as

REintrusion henceforth) at each mobility level in order to demonstrate the effectiveness of the selected fea-

tures. Relative entropy is a measure of the “distance” between two probability mass functions [11]. For

anomaly detection, in order to achieve high performance, it is better that REtest is small (indicating the sim-

ilar behavior between training data and test data) while REintrusion is large (indicating significant difference

between training data and intrusion data) [19].
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For test data and intrusion data, we use the limited sample size to reflect recent subject activities. For

a sample of size n, if the number of occurrence of an item c is nc, the occurrence probability of c is cal-

culated as nc/n. Because of the different amounts of training data and test data (or intrusion data) items,

it is possible that some item appearing in training data does not appear in test data. Therefore, we cannot

calculate the divergence of the two probability distributions because the denominator is 0 when calculating

relative entropy. To cope with this zero-frequency problem, we adopt the popular Jelinek-Mercer smoothing

method [12]. That is, for item c, if its probability is 0 in test data (or intrusion data), we use the following

formula to modify its probability:

pλ(c) = λq(c) + (1 − λ)p(c), 0 ≤ λ ≤ 1.

where q(c) is the probability of c in test (or intrusion) data for a given history, and p(c) is the probability of

c calculated from training data. λ is an interpolation coefficient which is used as a balancing weight between

the observed probability in test data (or intrusion data) and the probability calculated from training data.

Based on our experiment results, we use the following features that are sensitive to routing disruption

attacks: PCR - percentage of the change in route entries, and PCH - percentage of the change in number of

hops. PCR represents the deleted and increased routing entries in a certain time period. PCH indicates the

changes of the sum of hops of all routing entries in a certain time period.

B. Data Preprocess

We utilize Vector Quantization (VQ) [10] to discretize the raw continuous data. VQ algorithm could

be used to discretize raw data while minimizing the average distortion. Based on the nearest neighbor

condition and centroid condition, VQ could be used to represent raw data accurately. We use the commonly

used distortion measure - squared-error measure as the distortion distance. In practice, people usually resort

to the suboptimal VQ algorithm - the Linde-Buzo-Gray (LBG) algorithm [10] for easy calculation of the

codebook. After working out the codebook, each raw item is mapped to some codevector to which it has the

smallest Euclidean distance.
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C. Markov Chain Based Intrusion Detection

It is possible that some discretized values have very small probabilities. This kind of values does not

represent the normal routing activities. Therefore, for data items whose probability is below some threshold,

we convert them to a common “rare” symbol.

We construct a Markov Chain from the discretized routing table changes. Using the immediate previous

w consecutive events (the routing table changes), also called the from state, we predict the transition

probability of the next state, to state. To do so, we use a window of size w sliding through the discretized

training data, each time by one position. During the scanning process, for each from state, we also record

its transition times to different to states respectively.

To speed up the search process, we can use a Hash table H to store the transition(from state, to state).

When a from state is not found in H , we insert it into H and associate it with a counter 1. Otherwise, the

associated counter increases by 1. If the transition(from state, to state) is not in H , it is inserted into H

and associated with a counter 1. Otherwise, its associated counter increases by 1.

The probability of the transition(s1, s2) is then calculated as: P (s1, s2) = N(s1, s2)/N(s1). Here

N(s1, s2) is the number associated with the transition (s1, s2). N(s1) is the total number associated with the

from states1. Based on our calculation, the higher the P (s1, s2), the more likely the transition is normal.

The whole process to construct the MC is illustrated in Fig. 3(a).

D. Classifier Construction

An IDS is essentially a classifier. We utilize the transition probability aggregated over the recent past

activities to construct a classifier. After initializing two real numbers A and B to zero, we shift the window

with size w in the locality frame to search for from state and to state, each time by one position. If

the transition(from state, to state) is found in MC, A increases by 1, and B increases by F = 1 −

P (from state, to state), where P (from state, to state) is obtained from the MC. Therefore, F sums up

all the transition probabilities from the from state that are not equal to (from state, to state). If the

transition is not found in the MC, A increases by 1, and B increases by some predefined penalized value.
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Procedure Construct_Markov() 
 
Input   D: raw data set; 
Output  H: hash table that stores the states and the associated counters; 
 
Begin 
 
Use VQ algorithm to preprocess D; 
Generate rare symbols, and convert D to a set of traces, denoted as M; 
 
For each ψ ∈ M  
{ 

from_state is set to the first w symbols of ψ; 
shift ψ left by w positions; 
 
While (not reaching the end of ψ) 

 { 
  to_state is set to the first symbol in ψ; 
  shift ψ left by one position; 
 
  If (from_state ∉ H) 
  { 
   from_state → H; 
   the counter of from_state in H is set to 1; 
  } 
  Else 
   increase the counter of from_state by 1; 
  
  If (transition(from_state, to_state) ∉ H) 
  { 
   (from_state, to_state) → H; 
    
   the counter of (from_state, to_state) is set to 1; 
  } 
  Else 
   increase the counter of (from_state, to_state) by 1. 
 
  shift from_state left by one position; 
  append to_state to the end of from_state; 
 
 } /*for While*/ 
} /*for For*/ 
 
End. 

  
Procedure Markov_to_Classifier(MC, ζ) 
 
Input:  MC: constructed markov chain; 
  ζ: a trace; 
Output:  Normal or Anomalous; 
 
Begin 
 
i = 1; A = 0; B = 0; µ (ζ) = 0; 
 
While ( i < the length of ζ) 
{ 
 from_state is set to sequence δ[i] = (ζ[i], ζ[i+1], …ζ[w+i-1]);  

to_state is set to ζ[w+i]; 
 If (transition(from_state, to_state) is in MC) 
 { 

     A = A + ∑
∈ )_(

),_(
statefromNexts

sstatefromP  = A + 1; 

    /*Next(from_state) indicates all the to_state associated with the current 
from_state*/ 

B = B + ∑
≠∧∈ )_()_(

),_(
statetosstatefromNexts

sstatefromP  

= B + 1 - )_,_( statetostatefromP  
 } 
 else      

/* (from_state, to_state) is not the transition of MC */ 
 { 
     A = A + 1; 
     B = B + z; 
 } 
 
           Adjust A and B over the past locality frame; 
 
 i++; 
 µ(ζ) = B / A; 
 If (µ(ζ) >= r) 
  Return Anomalous; 
 
} /*for While*/ 
 
Return Normal; 
 
End.  

(a) Markov Chain Model Construction. (b) Classifier Construction.

Fig. 3. Pseudocode to Construct the Markov Chain Model and the Classifier.

Audit Data

Span of the past locality frame

Current from-state

Current to-state
Window size: 4
Locality frame: 15  

Fig. 4. Relation among from state, to state, window size, and locality frame.

In this way, B/A represents the average distance between the current trace and the MC. It measures how

well the MC predicts the current activities. A lower B/A indicates that the current activity is more likely

to be normal. If B/A is larger than a measure r, the alert threshold, this trace is identified as abnormal.

Because B/A is calculated over the locality frame, it could suppress unexpected sudden changes and thus

reduce the false positive rate.

The relationship among the from state, to state, window size w, and the locality frame is illustrated in

Fig. 4. The algorithm used to construct the classifier is illustrated in Fig. 3(b).
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E. Parameter Tuning

a) Window size w: w is used to measure the accuracy of MC. As w increases, the algorithm depicted

in Fig. 3(b) constructs a better model because it considers more historical data. However, the classical

overfitting problem will appear for a very large w because the constructed MC models the training data “too

well”. Considering this trade-off, we utilize conditional entropy (CE) [11] to tune w. CE could be used to

explore the temporal and sequential characteristics of audit data and determine the uncertainty for the current

data item given the previous w items. We measure CE at different mobility levels and choose w when CE

calculated with the w does not drop dramatically.

b) Penalized value z and alert threshold r: For a trace α = {X1, X2, . . .}, let µ(α) = B/A. Intuitively,

it measures the distance between the MC and the current activities. A smaller µ(α) indicates that the current

activity is likely to be normal.

The discrepancy Dt(α) over the locality frame with length L is defined as:

Dt(α) =

|α|∑

i=L

µi(α)/(|α| − L + 1) (1)

where µi(α) is the average µ over the locality frame {Xi+1−L, Xi+2−L, . . . , Xi}, i ≥ L.

For a given normal trace set Tt, its discrepancy Dt(Tt) is:

Dt(Tt) =
∑

α⊆Tt

Dt(α)/|Tt| (2)

where |Tt| denotes the number of traces in Tt.

For intrusive activities, we define the discrepancy Da(α) over the locality frame with length L as:

Da(α) = Max(µL(α), µL+1(α), . . . , µ|α|(α)). (3)

µi(α) has the same meaning as before. We use Max here because it is possible that normal data is mixed

together with abnormal data if the attacks are performed intermittently.

For a given trace set Ta of intrusive activities, its discrepancy Da(Ta) is:
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Da(Ta) =
∑

α⊆Ta

Da(α)/|Ta| (4)

where |Ta| denotes the number of traces in Ta.

We tune z until (Da(Ta)−Dt(Tt)) is above a certain value so that we can easily distinguish a normal trace

from a trace with intrusive behaviors.

Alert threshold r is used to make a balance between the false positive rate and the detection rate. A smaller

value of r will lead to quicker detection of the intrusion. However, it may lead to a high false positive rate.

A larger value of r will suppress more false positives. But it may miss the detection of some intrusions. We

set r to be a weighted sum of Da(Ta) and Dt(Tt) as:

r = ha ∗ Da(Ta) + ht ∗ Dt(Tt), ha + ht = 1, ha > 0, ht > 0

VI. ALERT AGGREGATION

Local IDSs usually have high false positive rate and are subject to alert flooding, because local IDSs alone

cannot collect enough security related information. To solve this problem, the internal relationship among

the generated alerts should be taken into consideration. As such, we present an alert aggregation algorithm

in this section.

A. Collaboration Mechanism

When no local alert is generated by a local IDS agent, this IDS agent will take no actions. When a local

alert is generated, the local IDS agent simply broadcasts the alert inside the zone. To save bandwidth, we do

not use global broadcast. In this way, the gateway nodes can receive necessary security-related information.

If gateway nodes receive the locally broadcast alerts in some period, they need to perform alert aggregation.

Furthermore, neighboring gateway nodes should exchange aggregated information with each other in order

to get information from a wider area. In ZBIDS, only gateway nodes could generate alarms. Local IDSs

attached to local nodes could only generate alerts based on their local information and propagate these alerts
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inside the zone. Note that as we have mentioned before, alerts and alarms have different meanings: alarms

are final detection decision made by gateway nodes, while alerts indicates potential attacks raised from local

IDS agents.

B. Aggregation Mechanism

1) Class Hierarchy of the Alerts: A suitable alert format is required for the collaboration among IDS

agents. It could also facilitate better interoperability of future IDS systems. Intrusion Detection Working

Group (IDWG) has proposed the Intrusion Detection Message Exchange Format (IDMEF) [20] - an alert

format which is suitable for wired IDSs. We modified it to fit the requirement of MANETs. The mod-

ification includes adding some new classes (e.g., Zone class) and attributes related to MANETs, deleting

some unwanted classes (e.g., User class, Process class) and attributes, and modifying the definition of some

classes and attributes (e.g., Location attribute). The alert class hierarchy for ZBIDS - MIDMEF (MANET

Intrusion Detection Message Exchange Format) is depicted in Fig. 5 using the UML notation.

Alert

STRING ident

CorrelationAlert

Alertident

STRING
analyzerid

DetectTime

TIME time

CreateTime

TIME time

Analyzer

STRING
analyzerid

Target Source AnalyzerTime

STRING ident

ENUM decoy

STRING ident
ENUM

spoofed

Node

STRING ident
ENUM

category

Location Address Zone Name

float x

float y

STRING ident
ENUM

category
STRING address

STRING zoneId STRING name

Netmask

STRING
netmask

1..*

0..1 0..* 0..* 0..1

0..1 0..1 0..1

0..1 0..* 0..1

0..1

inheritance
aggregation

0..1:  zero or one
1..*:  one or more
0..*:  zero or more
n:  exactly "n" (left blank if n = 1)

float z

Classification

Assessment

1..*

0..1
ENUM

confidence

TIME time

 

Fig. 5. MANET Intrusion Detection Message Exchange Format (MIDMEF).
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 Procedure Determine_P() 

Input: test trace, attack trace, Prouting_abnormal 

Output: P  

Begin 

Test trace: 

For each gateway node G 

PGt = 0; 

  For each time interval of G that receives local alerts 

     For all Pti 

  If Pti > Prouting_abnormal 

  then PGt = PGt + Pti 

     End For 

End For 

/* mt is the number of time intervals of G that receives local alerts */ 

Ptest_sum = Ptest_sum + PGt/ mt 

End For 

/* Ntest is the number of gateway nodes that receive local alerts */ 

Ptest = 

testN

P
sumtest _

 

Attack trace: 

For each gateway node G 

  For each time interval of G that receives local alerts 

       Compute the sum of the probability of attacker source addresses PGa     

End For 

/* ma is the number of time intervals of G that receives local alerts */ 

Pattack_sum = PGa / ma 

End For 

/* Nattack is the number of gateway nodes that receive local alerts */ 

Pattack = 

attackN

P
sumattack _

 

P = ht * Ptest + ha * Pattack. 

END 

Fig. 6. Pseudocode to Decide P.

2) Aggregation Algorithm: Aggregation algorithms are based heavily on local IDSs. Existing aggre-

gation algorithms usually assume the accurate information provided by local IDSs, and their execution is

triggered by the receipt of local alerts [28], [29], [30]. Our case is different in that our aggregation algo-

rithm is executed periodically to reduce the computation load of gateway nodes. If there are no local alerts

received in the past period, no action is taken by gateway nodes. Also, our aggregation algorithm does not

assume accurate information provided by local IDSs.

The gateway node mainly utilizes the following information:
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• Classification similarity: It indicates the name of the attack and is provided by the classification field

of MIDMEF. In our context, it should be “Routing Disruption”.

• Time similarity: The entity DetectTime and CreateTime of MIDMEF could be used to provide time

information. DetectTime indicates the time when the attack happens, and CreateTime indicates the time

when the attack is detected. If the temporal difference between the CreateTime of a newly received

local alert and the current time of the gateway node exceeds some predefined delay, this local alert is

ignored.

• Source similarity: It indicates the possible attack sources.

Our aggregation algorithm mainly utilizes source similarity. During the normal routing discovery phase,

the node which receives a RREQ (Routing REQuest) packet will reply with a RREP (Routing REPly) packet

if it has a valid path to the destination. Given a random network topology, the distribution of the source

addresses within these RREP packets during a given time period would be even. That is, most of the time,

there is no strong bias for a given source address.

Nevertheless, when attacks happen, the attacker tends to send many falsified RREPs into the network.

Therefore, the attacker’s address is likely to dominate the source address distribution. The MC based local

IDS records the routing control packets and their aggregated probability distribution is locally broadcast with

the local alert specified using MIDMEF . The gateway nodes aggregate the locally broadcast information

and compute the source address distribution over the past period. In this way, we can differentiate the

attacker from the normal nodes: if the probability from some particular node exceeds a predefined threshold

P , this address is then identified as an attacker. Note that an attacker cannot frequently change its IP address

to send out fake messages. Otherwise, it can be detected easily by its neighbors.

A proper value P is of vital importance to the performance of our aggregation algorithm. In theory, P

depends on attack intensity, attacking time, network topology, etc. If the value of P is set too low, the

gateway nodes could identify the attack more quickly and can achieve a high detection rate. However, a

small P value will result in a high false positive rate. In contrast, if the value of P is set too high, the
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gateway nodes may have a low false positive rate. But the detection rate will be reduced as well. Hence, we

set P in the following way.

In normal cases, for a given gateway node, if local alerts are received in a given time period, we first

pick those source addresses whose aggregated probability is larger than Prouting abnormal. We denote these

probabilities as Pti (i = 1, 2, . . . , nt).

Suppose that a given gateway node G has mt time periods in which it receives local alerts. We compute

the average of Pti, (i = 1, 2, . . . , nt) over these mt periods as:

PGt =
mt∑

j=1

nt∑

i=1

Pti/mt.

PGt represents the irregularity of source address distributions of routing control packets when the system

is at normal status. Given test traces, we compute its average over all gateway nodes:

Ptest =
∑

∀ gateway nodes

PGt

the number of gateway nodes
.

Given the trace of intrusive activities, we first compute the attack address distributions contained in the

routing control packets. We denote these probabilities as Pai
(i = 1, 2, . . . , na).

Suppose that a given gateway node G has ma time periods in which it receives local alerts. We compute

the average of Pai
, (i = 1, 2, . . . , na) over these ma periods as:

PGa =

ma∑

j=1

na∑

i=1

Pai
/ma.

PGa represents the source address distribution of the routing control packets in the gateway node G during

the attack time. Given traces of intrusive activities, we compute the average of PGa over all gateway nodes:

Pattack =
∑

∀ gateway nodes

PGa

the number of gateway nodes
.

We set P as:
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P = ht ∗ Ptest + ha ∗ Pattack, ht > 0, ha > 0, ht + ha = 1.

For the aggregation algorithm, if a gateway node does not receive any alert during one period, it will

take no actions. Otherwise, it first sums up the aggregated probabilities of those source addresses whose

probability is larger than Prouting abnormal. If the resultant value is less than P , the gateway node will not

generate alarms. Otherwise, the gateway node will generate alarms and provide attacker information based

on the probability distribution of source addresses. The whole process if illustrated in Fig. 7.

Gateway nodes calculate the probability
distribution of source addresses over the recent
history, denoted as Pi

Psum > P

Y

Generate alarm

N

Suppress the alerts

Psum = 0;
For those Pi > Prouting_abnormal

Psum = Psum + Pi

Received Local Alerts

 

Fig. 7. Aggregation Algorithm.

It is possible that the detection sensitivity of our aggregation algorithm could decrease with the increase of

the number of attackers. This is because when there are more attackers in the network, no single attacker’s

address would dominate the address distribution. Therefore, it would be difficult for the aggregation algo-

rithm to make correct decisions. This situation is worsened when two or more attackers collude to attack

the same objective at the same time. However, it is still possible that the victims do not overlap completely,

whose addresses could contribute to the effectiveness of our aggregation algorithm.

VII. SIMULATION STUDY

A. Simulation Model

1) Simulation Platform and Parameter Settings: We use a simulation model based on GloMoSim [9].

The parameters used in the simulation are described in Table I. When we simulate a routing disruption
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attack, the attacker is uniformly chosen from the simulated nodes.

2) Data Sets: Three types of data need to be generated: training data, testing data, and anomaly data.

We use different pause time to represent different mobility scenarios. At each mobility level, we select 4

different random seeds. For a given mobility scenario and a given random seed, we run the simulation 400

minutes, and collect the normal data from all nodes to generate a normal data trace. From each normal data

trace, we use its last 40 minutes part as testing data. The rest of the normal data are used as training data. We

simulate the route disruption attack in order to collect anomaly data. To evaluate the performance of IDS,

we further generate a different set of normal and abnormal data. This procedure is illustrated in Fig. 8.

Normal Situation

Training
Data

Test Data
T1

Routing Disruption
Attack

Abnormal
Data A1

Classifier

Test Data
T2

Abnormal
Data A2

Performance
Evaluation

False Positive
Ratio

Detection
Ratio

 

Fig. 8. Data Set used to Construct Classifier and Evaluate Performance.

3) Performance Metrics:

• False positive rate: For local IDS, it is defined as the percentage of decisions in which normal data

are flagged as anomaly. We present the average result of 10 runs as well as the confidence interval of

95%. For ZBIDS, it is computed as the ratio of the total number of false alarms over the total number

of decisions made by gateway nodes.

• Detection rate: For local IDS, it is computed as the ratio of the total number of victims that correctly

detect attacks over the total number of victims in the anomalous data. For ZBIDS, detection rate is

measured from dividing the total number of gateway nodes that actually generate alarms by the number

of gateway nodes that should generate alarms.

• MTFA (Mean Time of First Alarm): It is defined over anomalous traces and measures how fast the

classifier detects the attack. Given an anomalous trace ξ, if we suppose the attack start location is La and
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our local IDS generates its first alert after scanning the Ld-th symbol, then the MTFA corresponding to

ξ normalized by the length (denoted as L) of the locality frame is given by MTFA(ξ) = (Ld −La)/L.

B. Simulation Results

1) Relative Entropy: Fig. 9 illustrates REtest and REintrusion of feature PCH and PCR. We can see that

REtest is smaller than REintrusion, suggesting that PCH and PCR are suitable features and can be used to

construct anomaly detection models. We can also see that audit data at different mobility levels has different

REtest. Audit data at higher mobility level is more irregular. Therefore, when mobility is high, RE test is

larger and the difference between REtest and REintrusion is smaller. This explains from one aspect why the

performance of anomaly detection under higher mobility is not good.
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Fig. 9. Relative Entropy of Feature PCH and PCR.
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Fig. 10. Conditional Entropy of Feature PCH and PCR.
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2) Conditional Entropy: We can see from Fig. 10 that audit data under different mobility levels has

different regularity. This is obvious as audit data at higher mobility levels are more dynamic. Based on this,

we need to construct different detection models corresponding to different mobility levels.

We can see that CE drops as w increases. When w is larger, less uncertainty exists for current activities,

and thus CE drops. We also observe that CE does not drop dramatically when w is 4 or 5. Therefore, we set

w to 4 or 5 in order to achieve a good trade-off between the accuracy and computation cost.

When w is 4 or 5, with the decrease of mobility, CE also decreases. This is because data at lower mobility

is more regular compared to data of higher mobility. It is also the reason why the performance of MANET

IDSs at lower mobility is better.

3) False Positive Rate: From Fig. 11, we can see that the false positive rate increases with the decrease

of the alert threshold r. When r decreases, it is easy for the alert signal to exceed r, and thus more false

alerts are generated.
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(a) PCH, window size=4. (b) PCH, window size=5. (c) PCR, window size=4. (d) PCR, window size=5.

Fig. 11. False Positive Rate of IDS Agent Constructed using PCH and PCR with Different Window Size.

With the decrease of mobility, the false positive rate decreases. This is because audit data at low mo-

bility demonstrates high regularity. When mobility is low, routing tables will have less dynamic changes.

Therefore, it is more accurate to characterize their activities, resulting in low false positive rates.

Comparing Fig. 11(a) with Fig. 11(b), when w is larger, the false positive rate increases. This is because,

for the IDS with a larger w, it is more accurate and is more sensitive to unexpected abnormal changes. A

small fluctuation of the routing table changes will make local IDS to generate an alert. This could also be

illustrated by comparing Fig. 11(c) with Fig. 11(d).
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Comparing Fig. 11(a) with Fig. 11(c), we observe a slight performance improvement of the classifier

constructed using PCH compared to that using PCR. PCH characterizes not only the number of routing

entry changes, but also the change of each routing entry. Therefore, it is a more accurate feature than PCR.

This can also be observed by comparing Fig. 11(b) with Fig. 11(d).
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(a) PCH, window size=4. (b) PCH, window size=5. (c) PCR, window size=4. (d) PCR, window size=5.

Fig. 12. MTFA of IDS Agent Constructed using PCH and PCR with Different Window Size.

4) MTFA: From Fig. 12, with the increase of r, MTFA increases. With a larger r, the detector needs

longer malicious traces for the alert signal to exceed r, leading to a larger MTFA.

Comparing Fig. 12(a) with Fig. 12(b), we can observe a slight increase of MTFA with the classifier

corresponding to window size 5. When w is larger, MC could characterize the behavior more accurately.

This could contribute to a larger r, and in turn requires a longer history for the alert signal to exceed r. The

same is true if we compare Fig. 12(c) with Fig. 12(d).

Comparing Fig. 12(a) with Fig. 12(c), we can observe that MTFA of PCR shows a larger value compared

to that of PCH. Normal profile constructed using PCH contains more information of DSR routing caches, and

is thus more accurate to characterize routing activities, making the distinction between the normal behavior

and the abnormal behavior easier. Thus a shorter history is sufficient for the alert signal to exceed the alert

threshold r. The same is true if we compare Fig. 12(b) with Fig. 12(d).

5) Detection rate: As we can see from Fig. 13, the detection rate increases with the decrease of r.

Because when r decreases, it is easier for the alert signal to exceed it. We also observe that the detection rate

increases with the decrease of mobility. When mobility is lower, routing table changes are more irregular.

Thus it is easier for the classifier to identify the abnormal behavior.
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(a) PCH, window size=4. (b) PCH, window size=5. (c) PCR, window size=4. (d) PCR, window size=5.

Fig. 13. Detection Rate of IDS Agent Constructed using PCH and PCR with Different Window Size.

When mobility is high, the detection rate is relatively low. This is mainly due to the “partial” victims. It

is very difficult to detect “partial” victims because they only receive very few routing control packets in the

whole intrusion session. This makes it very difficult to differentiate normalcy caused by mobility induced

errors and malicious behaviors at high mobility.

Comparing Fig. 13(a) with Fig. 13(b), we can see that when w increases, the detection rate corresponding

to the same mobility also increases slightly. When w increases, MC could characterize the normal behavior

more accurately because it incorporates more historical information. It could thus detect more subtle abnor-

mal changes and increase the detection rate. In our detection model, an abnormal transition that is an invalid

transition in the MC model with a smaller window size is an invalid transition in the MC model with a larger

window size either. However, an abnormal transition that is an invalid transition in the MC model with a

larger window size could be a valid transition in the MC with a smaller window size. The same is true if we

compare Fig. 13(c) with Fig. 13(d).

Comparing Fig. 13(a) with Fig. 13(c), we realize that the classifier constructed using the feature PCH

results in a higher detection rate compared to the classifier using the feature PCH. This demonstrates that

PCH is better than PCR in terms of detection rates. Normal profile constructed using PCH contains more

information of DSR routing caches, and is thus more accurate to characterize routing activities. The same is

true if we compare Fig. 13(b) with Fig. 13(d).
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C. Simulation Results of ZBIDS

We observe that local IDSs constructed using PCH demonstrate better performance results. Therefore, we

use the local IDS constructed with PCH. w is set to 4.
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Fig. 14. Performance of ZBIDS.

1) False positive rate: As shown in Fig. 14(a), the aggregation algorithm of gateway nodes achieves

much lower false positive rates than local IDS. This is because gateway nodes could collect information

from a wider area and make more accurate decisions. By analyzing the aggregated alert information, gateway

nodes can effectively eliminate the unexpected yet normal changes of MANETs. In this way, many false

alerts can be suppressed. This is the great advantage of alert aggregation.

2) Detection rate: As we can see from Fig. 14(b), the aggregation algorithm achieves higher detection

rates than local IDS. The attacker could cause “partial victims” and “full victims” at the same time. With

aggregation, both “partial victims” and “full victims” could contribute to the detection of the attackers,

resulting in a high detection rate.

However, our aggregation algorithm may still miss the detection of some attackers. This is because it is

still possible that some normal control packets dominate the source address distribution. For example, in the

routing discovery phase, we may experience some routing packet burst. This may depress the generation of

true alarms. This phenomenon is more obvious with the increase of mobility.

If there exist many attackers, the probability of a single attacker address appearing as the source address

decreases. This may lead to the decrease of the detection rate. However, in the case where different attackers

have different victims and their attack times do not overlap, our ZBIDS can still achieve high detection rate.
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3) Communication Overhead: The extra communication overhead introduced by ZBIDS is caused by

propagating the local alerts of intrazone nodes. We measure the communication overhead as the number

of transmission of all local alerts in a given time period. For a given local alert, it will be broadcast in the

same zone. As shown in Fig. 14(c), when there are attacks in the network, the communication overhead is

high because of the increased number of generated local alerts. When there are no attacks in the network,

the communication overhead decreases with the decrease of mobility. This is because when mobility is low,

local IDSs demonstrate better performance in terms of false positive rates, and thus the number of alerts

locally propagated in the zone is reduced.

D. Global View of Attacks

In ZBIDS, the gateway nodes can provide a wider view of the attack happening in the network. With MID-

MEF, an example of one possible aggregated alert is depicted in Fig. 15. This example shows that local IDSs

attached to node 1, 4 and 6 generate local alerts and these alerts are aggregated into a CorrelationAlert.

We can conclude that these nodes are the victims. Source indicates the identification of the attacker: node

22. This makes it easy to track the offending mobile node.

CorrelationAlert
name

Routing_Disruption_Attack
alertident

analyzerid        1

alertident

analyzerid        6

alertident

analyzerid        4

source
22

END
 

Fig. 15. An Example of One Aggregated Alert.

VIII. RELATED WORK

There are two important intrusion detection techniques: misuse detection and anomaly detection. A good

taxonomy of existing technologies is presented in [18]. Research on IDS began with a report by Anderson

[21] followed by Denning’s seminal paper [22]. Expert system [23] [27], pattern recognition [24], and state
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transition analysis [25] [26] have been used to construct misuse detection techniques. Statistical approaches

[23] and MC based approaches [14] [16] have been used to construct anomaly detection techniques.

Several alert aggregation and correlation techniques [28] [29] [30] [31] [32] [33] have been proposed to

facilitate intrusion analysis. Cuppens et al. [29] [30] use Lambda language to specify attack scenarios and

use Prolog to correlate alerts. In [28], an aggregation and correlation component is built in Tivoli Enterprise

Console. In [31], a probabilistic method is used to correlate alerts using the similarity among their features.

Ning et al. [32] develop three utilities to facilitate the analysis of large sets of correlated alerts. In [33], a

formal data model M2D2 is proposed to make use of the available information.

Compared to the IDS research for the Internet, relatively few research efforts have been made to MANET

IDSs. In [34], Samfat et al. propose IDAMN (Intrusion Detection Architecture for Mobile Networks)

that includes two algorithms to model the behavior of mobile users. Marti et al. [13] propose to install

watchdog and pathrater to identify routing misbehavior in MANETs. In [1], a general architecture for

intrusion detection and intrusion response is proposed for MANETs. In [2], a data mining based method that

performs the “cross-feature” analysis to capture the normal traffic patterns over MANETs is introduced. In

[35], yian et al. provide more details on attack types and sources.

IX. CONCLUSION AND FUTURE WORK

This paper presents the design of a nonoverlapping Zone-Based Intrusion Detection System (ZBIDS)

for MANETs. We present details of constructing the Markov Chain based local anomaly detection model,

including feature extraction, data preprocess, detection engine construction, and parameter tuning. Our sim-

ulation results demonstrate that the local anomaly detection model works well in low mobility environment.

With high mobility, the local detection model and the aggregation algorithm under the zone-based framework

should complement each other to form an effective and complete MANET IDS.

We plan to investigate more attack scenarios in MANETs, not only at the routing layer, but also at other

layers. Analysis of the threats could help to construct more security-related features and misuse based

intrusion detection systems. This, in turn, will help us design better aggregation and correlation algorithms.
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TABLE I

SIMULATION PARAMETERS

Parameters Values

Channel capacity 2Mbps

Channel model Free space propagation

model with a threshold

cutoff

Transmission range 250m

MAC layer Distributed Coordination

Function of IEEE 802.11

Number of nodes 30

Moving region 1000m X 500m

Mobility model Random waypoint model

Minimum speed 3m/s

Maximum speed 5m/s

Traffic pairs 8 pairs with CBR traffic

Interval transmission time 0.25s

Data packet size 512bytes

Buffer size 128 packets

Data collection interval time 3 seconds


